Sample records for compressive strength ucs

  1. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-01-01

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859

  2. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    NASA Astrophysics Data System (ADS)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  3. Assessment of brittleness and empirical correlations between physical and mechanical parameters of the Asmari limestone in Khersan 2 dam site, in southwest of Iran

    NASA Astrophysics Data System (ADS)

    Lashkaripour, Gholam Reza; Rastegarnia, Ahmad; Ghafoori, Mohammad

    2018-02-01

    The determination of brittleness and geomechanical parameters, especially uniaxial compressive strength (UCS) and Young's modulus (ES) of rocks are needed for the design of different rock engineering applications. Evaluation of these parameters are time-consuming processes, tedious, expensive and require well-prepared rock cores. Therefore, compressional wave velocity (Vp) and index parameters such as point load index and porosity are often used to predict the properties of rocks. In this paper, brittleness and other properties, physical and mechanical in type, of 56 Asmari limestones in dry and saturated conditions were analyzed. The rock samples were collected from Khersan 2 dam site. This dam with the height of 240 m is being constructed and located in the Zagros Mountain, in the southwest of Iran. The bedrock and abutments of the dam site consist of Asemari and Gachsaran Formations. In this paper, a practical relation for predicting brittleness and some relations between mechanical and index parameters of the Asmari limestone were established. The presented equation for predicting brittleness based on UCS, Brazilian tensile strength and Vp had high accuracy. Moreover, results showed that the brittleness estimation based on B3 concept (the ratio of multiply compressive strength in tensile strength divided 2) had more accuracy as compared to the B2 (the ratio of compressive strength minus tensile strength to compressive strength plus tensile strength) and B1 (the ratio of compressive strength to tensile strength) concepts.

  4. Core-log integration for rock mechanics using borehole breakouts and rock strength experiments: Recent results from plate subduction margins

    NASA Astrophysics Data System (ADS)

    Saito, S.; Lin, W.

    2014-12-01

    Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.

  5. The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling

    NASA Astrophysics Data System (ADS)

    Ozturk, H.; Altinpinar, M.

    2017-07-01

    The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.

  6. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    NASA Astrophysics Data System (ADS)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  7. Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

    PubMed Central

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2012-01-01

    The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301

  8. Peat soils stabilization using Effective Microorganisms (EM)

    NASA Astrophysics Data System (ADS)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  9. The influence of total suction on the brittle failure characteristics of clay shales

    NASA Astrophysics Data System (ADS)

    Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.

    2013-12-01

    Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.

  10. Accelerated curing and strength-modulus correlation for lime-stabilized soils : final report, January 2010.

    DOT National Transportation Integrated Search

    2010-01-01

    This study sought to identify the equivalent 105F curing duration for lime-stabilized soil (LSS) that will : yield the equivalent unconfined compressive strength (UCS) to that resulting from 28-day, 73F curing. Both : 5-day and 7-day 105F (or 1...

  11. Validation and refinement of chemical stabilization procedures for pavement subgrade soils in Oklahoma : volume I.

    DOT National Transportation Integrated Search

    2011-07-01

    Additions of byproduct chemicals, such as fly ash or cement kiln dust, have been shown to increase the unconfined compression strength (UCS) of soils. To be considered effective, the soil must exhibit a strength increase of at least 50 psi. Many curr...

  12. Treatability Study Report for In SITU Lead Immobilization Using Phosphate-Based Binders

    DTIC Science & Technology

    2008-05-01

    include lead, zinc, copper, cadmium, nickel, uranium, barium, cesium, strontium, plutonium, thorium, and other lanthanide and actinide metals. There...Density Bulk density is the measure of the mass per unit volume of the whole soil specimen. American Society for Testing and Materials (ASTM) D 698...Where: m = mass of the soil (grams) V = Volume of sample (cm3) 4.2.2.1.3 Unconfined Compressive Strength (UCS) The UCS test was used to

  13. Geotechnical properties of cemented sands in steep slopes

    USGS Publications Warehouse

    Collins, B.D.; Sitar, N.

    2009-01-01

    An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.

  14. A sampling study on rock properties affecting drilling rate index (DRI)

    NASA Astrophysics Data System (ADS)

    Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal

    2018-05-01

    Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.

  15. Tube Suction Test for Evaluating

    DOT National Transportation Integrated Search

    2012-06-01

    In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (F-T/W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moisture ...

  16. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    EPA Science Inventory

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  17. Tube suction test for evaluating durability of cementitiously stabilized soils.

    DOT National Transportation Integrated Search

    2011-06-01

    In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (F-T/W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moisture ...

  18. Tube suction test for evaluating durability of cementitiously stabilized soils.

    DOT National Transportation Integrated Search

    2011-06-01

    In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (FT/ : W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moistur...

  19. Investigation of the Quasi-Brittle Failure of Alashan Granite Viewed from Laboratory Experiments and Grain-Based Discrete Element Modeling

    PubMed Central

    Zhang, Luqing; Yang, Duoxing; Braun, Anika; Han, Zhenhua

    2017-01-01

    Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture—including mineral constituents, grain shape, size, and distribution—controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks. PMID:28773201

  20. Investigation of the Quasi-Brittle Failure of Alashan Granite Viewed from Laboratory Experiments and Grain-Based Discrete Element Modeling.

    PubMed

    Zhou, Jian; Zhang, Luqing; Yang, Duoxing; Braun, Anika; Han, Zhenhua

    2017-07-21

    Granite is a typical crystalline material, often used as a building material, but also a candidate host rock for the repository of high-level radioactive waste. The petrographic texture-including mineral constituents, grain shape, size, and distribution-controls the fracture initiation, propagation, and coalescence within granitic rocks. In this paper, experimental laboratory tests and numerical simulations of a grain-based approach in two-dimensional Particle Flow Code (PFC2D) were conducted on the mechanical strength and failure behavior of Alashan granite, in which the grain-like structure of granitic rock was considered. The microparameters for simulating Alashan granite were calibrated based on real laboratory strength values and strain-stress curves. The unconfined uniaxial compressive test and Brazilian indirect tensile test were performed using a grain-based approach to examine and discuss the influence of mineral grain size and distribution on the strength and patterns of microcracks in granitic rocks. The results show it is possible to reproduce the uniaxial compressive strength (UCS) and uniaxial tensile strength (UTS) of Alashan granite using the grain-based approach in PFC2D, and the average mineral size has a positive relationship with the UCS and UTS. During the modeling, most of the generated microcracks were tensile cracks. Moreover, the ratio of the different types of generated microcracks is related to the average grain size. When the average grain size in numerical models is increased, the ratio of the number of intragrain tensile cracks to the number of intergrain tensile cracks increases, and the UCS of rock samples also increases with this ratio. However, the variation in grain size distribution does not have a significant influence on the likelihood of generated microcracks.

  1. In situ stress magnitude and rock strength in the Nankai accretionary complex: a novel approach using paired constraints from downhole data in two wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.; Dugan, B.

    2016-07-01

    We present a method to simultaneously constrain both far-field horizontal stress magnitudes ( S hmin and S Hmax) and in situ rock unconfined compressive strength (UCS), using geophysical logging data from two boreholes located 70 m apart that access the uppermost accretionary prism of the Nankai subduction zone . The boreholes sample the same sediments and are affected by the same tectonic stress field, but were drilled with different annular pressures, thus providing a unique opportunity to refine estimates of both in situ stress magnitudes and rock strength. We develop a forward model to predict the angular width of compressional wellbore failures (borehole breakouts), and identify combinations of S Hmax and UCS that best match breakout widths observed in resistivity images from the two boreholes. The method requires knowledge of S hmin, which is defined by leak-off tests conducted during drilling. Our results define a normal to strike-slip stress regime from 900 to 1386 m below seafloor, consistent with observations from seismic and core data. Our analysis also suggests that in situ values of UCS are generally slightly lower that commonly assumed on the basis of published empirical relations between UCS and P-wave velocity.

  2. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    NASA Astrophysics Data System (ADS)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  3. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    NASA Astrophysics Data System (ADS)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  4. Interrelationships among geotechnical and leaching properties of a cement-stabilized contaminated soil.

    PubMed

    Kogbara, Reginald B

    2017-01-28

    Relationships among selected performance properties have been established using experimental data from a cement-stabilized mixed contaminated soil. The sandy soil was spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. It was then treated with 5%, 10%, 15%, and 20% dosages of Portland cement. Different water contents were considered for lower dosage mixes. Selected geotechnical and leaching properties were determined on 28-day old samples. These include unconfined compressive strength (UCS), bulk density, porosity, hydraulic conductivity, leachate pH and granular leachability of contaminants. Interrelationships among these properties were deduced using the most reasonable best fits determined by specialized curve fitting software. Strong quadratic and log-linear relationships exist between hydraulic conductivity and UCS, with increasing binder and water contents, respectively. However, the strength of interrelationships between hydraulic conductivity and porosity, UCS and porosity, and UCS and bulk density varies with binder and water contents. Leachate pH and granular leachability of contaminants are best related to UCS and hydraulic conductivity by a power law and an exponential function, respectively. These results suggest how the accuracy of not-easily-measurable performance properties may be constrained from simpler ones. Comparisons with some published performance properties data support this.

  5. Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications.

    PubMed

    Mohammadinia, Alireza; Arulrajah, Arul; Horpibulsuk, Suksun; Chinkulkijniwat, Avirut

    2017-01-05

    Fly Ash (FA), an abundant by-product with no carbon footprint, is a potential stabilizer for enhancing the physical and geotechnical properties of pavement aggregates. In this research, FA was used in different ratios to stabilize crushed brick (CB) and reclaimed asphalt pavement (RAP) for pavement base/subbase applications. The FA stabilization of CB and RAP was targeted to improve the strength and durability of these recycled materials for pavement base/subbase applications. The Unconfined Compressive Strength (UCS) and resilient modulus (M R ) development of the stabilized CB and RAP aggregates was studied under room temperature and at an elevated temperatures of 40°C, and results compared with unbound CB and RAP. Analysis of atomic silica content showed that when the amount of silica and alumina crystalline was increased, the soil structure matrix deteriorated, resulting in strength reduction. The results of UCS and M R testing of FA stabilized CB and RAP aggregates indicated that FA was a viable binder for the stabilization of recycled CB and RAP. CB and RAP stabilized with 15% FA showed the highest UCS results at both room temperature and at 40°C. Higher temperature curing was also found to result in higher strengths. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of Industrial By-Products on Unconfined Compressive Strength of Solidified Organic Marine Clayey Soils

    PubMed Central

    Park, Chan-Gi; Yun, Sung-Wook; Baveye, Phillippe C.; Yu, Chan

    2015-01-01

    The use of industrial by-products as admixture to ASTM Type I cement (ordinary Portland cement (OPC)) was investigated with the objective of improving the solidification of organic marine clayey soils. The industrial by-products considered in this paper were oyster-shell powder (OSP), steelmaking slag dust (SMS) and fuel-gas-desulfurized (FGD) gypsum. The industrial by-products were added to OPC at a ratio of 5% based on dry weight to produce a mixture used to solidify organic marine clayey soils. The dosage ratios of mixtures to organic marine clayey soils were 5, 10 and 15% on a dry weight basis. Unconfined compressive strength (UCS) test after 28 days revealed that the highest strength was obtained with the OPC + SMS 15% mixing ratio. The UCS of specimens treated with this mixture was >500 kPa, compared with 300 kPa for specimens treated with a 15% OPC + OSP mixture and 200 kPa when 15% of OPC was used alone. These results were attributed to the more active hydration and pozzolanic reaction of the OPC + SMS mixture. This hypothesis was verified through X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, and was confirmed by variations in the calcium carbonate (CaCO3) content of the materials during curing. PMID:28793493

  7. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    NASA Astrophysics Data System (ADS)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  8. Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone.

    PubMed

    Vasanelli, Emilia; Colangiuli, Donato; Calia, Angela; Sileo, Maria; Aiello, Maria Antonietta

    2015-07-01

    UPV as non-destructive technique can effectively contribute to the low invasive in situ analysis and diagnosis of masonry elements related to the conservation, rehabilitation and strengthening of the built heritage. The use of non-destructive and non-invasive techniques brings all the times many advantages in diagnostic activities on pre-existing buildings in terms of sustainability; moreover, it is a strong necessity with respect to the conservation constraints when dealing with the historical-architectural heritage. In this work laboratory experiments were carried out to investigate the effectiveness of ultrasonic pulse velocity (UPV) in evaluating physical and mechanical properties of Lecce stone, a soft and porous building limestone. UPV and selected physical-mechanical parameters such as density and uniaxial compressive strength (UCS) were determined. Factors such as anisotropy and water presence that induce variations on the ultrasonic velocity were also assessed. Correlations between the analysed parameters are presented and discussed. The presence of water greatly affected the values of the analysed parameters, leading to a decrease of UPV and to a strong reduction of the compressive strength. A discussion of the role of the water on these results is provided. Regression analysis showed a reliable linear correlation between UPV and compressive strength, which allows a reasonable estimation of the strength of Lecce stone by means of non-destructive testing methods such as the ultrasonic wave velocity. Low correlation between UPV and density was found, suggesting that other factors than density, related to the fabric and composition, also influence the response of the selected stone to the UPV. They have no influence on the UCS, that instead showed to be highly correlated with the packing density. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Stabilization of Black Cotton Soil Using Micro-fine Slag

    NASA Astrophysics Data System (ADS)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  10. The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria

    NASA Astrophysics Data System (ADS)

    Afolagboye, Lekan Olatayo; Talabi, Abel Ojo; Oyelami, Charles Adebayo

    2017-05-01

    This study assessed the possibility of using index tests to determine the mechanical properties of crushed aggregates. The aggregates used in this study were derived from major Precambrian basement rocks in Ado-Ekiti, Nigeria. Regression analyses were performed to determine the empirical relations that mechanical properties of the aggregates may have with the point load strength (IS(50)), Schmidt rebound hammer value (SHR) and unconfined compressive strength (UCS) of the rocks. For all the data, strong correlation coefficients were found between IS(50), SHR, UCS, and mechanical properties of the aggregates. The regression analysis conducted on the different rocks separately showed that correlations coefficients obtained between the IS(50), SHR, UCS and mechanical properties of the aggregates were stronger than those of the grouped rocks. The T-test and F-test showed that the derived models were valid. This study has shown that the mechanical properties of the aggregates can be estimated from IS(50), SHR and USC but the influence of rock type on the relationships should be taken into consideration.

  11. Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam.

    PubMed

    Callcut, S; Knowles, J C

    2002-05-01

    Glass-reinforced hydroxyapatite (HA) foams were produced using reticulated foam technology using a polyurethane template with two different pore size distributions. The mechanical properties were evaluated and the structure analyzed through density measurements, image analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the mechanical properties, the use of a glass significantly improved the ultimate compressive strength (UCS) as did the use of a second coating. All the samples tested showed the classic three regions characteristic of an elastic brittle foam. From the density measurements, after application of a correction to compensate for the closed porosity, the bulk and apparent density showed a 1 : 1 correlation. When relative bulk density was plotted against UCS, a non-linear relationship was found characteristic of an isotropic open celled material. It was found by image analysis that the pore size distribution did not change and there was no degradation of the macrostructure when replicating the ceramic from the initial polyurethane template during processing. However, the pore size distributions did shift to a lower size by about 0.5 mm due to the firing process. The ceramic foams were found to exhibit mechanical properties typical of isotropic open cellular foams.

  12. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  13. Strength Measurements of Archive K Basin Sludge Using a Soil Penetrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2011-12-06

    Spent fuel radioactive sludge present in the K East and K West spent nuclear fuel storage basins now resides in the KW Basin in six large underwater engineered containers. The sludge will be dispositioned in two phases under the Sludge Treatment Project: (1) hydraulic retrieval into sludge transport and storage containers (STSCs) and transport to interim storage in Central Plateau and (2) retrieval from the STSCs, treatment, and packaging for shipment to the Waste Isolation Pilot Plant. In the years the STSCs are stored, sludge strength is expected to increase through chemical reaction, intergrowth of sludge crystals, and compaction andmore » dewatering by settling. Increased sludge strength can impact the type and operation of the retrieval equipment needed prior to final sludge treatment and packaging. It is important to determine whether water jetting, planned for sludge retrieval from STSCs, will be effective. Shear strength is a property known to correlate with the effectiveness of water jetting. Accordingly, the unconfined compressive strengths (UCS) of archive K Basin sludge samples and sludge blends were measured using a pocket penetrometer modified for hot cell use. Based on known correlations, UCS values can be converted to shear strengths. Twenty-six sludge samples, stored in hot cells for a number of years since last being disturbed, were identified as potential candidates for UCS measurement and valid UCS measurements were made for twelve, each of which was found as moist or water-immersed solids at least 1/2-inch deep. Ten of the twelve samples were relatively weak, having consistencies described as 'very soft' to 'soft'. Two of the twelve samples, KE Pit and KC-4 P250, were strong with 'very stiff' and 'stiff' consistencies described, respectively, as 'can be indented by a thumb nail' or 'can be indented by thumb'. Both of these sludge samples are composites collected from KE Basin floor and Weasel Pit locations. Despite both strong sludges having relatively high iron concentrations, attribution of their high strengths to this factor could not be made with confidence as other measured sludge samples, also from the KE Basin floor and of high iron concentration, were relatively weak. The observed UCS and shear strengths for the two strong sludges were greater than observed in any prior testing of K Basin sludge except for sludge processed at 185 C under hydrothermal conditions.« less

  14. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  15. Fabric controls on the brittle failure of folded gneiss and schist

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.

    2014-12-01

    We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.

  16. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.

    PubMed

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya

    2018-01-05

    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na 2 SiO 3 :NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons

    PubMed Central

    Gupta, Manoj

    2017-01-01

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47–1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed. PMID:28841189

  18. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons.

    PubMed

    Manakari, Vyasaraj; Parande, Gururaj; Doddamani, Mrityunjay; Gupta, Manoj

    2017-08-25

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47-1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed.

  19. Physical and mechanical properties of sand stabilized by cement and natural zeolite

    NASA Astrophysics Data System (ADS)

    Salamatpoor, Sina; Jafarian, Yaser; Hajiannia, Alborz

    2018-05-01

    Loose sands are prone to lose their shear strength when being subjected to static or cyclic loads. To this end, there exist several methods to improve the mechanical properties of sands, but the most crucial and viable approach is the one with the lowest harmful environmental impact both in production and recycling processes. In this regard, zeolite as a natural pozzolanic additive offers an eco-friendly improvement in strength parameters of cemented sandy soils. Thereby, in this study, a series of unconfined compressive strength (UCS) tests are conducted to evaluate the mechanical parameters of the zeolite-cemented sand. The results demonstrate a meaningful increase in the UCS of the treated sand samples for replacement of cement by zeolite at an optimum proportion of 40% in specimens with 14 and 28 days curing time. The effectiveness of the improvement process is demonstrated by the strength improvement ratio which was up to be 128% to 209% for the samples with 14 and 28 days curing time, respectively. With regard to the above results, zeolite can be introduced as a promising cement substitute in stabilization of sandy ground including backfills, roadbed, embankments, and other structural filling systems.

  20. Mechanical behavior in the Nankai inner accretionary prism, IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Valdez, R. D., II; Saffer, D. M.

    2017-12-01

    Understanding the processes that control seismogenesis and stress state at subduction zones requires knowledge of fault zone and sediment physical and mechanical properties. As part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), Expedition 348 drilled into the Kumano forearc basin and underlying inner accretionary prism at Site C0002, located 35 km landward of the trench. One primary objective was to sample and characterize the mechanical behavior of the inner accretionary prism. Here we report on the frictional and unconfined compressive strength (UCS) of mudstone samples and a clay-rich shear zone recovered from 2182-2209 meters below sea floor (mbsf), determined from triaxial deformation tests at confining pressures from 1 to 7 MPa (UCS measurements on mudstones) and 36 MPa (strength of fault zone). Our results show that at a confining pressure of 1 MPa, the wall rock sediments fail at a peak differential stress of 9.1 MPa with a residual stress of 2.8 MPa. A clear peak and evolution to residual strength remains present at 7 MPa, and both the peak and residual strengths of the mudstones increases systematically with confining pressure. At a confining pressure of 36 MPa, the shear zone sediment yields at a differential stress of 25.2 MPa followed by strain-hardening to a maximum stress of 33.1 MPa. The shear zone is frictionally weaker than the surrounding mudstones, with a friction coefficient (μ) of 0.26-0.31, versus µ = 0.45 for the wall rock. The suite of tests defines a UCS for the mudstone of 7.9 MPa. Our friction data suggest that the inner wedge may be weaker than commonly assumed in applications of critical wedge theory to estimate the properties and conditions in accretionary prisms. One key implication is that for a given basal detachment friction coefficient, higher basal pore pressures (or lower wedge pore pressures) would be required to sustain observed taper angles. Additionally, the UCS we define is significantly lower than predicted by widely-adopted empirical relations between P wave velocity and UCS for shales (UCS of 15.5 MPa), suggesting that existing analyses of stress magnitudes from borehole breakout widths may overestimate horizontal stress magnitudes.

  1. Prevention of urinary tract infections in palliative radiation for vertebral metastasis and spinal compression: A pilot study in 71 patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manas, Ana; Glaria, Luis; Pena, Carmen

    2006-03-01

    Purpose: To assess the impact of bladder instillations of hyaluronic acid (HA) on the prevalence of urinary tract infection (UTI) in patients receiving emergency radiotherapy for metastatic spinal cord compression. Methods and Materials: Patients were recruited consecutively at one center and assigned to usual care (UC) (n = 34, mean age 62.2 years) or UC with once-weekly HA instillation (UC + HA) (Cystistat: 40 mg in 50 mL phosphate-buffered saline) (n = 37; mean age, 63.1 years). All patients had an indwelling catheter and received radiotherapy. UTI status was assessed at baseline and during hospitalization. Results: At baseline, patient groupsmore » were comparable, except for the prevalence of UTI at baseline, which was 11.8% and 0% in the UC and UC + HA patients, respectively (p = 0.0477). During hospitalization, 76.5% (vs. 11.8% at baseline, p < 0.0001) of the UC patients had a UTI compared with 13.5% (vs. 0% at baseline, p = 0.0541) of the UC + HA patients (p < 0.0001). Both groups were hospitalized for similar periods (19.8 days [UC] vs. 18.5 days, p = 0.4769) and received equivalent radiotherapy sessions (4.6 [UC] vs. 5.8 sessions, p = 0.2368). Conclusions: Patients receiving UC + HA had a 5.7-fold decrease in UTI prevalence over the hospitalization period compared to UC patients, suggesting that bladder instillations of HA effectively prevent UTI in patients with indwelling catheters receiving radiotherapy for nerve compression.« less

  2. Laboratory investigation of TerraZyme as a soil stabilizer

    NASA Astrophysics Data System (ADS)

    Yusoff, Siti Aimi Nadia Mohd; Azmi, Mastura; Ramli, Harris; Bakar, Ismail; Wijeyesekera, D. C.; Zainorabidin, Adnan

    2017-10-01

    In this study, a laboratory investigation was conducted to examine the performance of TerraZyme on different soil types. Laterite and kaolin were treated with 2% and 5% TerraZyme to determine changes in the soils' geotechnical properties. The obtained results were analysed and investigated in terms of compaction, Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR). The changes in geotechnical properties of the stabilised and unstabilised soils were monitored after curing periods of 0, 7, 15, 21 and 30 days. Changes in compaction properties, UCS and CBR were observed. It was found that laterite with 5% TerraZyme gave a higher maximum dry density (MDD) and decreased the optimum moisture content (OMC). For kaolin, a different TerraZyme percentage did not show any effect on both MDD and OMC. For strength properties, it was found that 2% TerraZyme showed the greatest change in UCS over a 30-day curing period. The CBR value of stabilised kaolin with 2% TerraZyme gave a higher CBR value than the kaolin treated with 5% TerraZyme. It was also found that laterite treated with TerraZyme gave a higher CBR value. Lastly, it can be concluded that TerraZyme is not suitable for stabilising kaolin; TerraZyme requires a cohesive soil to achieve a better performance.

  3. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression.

    PubMed

    Cao, Rihong; Cao, Ping; Lin, Hang; Fan, Xiang

    2017-01-01

    Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D), the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength), CIS (crack initiation stress) and CDiS (critical dilatancy stress) increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.

  4. The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks

    NASA Astrophysics Data System (ADS)

    Delibalta, M. S.; Kahraman, S.; Comakli, R.

    2015-11-01

    Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.

  5. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    NASA Astrophysics Data System (ADS)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore fluid to assess the contribution of montmorillonite swelling and compare argon and water permeability. There is potential for salinity to markedly affect permeability, as electrolytes can initiate cation-exchange reactions. Permeability and strength are both key parameters to assess the long term safety of a geological disposal facility.

  6. Site Simulation of Solidified Peat: Lab Monitoring

    NASA Astrophysics Data System (ADS)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  7. Determination of Uniaxial Compressive Strength of Ankara Agglomerate Considering Fractal Geometry of Blocks

    NASA Astrophysics Data System (ADS)

    Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.

    2010-05-01

    The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal dimensions. To determine fractal dimensions of more than hundred andesite blocks in cores, a computer program namely FRACRUN were developed. Fractal geometry has been used as practical and popular tool to define particularly irregular shaped bodies in literature since the theory of fractal was developed by Mandelbrot (1967) (Hyslip and Vallejo, 1997; Kruhl and Nega, 1996; Bagde etal., 2002; Gulbin and Evangulova, 2003; Pardini, 2003; Kolay and Kayabali, 2006; Hamdi, 2008; Zorlu, 2009 and Sezer, 2009). Although there are some methods to determine fractal dimensions, square grid-cell count method for 2D and segment count method for 1D were followed in the algorithm of FRACRUN. FRACRUN has capable of determine fractal dimensions of many closed polygons on a single surface. In the study, a database composed of uniaxial compressive strength, volumetric block proportion, fractal dimensions and number of blocks for each core was established. Finally, prediction models were developed by regression analyses and compared with the empirical equations proposed by Sonmez et al. (2006). Acknowledgement This study is a product of ongoing project supported by TUBITAK (The Scientific and Technological Research Council of Turkey - Project No: 108Y002). References Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology 63, 141-155. Gokceoglu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66 (1-2), 39-51. Gulbin, Y.L., Evangulova, E.B., 2003. Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Mathematical Geology 35 (7), 819-833 Hamdi, E., 2008. A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41, 587-599. Hyslip, J.P., Vallejo, L.E., 1997. Fractals analysis of the roughness and size distribution of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.

  8. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammadreza; Atrian, Amir

    2018-02-01

    This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.

  9. Organic neem compounds inhibit soft-rot fungal growth and improve the strength of anthracite bricks bound with collagen and lignin for use in iron foundry cupolas.

    PubMed

    Kelsey, D J; Nieto-Delgado, C; Cannon, F S; Brennan, R A

    2015-07-01

    To examine organic neem compounds for their effective growth inhibition of saprotrophic soft-rot fungi on anthracite bricks bound with collagen and lignin for use in iron foundry cupolas as an alternative fuel source. Azadirachtin, crude neem oil (NO), and clarified neem oil extract (CNO) were combined with copper to inhibit the growth of the soft-rot fungus, Chaetomium globosum. A synergistic interaction was observed between CNO and a low dose of copper on nutrient media (two-factor anova with triplicate replication: P < 0·05). Interaction was confirmed on lab-scale collagen-lignin-anthracite briquettes by measuring their unconfined compressive (UC) strength. The effective collagen strength of the briquettes was enhanced by applying CNO to their surface prior to inoculation: the room temperature UC strength of the briquettes was 28 ± 4·6% greater when CNO (0·4 mg cm(-2) ) was surface-applied, and was 43 ± 3·0% greater when CNO plus copper (0·14 μg cm(-2) ) were surface-applied. Surface application of CNO and copper synergistically prevents fungal growth on bindered anthracite briquettes and increases their room temperature strength. This novel organic fungicidal treatment may increase the storage and performance of anthracite bricks in iron foundries, thereby saving 15-20% of the energy used in conventional coke production. © 2015 The Society for Applied Microbiology.

  10. Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Tian, Xichun; Cao, Peiwang

    2018-04-01

    Cemented paste backfill (CPB) is an emerging mine backfill technique that allows environmentally hazardous tailings to return to the underground openings or stopes, thereby maximising the safety, efficiency and productivity of operation. Uniaxial compressive strength (UCS) is one of the most commonly used parameters for evaluating the mechanical performance of CPB; the prediction of the UCS of CPB structures from early to advanced ages is of great practical importance. This study aims to investigate the predictability of the UCS of CPB during the hydration process based on electrical resistivity (ER) measurement. For this purpose, the samples prepared at different cement-to-tailing ratios and solid contents were subjected to the ER test during the whole hydration process and UCS tests at 3, 7, 28 days of curing periods. The effect of cement-to-tailing ratio and solid content on the ER and UCS of CPB samples was obtained; the UCS values were correlated with the corresponding ER data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the ER data. The result shows that the ER of CPB decreases first and then increases with the speed which is faster in the previous part than the latter. The ER and UCS of CPB samples increased with increasing cement-to-tailing ratio and solid content and curing periods. A logarithmic relationship is established for each mixture in order to predict the UCS of CPB based on ER. Scanning electron microscope analyses have revealed that the microstructure of the CPB changes with the age from the initial floc to honeycomb, and eventually to the compact clumps. The ER properties of CPB samples were highly associated with their respective microstructural properties. The major output of this study is that ER test is effectively capable for a preliminary prediction of the UCS of CPB.

  11. Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.

    PubMed

    Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.

  12. Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan

    PubMed Central

    Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654

  13. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    NASA Astrophysics Data System (ADS)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  14. A Study of Three Intrinsic Problems of the Classic Discrete Element Method Using Flat-Joint Model

    NASA Astrophysics Data System (ADS)

    Wu, Shunchuan; Xu, Xueliang

    2016-05-01

    Discrete element methods have been proven to offer a new avenue for obtaining the mechanics of geo-materials. The standard bonded-particle model (BPM), a classic discrete element method, has been applied to a wide range of problems related to rock and soil. However, three intrinsic problems are associated with using the standard BPM: (1) an unrealistically low unconfined compressive strength to tensile strength (UCS/TS) ratio, (2) an excessively low internal friction angle, and (3) a linear strength envelope, i.e., a low Hoek-Brown (HB) strength parameter m i . After summarizing the underlying reasons of these problems through analyzing previous researchers' work, flat-joint model (FJM) is used to calibrate Jinping marble and is found to closely match its macro-properties. A parametric study is carried out to systematically evaluate the micro-parameters' effect on these three macro-properties. The results indicate that (1) the UCS/TS ratio increases with the increasing average coordination number (CN) and bond cohesion to tensile strength ratio, but it first decreases and then increases with the increasing crack density (CD); (2) the HB strength parameter m i has positive relationships to the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle, but a negative relationship to the average coordination number (CN); (3) the internal friction angle increases as the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle increase; (4) the residual friction angle has little effect on these three macro-properties and mainly influences post-peak behavior. Finally, a new calibration procedure is developed, which not only addresses these three problems, but also considers the post-peak behavior.

  15. 46 CFR 54.25-7 - Requirement for postweld heat treatment (modifies UCS-56).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Requirement for postweld heat treatment (modifies UCS-56... for postweld heat treatment (modifies UCS-56). (a) Postweld heat treatment is required for all carbon... the storage or transportation of liquefied compressed gases shall be postweld heat treated regardless...

  16. Three-year performance of in-situ mass stabilised contaminated site soils using MgO-bearing binders.

    PubMed

    Wang, Fei; Jin, Fei; Shen, Zhengtao; Al-Tabbaa, Abir

    2016-11-15

    This paper provides physical and chemical performances of mass stabilised organic and inorganic contaminated site soils using a new group of MgO-bearing binders over 3 years and evaluated the time-dependent performance during the 3 years. This study took place at a contaminated site in Castleford, UK in 2011, where MgO, ground granulated blastfurnace slag (GGBS) and Portland cement (PC) were mixed with the contaminated soils in a dry form using the ALLU mass mixing equipment. Soil cores were retrieved 40-day, 1-year and 3-year after the treatment. The core quality, strength, and the leaching properties were determined via physical observation, unconfined compressive strength (UCS) and batch leaching tests. After 3-year treatment, the UCS values of ALLU mixes were in the range of 50-250kPa; the leachate concentrations of Cd, Pb, Cu and Zn (except Ni) in all mixes were lower than their drinking water standards; and the leachability of total organics was in the range of 10-105mg/L. No apparent degradation of the mass stabilised materials after 3 years' exposure to the field conditions was found. MgO-GGBS blends were found able to provide higher strength and less leachability of contaminants compared to PC and MgO-only mixes in mass stabilised soils. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography

    NASA Astrophysics Data System (ADS)

    Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M.; Kovscek, Anthony R.

    2018-04-01

    A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.

  18. An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography.

    PubMed

    Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M; Kovscek, Anthony R

    2018-04-01

    A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.

  19. The relationship between magnetic anisotropy, rock-strength anisotropy and vein emplacement in gold-bearing metabasalts of Gadag (South India)

    NASA Astrophysics Data System (ADS)

    Vishnu, C. S.; Lahiri, Sivaji; Mamtani, Manish A.

    2018-01-01

    In this study the importance of rock strength and its anisotropy in controlling vein emplacement is evaluated by integrating anisotropy of magnetic susceptibility (AMS) with rock mechanics data from massive (visibly isotropic) metabasalts of Gadag region (Dharwar Craton, South India). Orientation of magnetic foliation (MF) is first recognized from AMS. Subsequently, rock mechanics tests viz. ultrasonic P-wave velocity (Vp), uniaxial compressive strength (UCS) and point load strength (Is(50)) are done in cores extracted parallel and perpendicular to MF. Vp is found to be higher in direction parallel to MF than perpendicular to it. In contrast rock strength (UCS and Is(50)) is greater in direction perpendicular to MF, than parallel to it. This proves that rocks from the gold mineralized belt of Gadag have rock strength anisotropy. Orientation of MF in Gadag region is NW-SE, which is also the mean orientation of quartz veins. Previous studies indicate that emplacement of veins in the region took place during regional D3 (NW-SE shortening). Based on the present study, it is concluded that vein emplacement took place in NW-SE orientation because the rocks have strength anisotropy and are weaker in this direction (orientation of MF), which dilated to accommodate fluid flow. In addition, vein intensities are measured along three traverses and found to be variable. It is argued that since mineralization is favoured when the system gets saturated with fluid, variation in fluid flow could not have been responsible for variation in vein intensities in the study area. Since the rock strength of the different blocks investigated here is not uniform, it is envisaged that variation in rock strength played an important role in controlling the vein intensities. It is concluded that rock strength variation controlled strain partitioning and channelized fluid flow thus influencing vein emplacement and mineralization and formation of lodes.

  20. Simple cubic equation of state applied to hard-sphere, Lennard-Jones fluids, simple fluids and solids

    NASA Astrophysics Data System (ADS)

    Sun, Jiu-Xun; Cai, Ling-Cang; Wu, Qiang; Jin, Ke

    2013-09-01

    Based on the expansion and extension of the virial equation of state (EOS) of hard-sphere fluids solved by the Percus-Yevick integration equation, a universal cubic (UC) EOS is developed. The UC EOS is applied to model hard-sphere and Lennard-Jones (LJ) fluids, simple Ar and N2 liquids at low temperatures, and supercritical Ar and N2 fluids at high temperatures, as well as ten solids, respectively. The three parameters are determined for the hard-sphere fluid by fitting molecular dynamics (MD) simulation data of the third to eighth virial coefficients in the literature; for other fluids by fitting isothermal compression data; and for solids by using the Einstein model. The results show that the UC EOS gives better results than the Carnahan-Starling EOS for compressibility of hard-sphere fluids. The Helmholtz free energy and internal energy for LJ fluids are predicted and compared with MD simulation data. The calculated pressures for simple Ar and N2 liquids are compared with experimental data. The agreement is fairly good. Eight three-parameter EOSs are applied to describe isothermals of ten typical solids. It is shown that the UC EOS gives the best precision with correct behavior at high-pressure limitation. The UC EOS considering thermal effects is used to analytically evaluate the isobaric thermal expansivity and isothermal compressibility coefficients. The results are in good agreement with experimental data.

  1. An experimental investigation into the effects of pores and crystals on magma rheology

    NASA Astrophysics Data System (ADS)

    Coats, Rebecca; Cai, Biao; Kendrick, Jackie; Wallace, Paul; Hornby, Adrian; Miwa, Taka; Ashworth, James; von Aulock, Felix; Godinho, José; Lee, Peter; Lavallée, Yan

    2017-04-01

    The rheology of magma has a key control on eruption style; transitions in flow dynamics can be linked to changes in porosity, crystallinity and melt chemistry. Physical interactions due to the presence of both crystals and bubbles in a volcanic melt can influence a system's rheology by causing variations in viscosity and strain dependent flow behaviour, making eruption style difficult to predict. Ergo it is essential to gain an insight into the manner in which crystalline, porous magmas flow and fail. By conducting uniaxial compressive strength (UCS) tests on both volcanic rocks and synthetic samples at room and high temperatures, a deeper understanding of how these materials behave at volcanic conditions can be attained. Here we have taken advantage of a suite of highly crystalline ( 50 vol.%) dacite from Mt Unzen, with varying porosity (9-32 vol.%), along with a sintered glass with a range of atmospheric air filled pores (<3, 20 and 30 vol.%) and TiO2 particles (0-50 vol.%). Mt Unzen experiments have revealed that the UCS systematically decreases with an increase in porosity, matching other volcanic rocks in the literature and UCS is strain rate dependent. The latter of which, along with the observation that UCS increases at higher temperatures, has not previously been observed in glass-bearing volcanic rocks and was seen in both samples from Mt Unzen and in the glass-particle mixtures. From the synthetic sample tests at room temperature we see that the UCS does not vary with crystal content (across the range measured), but at high temperature preliminary results suggest strength decreases with particle volume. Gent's parallel plate technique was applied to calculate the viscosity of samples that appeared to flow under the applied stresses. Both natural and synthetic samples demonstrated a non-Newtonian, shear thinning response to applied strain rates. For the natural Mt. Unzen samples it appears that viscosity does not scale with porosity; which, at 50 vol.% crystals, is supported by experimental and modelling data in the literature[1]. Although experiments are yet to take place on porous synthetic samples, tests on the dense samples reveal that viscosity is proportional to crystal content. Conclusions drawn from these experiments both confirm and contradict results published in the literature, which we interpret as a demonstration that multi-phase magmas are more complex than previously suggested. In order to help resolve these complexities we recently undertook a series of high-temperature compression experiments on the synthetic magma in-situ at the Diamond Light Source, the results of which will shed light on the way in which crystalline, porous materials flow and fracture. [1] Truby JM, Mueller SP, Llewellin EW and Mader HM. 2015 The rheology of three-phase suspensions at low bubble capillary number. Proc. R. Soc. A

  2. In situ rock strength and far field stress in the Nankai accretionary complex: Integration of downhole data from multiple wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.

    2014-12-01

    Knowing the magnitude of tectonic stress and rock strength at seismically active margins is important towards understanding fault strength and failure mechanics, yet both are difficult to measure in situ. Recent work at subduction margins, including Integrated Ocean Drilling Program (IODP) Nankai Trough Subduction Zone Experiment (NanTroSEIZE) drillsites, uses the width of compressional wellbore breakouts (BO), which depends on far field stress conditions, rock strength, and borehole annular pressure (APRS), to estimate the magnitude of horizontal principal stresses (SHmax and Shmin); estimates are problematic due to uncertainty in rock strength (unconfined compressive strength/UCS- for which direct measurements are scarce) and rheology that govern stress distribution at the wellbore. We conduct a novel case study at IODP Site C0002, where a hole was drilled twice with different boundary conditions, providing an opportunity to define in situ stress and strength from field data. Site C0002 is the main deep riser borehole for NanTroSEIZE, located near the seaward edge of the Kumano Basin above the seismogenic plate boundary, ~30 km from the trench. Several boreholes were drilled at the site. During IODP Expedition 314 in 2007, Hole C0002A was drilled with a suite of logging while drilling (LWD) tools to 1401 mbsf in a riserless mode. Hole C0002F, ~70 m away, was drilled to 862 mbsf in riserless mode during Exp. 326 in 2010 and deepened to 2005 mbsf in a riser mode during Expedition 338 in 2012-2013. Increased APRS achieved by riser drilling stabilizes the borehole and suppresses BO, consistent with resistivity imaging data from Exp. 314 that document well-developed, continuous BO throughout the borehole, and data from Expedition 338 indicating few BO. We use a semi-Newtonian approach to solve for stress and UCS consistent with the observed BO width and measured APRS in the two holes over the interval from 862-2005 mbsf. Effective SHmax ranges from ~10-30 MPa and indicate a strike-slip or thrust regime. Our results indicate UCS is higher than predicted by empirical relations and a small suite of laboratory tests by as much as 20 MPa. This apparent discrepancy may indicate that the failure criterion, or assumed distribution of stresses around the wellbore in analyses of far field stress, may not be appropriate in this setting.

  3. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    NASA Astrophysics Data System (ADS)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by using 9% BS only. From the experimental results, it is shown that BS, in the form of SH85, admixed with rubber chips could significantly improve the strength of marine clay soils.

  4. An experimental study on stabilization of Pekan clay using polyethylene and polypropylene

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah

    2017-10-01

    Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds as alternative materials for clay soil stabilisation is reasonable and cost effective since they are constantly available.

  5. Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.

    2014-12-01

    Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.

  6. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings.

    PubMed

    Yılmaz, Tekin; Ercikdi, Bayram; Deveci, Hacı

    2018-09-15

    This study presents the utilisation of finely ground construction and demolition waste (CDW) as partial replacement (5-15 wt.%) to sulphide tailings on the short- and long-term strength, durability (i.e. no loss of strength) and microstructural properties of cemented paste backfill (CPB) over a curing period of 360 days. The CPB samples containing CDW were prepared at binder dosages of 7.5 and 8.5 wt.%, while control samples (full tailings) were only produced at 8.5 wt.% binder dosage. A total of 108 CPB samples were subjected to the unconfined compressive strength (UCS), acid/sulphate (pH, SO 4 2- ) and microstructure (MIP, XRD etc.) tests. Despite its limited contribution to the resistance of CPB to acid and sulphate attack, the use of CDW as partial replacement (5-15 wt.%) to sulphide tailings enhanced the strength properties of CPB samples by decreasing the total and macro porosity. The UCSs and pH values of CPB samples increased with increasing the CDW content in CPB mixtures, while the generation of sulphate ions (SO4 2- ) decreased irrespective of the binder dosages. Compared with control samples prepared at 8.5 wt.% binder dosage, 5.3-19.5% higher UCS values were obtained for the CPB samples containing 15 wt.% CDW prepared even at 7.5 wt.% binder dosage. Mercury intrusion porosimetry (MIP) analyses proved the beneficial effect of the use of CDW on the microstructural properties (i.e. total porosity) of CPB. These findings suggest that CDW materials can be suitably used as backfill material in the mining industry to fill underground voids created during the ore production. This offers safe disposal and hence environmentally sound management of CDW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    PubMed

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.

  8. An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil.

    PubMed

    Ma, Fujun; Wu, Bin; Zhang, Qian; Cui, Deshan; Liu, Qingbing; Peng, Changsheng; Li, Fasheng; Gu, Qingbao

    2018-02-15

    Stabilization/solidification (S/S) has been successfully employed in many superfund sites contaminated with organic materials. However, this method's long-term effectiveness has not been fully evaluated and the increase in soil volume following treatment is unfavorable to follow-up disposal. The present study developed a novel method for the S/S of PAHs-contaminated soil with the facilitation of sulfonated oil (SO). Adding SO significantly improved the unconfined compressive strength (UCS) values of Portland cement and activated carbon (PC-AC) treated soil samples, and the UCS values of the soil sample treated with 0.02% of SO were up to 2.3 times higher than without SO addition. When the soil was treated with PC-AC-SO, the PAHs leaching concentrations were 14%-25% of that in leachates of the control soil, and high molecular weight PAHs including benzo(a)pyrene were rarely leached. Freeze/thaw durability tests reveal that the leachability of PAHs was not influenced by freeze-thaw cycles. The UCS values of PC-AC-SO treated soil samples were 2.2-3.4 times greater than those of PC-AC treated soil samples after 12 freeze-thaw cycles. The PC-AC-SO treated soils resist disintegration better when compared to the PC-AC treated soils. The SEM micrographs reveal that the soils' compactness was significantly improved when treated with SO. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mechanical properties of reconstituted Australian black coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstitutedmore » coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.« less

  10. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals.

    PubMed

    Li, Yuan-Cheng; Min, Xiao-Bo; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liyang, Wen-Jun

    2016-10-01

    Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    PubMed Central

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-01-01

    The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young’s modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young’s modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young’s modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2). SC-CO2 causes a greater reduction of shale’s mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation. PMID:28773784

  12. Experimental Investigation of Mechanical Properties of Black Shales after CO₂-Water-Rock Interaction.

    PubMed

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-08-06

    The effects of CO₂-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO₂ in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO₂. According to the experimental results, the values of UCS, Young's modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO₂. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young's modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young's modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO₂, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO₂). SC-CO₂ causes a greater reduction of shale's mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO₂. The EDS results show that CO₂-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.

  13. Highly favorable physiological responses to concurrent resistance and high-intensity interval training during chemotherapy: the OptiTrain breast cancer trial.

    PubMed

    Mijwel, Sara; Backman, Malin; Bolam, Kate A; Olofsson, Emil; Norrbom, Jessica; Bergh, Jonas; Sundberg, Carl Johan; Wengström, Yvonne; Rundqvist, Helene

    2018-05-01

    Advanced therapeutic strategies are often accompanied by significant adverse effects, which warrant equally progressive countermeasures. Physical exercise has proven an effective intervention to improve physical function and reduce fatigue in patients undergoing chemotherapy. Effects of high-intensity interval training (HIIT) in this population are not well established although HIIT has proven effective in other clinical populations. The aim of the OptiTrain trial was to examine the effects of concurrent resistance and high-intensity interval training (RT-HIIT) or concurrent moderate-intensity aerobic and high-intensity interval training (AT-HIIT), to usual care (UC) on pain sensitivity and physiological outcomes in patients with breast cancer during chemotherapy. Two hundred and forty women were randomized to 16 weeks of RT-HIIT, AT-HIIT, or UC. cardiorespiratory fitness, muscle strength, body mass, hemoglobin levels, and pressure-pain threshold. Pre- to post-intervention, RT-HIIT (ES = 0.41) and AT-HIIT (ES = 0.42) prevented the reduced cardiorespiratory fitness found with UC. Handgrip strength (surgery side: RT-HIIT vs. UC: ES = 0.41, RT-HIIT vs. AT-HIIT: ES = 0.28; non-surgery side: RT-HIIT vs. UC: ES = 0.35, RT-HIIT vs. AT-HIIT: ES = 0.22) and lower-limb muscle strength (RT-HIIT vs. UC: ES = 0.66, RT-HIIT vs. AT-HIIT: ES = 0.23) were significantly improved in the RT-HIIT. Increases in body mass were smaller in RT-HIIT (ES = - 0.16) and AT-HIIT (ES = - 0.16) versus UC. RT-HIIT reported higher pressure-pain thresholds than UC (trapezius: ES = 0.46, gluteus: ES = 0.53) and AT-HIIT (trapezius: ES = 0.30). Sixteen weeks of RT-HIIT significantly improved muscle strength and reduced pain sensitivity. Both exercise programs were well tolerated and were equally efficient in preventing increases in body mass and in preventing declines in cardiorespiratory fitness. These results highlight the importance of implementing a combination of resistance and high-intensity interval training during chemotherapy for women with breast cancer.

  14. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels (replaces UCS...

  15. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels (replaces UCS...

  16. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels (replaces UCS...

  17. Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint

    NASA Astrophysics Data System (ADS)

    Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.

    2016-07-01

    This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.

  18. Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA

    USGS Publications Warehouse

    Collins, B.D.; Sitar, N.

    2008-01-01

    Coastal bluff erosion and landsliding are currently the major geomorphic processes sculpting much of the marine terrace dominated coastline of northern California. In this study, we identify the spatial and temporal processes responsible for erosion and landsliding in an area of weakly lithified sand coastal bluffs located south of San Francisco, California. Using the results of a five year observational study consisting of site visits, terrestrial lidar scanning, and development of empirical failure indices, we identify the lithologic and process controls that determine the failure mechanism and mode for coastal bluff retreat in this region and present concise descriptions of each process. Bluffs composed of weakly cemented sands (unconfined compressive strength - UCS between 5 and 30??kPa) fail principally due to oversteepening by wave action with maximum slope inclinations on the order of 65 at incipient failure. Periods of significant wave action were identified on the basis of an empirical wave run-up equation, predicting failure when wave run-up exceeds the seasonal average value and the bluff toe elevation. The empirical relationship was verified through recorded observations of failures. Bluffs composed of moderately cemented sands (UCS up to 400??kPa) fail due to precipitation-induced groundwater seepage, which leads to tensile strength reduction and fracture. An empirical rainfall threshold was also developed to predict failure on the basis of a 48-hour cumulative precipitation index but was found to be dependent on a time delay in groundwater seepage in some cases.

  19. Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material.

    PubMed

    Li, Yuan-Cheng; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liu, De-Gang

    2018-02-15

    A new method in which Pb/Zn smelter waste containing arsenic and heavy metals (arsenic sludge), red mud and lime are utilized to prepare red mud-based cementitious material (RCM) is proposed in this study. XRD, SEM, FTIR and unconfined compressive strength (UCS) tests were employed to assess the physicochemical properties of RCM. In addition, ettringite and iron oxide-containing ettringite were used to study the hydration mechanism of RCM. The results show that the UCS of the RCM (red mud+arsenic sludge+lime) was higher than that of the binder (red mud+arsenic sludge). When the mass ratio of m (binder): m (lime) was 94:6 and then maintained 28days at ambient temperature, the UCS reached 12.05MPa. The red mud has potential cementitious characteristics, and the major source of those characteristics was the aluminium oxide. In the red mud-arsenic sludge-lime system, aluminium oxide was effectively activated by lime and gypsum to form complex hydration products. Some of the aluminium in ettringite was replaced by iron to form calcium sulfoferrite hydrate. The BCR and leaching toxicity results show that the leaching concentration was strongly dependent on the chemical speciation of arsenic and the hydration products. Therefore, the investigated red mud and arsenic sludge can be successfully utilized in cement composites to create a red mud-based cementitious material. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils.

    PubMed

    Liu, Jingjing; Zha, Fusheng; Deng, Yongfeng; Cui, Kerui; Zhang, Xueqin

    2017-12-01

    Although the stabilization/solidification method has been widely used for remediation of heavy metal-contaminated soils in recent decades, the engineering behavior and mobility of heavy metal ions under alkaline groundwater conditions are still unclear. Therefore, the unconfined compressive strength test (UCS) combined with toxicity characteristic leaching procedure (TCLP) and general acid neutralization capacity (GANC) was used to investigate the effects of alkalinity (using NaOH to simulate alkalinity in the environment) on the mechanical and leaching characteristics of cement-solidified/stabilized (S/S) Zn-contaminated soils. Moreover, the microstructure was analyzed using the scanning electron microscope (SEM) technology. The results indicated that alkaline environment could accelerate the UCS development compared with specimens without soaking in NaOH solution,, regardless of whether the specimens contained Zn 2+ or not. And the UCS varied obviously attributed to the variations of both NaOH concentration and soaking time. Except for the specimens soaked for 90 days, the leached Zn 2+ concentrations were higher than that of without soaking. However, the leachability of Zn 2+ in all the stabilized specimens is in the regulatory level. ANC results indicated that the Zn 2+ leaching behavior can be divided into three stages related to the initial leachate pH. Moreover, SEM results proved that the alkaline environment could actually facilitate the cement hydration process. The results proved in the present paper could be useful in treating the heavy metal-contaminated soils involved in the solidification/stabilization technology under alkaline environment.

  1. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.

    PubMed

    Struemph, Jonathon M; Chong, Alexander C M; Wooley, Paul H

    2015-01-01

    PMMA bone cement is a brittle material and the creation of defects that increase porosity during mixing or injecting is a significant factor in reducing its mechanical properties. The goal during residency training is to learn how to avoid creating increased porosity during mixing and injecting the material. The aim of this study was to evaluate and compare tensile and compression strength for PMMA cement mixed by intern orthopaedic residents (PGY-1) and senior orthopaedic residents (PGY-5). The hypothesis was that the mechanical properties of PMMA cement mixed by PGY-5 would be significantly better than PMMA cement mixed by PGY-1 residents. Four PGY-1 and four PGY-5 orthopaedic residents each prepared eight tensile specimens. The bone cement used was Simplex™ P bone cement (Stryker Howmedica Osteonics, Mahwah, NJ) under vacuum mixing in a cement-delivery system. Tensile testing of the specimens was performed in an MTS Bionix servohydraulic materials testing system with loading rate of 2.54 mm/min at room temperature. The mean and standard deviation of the ultimate tensile strength (UTS) for each orthopaedic resident group was calculated. The compression specimens were cylinders formed with a central core to mimic a prosthetic implant. Ten samples from each orthopaedic resident were tested using the same MTS system under identical conditions at room temperature. The specimens were loaded from -50 N to complete structural failure at the rate of 20 mm/min. The ultimate compressive strength (UCS) was then determined and the mean and standard deviation calculated for each group. The average UTS of the bone cement for the PGY-1 and PGY-5 residents was 37.5 ± 4.5 MPa and 39.2 ± 5.0 MPa, respectively, and there was no statistically significant difference between the two groups. For the tensile elastic modulus of the bone cement, the results for the PGY-1 and PGY-5 residents were 2.40 ± 0.09 GPa and 2.44 ± 0.08 GPa, respectively, and again there was no statistically significant difference. For the compression elastic modulus of the bone cement, the results for the PGY-1 and PGY-5 residents were 1.19 ± 0.13 GPa and 1.21 ± 0.18 GPa, respectively, with no statistically significant difference. However, the UCS of the bone cement for the PGY-1 and PGY-5 residents was 87.4 ± 5.8 MPa and 91.1 ± 4.5 MPa, respectively, and there was a statistically significant difference between the groups. The PMMA specimens prepared by both the PGY-1 and PGY-5 resident groups had similar characteristics during tensile and compression testing, and were similar to known standards. Although mixing and applying bone cement is an important skill for joint replacement surgery, our results indicate that no special training appears to be necessary for orthopaedic residents. Rather, a basic training video demonstrating manufacturer standard procedure is all that is necessary. The results of this study indicate the importance of experience in bone cement mixing and injecting on cement mechanical properties, but indicate that no special training appears to be necessary for orthopaedic residents.

  2. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    PubMed Central

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-01-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand. PMID:28452346

  3. Effect of basaltic pumice aggregate addition on the material properties of fly ash based lightweight geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Top, Soner; Vapur, Hüseyin

    2018-07-01

    In this study, fly ash (FA) based geopolymer (GP) concretes were produced by using a mixture of basaltic pumice (BP) aggregates and a fly ash (Class F) for lightweight concrete production. ANOVA Yates' test technique was applied to find out the effective curing parameters. BP aggregates were ground four different fractions of particle sizes as -12 + 4 mm, -4+0.425 mm, -0.425 + 0 mm and the one containing the size distribution of Turkish Standard 802. Also, effects of the curing time in the oven were investigated. The uniaxial compressive strength (UCS) (20-55 MPa), the point load strength (4-14 kN), the water absorption (1.05%-17%), the Mohs hardness (5.5-3) and the sonic speed values (4.12-2.72 km/sn) were measured. Stress-strain curves were graphed. The density of the concrete ranged from 1700 kg/m3 to 1792 kg/m3 which confirm the lightweight concretes.

  4. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-04-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.

  5. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    PubMed

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Existence of Steady Compressible Subsonic Impinging Jet Flows

    NASA Astrophysics Data System (ADS)

    Cheng, Jianfeng; Du, Lili; Wang, Yongfu

    2018-03-01

    In this paper, we investigate the compressible subsonic impinging jet flows through a semi-infinitely long nozzle and impacting on a solid wall. Firstly, it is shown that given a two-dimensional semi-infinitely long nozzle and a wall behind the nozzle, and an appropriate atmospheric pressure, then there exists a smooth global subsonic compressible impinging jet flow with two asymptotic directions. The subsonic impinging jet develops two free streamlines, which initiate smoothly at the end points of the semi-infinitely long nozzles. In particular, there exists a smooth curve which separates the fluids which go to different places downstream. Moreover, under some suitable asymptotic assumptions of the nozzle, the asymptotic behaviors of the compressible subsonic impinging jet flows in the inlet and the downstream are obtained by means of a blow-up argument. On the other hand, the non-existence of compressible subsonic impinging jet flows with only one asymptotic direction is also established. This main result in this paper solves the open problem (4) in Chapter 16.3 proposed by uc(Friedman) in his famous survey (uc(Friedman) in Mathematics in industrial problems, II, I.M.A. volumes in mathematics and its applications, vol 24, Springer, New York, 1989).

  7. Recycled asphalt pavement - fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations.

    PubMed

    Hoy, Menglim; Horpibulsuk, Suksun; Rachan, Runglawan; Chinkulkijniwat, Avirut; Arulrajah, Arul

    2016-12-15

    In this research, a low-carbon stabilization method was studied using Recycled Asphalt Pavement (RAP) and Fly Ash (FA) geopolymers as a sustainable pavement material. The liquid alkaline activator (L) is a mixture of sodium silicate (Na 2 SiO 3 ) and sodium hydroxide (NaOH), and high calcium FA is used as a precursor to synthesize the FA-RAP geopolymers. Unconfined Compressive Strength (UCS) of RAP-FA blend and RAP-FA geopolymer are investigated and compared with the requirement of the national road authorities of Thailand. The leachability of the heavy metals is measured by Toxicity Characteristic Leaching Procedure (TCLP) and compared with international standards. The Scanning Electron Microscopy (SEM) analysis of RAP-FA blend indicates the Calcium Aluminate (Silicate) Hydrate (C-A-S-H) formation, which is due to a reaction between the high calcium in RAP and high silica and alumina in FA. The low geopolymerization products (N-A-S-H) of RAP-FA geopolymer at NaOH/Na 2 SiO 3 =100:0 are detected at the early 7days of curing, hence its UCS is lower than that of RAP-FA blend. The 28-day UCS of RAP-FA geopolymers at various NaOH/Na 2 SiO 3 ratios are significantly higher than that of the RAP-FA blend, which can be attributed to the development of geopolymerization reactions. With the input of Na 2 SiO 3 , the highly soluble silica from Na 2 SiO 3 reacted with leached silica and alumina from FA and RAP and with free calcium from FA and RAP; hence the coexistence of N-A-S-H gel and C-A-S-H products. Therefore, the 7-day UCS values of RAP-FA geopolymers increase with decreasing NaOH/Na 2 SiO 3 ratio. TCLP results demonstrated that there is no environmental risk for both RAP-FA blends and RAP-FA geopolymers in road construction. The geopolymer binder reduces the leaching of heavy metal in RAP-FA mixture. The outcomes from this research will promote the move toward increased applications of recycled materials in a sustainable manner in road construction. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Colour gamut mapping between small and large colour gamuts: Part I. gamut compression.

    PubMed

    Xu, Lihao; Zhao, Baiyue; Luo, M R

    2018-04-30

    This paper describes an investigation into the performance of different gamut compression algorithms (GCAs) in different uniform colour spaces (UCSs) between small and large colour gamuts. Gamut mapping is a key component in a colour management system and has drawn much attention in the last two decades. Two new GCAs, i.e. vividness-preserved (VP) and depth-preserved (DP), based on the concepts of 'vividness' and 'depth' are proposed and compared with the other commonly used GCAs with the exception of spatial GCAs since the goal of this study was to develop an algorithm that could be implemented in real time for mobile phone applications. In addition, UCSs including CIELAB, CAM02-UCS, and a newly developed UCS, J z a z b z , were tested to verify how they affect the performance of the GCAs. A psychophysical experiment was conducted and the results showed that one of the newly proposed GCAs, VP, gave the best performance among different GCAs and the J z a z b z is a promising UCS for gamut mapping.

  9. Benefits of partnered strength training for prostate cancer survivors and spouses: results from a randomized controlled trial of the Exercising Together project.

    PubMed

    Winters-Stone, Kerri M; Lyons, Karen S; Dobek, Jessica; Dieckmann, Nathan F; Bennett, Jill A; Nail, Lillian; Beer, Tomasz M

    2016-08-01

    Prostate cancer can negatively impact quality of life of the patient and his spouse caregiver, but interventions rarely target the health of both partners simultaneously. We tested the feasibility and preliminary efficacy of a partnered strength training program on the physical and mental health of prostate cancer survivors (PCS) and spouse caregivers. Sixty-four couples were randomly assigned to 6 months of partnered strength training (Exercising Together, N = 32) or usual care (UC, N = 32). Objective measures included body composition (lean, fat and trunk fat mass (kg), and % body fat) by DXA, upper and lower body muscle strength by 1-repetition maximum, and physical function by the physical performance battery (PPB). Self-reported measures included the physical and mental health summary scales and physical function and fatigue subscales of the SF-36 and physical activity with the CHAMPS questionnaire. Couple retention rates were 100 % for Exercising Together and 84 % for UC. Median attendance of couples to Exercising Together sessions was 75 %. Men in Exercising Together became stronger in the upper body (p < 0.01) and more physically active (p < 0.01) than UC. Women in Exercising Together increased muscle mass (p = 0.05) and improved upper (p < 0.01) and lower body (p < 0.01) strength and PPB scores (p = 0.01) more than UC. Exercising Together is a novel couples-based approach to exercise that was feasible and improved several health outcomes for both PCS and their spouses. A couples-based approach should be considered in cancer survivorship programs so that outcomes can mutually benefit both partners. ClinicalTrials.gov NCT00954044.

  10. Influence of Li₂Sb Additions on Microstructure and Mechanical Properties of Al-20Mg₂Si Alloy.

    PubMed

    Yu, Hong-Chen; Wang, Hui-Yuan; Chen, Lei; Zha, Min; Wang, Cheng; Li, Chao; Jiang, Qi-Chuan

    2016-03-29

    It is found that Li₂Sb compound can act as the nucleus of primary Mg₂Si during solidification, by which the particle size of primary Mg₂Si decreased from ~300 to ~15-25 μm. Owing to the synergistic effect of the Li₂Sb nucleus and adsorption-poisoning of Li atoms, the effect of complex modification of Li-Sb on primary Mg₂Si was better than that of single modification of Li or Sb. When Li-Sb content increased from 0 to 0.2 and further to 0.5 wt.%, coarse dendrite changed to defective truncated octahedron and finally to perfect truncated octahedral shape. With the addition of Li and Sb, ultimate compression strength (UCS) of Al-20Mg₂Si alloys increased from ~283 to ~341 MPa and the yield strength (YS) at 0.2% offset increased from ~112 to ~179 MPa while almost no change was seen in the uniform elongation. Our study offers a simple method to control the morphology and size of primary Mg₂Si, which will inspire developing new Al-Mg-Si alloys with improved mechanical properties.

  11. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  12. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  13. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.

    PubMed

    Wang, Yuxiang; Tie, Di; Guan, Renguo; Wang, Ning; Shang, Yingqiu; Cui, Tong; Li, Junqiao

    2018-01-01

    In previous studies, Mg-Sr alloys exhibited great biocompatibility with regard to test animals, and enhanced peri-implant bone formation. The objective of the present study was to investigate the effects of heat treatments on the mechanical and corrosion properties of Mg-Sr alloys. Various heat-treated Mg-xSr (x = 0.5, 1, and 2wt%, nominal composition) alloys were prepared using homogenization and aging treatments. Mechanical tests were performed at room temperature on the as-cast, homogenized, and peak-aged alloys. As the Sr content increased, the volume fraction of Mg 17 Sr 2 phases within the as-cast alloys increased; in addition, the mechanical strength of the alloys initially increased and subsequently decreased, while the ductility decreased. Following the homogenization treatment, the mechanical strength of the alloys decreased, and the ductility increased. Nano-sized Mg 17 Sr 2 phases were re-precipitated during the aging treatment. The age-hardening response at 160°C was enhanced as the Sr content increased. Following the aging treatment, there was an increase in the mechanical strength of the alloys; however, there was a slight reduction in the ductility. Immersion tests were conducted at 37°C for 360h, using Hank's buffered salt solution (HBSS), to study the degradation behavior of the alloys. As the Sr content of the Mg-Sr alloys increased, the corrosion rate (CR) increased owing to the galvanic effect. The homogenization treatment consequently reduced the CR dramatically, and the aging treatment had a slight effect on the CR. The peak-aged Mg-1Sr (wt%) alloy exhibited the best combination of properties. The tensile yield strength (TYS), ultimate tensile strength (UTS), elongation, compressive yield strength (CYS), ultimate compressive strength (UCS), compressibility, and CR of the as-cast Mg-1Sr (wt%) alloy were 56.0MPa, 92.67MPa, 1.27%, 171.4MPa, 243.6MPa, 22.3%, and 1.76mm/year, respectively. The respective results obtained for the peak-aged Mg-1Sr (wt%) alloys were 69.7MPa, 135.6MPa, 3.22%, 183.1MPa, 273.6MPa, 27.6%, and 1.33mm/year. Following immersion in HBSS, the primary corrosion products of the peak-aged Mg-1Sr (wt%) alloy were Mg(OH) 2 , MgO, MgCO 3 , Mg 3 (PO 4 ) 2 , MgHPO 4 , and Mg(H 2 PO 4 ) 2 , which enhanced the corrosion resistance by forming a composite corrosion film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.

    PubMed

    Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing

    2018-03-01

    Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.

  15. Mass-imbalanced ionic Hubbard chain

    NASA Astrophysics Data System (ADS)

    Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.

    2017-07-01

    A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U Uc they have different signs, and for U =Uc one gap parameter jumps from a positive to a negative value. The weakly first-order phase transition at Uc can be interpreted in terms of an avoided criticality (or metallicity). The system is reluctant to restore a symmetry that has been broken explicitly.

  16. Effects of corn cob ash on lime stabilized lateritic soil

    NASA Astrophysics Data System (ADS)

    Nnochiri, Emeka Segun

    2018-03-01

    This study assesses the effects of Corn Cob Ash (CCA) on lime-stabilized lateritic soil. Preliminary tests were carried out on the natural soil sample for purpose of identification and classification. Lime being the main stabilizing material was thoroughly mixed with the soil sample to determine the optimum lime requirement of the sample as a basis for evaluating the effects of the CCA. The optimum lime requirement was 10%. The CCA was thereafter added to the lime stabilized soil in varying proportions of 2, 4, 6, 8 and 10%. Unsoaked CBR increased from 83% at 0% CCA to highest value of 94% at 4% CCA. Unconfined Compressive Strength (UCS) values increased from 1123kN/m2 at 0% CCA to highest value of 1180kN/m2 at 4% CCA. It was therefore concluded that CCA can serve as a good complement for lime stabilization in lateritic soil.

  17. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    NASA Technical Reports Server (NTRS)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  18. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil.

    PubMed

    Wang, Fei; Wang, Hailing; Jin, Fei; Al-Tabbaa, Abir

    2015-03-21

    This paper presents an investigation of the effects of novel binders and pH values on the effectiveness of the in-situ stabilisation/solidification technique in treating heavy metals and organic contaminated soils after 1.5-year treatment. To evaluate the performance of different binders, made ground soils of SMiRT site, upto 5 m depth, were stabilised/solidified with the triple auger system and cores were taken for laboratory testing after treatment. Twenty four different binders were used including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and zeolite. Unconfined compressive strength (UCS), leachate pH and the leachability of heavy metals and total organics were applied to study the behaviours of binders in treating site soils. Under various contaminant level and binder level, the results show that UCS values were 22-3476 kPa, the leachability of the total organics was in the range of 22-241 mg/l and the heavy metals was in the range of 0.002-0.225 mg/l. In addition, the combination of GGBS and MgO at a ratio of 9:1 shows better immobilisation efficiency in treating heavy metals and organic contaminated soils after 1.5-year treatment, and the binding mechanisms under different binders were also discussed in this paper. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, P. Kasinatha

    2018-03-01

    Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA), a waste by-product from the sugar industry and Coconut shell powder (CSP), a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS), plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  20. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  1. Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: LEAPS Trial.

    PubMed

    Nadeau, Stephen E; Wu, Samuel S; Dobkin, Bruce H; Azen, Stanley P; Rose, Dorian K; Tilson, Julie K; Cen, Steven Y; Duncan, Pamela W

    2013-05-01

    After inpatient stroke rehabilitation, many people still cannot participate in community activities because of limited walking ability. To compare the effectiveness of 2 conceptually different, early physical therapy (PT) interventions to usual care (UC) in improving walking 6 months after stroke. The locomotor experience applied post-stroke (LEAPS) study was a single-blind, randomized controlled trial conducted in 408 adults with disabling hemiparetic stroke. Participants were stratified at baseline (2 months) by impairment in walking speed: severe (<0.4 m/s) or moderate (0.4 to <0.8 m/s). Between 2 and 6 months, they received either only UC (n = 143) or UC plus 36 therapist-provided sessions of either (1) walking training on a treadmill using body-weight support and practice overground at clinics (locomotor training program [LTP], n = 139) or (2) impairment-based strength and balance exercise at home (home exercise program [HEP], n = 126). LTP participants were 18% more likely to transition to a higher functional walking level: severe to >0.4 m/s and moderate to >0.8 m/s than UC participants (95% confidence interval [CI] = 7%-29%), and HEP participants were 17% more likely to transition (95% CI = 5%-29%). Mean gain in walking speed in LTP participants was 0.13 m/s greater (95% CI = 0.09-0.18) and in HEP participants, 0.10 m/s greater (95% CI = 0.05-0.14) than in UC participants. Progressive PT, using either walking training on a treadmill and overground, conducted in a clinic, or strength and balance exercises conducted at home, was superior to UC in improving walking, regardless of severity of initial impairment.

  2. Strength Training to Enhance Early Recovery after Hematopoietic Stem Cell Transplantation.

    PubMed

    Hacker, Eileen Danaher; Collins, Eileen; Park, Chang; Peters, Tara; Patel, Pritesh; Rondelli, Damiano

    2017-04-01

    Intensive cancer treatment followed by hematopoietic stem cell transplantation (HCT) results in moderate to severe fatigue and physical inactivity, leading to diminished functional ability. The purpose of this study was to determine the efficacy of an exercise intervention, strength training to enhance early recovery (STEER), on physical activity, fatigue, muscle strength, functional ability, and quality of life after HCT. This single-blind, randomized clinical trial compared strength training (n = 33) to usual care plus attention control with health education (UC + AC with HE) (n = 34). Subjects were stratified by type of transplantation and age. STEER consisted of a comprehensive program of progressive resistance introduced during hospitalization and continued for 6 weeks after hospital discharge. Fatigue, physical activity, muscle strength, functional ability, and quality of life were assessed before HCT hospital admission and after intervention completion. Data were analyzed using split-plot analysis of variance. Significant time × group interactions effects were noted for fatigue (P = .04). The STEER group reported improvement in fatigue from baseline to after intervention whereas the UC + AC with HE group reported worsened fatigue from baseline to after intervention. Time (P < .001) and group effects (P = .05) were observed for physical activity. Physical activity declined from baseline to 6 weeks after hospitalization. The STEER group was more physically active. Functional ability tests (timed stair climb and timed up and go) resulted in a significant interaction effect (P = .03 and P = .05, respectively). Subjects in the UC + AC with HE group were significantly slower on both tests baseline to after intervention, whereas the STEER group's time remained stable. The STEER group completed both tests faster than the UC + AC with HE group after intervention. Study findings support the use of STEER after intensive cancer treatment and HCT. Strength training demonstrated positive effects on fatigue, physical activity, muscle strength, and functional ability. The exact recovery patterns between groups and over time varied; the STEER group either improved or maintained their status from baseline to after intervention (6 weeks after hospital discharge) whereas the health education group generally declined over time or did not change. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt

    NASA Astrophysics Data System (ADS)

    El Shinawi, A.

    2017-06-01

    Subgrade soils can affect the stability of any construction elsewhere, instability problems were found at Borg El-Arab, Alexandria, Egypt. This paper investigates geoengineering properties of lime treated subgrade soils at Borg El-Arab. Basic laboratory tests, such as water content, wet and dry density, grain size, specific gravity and Atterberg limits, were performed for twenty-five samples. Moisture-density (compaction); California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS) were conducted on treated and natural soils. The measured geotechnical parameters of the treated soil shows that 6% lime is good enough to stabilize the subgrade soils. It was found that by adding lime, samples shifted to coarser side, Atterberg limits values of the treated soil samples decreased and this will improve the soil to be more stable. On the other hand, Subgrade soils improved as a result of the bonding fine particles, cemented together to form larger size and reduce the plastiCity index which increase soils strength. The environmental scanning electron microscope (ESEM) is point to the presence of innovative aggregated cement materials which reduce the porosity and increase the strength as a long-term curing. Consequently, the mixture of soil with the lime has acceptable mechanical characteristics where, it composed of a high strength base or sub-base materials and this mixture considered as subgrade soil for stabilizations and mitigation the instability problems that found at Borg Al-Arab, Egypt.

  4. Upper-body progressive resistance training improves strength and household physical activity performance in women attending cardiac rehabilitation.

    PubMed

    Coke, Lola A; Staffileno, Beth A; Braun, Lynne T; Gulanick, Meg

    2008-01-01

    The purpose of this study was to examine the impact of moderate-intensity, progressive, upper-body resistance training (RT) on muscle strength and perceived performance of household physical activities (HPA) among women in cardiac rehabilitation. The 10-week, pretest-posttest, experiment randomized women to either usual care (UC) aerobic exercise or RT. Muscle strength for 5 upper-body RT exercises (chest press, shoulder press, biceps curl, lateral row, and triceps extension) was measured using the 1-Repetition Maximum Assessment. The RT group progressively increased weight lifted using 40%, 50%, and 60% of obtained 1-Repetition Maximum Assessment at 3-week intervals. Perceived performance of HPA was measured with the Kimble Household Activities Scale. The RT group (n = 16, mean age 64 +/- 11) significantly increased muscle strength in all 5 exercises in comparison with the UC group (n = 14, mean age 65 +/- 10) (chest press, 18% vs 11%; shoulder press, 24% vs 14%; biceps curl, 21% vs 12%; lateral row, 32% vs 9%; and triceps extension, 28% vs 20%, respectively). By study end, Household Activities Scale scores significantly increased (F = 13.878, P = .001) in the RT group (8.75 +/- 3.19 vs 11.25 +/- 2.14), whereas scores in the UC group decreased (8.60 +/- 3.11 vs 6.86 +/- 4.13). Progressive upper-body RT in women shows promise as an effective tool to increase muscle strength and improve the ability to perform HPA after a cardiac event. Beginning RT early after a cardiac event in a monitored cardiac rehabilitation environment can maximize the strengthening benefit.

  5. Recycled asphalt pavement - fly ash geopolymer as a sustainable stabilized pavement material

    NASA Astrophysics Data System (ADS)

    Horpibulsuk, S.; Hoy, M.; Witchayaphong, P.; Rachan, R.; Arulrajah, A.

    2017-11-01

    Strength, durability, microstructure and leachate characteristics of Recycled Asphalt Pavement and Fly Ash (RAP-FA) geopolymers and RAP-FA blends as a sustainable pavement material are evaluated in this paper. The strength development of the stabilized materials with and without effect wetting-drying (w-d) cycles was determined by Unconfined Compression Strength (UCS) test. The mineralogical and microstructural changes of the stabilized material were analyzed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The leachability of the heavy metals were measured by Toxicity Characteristic Leaching Procedure (TCLP) and compared with international standard. The results show that both RAP-FA blend and RAP-FA geopolymer increase with increasing the number of w-d cycles (C), reaching its peak at 6 w-d cycles. The XRD and SEM analyses indicate that the strength development of RAP-FA blend occurs due to stimulation of the chemical reaction between the high amount to Calcium in RAP and the high amount of Silica and Alumina in FA leaching to production of Calcium Aluminium (Silicate) Hydrate, while the geopolymerization reaction is observed in RAP-FA geopolymer. For C> 6, the significant macro- and micro-cracks developed during w-d cycles cause strength reduction for both RAP-FA blend and geopolymer. The TCLP results demonstrate that there is no environmental risk for these stabilized materials. Furthermore, FA-geopolymer can reduce the leachability of heavy metal in RAP-FA blend. The outcome from this research confirms the viability of using RAP-FA blend and RAP-FA geopolymer as alternative sustainable pavement materials.

  6. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy

    PubMed Central

    Dong, Huajiang; Li, Gang; Shang, Chongzhi; Yin, Huijuan; Luo, Yuechen; Meng, Huipeng; Li, Xiaohong; Wang, Yali; Lin, Ling; Zhao, Mingliang

    2018-01-01

    This study reports a case of a 4-year-old boy patient with abnormalities of muscle tone, movement and motor skills, as well as unstable gait leading to frequent falls. The results of the electroencephalogram (EEG) indicate moderately abnormal EEG, accompanied by irregular seizures. Based on these clinical characteristics, the patient was diagnosed with cerebral palsy (CP) in our hospital. In this study, the patient was treated with umbilical cord mesenchymal stem cell (UC-MSC) transplantation therapy. This patient received UC-MSC transplantation 3 times (5.3*107) in total. After three successive cell transplantations, the patient recovered well and showed obvious improvements in EEG and limb strength, motor function, and language expression. However, the improvement in intelligence quotient (IQ) was less obvious. These results indicate that UC-MSC transplantation is a promising treatment for cerebral palsy. PMID:29636880

  7. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    PubMed Central

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  8. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.

    PubMed

    Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin

    2016-05-20

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.

  9. Recovery and safer disposal of phosphate coating sludge by solidification/stabilization.

    PubMed

    Ucaroglu, Selnur; Talinli, Ilhan

    2012-08-30

    Solidification/stabilization (S/S) of automotive phosphate coating sludge (PS) containing potentially toxic heavy metals was studied. The hazardous characteristics of this waste were assessed according to both Turkish and U.S. Environmental Protection Agency (EPA) regulations for hazardous solid waste. Unconfined compressive strength (UCS) and leaching behavior tests of the solidified/stabilized product were performed. Solidification studies were conducted using Portland cement (PC) as the binder. UCS was found to decrease with increasing waste content. It was found that recovery of the waste for construction applications was possible when the waste content of the mortar was 20% and below, but solidification for safe disposal was achieved only when higher waste concentrations were added. Cu, Cr, Ni, Pb and Zn were found to be significantly immobilized by the solidification/stabilization process. Ni and Zn, which were present at particularly high concentrations (2.281 and 135.318 g/kg respectively) in the PS, had highest the retention levels (94.87% and 98.74%, respectively) in the PC mortars. The organic contaminants and heavy metals present in PS were determined to be immobilized by the S/S process in accordance with the BS 6920 standard. Thus, the potential for hazardous PS waste to adversely impact human health and the environment was effectively eliminated by the S/S procedure. We conclude that S/S-treated PS is safe for disposal in landfills, while recovery of S/S-treated PS constituents remains possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effects of water during cure on the properties of a carbon/phenolic system

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Clemons, J. M.; Ledbetter, F. E., III; Daniels, J. G.; Thompson, L. M.

    1984-01-01

    The effects of prepreg water contamination on interlaminar shear strength, tranverse compressive strength, and longitudinal compressive strength were determined. Decreases in these properties due to water contamination were sugstantial: 28 percent for the interlaminar shear strength, 21 percent for the transverse compressive strength and 31 percent for the longitudinal compressive strength. Since voids were not detected by X-ray analysis, the most likely cause for these results is fiber-matrix debounding in the laminate.

  11. Strength properties of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Saari, S.; Bakar, B. H. Abu; Surip, N. A.

    2017-10-01

    This study presents a laboratory investigation on the properties of interlocking compressed earth brick (ICEB) units. Compressive strength, which is one of the most important properties in masonry structures, is used to determine masonry performance. The compressive strength of the ICEB units was determined by applying a compressive strength test for 340 units from four types of ICEB. To analyze the strength of the ICEB units, each unit was capped by a steel plate at the top and bottom to create a flat surface, and then ICEB was loaded until failure. The average compressive strength of the corresponding ICEB units are as follows: wall brick, 19.15 N/mm2; beam brick, 16.99 N/mm2; column brick, 13.18 N/mm2; and half brick, 11.79 N/mm2. All the ICEB units had compressive strength of over 5 N/mm2, which is the minimum strength for a load-bearing brick. This study proves that ICEB units may be used as load-bearing bricks. The strength of ICEBs is equal to that of other common bricks and blocks that are currently available in the market.

  12. IL-23R mutation is associated with ulcerative colitis: A systemic review and meta-analysis.

    PubMed

    Peng, Ling-Long; Wang, Ying; Zhu, Feng-Ling; Xu, Wang-Dong; Ji, Xue-Lei; Ni, Jing

    2017-01-17

    Since a genome-wide association study revealed that Interleukin-23 receptor (IL-23R) gene is a candidate gene for Ulcerative Colitis (UC), many studies have investigated the association between the IL-23R polymorphisms and UC. However, the results were controversial. The aim of the study was to determine whether the IL-23R polymorphisms confer susceptibility to UC. A systematic literature search was carried out to identify all potentially relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the strength of association. A total of 33 studies in 32 articles, including 10,527 UC cases and 15,142 healthy controls, were finally involved in the meta-analysis. Overall, a significant association was found between all UC cases and the rs11209026A allele (OR = 0.665, 95% CI = 0.604~0.733, P < 0.001). Similarly, meta-analyses of the rs7517847, rs1004819, rs10889677, rs2201841, rs11209032, rs1495965, rs1343151 and rs11465804 polymorphisms also indicated significant association with all UC (all P < 0.05). Stratification by ethnicity revealed that the rs11209026, rs7517847, rs10889677, rs2201841 andrs11465804 polymorphisms were associated with UC in the Caucasian group, but not in Asians, while the rs1004819 and rs11209032 polymorphisms were found to be related to UC for both Caucasian and Asian groups. However, subgroup analysis failed to unveil any association between the rs1495965 and rs1343151 polymorphisms and UC in Caucasians or Asians. The meta-analysis suggests significant association between IL-23R polymorphisms and UC, especially in Caucasians.

  13. IL-23R mutation is associated with ulcerative colitis: A systemic review and meta-analysis

    PubMed Central

    Peng, Ling-Long; Wang, Ying; Zhu, Feng-Ling; Xu, Wang-Dong; Ji, Xue-Lei; Ni, Jing

    2017-01-01

    Objectives Since a genome-wide association study revealed that Interleukin-23 receptor (IL-23R) gene is a candidate gene for Ulcerative Colitis (UC), many studies have investigated the association between the IL-23R polymorphisms and UC. However, the results were controversial. The aim of the study was to determine whether the IL-23R polymorphisms confer susceptibility to UC. Methods A systematic literature search was carried out to identify all potentially relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the strength of association. Results A total of 33 studies in 32 articles, including 10,527 UC cases and 15,142 healthy controls, were finally involved in the meta-analysis. Overall, a significant association was found between all UC cases and the rs11209026A allele (OR = 0.665, 95% CI = 0.604~0.733, P < 0.001). Similarly, meta-analyses of the rs7517847, rs1004819, rs10889677, rs2201841, rs11209032, rs1495965, rs1343151 and rs11465804 polymorphisms also indicated significant association with all UC (all P < 0.05). Stratification by ethnicity revealed that the rs11209026, rs7517847, rs10889677, rs2201841 andrs11465804 polymorphisms were associated with UC in the Caucasian group, but not in Asians, while the rs1004819 and rs11209032 polymorphisms were found to be related to UC for both Caucasian and Asian groups. However, subgroup analysis failed to unveil any association between the rs1495965 and rs1343151 polymorphisms and UC in Caucasians or Asians. Conclusions The meta-analysis suggests significant association between IL-23R polymorphisms and UC, especially in Caucasians. PMID:27902482

  14. Analysis of Coaxial Injectors Using CFD++

    DTIC Science & Technology

    2011-09-12

    turpentine droplets d = 1-90 um Uc = 2.4 m/s Low turbulence intensity of 1.4% Model Validation Case 9/12/2011 28Distribution A: Approved for Public...Approved for Public Release (Pending) Case Conditions: •Two species (Air, Turpentine ) •Base Equation Type: Compressible Real Gas Navier-Stokes/Euler

  15. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  16. Chemical characteristics and leachability of organically contaminated heavy metal sludge solidified by silica fume and cement.

    PubMed

    Jun, K S; Hwang, B G; Shin, H S; Won, Y S

    2001-01-01

    This paper discusses the development of mixtures with silica fume as a stabilization/solidification agent and binder for industrial wastewater residue containing organic and heavy metal contaminants. The UCS (Unconfined Compressive Strength) gradually increased to 66.7% as the silica fume content increased to 15%. The leaching of TOC and chromium decreased as more OPC was substituted with silica fume. When the mix had 5% silica fume, it retained about 85% TOC, and chromium leached out 0.76 mg-Cr/g-Cr in acidic solution. Also, microstructural studies on the solidified wastes through the scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction analysis showed that the silica fume caused an inhibition to the ettringite formation which did not contribute to setting, but coated the cement particles and retarded the setting reactions. The results indicated that the incorporation of silica fume into the cement matrix minimized the detrimental effects of organic materials on the cement hydration reaction and contaminant leachability.

  17. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.

    PubMed

    Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet

    2013-01-30

    This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Experimental study on compressive strength of sediment brick masonry

    NASA Astrophysics Data System (ADS)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  19. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    PubMed

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    NASA Astrophysics Data System (ADS)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  1. An investigation of the compressive strength of PRD-49-3/Epoxy composites

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Rice, J. S.; Rosen, B. W.

    1973-01-01

    The development of unidirectional fiber composite materials is discussed. The mechanical and physical properties of the materials are described. Emphasis is placed in analyzing the compressive behavior of composite materials and developing methods for increasing compressive strength. The test program for evaluating the various procedures for improving compressive strength are reported.

  2. Hybrid constructs for tridimensional correction of the thoracic spine in adolescent idiopathic scoliosis: a comparative analysis of universal clamps versus hooks.

    PubMed

    Ilharreborde, Brice; Even, Julien; Lefevre, Yan; Fitoussi, Franck; Presedo, Ana; Penneçot, Georges-François; Mazda, Keyvan

    2010-02-01

    Retrospective study of prospectively collected data. Compare Universal Clamps (UCs) and hooks for the thoracic correction of adolescent idiopathic scoliosis (AIS). In scoliosis surgery, sagittal correction is as important as frontal correction due to the risk of junctional kyphosis. Compared to all-screw constructs, hybrid constructs with lumbar pedicle screws and thoracic hooks or sublaminar wires have been shown to achieve similar coronal correction while providing superior postoperative thoracic kyphosis. The authors used a novel sublaminar thoracic implant, the UC with improvements over sublaminar wires. Hybrid constructs using thoracic UCs were compared to those with thoracic hooks. This series involved 150 patients treated for AIS with hybrid constructs. A total of 75 consecutive patients operated from 2001 to 2003, who had thoracic hooks with in situ contouring, distraction, and compression (Group 1), were compared to 75 consecutive patients operated from 2004 to 2006, who had thoracic UCs with posteromedial translation (Group 2). All had intraoperative somatosensory/motor-evoked potential monitoring and at least 2-years follow-up. Except for follow-up (longer in Group 1), the 2 groups were similar before surgery. The UCs achieved better thoracic coronal correction (P < 0.001), Cincinnati index (P < 0.001), kyphosis (P = 0.02), and apical rotation (P < 0.001). In normokyphotic or hypokyphotic patients, the UC corrected thoracic kyphosis by 11.2 degrees (55%) versus 0.4 degrees (2%) achieved by hooks (P < 0.0001). These differences were stable at last follow-up. There were no intraoperative complications or changes in somatosensory/motor-evoked potentials. UC reduced operative time by 20% (60 minutes; P < 0.001) and blood loss by 23% (250 mL; P < 0.001). Although both of these hybrid constructs efficaciously corrected the coronal and axial deformities in AIS, the results of the UC technique were superior to those achieved with hooks in all 3 planes, especially the sagittal plane. Moreover, the UC technique is straightforward and safe, reducing both operative duration and blood loss.

  3. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression

    PubMed Central

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-01-01

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation. PMID:29072616

  4. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    NASA Astrophysics Data System (ADS)

    Tilak B., Vidya; Dutta, Rakesh Kumar; Mohanty, Bijayananda

    2015-06-01

    This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite - lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  5. Freeze-Thaw Cycle Test on Basalt, Diorite and Tuff Specimens with the Simulated Ground Temperature of Antarctica

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Cho, H.; Park, H.

    2010-12-01

    Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).

  6. Process envelopes for stabilisation/solidification of contaminated soil using lime-slag blend.

    PubMed

    Kogbara, Reginald B; Yi, Yaolin; Al-Tabbaa, Abir

    2011-09-01

    Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.

  7. The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study

    PubMed Central

    Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

    2015-01-01

    Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100

  8. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    PubMed

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  9. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    NASA Astrophysics Data System (ADS)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity of 21%, a density of 1956 kg/m3 and strength of 85 MPa. The matrix has soil-like properties with an estimated UCS of 1.5 MPa. iii) At the base of the waterfall, the material sharply transitions into a light grey, slightly weathered unit (Lower Grey Member). This lower unit has an irregular surface expression with sub-vertical discontinuities. Porosity is 6%, density is 2569 kg/m3, the GSI range is 65-75, and the UCS is 98 MPa. The engineering geology model portrays the relationships between the units in three dimensions, highlights key structures and takes into consideration the material source, transportation and depositional processes. Historical outlet photographs suggest past eruptive and glacial activities are both significant factors controlling the deposition and erosion of material at the outlet. The Lower Grey Member appears to be a sound material for the outlet and water fall to be founded on. The upper aa Armoured Lava Ledge currently has moderate strength and GSI, and is resistive, providing protection for the underlying weaker block and matrix unit, however, continued incision by the outlet stream will eventually expose the weaker block and matrix material of the Lava Breccia. Once exposed, the Lava Breccia could rapidly erode or fail down to the Lower Grey Member and could potentially release 1 Mm3 of hot, acidic Crater Lake water. We recommend that erosion rates for the upper Armoured Lava Ledge be established to aid in preparation for eventual rim breakout.

  10. A probabilistic mechanical model for prediction of aggregates’ size distribution effect on concrete compressive strength

    NASA Astrophysics Data System (ADS)

    Miled, Karim; Limam, Oualid; Sab, Karam

    2012-06-01

    To predict aggregates' size distribution effect on the concrete compressive strength, a probabilistic mechanical model is proposed. Within this model, a Voronoi tessellation of a set of non-overlapping and rigid spherical aggregates is used to describe the concrete microstructure. Moreover, aggregates' diameters are defined as statistical variables and their size distribution function is identified to the experimental sieve curve. Then, an inter-aggregate failure criterion is proposed to describe the compressive-shear crushing of the hardened cement paste when concrete is subjected to uniaxial compression. Using a homogenization approach based on statistical homogenization and on geometrical simplifications, an analytical formula predicting the concrete compressive strength is obtained. This formula highlights the effects of cement paste strength and aggregates' size distribution and volume fraction on the concrete compressive strength. According to the proposed model, increasing the concrete strength for the same cement paste and the same aggregates' volume fraction is obtained by decreasing both aggregates' maximum size and the percentage of coarse aggregates. Finally, the validity of the model has been discussed through a comparison with experimental results (15 concrete compressive strengths ranging between 46 and 106 MPa) taken from literature and showing a good agreement with the model predictions.

  11. Confined compressive strength analysis can improve PDC bit selection. [Polycrystalline Diamond Compact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabain, R.T.

    1994-05-16

    A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less

  12. Effects of number of ply, compression temperature, pressure and time on mechanical properties of prepreg kenaf-polypropilene composites

    NASA Astrophysics Data System (ADS)

    Tomo, H. S. S.; Ujianto, O.; Rizal, R.; Pratama, Y.

    2017-07-01

    Composite material thermoplastic was prepared from polypropilen granule as matrix, kenaf fiber as reinforcement and grafted polypropylene copolymer maleic anhydride as coupling agent. Composite products were produced as sandwich structures using compression molding. This research aimed to observe the influence of number of ply, temperature, pressure, and compression time using factorial design. Effects of variables on tensile and flexural strength were analyzed. Experimental results showed that tensile and flexural strength were influenced by degradation, fiber compaction, and matrix - fiber interaction mechanisms. Flexural strength was significantly affected by number of ply and its interaction to another process parameters (temperature, pressure, and compression time), but no significant effect of process parameters on tensile strength. The highest tensile strength (62.0 MPa) was produced at 3 ply, 210 °C, 50 Bar, and 3 min compression time (low, high, high, low), while the highest flexural strength (80.3 MPa) was produced at 3 ply, 190 °C, 50 Bar, and 3 min compression time (low, low, high, low).

  13. Calcite-forming bacteria for compressive strength improvement in mortar.

    PubMed

    Park, Sung-Jin; Park, Yu-Mi; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2010-04-01

    Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of concrete mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of concrete mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and x-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the CaCO3 crystals. We used the isolates to improve the compressive strength of concrete mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

  14. Long term mechanical properties of alkali activated slag

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  15. Effect of pH on compressive strength of some modification of mineral trioxide aggregate

    PubMed Central

    Saghiri, Mohammad A.; Garcia-Godoy, Franklin; Asatourian, Armen; Lotfi, Mehrdad; Khezri-Boukani, Kaveh

    2013-01-01

    Objectives: Recently, it was shown that NanoMTA improved the setting time and promoted a better hydration process which prevents washout and the dislodgment of this novel biomaterial in comparison with WTMA. This study analyzed the compressive strength of ProRoot WMTA (Dentsply), a NanoWMTA (Kamal Asgar Research Center), and Bioaggregate (Innovative Bioceramix) after its exposure to a range of environmental pH conditions during hydration. Study Design: After mixing the cements under aseptic condition and based on the manufacturers` recommendations, the cements were condensed with moderate force using plugger into 9 × 6 mm split molds. Each type of cement was then randomly divided into three groups (n=10). Specimens were exposed to environments with pH values of 4.4, 7.4, or 10.4 for 3 days. Cement pellets were compressed by using an Instron testing machine. Values were recorded and compared. Data were analyzed by using one-way analysis of variance and a post hoc Tukey’s test. Results: After 3 days, the samples were solid when probed with an explorer before removing them from the molds. The greatest mean compressive strength 133.19±11.14 MPa was observed after exposure to a pH value of 10.4 for NanoWMTA. The values decreased to 111.41±8.26 MPa after exposure to a pH value of 4.4. Increasing of pH had a significant effect on the compressive strength of the groups (p<0.001). The mean compressive strength for the NanoWMTA was statistically higher than for ProRoot WMTA and Bioaggregate (p<0.001). Moreover, increasing of pH values had a significant effect on compressive strength of the experimental groups (p<0.001). Conclusion: The compressive strength of NanoWMTA was significantly higher than WMTA and Bioaggregate; the more acidic the environmental pH, the lower was the compressive strength. Key words:Compressive strength, mineral trioxide aggregate, Nano. PMID:23722137

  16. Strength of mortar containing rubber tire particle

    NASA Astrophysics Data System (ADS)

    Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.

    2018-04-01

    The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.

  17. Comparative evaluation of compressive strength, diametral tensile strength and shear bond strength of GIC type IX, chlorhexidine-incorporated GIC and triclosan-incorporated GIC: An in vitro study.

    PubMed

    Jaidka, Shipra; Somani, Rani; Singh, Deepti J; Shafat, Shazia

    2016-04-01

    To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range.

  18. Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques.

    PubMed

    Nagwani, Naresh Kumar; Deo, Shirish V

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.

  19. Estimating the Concrete Compressive Strength Using Hard Clustering and Fuzzy Clustering Based Regression Techniques

    PubMed Central

    Nagwani, Naresh Kumar; Deo, Shirish V.

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939

  20. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    PubMed

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  1. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete

    PubMed Central

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-01-01

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions. PMID:28787998

  2. Influence of bottom ash of palm oil on compressive strength of concrete

    NASA Astrophysics Data System (ADS)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  3. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    NASA Astrophysics Data System (ADS)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  4. Strength development of pervious concrete containing engineered biomass aggregate

    NASA Astrophysics Data System (ADS)

    Sharif, A. A. M.; Shahidan, S.; Koh, H. B.; Kandash, A.; Zuki, S. S. Mohd

    2017-11-01

    Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.

  5. A state-of-the-art anisotropic rock deformation model incorporating the development of mobilised shear strength

    NASA Astrophysics Data System (ADS)

    Noor, M. J. Md; Jobli, A. F.

    2018-04-01

    Currently rock deformation is estimated using the relationship between the deformation modulus Em and the stress-strain curve. There have been many studies conducted to estimate the value of Em. This Em is basically derived from conducting unconfined compression test, UCS. However, the actual stress condition of the rock in the ground is anisotropic stress condition where the rock mass is subjected to different confining and vertical pressures. In addition, there is still no empirical or semi-empirical framework that has been developed for the prediction of rock stress-strain response under anisotropic stress condition. Arock triaxial machine GCTS Triaxial RTX-3000 has been deployed to obtain the anisotropic stress-strain relationship for weathered granite grade II from Rawang, Selangor sampled at depth of 20 m and subjected to confining pressure of 2 MPa, 7.5 MPa and 14 MPa. The developed mobilised shear strength envelope within the specimen of 50 mm diameter and 100 mm height during the application of the deviator stress is interpreted from the stress-strain curves. These mobilised shear strength envelopes at various axial strains are the intrinsic property and unique for the rock. Once this property has been established then it is being used to predict the stress-strain relationship at any confining pressure. The predicted stress-strain curves are compared against the curves obtained from the tests. A very close prediction is achieved to substantiate the applicability of this rock deformation model. This is a state-of-the art rock deformation theory which characterise the deformation base on the applied load and the developed mobilised shear strength within the rock body.

  6. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics.

    PubMed

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-12-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. © 2013.

  7. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    NASA Astrophysics Data System (ADS)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  8. The Influence of GI and GII on the Compression After Impact Strength of Carbon Fiber/Epoxy Laminates and Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Scharber, L. L.

    2017-01-01

    This study measured the compression after impact strength of IM7 carbon fiber laminates made from epoxy resins with various mode I and mode II toughness values to observe the effects of these toughness values on the resistance to damage formation and subsequent residual compression strength-carrying capabilities. Both monolithic laminates and sandwich structure were evaluated. A total of seven different epoxy resin systems were used ranging in approximate GI values of 245-665 J/sq m and approximate GII values of 840-2275 J/sq m. The results for resistance to impact damage formation showed that there was a direct correlation between GII and the planar size of damage, as measured by thermography. Subsequent residual compression strength testing suggested that GI had no influence on the measured values and most of the difference in compression strength was directly related to the size of damage. Thus, delamination growth assumed as an opening type of failure mechanism does not appear to be responsible for loss of compression strength in the specimens examined in this study.

  9. Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.

    PubMed

    Cachia, Victor V; Shumway, Don; Culbert, Brad; Padget, Marty

    2003-01-01

    The purpose of this study was to evaluate the mechanical characteristics of a new and unique titanium compression anchor with BONE-LOK (Triage Medical, Inc, Irvine, CA) technology for compressive, bi-cortical internal fixation of bone. This device provides fixation through the use of a distal grasping anchor and an adjustable proximal collar that are joined by an axially movable pin and guide wire. The titanium compression anchor, in 2.0-, 2.7-, and 3.5-mm diameters, were compared with cortex screws (Synthes USA, Paoli, PA) of the same diameter and material for pullout strength in 20 lb/cu ft and 30 lb/cu ft solid rigid polyurethane foam; and for compression strength in 20 lb/cu ft foam. Retention strength of the collar was tested independently. The results showed significantly greater pullout strength of the 2.7-mm and 3.5-mm titanium compression anchor as compared with the 2.7-mm and 3.5-mm cortex screws in these test models. Pullout strength of the 2.0-mm titanium compression anchor was not statistically different in comparison with the 2.0-mm cortical screws. Compression strength of the titanium compression anchor was significantly greater than the cortical screws for all diameters tested. These differences represent a distinct advantage with the new device, which warrants further in vivo testing. Collar retention strength testing values were obtained for reference only and have no comparative significance.

  10. Compressive residual strength of graphite/epoxy laminates after impact

    NASA Technical Reports Server (NTRS)

    Guy, Teresa A.; Lagace, Paul A.

    1992-01-01

    The issue of damage tolerance after impact, in terms of the compressive residual strength, was experimentally examined in graphite/epoxy laminates using Hercules AS4/3501-6 in a (+ or - 45/0)(sub 2S) configuration. Three different impactor masses were used at various velocities and the resultant damage measured via a number of nondestructive and destructive techniques. Specimens were then tested to failure under uniaxial compression. The results clearly show that a minimum compressive residual strength exists which is below the open hole strength for a hole of the same diameter as the impactor. Increases in velocity beyond the point of minimum strength cause a difference in the damage produced and cause a resultant increase in the compressive residual strength which asymptotes to the open hole strength value. Furthermore, the results show that this minimum compressive residual strength value is independent of the impactor mass used and is only dependent upon the damage present in the impacted specimen which is the same for the three impactor mass cases. A full 3-D representation of the damage is obtained through the various techniques. Only this 3-D representation can properly characterize the damage state that causes the resultant residual strength. Assessment of the state-of-the-art in predictive analysis capabilities shows a need to further develop techniques based on the 3-D damage state that exists. In addition, the need for damage 'metrics' is clearly indicated.

  11. Factors affecting proppant flowback with resin coated proppants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, S.W.; Penny, G.S.; Conway, M.W.

    1995-12-31

    Resin coated proppants (RCPs) have been used to prevent proppant flowback for several years in the hydraulic fracturing of oil and gas wells. Proppant flowback problems, however, still exist with the commercially available RCPs and several operators report failures around the world under a variety of well conditions. To date, a clear explanation of the RCP failure mechanisms and the conditions under which failure occurs has not been presented in the industry. A correlation between the unconfined compressive strength (UCS) of RCP materials and the proppant flowback potential has been previously presented by Vreeburg, et al. This paper will presentmore » the results of a study on a variety of factors which effect the proppant flowback of a number of commercially available RCP materials. These factors include (1) the effect of fluid pH (7 to 12) and fluid type (KCL, seawater and a HPG/Borate fracturing fluid), (2) the effect of fluid/proppant slurry shear, (3) the effect of closure pressure during RCP curing, (4) the effect of stress cycling and (5) the effect of downhole flow conditions on proppant flowback.« less

  12. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    PubMed

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  13. Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-01-01

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937

  14. Influence of Waste Tyre Crumb Rubber on Compressive Strength, Static Modulus of Elasticity and Flexural Strength of Concrete

    NASA Astrophysics Data System (ADS)

    Haridharan, M. K.; Bharathi Murugan, R.; Natarajan, C.; Muthukannan, M.

    2017-07-01

    In this paper, the experimental investigations was carried out to find the compressive strength, static modulus of elasticity and flexural strength of concrete mixtures, in which natural sand was partially replaced with Waste Tyre Crumb Rubber (WTCR). River sand was replaced with five different percentages (5%, 10%, 15%, 20% and 25%) of WTCR by volume. The main objective of the experimental investigation is to find the relationship between static modulus of elasticity and flexural strength with compressive strength of concrete with WTCR. The experimentally obtainedstatic modulus of elasticity and flexural strength results comparing with the theoretical values (various country codes recommendations).

  15. Effect of core geometry and size on concrete compressive strength.

    DOT National Transportation Integrated Search

    2016-07-01

    To evaluate the in-place concrete strength for acceptance for a structural member with : potentially substandard strength, the compressive strength of cores may be required for : assessment. Depending on the geometry and size of the core specimen, th...

  16. A reassessment of the compressive strength properties of southern yellow pine bark

    Treesearch

    Thomas L. Eberhardt

    2007-01-01

    Samples of southern yellow pine outer bark and wood were tested in compression to determine values for modulus of elasticity, stress at proportional limit, and maximum crushing strength. Results reported here resolve inconsistencies in the compressive strength data previously reported by others for pine bark. Testing of solvent-treated bark blocks suggests that...

  17. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    NASA Astrophysics Data System (ADS)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  18. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    PubMed Central

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  19. Evaluation of capping systems for high-strength concrete cylinders.

    DOT National Transportation Integrated Search

    2006-03-01

    This study focused on the effects of capping systems on the compressive strength of high-strength concrete. The compressive strength levels ranged from 6,000 psi to 14,000 psi. The three systems investigated were ground ends, bonded caps, and unbonde...

  20. Diametral and compressive strength of dental core materials.

    PubMed

    Cho, G C; Kaneko, L M; Donovan, T E; White, S N

    1999-09-01

    Strength greatly influences the selection of core materials. Many disparate material types are now recommended for use as cores. Cores must withstand forces due to mastication and parafunction for many years. This study compared the compressive and diametral tensile strengths of 8 core materials of various material classes and formulations (light-cured hybrid composite, autocured titanium containing composite, amalgam, glass ionomer, glass ionomer cermet, resin-modified glass ionomer, and polyurethane). Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive and diametral strengths with associated standard errors were calculated for each material (n = 10). Analyses of variance were computed (P <.0001) and multiple comparisons tests discerned many differences among materials. Compressive strengths varied widely from 61.1 MPa for a polyurethane to 250 MPa for a resin composite. Diametral tensile strengths ranged widely from 18.3 MPa for a glass ionomer cermet to 55.1 MPa for a resin composite. Some resin composites had compressive and tensile strengths equal to those of amalgam. Light-cured hybrid resin composites were stronger than autocured titanium containing composites. The strengths of glass ionomer-based materials and of a polyurethane material were considerably lower than for resin composites or amalgam.

  1. Stabilisation/solidification of synthetic petroleum drill cuttings.

    PubMed

    Al-Ansary, Marwa S; Al-Tabbaa, Abir

    2007-03-15

    This paper presents the results of an experimental investigation into the use of stabilisation/solidification (S/S) to treat synthetic drill cuttings as a pre-treatment to landfilling or for potential re-use as construction products. Two synthetic mixes were used based on average concentrations of specific contaminates present in typical drill cuttings from the North Sea and the Red Sea areas. The two synthetic drill cuttings contained similar chloride content of 2.03% and 2.13% by weight but different hydrocarbon content of 4.20% and 10.95% by weight, respectively; hence the mixes were denoted as low and high oil content mixes, respectively. A number of conventional S/S binders were tested including Portland cement (PC), lime and blast-furnace slag (BFS), in addition to novel binders such as microsilica and magnesium oxide cement. Physical, chemical and microstructural analyses were used to compare the relative performance of the different binder mixes. The unconfined compressive strength (UCS) values were observed to cover a wide range depending on the binder used. Despite the significant difference in the hydrocarbon content in the two synthetic cuttings, the measured UCS values of the mixes with the same binder type and content were similar. The leachability results showed the reduction of the synthetic drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the binders for chloride concentrations, and (b) by the 20% BFS-PC and 30% PC binders for the low oil content mix. The 30% BFS-PC binder successfully reduced the leached oil concentration of the low oil content mix to inert levels. Finally, the microstructural analysis offered valuable information on the morphology and general behaviour of the mixes that were not depicted by the other tests.

  2. Effects of Gas Pressure on the Failure Characteristics of Coal

    NASA Astrophysics Data System (ADS)

    Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi

    2017-07-01

    Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.

  3. Alterations in the gut microbiome of children with severe ulcerative colitis

    PubMed Central

    Michail, Sonia; Durbin, Matthew; Turner, Dan; Griffiths, Anne M; Mack, David R.; Hyams, Jeffrey; Leleiko, Neal; Kenche, Harshavardhan; Stolfi, Adrienne; Wine, Eytan

    2011-01-01

    Background Although the role of microbes in disease pathogenesis is well established, data describing the variability of the vast microbiome in children diagnosed with ulcerative colitis (UC) are lacking. This study characterizes the gut microbiome in hospitalized children with severe UC and determines the relationship between microbiota and response to steroid therapy. Methods Fecal samples were collected from 26 healthy controls and 27 children hospitalized with severe UC as part of a prospective multi-center study. DNA extraction, PCR amplification of bacterial 16S rRNA, and microarray hybridization were performed. Results were analyzed in Genespring GX 11.0 comparing healthy controls to children with UC, and steroid responsive (n=17) to non-responsive patients (n=10). Results Bacterial signal strength and distribution showed differences between UC and healthy controls (adjusted p<0.05) for Phylum, Class, Order, Family, Genus, and Phylospecies levels with reduction in Clostridia and an increase in Gamma-proteobacteria. The number of microbial phylospecies was reduced in UC (266±69) vs. controls (758±3, p<0.001), as was the Shannon diversity index (6.1±0.23 vs. 6.49±0.04, respectively; p<0.0001). Steroids non-responders harbored less phylospecies than responders (142±49 vs. 338±62, p=0.013). Conclusions Richness, evenness, and biodiversity of the gut microbiome were remarkably reduced in children with UC, compared to healthy controls. Children who did not respond to steroids harbored a microbiome that was even less rich than steroid responders. This study is the first to characterize the gut microbiome in a large cohort of pediatric patients with severe ulcerative colitis and describes changes in the gut microbiome as a potential prognostic feature. PMID:22170749

  4. Dynamic compressive strength of epoxy composites

    NASA Astrophysics Data System (ADS)

    Plastinin, A. V.; Sil'vestrov, V. V.

    1996-11-01

    The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.

  5. Mechanical properties of silorane-based and methacrylate-based composite resins after artificial aging.

    PubMed

    de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido

    2016-01-01

    The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P < 0.001). The conventional composite resin Fill Magic presented the best performance before (P < 0.05) and after AAA (P < 0.05). Values for compressive strength of the silorane-based composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).

  6. Blasted copper slag as fine aggregate in Portland cement concrete.

    PubMed

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [A study of the properties of compacts from a mixed dry binder on the base of alpha-lactose monohydrate and microcrystalline cellulose].

    PubMed

    Muzíková, J; Páleník, L

    2005-05-01

    The paper studies the tensile strength and disintegration time of compacts from the mixed dry binder MicroceLac 100. Tensile strength and disintegration time of tablets were tested in connection with the following factors: compression force, compression rate, addition of magnesium stearate, addition of ascorbic acid, the model active principle. The compression forces employed were 5, 6, and 7 kN, compression rates, 20 and 40 mm/min, stearate concentration 0, 0.4, and 0.8%, ascorbic acid concentration, 25 and 50%. With increasing addition of the stearate, the strength of compacts from MicroceLacu 100 was decreased for both compression rates, but with a higher rate, in a concentration of 0.4%, the decrease in strength was more marked. Disintegration time was increased with compression force and the addition of the stearate, but in all cases it was very short. Increased addition of ascorbic acid further intensified the decrease in the strength of compacts and decreased the disintegration time and the effect of the stearate on it. Disintegration time of compacts with ascorbic acid in a concentration of 50% did not increase with compression force.

  8. Compressive Strength of Notched Poly(Phenylene Sulfide) Aerospace Composite: Influence of Fatigue and Environment

    NASA Astrophysics Data System (ADS)

    Niitsu, G. T.; Lopes, C. M. A.

    2013-08-01

    The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.

  9. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    PubMed Central

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-01-01

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011

  10. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  11. Effects of the background electrolyte on Th(IV) sorption to muscovite mica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Moritz; Hellebrandt, Stefan; Knope, Karah E.

    2015-09-01

    The adsorption of tetravalent thorium on the muscovite mica (001) basal plane was studied by X-ray crystal truncation rod (CTR), and resonant anomalous X-ray reflectivity (RAXR) measurements and alpha spectrometry in the presence of perchlorate background electrolytes LiClO 4, NaClO 4, and KClO 4 ([Th(IV)] = 0.1 mM, I = 0.1 M or 0.01 M, pH = 3.3 ± 0.3). RAXR data directly reveal a strong influence of the background electrolyte on the actinide sorption. No significant Th adsorption was observed in 0.1 M NaClO 4, i.e., the Th coverage θ(Th), the number of Th per unit cell area ofmore » the muscovite surface (A UC = 46.72 Å 2), was ≤ 0.01 Th/A UC, whereas limited uptake (θ(Th) ~ 0.04 Th/A UC) was detected at a lower ionic strength (I = 0.01 M). These results are in stark contrast to the behavior of Th in 0.1 M NaCl which showed a coverage of 0.4 Th/A UC (Schmidt et al., 2012a). Th uptake was also influenced by the electrolyte cation. Weak adsorption was observed in 0.1M KClO 4 (θ(Th) ~ 0.07 Th/AUC) similar to the results in NaClO 4 at lower ionic strength. In contrast, strong adsorption was found in 0.1 M LiClO 4, with θ(Th) = 4.9 Th/A UC, a ~10-fold increase compared with that previously reported in NaCl. These differences are confirmed independently by ex situ alpha spectrometry, which shows no measurable Th coverage in 0.1 M NaClO 4 background in contrast to a large coverage of 1.6 Th/A UC in 0.1 M LiClO 4. The CTR/RAXR analyses of Th-LiClO 4 show the sorption structure consisting of Th species that are broadly distributed, centered at heights of 4.1 Å and 29 Å distance from the interface. Neither the very large distribution height of the second species nor the high coverage can be explained with (hydrated) ionic adsorption, suggesting that the enhanced uptake is presumably due to the formation and sorption of Th nanoparticles.« less

  12. Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels.

    PubMed

    Xiang, Hengxue; Xia, Mengge; Cunningham, Alexander; Chen, Wei; Sun, Bin; Zhu, Meifang

    2017-08-01

    The effects of crosslinking density, polymer concentration and monomer ratio on the mechanical properties (tensile and compressive properties) of biocompatible clay/P(MEO 2 MA-co-OEGMA) nanocomposite (NC) hydrogels were investigated. These novel NC hydrogels, composed of inorganic/organic networks, were prepared via in-situ free radical polymerization. The results showed that with increasing inorganic crosslinking agent, i.e. clay concentration, an increase in the tensile strength, elongation at break and compressive strength was observed. Similarly, with increasing polymer concentration, the tensile strength and compressive strength of the NC hydrogels increased while the elongation at break decreased. Increasing the molar concentration of OEGMA in the comonomer led to an increase in the tensile strength of the NC hydrogels but a reduction in the compressive strength. Moreover, clay/P(MEO 2 MA-co-OEGMA) NC hydrogels presented good biocompatibility bolstering their application as tissue engineering scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The effects of embedded internal delaminations on composite laminate compression strength; an experimental review

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1994-01-01

    Delaminations in laminated composite materials can degrade the compressive strength of these materials. Delaminations can form as a result of impact damage or processing flaws. In order to better understand the effects of these delaminations on the compressive behavior of laminated composite plates, programs have been conducted to assess the criticality of prescribed delaminations of known size, shape, and location on the compression strength of laminated composites. A review of these programs is presented along with highlights of pertinent findings from each.

  14. The effect on the flexural strength, flexural modulus and compressive strength of fibre reinforced acrylic with that of plain unfilled acrylic resin - an in vitro study.

    PubMed

    Thomas, Tony C; K, Aswini Kumar; Mohamed, Shamaz; Krishnan, Vinod; Mathew, Anil; V, Manju

    2015-03-01

    The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 - carbon fibres, group 3- glass fibres, group 4 - polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged.

  15. 5-ASA in ulcerative colitis: improving treatment compliance.

    PubMed

    Prantera, Cosimo; Rizzi, Marina

    2009-09-21

    5-Aminosalicylic acid (5-ASA) compounds are a highly effective treatment for ulcerative colitis (UC). While UC patient compliance in clinical studies is over 90%, only 40% of patients in every day life take their prescribed therapy. Adherence to medication has been emphasized recently by a Cochrane meta-analysis that has suggested that future trials of 5-ASA in UC should look at patient compliance rather than drug efficacy. Better compliance can be obtained by reducing the number of tablets and times of administration. Given that the 5-ASA formulations have different delivery systems that split the active moiety in various regions of the intestine, it is particularly important that an adequate dose of the drug arrives at the inflamed part of the colon. 5-ASA Multi matrix (MMx) is a novel, high strength (1.2 g), oral formulation designed for once-daily dosing. It releases the active moiety throughout the colon. Different studies with this compound have shown that it is as effective as 5-ASA enema in the treatment of mild-to-moderate, left-sided UC, and is comparable to a pH-dependent, delayed release 5-ASA (Asacol), even if given once daily. Recently, the effectiveness in the acute phase of UC has been confirmed also in maintenance. In conclusion, at present, 5-ASA MMx seems theoretically the best agent for maintaining patient compliance, and consequently, treatment effectiveness.

  16. Advanced fuels modeling: Evaluating the steady-state performance of carbide fuel in helium-cooled reactors using FRAPCON 3.4

    NASA Astrophysics Data System (ADS)

    Hallman, Luther, Jr.

    Uranium carbide (UC) has long been considered a potential alternative to uranium dioxide (UO2) fuel, especially in the context of Gen IV gas-cooled reactors. It has shown promise because of its high uranium density, good irradiation stability, and especially high thermal conductivity. Despite its many benefits, UC is known to swell at a rate twice that of UO2. However, the swelling phenomenon is not well understood, and we are limited to a weak empirical understanding of the swelling mechanism. One suggested cladding for UC is silicon carbide (SiC), a ceramic that demonstrates a number of desirable properties. Among them are an increased corrosion resistance, high mechanical strength, and irradiation stability. However, with increased temperatures, SiC exhibits an extremely brittle nature. The brittle behavior of SiC is not fully understood and thus it is unknown how SiC would respond to the added stress of a swelling UC fuel. To better understand the interaction between these advanced materials, each has been implemented into FRAPCON, the preferred fuel performance code of the Nuclear Regulatory Commission (NRC); additionally, the material properties for a helium coolant have been incorporated. The implementation of UC within FRAPCON required the development of material models that described not only the thermophysical properties of UC, such as thermal conductivity and thermal expansion, but also models for the swelling, densification, and fission gas release associated with the fuel's irradiation behavior. This research is intended to supplement ongoing analysis of the performance and behavior of uranium carbide and silicon carbide in a helium-cooled reactor.

  17. Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites

    NASA Technical Reports Server (NTRS)

    Ha, Jong-Bae; Nairn, John A.

    1992-01-01

    A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.

  18. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    NASA Astrophysics Data System (ADS)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  19. Vibrational response and mechanical properties characterization of aluminium alloy 6061/Sic composite

    NASA Astrophysics Data System (ADS)

    Kumbhar, A. P.; Vyavahare, R. T.; Kulkarni, S. G.

    2018-05-01

    Aluminium alloy based metal matrix composites (AAMMC) are mainly used in sliding wear application, automobile, Aircraft and aerospace components, Marine fittings, Transport and other industry are becoming highly advantageous due to their excellent wear resistance, lighter weight, higher strength and durability. In this paper the effect of reinforcement percentage on vibration response and mechanical properties of metal matrix composite has been investigated. Composite material was prepared by varying Sic (0, 3, 6, and 9 wt. %) by stir casting method. Natural frequency, tensile strength, rockwell hardness and compressive strength were analyzed. The result shows that, addition of sic in aluminium matrix increases natural frequency, hardness, tensile strength, compressive strength and 9 wt. % showed maximum natural frequency, hardness, tensile strength, compressive strength.

  20. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  1. Effect of silica fume on compressive strength of oil-polluted concrete in different marine environments

    NASA Astrophysics Data System (ADS)

    Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed

    2017-12-01

    In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.

  2. Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete

    NASA Astrophysics Data System (ADS)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.

    2018-03-01

    This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  3. Effect of angle-ply orientation on compression strength of composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeTeresa, S J; Hoppel, C P

    1999-03-01

    An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less

  4. Investigation of low compressive strengths of concrete in paving, precast and structural concrete

    DOT National Transportation Integrated Search

    2000-08-01

    This research examines the causes for a high incidence of catastrophically low compressive strengths, primarily on structural concrete, during the 1997 construction season. The source for the low strengths was poor aggregate-paste bond associated wit...

  5. The effects of compressive preloads on the compression-after-impact strength of carbon/epoxy

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Lance, D. G.

    1992-01-01

    A preloading device was used to examine the effects of compressive prestress on the compression-after-impact (CAI) strength of 16-ply, quasi-isotropic carbon epoxy test coupons. T300/934 material was evaluated at preloads from 200 to 4000 lb at impact energies from 1 to 9 joules. IM7/8551-7 material was evaluated at preloads from 4000 to 10,000 lb at impact energies from 4 to 16 joules. Advanced design of experiments methodology was used to design and evaluate the test matrices. The results showed that no statistically significant change in CAI strength could be contributed to the amount of compressive preload applied to the specimen.

  6. Characterizing and optimizing poly-l-lactide-co-ε-caprolactone membranes for urothelial tissue engineering

    PubMed Central

    Sartoneva, Reetta; Haaparanta, Anne-Marie; Lahdes-Vasama, Tuija; Mannerström, Bettina; Kellomäki, Minna; Salomäki, Minna; Sándor, George; Seppänen, Riitta; Miettinen, Susanna; Haimi, Suvi

    2012-01-01

    Different synthetic biomaterials such as polylactide (PLA), polycaprolactone and poly-l-lactide-co-ε-caprolactone (PLCL) have been studied for urothelial tissue engineering, with favourable results. The aim of this research was to further optimize the growth surface for human urothelial cells (hUCs) by comparing different PLCL-based membranes: smooth (s) and textured (t) PLCL and knitted PLA mesh with compression-moulded PLCL (cPLCL). The effects of topographical texturing on urothelial cell response and mechanical properties under hydrolysis were studied. The main finding was that both sPLCL and tPLCL supported hUC growth significantly better than cPLCL. Interestingly, tPLCL gave no significant advantage to hUC attachment or proliferation compared with sPLCL. However, during the 14 day assessment period, the majority of cells were viable and maintained phenotype on all the membranes studied. The material characterization exhibited potential mechanical characteristics of sPLCL and tPLCL for urothelial applications. Furthermore, the highest elongation of tPLCL supports the use of this kind of texturing. In conclusion, in light of our cell culture results and mechanical characterization, both sPLCL and tPLCL should be further studied for urothelial tissue engineering. PMID:22896571

  7. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Jeelani, S.

    1992-01-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.

  8. Failure of a laminated composite under tension-compression fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1989-01-01

    The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.

  9. Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.

    1977-01-01

    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.

  10. Insights into the effects of tensile and compressive loadings on human femur bone.

    PubMed

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  11. Damage Behaviors and Compressive Strength of Toughened CFRP Laminates with Thin Plies Subjected to Transverse Impact Loadings

    NASA Astrophysics Data System (ADS)

    Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio

    It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.

  12. Compression of laminated composite beams with initial damage

    NASA Technical Reports Server (NTRS)

    Breivik, Nicole L.; Gurdal, Zafer; Griffin, O. H., Jr.

    1993-01-01

    The effect of isolated damage modes on the compressive strength and failure characteristics of laminated composite test specimens were evaluated experimentally and numerically. In addition to specimens without initial damage, specimens with three types of initial damage were considered: (1) specimens with short delaminations distributed evenly through the specimen thickness, (2) specimens with few long delaminations, and (3) specimens with local fiber damage in the surface plies under the three-point bend contact point. It was found that specimens with short multiple delamination experienced the greatest reduction in compression strength compared to the undamaged specimens. Single delaminations far from the specimen surface had little effect on the final compression strength, and moderate strength reduction was observed for specimens with localized surface ply damage.

  13. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.

  14. Column strength of magnesium alloy AM-57S

    NASA Technical Reports Server (NTRS)

    Holt, M

    1942-01-01

    Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.

  15. Effect of insulating concrete forms in concrete compresive strength

    NASA Astrophysics Data System (ADS)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  16. The Effect on the Flexural Strength, Flexural Modulus and Compressive Strength of Fibre Reinforced Acrylic with That of Plain Unfilled Acrylic Resin – An in Vitro Study

    PubMed Central

    Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju

    2015-01-01

    Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696

  17. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.

    PubMed

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-29

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.

  18. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    PubMed Central

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-01

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength. PMID:28787883

  19. Shear transfer in concrete reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  20. Pore geometry as a control on rock strength

    NASA Astrophysics Data System (ADS)

    Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.

    2017-01-01

    The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.

  1. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    NASA Astrophysics Data System (ADS)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  2. The relationship between Vickers microhardness and compressive strength of functional surface geopolymers

    NASA Astrophysics Data System (ADS)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70°C for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear.

  3. High-strength bioresorbable Fe-Ag nanocomposite scaffolds: Processing and properties

    NASA Astrophysics Data System (ADS)

    Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y.; Gotman, Irena

    2015-10-01

    High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na2SO4 and K2CO3 salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy's law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18-22 MPa), compressive strength of 8-12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6-6 cm2) is close to the range of trabecular bone.

  4. Variations in Compressive Strength of Geopolymer due to the CaO Added Fly Ash

    NASA Astrophysics Data System (ADS)

    Zhao, Yuqing; Koumoto, Tatsuya; Kondo, Fumiyoshi

    Recently, geopolymer has been a noteworthy material which can be used as a replacement for portland cement. The mechanical characteristics and consistency of the geopolymer are strongly affected by its chemical components of fly ash. The variations in compressive strength of geopolymer due to the CaO added fly ash were investigated in this paper. The compressive strengths of geopolymer were increased with an increase in the curing period, and the characteristics changed from the one of plastic soil material to brittle material such as concrete, regardless of CaO content. Also, the results of compressive strength and modulus of deformation showed their maximum value in the case of 8-10% CaO content. From this result, the maximum characteristics of the strengths were assumed to be exerted in case which the water draining process of geopolymer was balanced with the water absorbing process of additional CaO.

  5. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    NASA Astrophysics Data System (ADS)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  6. Strength and texture of Pt compressed to 63 GPa

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Shieh, Sean R.; Duffy, Thomas S.

    2015-02-01

    Angle- and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70-300-nm particle size, the yield strength is 5-6 GPa at ˜60 GPa. Coarse-grained (˜2-μm particles) Pt has a much lower yield strength of 1-1.5 GPa at ˜60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the <110> texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed <110> and <100> texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell.

  7. Flexural and Tensile Properties of Thin, Very High-Strength, Fiber-Reinforced Concrete Panels

    DTIC Science & Technology

    2008-09-01

    Fiber - Reinforced Concrete Panels Michael J. Roth September 2008 G eo te ch ni ca l a nd S tr uc tu re s La bo ra to ry Approved for...Tensile Properties of Thin, Very High-Strength, Fiber - Reinforced Concrete Panels Michael J. Roth Geotechnical and Structures Laboratory U.S. Army...of Michigan, Ann Arbor, and noted authority in the field of 160 fiber - reinforced concrete . Implementation of Li’s work

  8. The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete.

    PubMed

    Kupaei, Ramin Hosseini; Alengaram, U Johnson; Jumaat, Mohd Zamin

    2014-01-01

    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.

  9. The Effect of Different Parameters on the Development of Compressive Strength of Oil Palm Shell Geopolymer Concrete

    PubMed Central

    Kupaei, Ramin Hosseini; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials—low calcium fly ash (FA) and oil palm shell (OPS)—as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength. PMID:25531006

  10. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Jeelani, S.

    1992-02-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less

  11. The Influence of Multiple Nested Layer Waviness on the Compression Strength of Double Nested Wave Formations in a Carbon Fiber Composite Laminate

    NASA Astrophysics Data System (ADS)

    Khan, Z. M.; Adams, D. O.; Anas, S.

    2016-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.

  12. Effects of temperature and humidity cycling on the strengths of textile reinforced carbon/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Furrow, Keith W.

    1993-01-01

    Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.

  13. Application of natural seaweed modified mortar for sustainable concrete production

    NASA Astrophysics Data System (ADS)

    Siddique, M. N. I.; Zularisam, A. W.

    2018-04-01

    The effect of seaweed such as Eucheuma Cottonii (gel) and Gracilaria Sp. modified mortar on the properties of sustainable concrete was investigated. Pre-experiment and main-experiment was conducted to carry out this study. Pre-experiment was conducted to study the compressive strength of the sustainable concrete. The main-experiment studied the compressive and splitting strength. Results showed that seaweed modified mortar yielded satisfactory compressive and splitting strength of 30 MPa and 5 MPa at 28 days.

  14. Dataset on predictive compressive strength model for self-compacting concrete.

    PubMed

    Ofuyatan, O M; Edeki, S O

    2018-04-01

    The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.

  15. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood

    PubMed Central

    2011-01-01

    The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies. PMID:22058609

  16. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    NASA Astrophysics Data System (ADS)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  17. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    PubMed Central

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  18. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    PubMed

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  19. Mechanical and structural characteristics of the new BONE-LOK cortical-cancellous internal fixation device.

    PubMed

    Cachia, Victor V; Culbert, Brad; Warren, Chris; Oka, Richard; Mahar, Andrew

    2003-01-01

    The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.

  20. Compressive and flexural strength of high strength phase change mortar

    NASA Astrophysics Data System (ADS)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  1. Properties of Portland cement--stabilised MSWI fly ashes.

    PubMed

    Polettini, A; Pomi, R; Sirini, P; Testa, F

    2001-11-16

    In the present paper, the properties of Portland cement mixtures containing fly ashes (FA) collected at four different Italian municipal solid waste incineration (MSWI) plants were investigated. In particular, physical/mechanical characteristics (setting time, unconfined compressive strength (UCS) and shrinkage/expansion), as well as the acid neutralisation behaviour of the solidified products were considered. The FA composition, revealing enrichment in heavy metals, chlorides and sulphates, significantly altered the hydration behaviour of Portland cement. Consequently, for some of the investigated FA the maximum allowable content for the mixtures to achieve appreciable mechanical strength was 20 wt.%. Even at low FA dosages setting of cement was strongly delayed. In order to improve the properties of FA/cement mixtures, the use of additives was tested.Moreover, the acid neutralisation capacity (ANC) of the solidified products was evaluated in order to assess the ability of the matrix to resist acidification, and also to provide information on hydration progression, as well as on heavy metal release under different pH conditions. Comparison of the results from the present work with previous studies carried out on spiked mixtures lead to the conclusion that the mechanical properties of the stabilised FA could not be predicted based on the effect exerted by heavy metals and anions only, even when the dilution effect exerted on cement was taken into account. It was likely that a major role was also played by alkalis, which were present in the FA at much higher concentrations than in cement.

  2. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  3. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.

    PubMed

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-30

    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  4. The influence of polycarboxylate-type super-plasticizers on alkali-free liquid concrete accelerators performance

    NASA Astrophysics Data System (ADS)

    Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng

    2017-04-01

    Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.

  5. Effect of Curing Period on Properties of Steel and Polypropylene Fibre Reinforced Ultra-High Performance Concrete

    NASA Astrophysics Data System (ADS)

    Smarzewski, Piotr

    2017-10-01

    This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.

  6. HLA-B is the best candidate of susceptibility genes in HLA for Japanese ulcerative colitis.

    PubMed

    Aizawa, H; Kinouchi, Y; Negoro, K; Nomura, E; Imai, G; Takahashi, S; Takagi, S; Kakuta, Y; Tosa, M; Mochida, A; Matsumura, Y; Endo, K; Shimosegawa, T

    2009-06-01

    Recently, a genome-wide association study for ulcerative colitis (UC) in the UK population was reported, and several susceptibility loci including the human leukocyte antigen (HLA) region were identified. The strongest association in the HLA region was found at a 400 kb haplotype block containing HLA-DRB1. In Japanese population, previous study suggested the association between UC and HLA-B*52; however, HLA typing was determined using serotyping with the small sample size. The purpose of this study was to perform an association study in HLA-B by genotyping. A total of 320 patients with UC and 322 healthy controls were recruited in this case-control study. All subjects were Japanese. Genotyping of HLA-B was performed by polymerase chain reaction using a sequence-specific primer. When the allele frequencies were compared, significant associations were found with B*52 [odds ratio (OR) = 3.65, P = 1.6 x 10(-17), P(c) = 3.7 x 10(-16)] and B*4002 (OR = 0.52, P = 0.00030, P(c) = 0.0068). The allele frequency of B*52 was significantly higher in patients diagnosed before 40 years of age than in those diagnosed after 40 years (OR = 1.79, P = 0.010, P(c) = 0.020). A combination association map of Japanese UC using our current and previous studies showed two equal peaks of association on HLA-DRB1 and HLA-B, indicating the possible existence of two casual variants in the HLA region inside and outside the 400 kb block found in UK. We conclude that HLA-B contributes to the susceptibility to Japanese UC, especially cases with younger age of onset. The strength of association for HLA-B was equal to that for HLA-DRB1 in Japanese UC, in contrast to the UK population.

  7. Assessing the potential of the Woman's Condom for vaginal drug delivery

    PubMed Central

    Kramzer, Lindsay F.; Cohen, Jessica; Schubert, Jesse; Dezzutti, Charlene S.; Moncla, Bernard J.; Friend, David; Rohan, Lisa C.

    2015-01-01

    Background The Woman's Condom is a new female condom that uses a dissolvable polyvinyl alcohol (PVA) capsule to simplify vaginal insertion. This preclinical study assessed the feasibility to incorporate an antiviral drug, UC781, into the Woman's Condom capsule, offering a unique drug delivery platform. Study Design UC781 capsules were fabricated using methods from the development of the Woman's Condom capsules as well as those used in vaginal film development. Capsules were characterized to evaluate physical/chemical attributes, Lactobacillus compatibility, in vitro safety and bioactivity, and condom compatibility. Results Two UC781 capsule platforms were assessed. Capsule masses (mg; mean ± SD) for platforms 1 and 2 were 116.50 ± 18.22 and 93.80 ± 8.49, respectively. Thicknesses were 0.0034 ± 0.0004 in and 0.0033 ± 0.0004 in. Disintegration times were 11 ± 3 sec and 5 ± 1 sec. Puncture strengths were 21.72 ± 3.30 N and 4.02 ± 0.83 N. Water content measured 6.98 ± 1.17 % and 7.04 ± 1.92 %. UC781 content was 0.59 ± 0.05 mg and 0.77 ± 0.11 mg. Both platforms retained in vitro bioactivity and were non-toxic to TZM-bl cells and Lactobacillus. Short-term storage of UC781 capsules with the Woman's Condom pouch did not decrease condom mechanical integrity. Conclusions UC781 was loaded into a polymeric capsule similar to that of the Woman's Condom product. This study highlights the potential use of the Woman's Condom as a platform for vaginal delivery of drugs relevant to sexual/reproductive health, including those for short or long-acting HIV prevention. PMID:25998936

  8. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    PubMed Central

    Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František

    2016-01-01

    In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514

  9. Mechanical behaviour of fibre reinforced concrete using soft - drink can

    NASA Astrophysics Data System (ADS)

    Ilya, J.; Cheow Chea, C.

    2017-11-01

    This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.

  10. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  11. Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Duchenne Muscular Dystrophy: Safety and Feasibility Study in India.

    PubMed

    Rajput, B S; Chakrabarti, Swarup K; Dongare, Vaishali S; Ramirez, Christina M; Deb, Kaushik D

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a musculo-degenerative disease characterized by lack of dystrophin production with no definite cure available currently. Discarded umbilical cord is a potential source of mesenchymal stem cells which are non-immunogenic and can be used for transplantation in allogenic set ups. Given the regenerative and anti-inflammatory properties of mesenchymal stem cells (MSCs), here we investigated its role in the cellular therapy of DMD patients. This is a single-blinded study conducted in various hospitals of India situated in Mumbai, Delhi, and Lucknow. Inclusion criteria for enrolling the patients in the study were boys aged between 5 to 18 years, absence of dystrophin in the immunohistochemistry of muscle biopsy and mutation in dystrophin gene in cytogenetic analysis. The exclusion criteria were presence of dystrophin in the muscle biopsy, patients on corticosteroids etc. UC-MSCs (2 millions/kg body weight) were administered through IV and IM injection. Muscle power in muscles of proximal upper limb, distal upper limb, proximal lower limb, distal lower limb, hip flexors, hip extensors, hip abductors, and paraspinal muscles were measured in 11 DMD patients after UC-MSCs transplantation and were followed for up to 3 years (average follow up 1.5 years). 5 DMD patients did not receive any UC-MSCs transplantation and served as the control group. The treatment group (N = 11 at baseline) had a pretransplantation strength of 3.45 ± 1.0357 and 4.090 ± 0.8312 in muscles of proximal upper limb and distal upper limb respectively. After 1 year (N = 9) these strengths remained stable with an average of 3.78 (1.03) and 4.22 (0.83). In contrast, the control group (N = 5) has a pre-transplantation strength of 3.6 (0.54) and 4 (1) in the proximal and distal upper limb respectively. After 1 year, (N = 5) 3/5 subjects had a slight but not statistically significant decrease in the proximal upper limb, mean 3.0 (1.0) and 5/5 had a lunit decrease in strength, mean 3.0 (1.0). The treatment group had a pre-transplantation strength of 2.0909 ± 0.8312 and 3.1181 ± 0.8738 in muscles of distal and proximal lower limbs respectively. At 1 year (N = 9), 4/9 subjects had a 1 unit increase in strength in the distal lower limb (mean 3.78 (0.97)) and 8/9 subjects had a lunit increase in strength in the proximal lower limb, mean 3.11 (1.05). The control group has a mean of 3.41 (0.54) and 3.0 (1.0) at baseline in the distal and proximal lower limb respectively. By 1 year, 3/5 subjects had a 1 unit decrease (mean 2.8 (0.45)) and 5/5 had a lunit decrease, mean 2.0 (1.0) in distal and proximal lower limb strength. Stability in muscle function was also achieved in muscles of hip flexors, hip extensors, hip abductors, and paraspinal muscles at one year as compared to untreated group. UC-MSCs administration not only resulted in the stabilization of muscle power but also did not show GVHD or any deleterious effects on the patients and thus may be considered as safe option for treatment of DMD as compared to control untreated group although further larger double-blinded studies are needed.

  12. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    NASA Technical Reports Server (NTRS)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  13. The Effect of Coloring and Compacting Pressure Paving Block by Adding 5 Wt.% Fly Ash in The Compressive Strength

    NASA Astrophysics Data System (ADS)

    Nurzal; Nursyuhada, Aries

    2017-12-01

    This research aims based on SNI 03-0691-1996 to investigate the effect of coloring and compacting pressure with the addition of 5 wt.% fly ash (Fa) on compressive strength. Fa derived from waste material coal-fired Sijantang Sawahlunto thermal power plant. The growing production of Fa caused negative environmental impact. So, one of the solutions to overcome that effects is to use the Fa as a raw material for paving block mixture that can reduce the cost of raw material and increase its strength. Paving blocks are gray and red with 0 wt.%, 5 wt.% Fa + Pb composition. Compaction pressure variations 55, 65, 75, 85 and 95 Kg/cm2. The drying time for 35 days. Specimens were produced in the form of rectangular bar (length, L = 20 cm, width, B = 10 cm, thickness, W = 6 cm). The test results showed that the addition of 5 wt% FA has a compressive strength value higher than 0 wt%. The red color has a compressive strength lower than the gray color paving block caused the red color (Iron Oxide) is less binding at the time of mixing the material. Gray and red Paving blocks both increase in each additional compaction pressure, because the higher the compaction pressure will increase the bond between the particles so porosity is reduced increased compressive strength. The overall data, the gray paving block with the composition of 5 wt% FA at compaction pressure 95 kg/cm2 with the optimal compressive strength value of 36.1 MPa and the lowest value is found in the red color paving block at 0 wt% FA at a pressure of 55 kg/cm2 with a value of 6.5 MPa. Gray and red Color paving blocks has a compressive strength quality based on SNI 03-0691-1996.

  14. Effect of compressibility on the hypervelocity penetration

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  15. Transition-metal alloying of γ'-Ni3Al : Effects on the ideal uniaxial compressive strength from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Minru; Wang, Chong-Yu

    2018-01-01

    The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.

  16. The threshold strength of laminar ceramics utilizing molar volume changes and porosity

    NASA Astrophysics Data System (ADS)

    Pontin, Michael Gene

    It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.

  17. Collisional disruption of porous weak sintered targets at low impact velocity

    NASA Astrophysics Data System (ADS)

    Setoh, M.; Nakamura, A. M.; Hirata, N.; Hiraoka, K.; Arakawa, M.

    Porous structure is common in asteroids and satellites of outer planets In order to study the relation between structure of the small bodies and their thermal and collisional evolution we prepared porous sintered targets measured the compressive strength and determined their impact strength Previous studies showed using sintered glass beads Love et al 1993 the targets with higher compressive strength have higher impact strength and the targets with higher porosity have higher impact strength However in these experiments the porosity of the targets were changed according to the compressive strength Therefore we fixed the porosity while the compressive strength was varied Our experiments were performed with low impact velocity condition because low impact velocities are common among icy bodies far from the Earth We sintered soda lime glass beads of 50 micron diameter and 2 5g cm -3 nominal density at various temperatures and durations to produce targets with similar porosity sim 40 and different compressive strength 0 2 sim 7 8MPa We performed impact disruption experiments using a low velocity light-gas gun at Kobe University sim 100m s We used cylindrical polycarbonate projectiles 1 5 cm in height and 1 0 cm in diameter We determined the specific energy J kg of projectile kinetic energy per kilo gram initial target mass for the condition that the largest fragment mass being the half of the initial target mass is the threshold energy for collisional disruption Q Fujiwara et al 1989 Holsapple et al

  18. Thermoplastic composites for veneering posterior teeth-a feasibility study.

    PubMed

    Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R

    2002-09-01

    This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.

  19. Experimental research on the mechanical properties of graphene geopolymer

    NASA Astrophysics Data System (ADS)

    Zhang, Guoxue; Lu, Juan

    2018-06-01

    This research study used metakaolin as a raw material, a mixed solution of sodium hydroxide and sodium silicate as an alkali excitant, and a graphene dispersant as an additive to manufacture a graphene geopolymer sample. The compressive strength and bending strength of the sample were tested. The results showed that the geopolymer hydration products were observed to be more compact, and the internal porosity was reduced after the addition of the graphene. The geopolymer strengths had been obviously increased, and the compressive strength and bending strength reached 46.9MPa and 6.7MPa, respectively. However, the graphene's role in improving the strength of the original geopolymer became gradually weakened when the addition amounts of the graphene were increased to a certain extent. Furthermore, the role of the graphene in improving the compressive strength of the geopolymer was determined to gradually decrease with the increase in the content of sodium hydroxide in the alkali excitant.

  20. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  1. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  2. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  3. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  4. A study of the properties of tablets made of directly compressible maltose.

    PubMed

    Muzíková, J; Balhárková, J

    2008-01-01

    The paper deals with the study of the strength and disintegration time of tablets made of directly compressible maltose Advantose 100. It studies the differences of the effects of two types of lubricants, magnesium stearate and sodium stearylfumarate, on the above-mentioned properties, and it also tests the mixtures of the substance with microcrystalline cellulose Vivapur 102 in a ratio of 1:1 and with ascorbic and acetylsalicylic acids. The compacts are obtained by using three compression forces, excepting mixtures with active ingredients, where one compression force is used. In the compression forces of 6 and 8 kN, no statistically significant difference was found in the intervention of the lubricants into the strength of the compacts made of Advantose 100, only in the compression force of 10 kN Pruv decreased the strength more than stearate. The mixture of Advantose 100 and Vivapur 102 yielded the strongest tablets, an addition of Pruv to it decreased the strength of compacts more than stearate. The periods of disintegration time of Advantose compacts as well as those of the mixture of dry binders were longer with an addition of Pruv. The compacts with acetylsalicylic acid possessed higher strength and a longer period of disintegration than those with ascorbic acid. There was no statistically significant difference within the type of the lubricant employed, both in the case of Advantose 100 and its mixture with Vivapur 102, between the values of strength of the compacts with acetylsalicylic acid.

  5. The influence of the compression interface on the failure behavior and size effect of concrete

    NASA Astrophysics Data System (ADS)

    Kampmann, Raphael

    The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.

  6. Column compression strength of tubular packaging forms made from paper

    Treesearch

    Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson

    2006-01-01

    Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...

  7. Modelling the effect of shear strength on isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary

    2017-01-01

    Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.

  8. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  9. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  10. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  11. Micro-Mechanical Analysis About Kink Band in Carbon Fiber/Epoxy Composites Under Longitudinal Compression

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi

    2017-10-01

    Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.

  12. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    PubMed Central

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-01-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding. PMID:26067176

  13. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance.

    PubMed

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-06-11

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.

  14. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    NASA Astrophysics Data System (ADS)

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-06-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.

  15. Failure strengths of denture teeth fabricated on injection molded or compression molded denture base resins.

    PubMed

    Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R

    2016-08-01

    Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    PubMed Central

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-01

    Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950

  17. Compression response of thick layer composite laminates with through-the-thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Smith, Barry T.; Maiden, Janice

    1992-01-01

    Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.

  18. Delivery and Outcomes of a Yearlong Home Exercise Program After Hip Fracture

    PubMed Central

    Orwig, Denise L.; Hochberg, Marc; Yu-Yahiro, Janet; Resnick, Barbara; Hawkes, William G.; Shardell, Michelle; Hebel, J. Richard; Colvin, Perry; Miller, Ram R.; Golden, Justine; Zimmerman, Sheryl; Magaziner, Jay

    2011-01-01

    Background Hip fracture affects more than 1.6 million persons worldwide and causes substantial changes in body composition, function, and strength. Usual care (UC) has not successfully restored function to most patients, and prior research has not identified an effective restorative program. Our objective was to determine whether a yearlong home-based exercise program initiated following UC could be administered to older patients with hip fracture and improve outcomes. Methods A randomized controlled trial of 180 community dwelling female patients with hip fracture, 65 years and older, randomly assigned to intervention (n=91) or UC (n=89). Patients were recruited within 15 days of fracture from 3 Baltimore-area hospitals from November 1998 through September 2004. Follow-up assessments were conducted at 2, 6, and 12 months after fracture. The Exercise Plus Program was administered by exercise trainers that included supervised and independently performed aerobic and resistive exercises with increasing intensity. Main outcome measures included bone mineral density of the contralateral femoral neck. Other outcomes included time spent and kilocalories expended in physical activity using the Yale Physical Activity Scale, muscle mass and strength, fat mass, activities of daily living, and physical and psychosocial functioning. The effect of intervention for each outcome was estimated by the difference in outcome trajectories 2 to 12 months after fracture. Results More than 80% of participants received trainer visits, with the majority receiving more than 3 quarters (79%) of protocol visits. The intervention group reported more time spent in exercise activity during follow-up (P<.05). Overall, small effect sizes of 0 to 0.2 standard deviations were seen for bone mineral density measures, and no significant patterns of time-specific between-group differences were observed for the remaining outcome measures. Conclusion Patients with hip fracture who participate in a yearlong, in-home exercise program will increase activity level compared with those in UC; however, no significant changes in other targeted outcomes were detected. PMID:21357809

  19. Power centroid radar and its rise from the universal cybernetics duality

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  20. Experiments on the enhancement of compressible mixing via streamwise vorticity. II - Vortex strength assessment and seed particle dynamics

    NASA Technical Reports Server (NTRS)

    Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.

    1993-01-01

    The effect of streamwise vorticity on compressible axisymmetric mixing layers is examined using vortex strength assessment and seed particle dynamics analysis. Experimental results indicate that the particles faithfully represent the dynamics of the turbulent swirling flow. A comparison of the previously determined mixing layer growth rates with the present vortex strength data reveals that the increase of turbulent mixing up to 60 percent scales with the degree of swirl. The mixing enhancement appears to be independent of the compressibility level of the mixing layer.

  1. Testing compression strength of wood logs by drilling resistance

    NASA Astrophysics Data System (ADS)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  2. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    NASA Astrophysics Data System (ADS)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  3. Strength of the cervical spine in compression and bending.

    PubMed

    Przybyla, Andrzej S; Skrzypiec, Daniel; Pollintine, Phillip; Dolan, Patricia; Adams, Michael A

    2007-07-01

    Cadaveric motion segment experiment. To compare the strength in bending and compression of the human cervical spine and to investigate which structures resist bending the most. The strength of the cervical spine when subjected to physiologically reasonable complex loading is unknown, as is the role of individual structures in resisting bending. A total of 22 human cervical motion segments, 64 to 89 years of age, were subjected to complex loading in bending and compression. Resistance to flexion and to extension was measured in consecutive tests. Sagittal-plane movements were recorded at 50 Hz using an optical two-dimensional "MacReflex" system. Experiments were repeated 1) after surgical removal of the spinous process, 2) after removal of both apophyseal joints, and 3) after the disc-vertebral body unit had been compressed to failure. Results were analyzed using t tests, analysis of variance, and linear regression. Results were compared with published data for the lumbar spine. The elastic limit in flexion was reached at 8.5 degrees (SD, 1.7 degrees ) with a bending moment of 6.7 Nm (SD, 1.7 Nm). In extension, values were 9.5 degrees (SD, 1.6 degrees ) and 8.4 Nm (3.5 Nm), respectively. Spinous processes (and associated ligaments) provided 48% (SD, 17%) of the resistance to flexion. Apophyseal joints provided 47% (SD, 16%) of the resistance to extension. In compression, the disc-vertebral body units reached the elastic limit at 1.23 kN (SD, 0.46 Nm) and their ultimate compressive strength was 2.40 kN (SD, 0.96 kN). Strength was greater in male specimens, depended on spinal level and tended to decrease with age. The cervical spine has approximately 20% of the bending strength of the lumbar spine but 45% of its compressive strength. This suggests that the neck is relatively vulnerable in bending.

  4. Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering

    NASA Astrophysics Data System (ADS)

    Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan

    2018-01-01

    To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.

  5. Comparison of postbuckling model and finite element model with compression strength of corrugated boxes

    Treesearch

    Thomas J. Urbanik; Edmond P. Saliklis

    2002-01-01

    Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study employs a finite element model, instead of actual experiments, to...

  6. Soil-cement design study : interim report No. 1.

    DOT National Transportation Integrated Search

    1971-05-01

    Soil-cement base course materials design in Louisiana is based upon durability and compressive strength criteria, with the compressive strength requirements being the controlling factor in 95 percent of the designs. The findings to data have provided...

  7. Evaluation of the Properties Magnesium Phosphate Cement with Emulsified Asphalt

    NASA Astrophysics Data System (ADS)

    Du, Jia-Chong; Shen, Ruei-Siang; Zhou, Yu-Zhun

    2017-10-01

    Three type mixtures of magnesium phosphate cement with emulsified asphalt for evaluation their properties. The mixtures of the samples were fabricated and allowed them 2 hours, seven and twenty eight days curing before tested by compressive strength, Marshall stability and indirect tensile strength to probe into their engineering properties. The test results show that all tests have the greatest values at the 28 days curing and too much asphalt emulsion may cause too soft as result of low stability. The compressive strength of Type-III mixture has the greatest value, no matter what curing time is. The Marshall stability test and indirect tensile strength of the Type-III mixture are qualified by the specification required for fast maintenance. The more asphalt emulsion added, the less compressive strength has.

  8. Research on Foam Concrete Features by Replacing Cement with Industrial Waste Residues

    NASA Astrophysics Data System (ADS)

    Saynbaatar; Qiqige; Ma, Gangping; Fu, Jianhua; Wang, Jinghua

    The influence on the performance of foam concrete made by replacing cement with some industrial waste residues was researched in this paper. The result shows that the 7d and 28d compressive strength of foam concrete increases firstly and then decreases with the increasing amount of industrial waste residue. The proper added range is 10%-20% for steel slag, blast furnace slag and coal ash, but, 8% for desulfurized fly ash. With the proper adding ratio, the compressive strength of foam concrete always increased comparing with the pure cement foam concrete. When adding 48% of the compound industrial waste residues, the 28d compressive strength of the foam concrete reached the 2.9MPa which could match the pure cement foam concrete. The results indicates that there is a synergistic effect among the compound industrial waste residue, and this effect is benefit to improving the compressive strength of foam concrete.

  9. An investigation of the compressive strength of Kevlar 49/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.

    1975-01-01

    Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.

  10. Parametric study on the compressive strength geopolymer paving block

    NASA Astrophysics Data System (ADS)

    Aman; Awaluddin, A.; Ahmad, A.; Olivia, M.

    2018-04-01

    This paper reported about the investigated of sodium hidroxida concentration, effect of ratio liquid to solid (L/S), temperature and time on the compressive strength of geopolymer paving block using fly ash and fine aggregate as base material and combination of sodium hidroxida and sodium silicate as alkaline activator and the ratio of Na2SiO3/NaOH was 2 and fly ash to aggregate of 1: 3. The experiments were conducted with variation of the sodium hidroxida concentration of (10-16 M) liquid to solid (L/S) 0.1- 0.7 ratio, curing temperature 30-100 °C and curing time (7-28 day). The main evaluation techniques in this experimental were Compressive strength, X-ray diffraction (XRD),and Scaning Electron Microscope (SEM). The result showed that the compressive strength of Geopolymer Paving block has increased with an increasing of concentration, liquid to solid ratio, curing temperature and curing time.

  11. Effects of different crumb rubber sizes on the flowability and compressive strength of hybrid fibre reinforced ECC

    NASA Astrophysics Data System (ADS)

    Khed, Veerendrakumar C.; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd

    2018-04-01

    The different sizes of crumb rubber have been used to investigate the effects on flowability and the compressive strength of the hybrid fibre reinforced engineered cementitious composite. Two sizes of crumb rubber 30 mesh and 1 to 3mm were used in partial replacement with the fine aggregate up to 60%. The experimental study was carried out through mathematical and statistical analysis by response surface methodology (RSM) using the Design Expert software. The response models have been developed and the results were validated by analysis of variance (ANOVA). It was found that finer sized crumb rubber inclusion had produced better workability and higher compressive strength when compared to the larger size and it was concluded that crumb rubber has negative effect on compressive strength and positive effect on workability. The optimization results are found to an approximately good agreement with the experimental results.

  12. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  13. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    NASA Astrophysics Data System (ADS)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  14. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    NASA Astrophysics Data System (ADS)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  15. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    NASA Astrophysics Data System (ADS)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  16. Hanford's Simulated Low Activity Waste Cast Stone Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less

  17. Production and construction technology of C100 high strength concrete filled steel tube

    NASA Astrophysics Data System (ADS)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  18. rs2476601 polymorphism in PTPN22 is associated with Crohn's disease but not with ulcerative colitis: a meta-analysis of 16,838 cases and 13,356 controls.

    PubMed

    Hedjoudje, Abdellah; Cheurfa, Chérifa; Briquez, Clément; Zhang, Allen; Koch, Stéphane; Vuitton, Lucine

    2017-01-01

    Although the rs2476601 polymorphism of PTPN22 has been reported to be a susceptibility gene for Crohn's disease (CD), results from different studies vary and remain inconclusive. Also, no association has been found between rs2476601 and the risk of ulcerative colitis (UC). The aim of this meta-analysis was to investigate the association between this PTPN22 polymorphism (rs2476601) and the risk of inflammatory bowel disease, UC and CD. We performed a meta-analysis by identifying relevant candidate gene-based studies from EMBASE and MEDLINE. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to estimate the strength of associations between rs2476601 and inflammatory bowel diseases, using a fixed effect or random effect model. Publication bias was also assessed. By pooling 14 different studies, 13,356 controls, 8182 patients with CD, and 8656 with UC were included. We found that the T allele of PTPN22 was not significantly associated with a higher risk of developing UC (OR 1.06, 95%CI 0.98-1.14) but was associated with a decreased risk of developing CD (OR 1.28, 95%CI 1.17-1.40). The T allele in rs2476601 lowered the risk of CD by 22%. This study shows that PTPN22 (rs2476601) is significantly associated with the risk of developing CD, but has no association with UC. This suggests that these diseases have different pathways involved in their pathophysiology.

  19. The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement

    NASA Astrophysics Data System (ADS)

    Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati

    2018-03-01

    This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.

  20. Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength

    DOE PAGES

    Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi; ...

    2017-01-01

    Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less

  1. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    NASA Astrophysics Data System (ADS)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  2. Damage Characteristics and Residual Strength of Composite Sandwich Panels Impacted with and Without Compression Loading

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1998-01-01

    The results of an experimental study of the impact damage characteristics and residual strength of composite sandwich panels impacted with and without a compression loading are presented. Results of impact damage screening tests conducted to identify the impact-energy levels at which damage initiates and at which barely visible impact damage occurs in the impacted facesheet are discussed. Parametric effects studied in these tests include the impactor diameter, dropped-weight versus airgun-launched impactors, and the effect of the location of the impact site with respect to the panel boundaries. Residual strength results of panels tested in compression after impact are presented and compared with results of panels that are subjected to a compressive preload prior to being impacted.

  3. Comparison of the compressive strength of 3 different implant design systems.

    PubMed

    Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter

    2007-01-01

    The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.

  4. Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP

    NASA Astrophysics Data System (ADS)

    Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping

    2017-03-01

    Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.

  5. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  6. Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar

    NASA Astrophysics Data System (ADS)

    Nan, Qin; Hongwei, Wang; Yongyan, Wang

    2018-03-01

    Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.

  7. The effect of shear strength on isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary

    2015-06-01

    Isentropic compression experiments (ICE) are a novel way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 -102 GPa, while the yield strength of the material can be as low as 10-1GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. We will also show using a systematic asymptotic analysis that entropy changes are universally negligible in the absence of shocks. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength over a model based purely on hydrodynamics.

  8. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  9. Development and Evaluation of Stitched Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)

    2001-01-01

    This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.

  10. High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharipova, Aliya; Skolkovo Institute of Science and Technology, Skolkovo, 143025; Psakhie, Sergey G.

    2015-10-27

    High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50%more » and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.« less

  11. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint.

    PubMed

    Schaefer, Carolyn E; Kupwade-Patil, Kunal; Ortega, Michael; Soriano, Carmen; Büyüköztürk, Oral; White, Anne E; Short, Michael P

    2018-01-01

    Concrete production contributes heavily to greenhouse gas emissions, thus a need exists for the development of durable and sustainable concrete with a lower carbon footprint. This can be achieved when cement is partially replaced with another material, such as waste plastic, though normally with a tradeoff in compressive strength. This study discusses progress toward a high/medium strength concrete with a dense, cementitious matrix that contains an irradiated plastic additive, recovering the compressive strength while displacing concrete with waste materials to reduce greenhouse gas generation. Compressive strength tests showed that the addition of high dose (100kGy) irradiated plastic in multiple concretes resulted in increased compressive strength as compared to samples containing regular, non-irradiated plastic. This suggests that irradiating plastic at a high dose is a viable potential solution for regaining some of the strength that is lost when plastic is added to cement paste. X-ray Diffraction (XRD), Backscattered Electron Microscopy (BSE), and X-ray microtomography explain the mechanisms for strength retention when using irradiated plastic as a filler for cement paste. By partially replacing Portland cement with a recycled waste plastic, this design may have a potential to contribute to reduced carbon emissions when scaled to the level of mass concrete production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.

    PubMed

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-08-07

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.

  13. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors

    PubMed Central

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-01-01

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals. PMID:28783128

  14. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    PubMed Central

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  15. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    PubMed

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  16. Optimization of calcium carbonate content on synthesis of aluminum foam and its compressive strength characteristic

    NASA Astrophysics Data System (ADS)

    Sutarno, Nugraha, Bagja; Kusharjanto

    2017-01-01

    One of the most important characteristic of aluminum foam is compressive strength, which is reflected by its impact energy and Young's modulus. In the present research, optimization of calcium carbonate (CaCO3) content in the synthesized aluminum foam in order to obtain the highest compressive strength was carried out. The results of this study will be used to determine the CaCO3 content synthesis process parameter in pilot plant scale production of an aluminum foam. The experiment was performed by varying the concentration of calcium carbonate content, which was used as foaming agent, at constant alumina concentration (1.5 wt%), which was added as stabilizer, and temperature (725°C). It was found that 4 wt% CaCO3 gave the lowest relative density, which was 0.15, and the highest porosity, which was 85.29%, and compressive strength of as high as 0.26 Mpa. The pore morphology of the obtained aluminum foam at such condition was as follow: the average pore diameter was 4.42 mm, the wall thickness minimum of the pore was 83.24 µm, roundness of the pore was 0.91. Based on the fractal porosity, the compressive strength was inversely proportional to the porosity and huddled on a power law value of 2.91.

  17. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting.

    PubMed

    Osei-Yeboah, Frederick; Chang, Shao-Yu; Sun, Changquan Calvin

    2016-05-01

    Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS. To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures. Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay. By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.

  18. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating.

    PubMed

    Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun

    2013-10-01

    Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc.

  19. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    NASA Astrophysics Data System (ADS)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  20. Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles

    NASA Astrophysics Data System (ADS)

    Trojanová, Zuzanka; Dash, Khushbu; Máthis, Kristián; Lukáč, Pavel; Kasakewitsch, Alla

    2018-04-01

    Pure microcrystalline magnesium (µMg) was reinforced with hexagonal boron nitride (hBN) nanoparticles and was fabricated by powder metallurgy process followed by hot extrusion. For comparison pure magnesium powder was consolidated by hot extrusion too. Both materials exhibited a significant fiber texture. Mg-hBN nanocomposites (nc) and pure Mg specimens were deformed between room temperature and 300 °C under tension and compression mode. The yield strength and ultimate tensile and compression strength as well as characteristic stresses were evaluated and reported. The tensile and compressive strengths of Mg-hBN nc are quiet superior in values compared to monolithic counterpart as well as Mg alloys. The compressive yield strength of µMg was recorded as 90 MPa, whereas the Mg-hBN nancomposite shows 125 MPa at 200 °C. The tensile yield strength of µMg was computed as 67 MPa which is quite lower as compared to Mg-hBN nanocomposite's value which was recorded as 157 MPa at 200 °C. Under tensile stress the true stress-strain curves are flat in nature, whereas the stress-strain curves observed in compression at temperatures up to 100 °C exhibited small local maxima at the onset of deformation followed by a significant work hardening.

  1. Compressive strength and hydration processes of concrete with recycled aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenders, Eduardus A.B., E-mail: e.a.b.koenders@coc.ufrj.br; Microlab, Delft University of Technology; Pepe, Marco, E-mail: mapepe@unisa.it

    2014-02-15

    This paper deals with the correlation between the time evolution of the degree of hydration and the compressive strength of Recycled Aggregate Concrete (RAC) for different water to cement ratios and initial moisture conditions of the Recycled Concrete Aggregates (RCAs). Particularly, the influence of such moisture conditions is investigated by monitoring the hydration process and determining the compressive strength development of fully dry or fully saturated recycled aggregates in four RAC mixtures. Hydration processes are monitored via temperature measurements in hardening concrete samples and the time evolution of the degree of hydration is determined through a 1D hydration and heatmore » flow model. The effect of the initial moisture condition of RCAs employed in the considered concrete mixtures clearly emerges from this study. In fact, a novel conceptual method is proposed to predict the compressive strength of RAC-systems, from the initial mixture parameters and the hardening conditions. -- Highlights: •The concrete industry is more and more concerned with sustainability issues. •The use of recycled aggregates is a promising solution to enhance sustainability. •Recycled aggregates affect both hydration processes and compressive strength. •A fundamental approach is proposed to unveil the influence of recycled aggregates. •Some experimental comparisons are presented to validate the proposed approach.« less

  2. Constitutive Relations of Randomly Oriented Steel Fiber Reinforced Concrete under Multiaxial Compressive Loadings,

    DTIC Science & Technology

    1981-12-01

    This was done to observe the effect of specimen age on strength after the curing period of 7 days in the humidity room and the remaining time in air in... fatigue resistance. Although the compressive strength is not much improved, the brittle behavior that would occur in plain concrete after peak strength...such as fracture toughness, fatigue resistance, impact resistance and flexural strength (82). The idea of fiber reinforcement applications is not new

  3. Ultra-fast pump-probe determination of electron-phonon coupling in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Mihailovic, Dragan

    2010-03-01

    Fresh femtosecond spectroscopy experiments show the electron-phonon interaction strength λ to be 0.7 and 1.4 for YBCO and LSCO respectively and not around 0.2 as previously reported [1]. The revised estimates arise primarily from improved time-resolution, and also partly from improved modeling. Comparison with classical superconductors and pnictides shows non-monotonic correlation of λ with Tc. Systematic new measurements of the condensate vaporization energy (Uv) in cuprates [2] and pnictides reveals a power-law dependence on Tc with exponent 2. However, Uc is 16-18 times greater than the BCS condensation energy Uc, implying that a significant heat capacity of the ``bosonic glue.'' In contrast, charge-density wave systems with electronically driven ordering transitions have Uv˜Uc. The data suggest BCS and Eliashberg-based models to be inappropriate for describing the physics of high-temperature superconductors, and point towards polaron models which consider strong or intermediate λ.[4pt] [1] C.Gadermeier et al., arXiv:0902.1636[0pt] [2] P.Kusar et al., Phys. Rev. Lett. 101, 227001 (2008)

  4. Improvement in engineering properties of soft-soil using cement and lime additives: A case study of southern Vietnam

    NASA Astrophysics Data System (ADS)

    To-Anh Phan, Vu; Ngoc-Anh Pham, Kha

    2018-04-01

    This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.

  5. Mechanical properties of woven glass fiber-reinforced composites.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2006-06-01

    The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p < 0.01). Likewise, compressive strength of reinforced specimens was significantly greater than those without woven glass fiber (p < 0.01), except for specimens reinforced with woven glass fiber oriented at a tilt direction in the texture (p > 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.

  6. Characterization of Mechanical Damage Mechanisms in Ceramic and Polymeric Matrix Composite Materials

    DTIC Science & Technology

    1991-11-01

    microplasticity is a vital factor in the compressive failure of even these very hard materials under essentially all conditions (temperature, strain rate...OF CONTENTS Pag= The Compressive Strength of Strong Ceramics: Microplasticity Versus 1 Microfracture Abstract 1 1. Introduction 2 2. Hardness 3 3...Acknowledgements 51 References 51 COATVANOORD1 24-91CDXC 11. LIST OF FIGURES Figure Page The Compressive Strength of Strong Ceramics: Microplasticity Versus

  7. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  8. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    NASA Astrophysics Data System (ADS)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  9. Assessing the potential of the Woman's Condom for vaginal drug delivery.

    PubMed

    Kramzer, Lindsay F; Cohen, Jessica; Schubert, Jesse; Dezzutti, Charlene S; Moncla, Bernard J; Friend, David; Rohan, Lisa C

    2015-09-01

    The Woman's Condom is a new female condom that uses a dissolvable polyvinyl alcohol capsule to simplify vaginal insertion. This preclinical study assessed the feasibility to incorporate an antiviral drug, UC781, into the Woman's Condom capsule, offering a unique drug delivery platform. UC781 capsules were fabricated using methods from the development of the Woman's Condom capsules as well as those used in vaginal film development. Capsules were characterized to evaluate physical/chemical attributes, Lactobacillus compatibility, in vitro safety and bioactivity, and condom compatibility. Two UC781 capsule platforms were assessed. Capsule masses (mg; mean±SD) for platforms 1 and 2 were 116.50±18.22 and 93.80±8.49, respectively. Thicknesses were 0.0034±0.0004 in and 0.0033±0.0004 in. Disintegration times were 11±3 s and 5±1 s. Puncture strengths were 21.72±3.30 N and 4.02±0.83 N. Water content measured 6.98±1.17% and 7.04±1.92%. UC781 content was 0.59±0.05 mg and 0.77±0.11 mg. Both platforms retained in vitro bioactivity and were nontoxic to TZM-bl cells and Lactobacillus. Short-term storage of UC781 capsules with the Woman's Condom pouch did not decrease condom mechanical integrity. UC781 was loaded into a polymeric capsule similar to that of the Woman's Condom product. This study highlights the potential use of the Woman's Condom as a platform for vaginal delivery of drugs relevant to sexual/reproductive health, including those for short- or long-acting HIV prevention. We determined the proof-of-concept feasibility of incorporation of an HIV-preventative microbicide into the Woman's Condom capsule. This study highlights various in vitro physical and chemical evaluations as well as bioactivity and safety assessments necessary for vaginal product development related to female sexual and reproductive health. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Brinson, H. F.

    1993-01-01

    Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.

  11. The effect of thermomechanical processing on second phase particle redistribution in U-10 wt%Mo

    NASA Astrophysics Data System (ADS)

    Hu, Xiaohua; Wang, Xiaowo; Joshi, Vineet V.; Lavender, Curt A.

    2018-03-01

    The multi-pass hot-rolling process of an annealed uranium-10 wt% molybdenum (U10Mo) coupon was studied by plane-strain compression finite element modeling. As-cast U10Mo typically contains second phase particles such as uranium carbides (UC) and silicides along the grain boundaries. The volume fraction of UC is typically large, while the other phases can be redissolved in the matrix by certain heat treatments. The UC particle distribution is important due to its influence on the recrystallization processes (particle stimulated nucleation) that occur during annealing between rolling passes. Unfavorable particle distribution and fracture after rolling can affect the grain size and also influence the fuel performance in the reactor. A statistical method, i.e., the two-point correlation function (2PCF), was used to analyze the carbide particle distribution after each rolling reduction. The hot rolling simulation results show that the alignment of UC particles along grain boundaries will rotate during rolling until it is parallel to the rolling direction, to form stringer-like distributions which are typically observed in rolled products that contain inclusions. 2PCF analysis shows that the interparticle spacing shrinks along the normal direction (ND) and increases along the rolling direction (RD). The simulated particle distribution is very similar to that measured experimentally for similar rolling reductions. The magnitudes of major peaks of 2PCF along the ND decrease after large reduction. The locations of major peaks indicate the inter-stringer distances. Many more small peaks appear for the 2PCF along the RD, and this is related to the neighboring particles within stringers, which are along the RD.

  12. A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride.

    PubMed

    Mužíková, Jitka; Kubíčková, Alena

    2016-09-01

    The paper evaluates and compares the compressibility and compactibility of directly compressible tableting materials for the preparation of hydrophilic gel matrix tablets containing tramadol hydrochloride and the coprocessed dry binders Prosolv® SMCC 90 and Disintequik™ MCC 25. The selected types of hypromellose are Methocel™ Premium K4M and Methocel™ Premium K100M in 30 and 50 % concentrations, the lubricant being magnesium stearate in a 1 % concentration. Compressibility is evaluated by means of the energy profile of compression process and compactibility by the tensile strength of tablets. The values of total energy of compression and plasticity were higher in the tableting materials containing Prosolv® SMCC 90 than in those containing Disintequik™ MCC 25. Tramadol slightly decreased the values of total energy of compression and plasticity. Tableting materials containing Prosolv® SMCC 90 yielded stronger tablets. Tramadol decreased the strength of tablets from both coprocessed dry binders.

  13. Using of borosilicate glass waste as a cement additive

    NASA Astrophysics Data System (ADS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  14. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing themore » core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.« less

  15. Effects of heating durations on normal concrete residual properties: compressive strength and mass loss

    NASA Astrophysics Data System (ADS)

    Nazri, Fadzli Mohamed; Shahidan, Shahiron; Khaida Baharuddin, Nur; Beddu, Salmia; Hisyam Abu Bakar, Badorul

    2017-11-01

    This study investigates the effects of high temperature with five different heating durations on residual properties of 30 MPa normal concrete. Concrete cubes were being heated up to 600°C for 30, 60, 90, 120 and 150 minutes. The temperature will keep constant for 30, 60, 90, 120 and 150 minutes. The standard temperature-time curve ISO 834 is referred to. After heating the specimen were left to cool in the furnace and removed. After cooling down to ambient temperature, the residual mass and residual compressive strength were observed. The obtained result shows that, the compressive strength of concrete decrease as the heating duration increases. This heating duration influence, might affects the loss of free water present and decomposition of hydration products in concrete. As the heating duration increases, the amount of water evaporated also increases led to loss in concrete mass. Conclusively, the percentage of mass and compressive strength loss increased as the heating duration increased.

  16. Compressive Strength and Modulus of Elasticity of Concrete with Cubed Waste Tire Rubbers as Coarse Aggregates

    NASA Astrophysics Data System (ADS)

    Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.

    2017-11-01

    One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.

  17. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    NASA Astrophysics Data System (ADS)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  18. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    PubMed Central

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020

  19. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    NASA Astrophysics Data System (ADS)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  20. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar.

    PubMed

    Al-Salloum, Yousef; Abbas, H; Sheikh, Q I; Hadi, S; Alsayed, Saleh; Almusallam, Tarek

    2017-02-01

    Sporosarcina pasteurii , a common soil bacterium has been tested for microbial treatment of cement mortar. The present study also seeks to investigate the effects of growth medium, bacterial concentration and different buffers concerning the preparation of bacterial suspensions on the compressive strength of cement mortar. Two growth media, six different suspensions and two bacterial concentrations were used in the study. The influence of growth medium on calcification efficiency of S. pasteurii was insignificant. Significant improvement in the compressive as well as the tensile strength of cement mortar was observed. Microbial mineral precipitation visualized by Scanning Electron Microscopy (SEM) shows fibrous material that increased the strength of cement mortar. Formation of thin strands of fillers observed through SEM micrographs improves the pore structure, impermeability and thus the compressive as well as the tensile strengths of the cement mortar. The type of substrate and its molarity have a significant influence on the strength of cement mortar.

  1. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    NASA Astrophysics Data System (ADS)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.

  2. Probabilistic simulation of uncertainties in composite uniaxial strengths

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Stock, T. A.

    1990-01-01

    Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.

  3. Comparative study of mechanical properties of direct core build-up materials

    PubMed Central

    Kumar, Girish; Shivrayan, Amit

    2015-01-01

    Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905

  4. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.

    PubMed

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.

  5. Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete

    PubMed Central

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671

  6. The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.

    2017-11-01

    This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.

  7. Mechanical performance of porous concrete pavement containing nano black rice husk ash

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan

    2018-01-01

    This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.

  8. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.

    PubMed

    Grote, Simon; Kleinebudde, Peter

    2018-05-29

    The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.

  9. Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Hughes, Philip J

    1953-01-01

    Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.

  10. The Leeb Hardness Test for Rock: An Updated Methodology and UCS Correlation

    NASA Astrophysics Data System (ADS)

    Corkum, A. G.; Asiri, Y.; El Naggar, H.; Kinakin, D.

    2018-03-01

    The Leeb hardness test (LHT with test value of L D ) is a rebound hardness test, originally developed for metals, that has been correlated with the Unconfined Compressive Strength (test value of σ c ) of rock by several authors. The tests can be carried out rapidly, conveniently and nondestructively on core and block samples or on rock outcrops. This makes the relatively small LHT device convenient for field tests. The present study compiles test data from literature sources and presents new laboratory testing carried out by the authors to develop a substantially expanded database with wide-ranging rock types. In addition, the number of impacts that should be averaged to comprise a "test result" was revisited along with the issue of test specimen size. Correlation for L D and σ c for various rock types is provided along with recommended testing methodology. The accuracy of correlated σ c estimates was assessed and reasonable correlations were observed between L D and σ c . The study findings show that LHT can be useful particularly for field estimation of σ c and offers a significant improvement over the conventional field estimation methods outlined by the ISRM (e.g., hammer blows). This test is rapid and simple, with relatively low equipment costs, and provides a reasonably accurate estimate of σ c .

  11. The Effects of Compressive Preloads on the Compression-After-Impact Strength of Carbon/Epoxy

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1994-01-01

    A fixture to apply compressive loads to composite specimens during an impact event was used to assess the effect of prestresses on the compression-after-impact (CAI) strength of 16 ply quasi-isotropic carbon/epoxy test coupons. Advanced design of experiments techniques were used to evaluate a range of prestresses and impact energies on two material systems, T300/934 and IM7/8551-7. An instrumented drop tower supplied impact energies between 1 and 9 Joules for the T300/934 material and between 4 and 16 Joules for the IM7/8551-7 material. The prestress values varied between a low of 5.7 Wa and a high of 287 NDa. Results showed some change in CAI strength that could be attributed to the prestresses on the specimens.

  12. Compression and flexural strength of bone cement mixed with blood.

    PubMed

    Tan, J H; Koh, B Th; Ramruttun, A K; Wang, W

    2016-08-01

    To assess the compression and flexural strength of bone cement mixed with 0 ml, 1 ml, or 2 ml of blood. High viscosity polymethyl methacrylate (PMMA) loaded with or without gentamicin was used. Blood was collected from total knee arthroplasty patients. In the same operating room, one pack of cement each was mixed with 0 ml (control), 1 ml, or 2 ml of blood for 1 minute during the dough phase. The dough was extruded into cylindrical and rectangular moulds for 20 minutes of setting, and then cured in phosphate buffered saline at 37±1ºC for 7 days. The samples were visually inspected for fractures and areas of weakness, and then scanned using microcomputed tomography. 48 gentamicin-loaded and 59 non-gentamicin-loaded samples mixed with 0 ml (control), 1 ml, or 2 ml of blood were randomised for flexural and compression strength testing; each group had at least 6 samples. In samples loaded with or without gentamicin, the flexural and compressive strength was highest in controls, followed by samples mixed with 1 ml or 2 ml of blood. In samples mixed with 2 ml of blood, the flexural strength fell below the standard of 50 MPa. In samples mixed with 2 ml of blood and all gentamicin-loaded samples, the compressive strength fell below the standard of 70 MPa. Microcomputed tomography revealed areas of voids and pores indicating the presence of laminations and partitions within. The biomechanical strength of PMMA contaminated with blood may decrease. Precautions such as saline lavage, pack drying the bone, change of gloves, and prompt insertion of the implant should be taken to prevent blood from contaminating bone cement.

  13. The deformation of gum metal under nanoindentation and sub-micron pillar compression

    NASA Astrophysics Data System (ADS)

    Withey, Elizabeth Ann

    Reaching ideal strength has proven to be difficult in most materials. Dislocation slip, phase transformations, twinning, and fracture all tend to occur at stresses well below the ideal strength of a material. Only on very small scales has it been possible to approach ideal strength. Thus, it was of great interest when a set of beta-Ti alloys, Gum Metal, were found to have a bulk yield strength close to half of its ideal strength. However, some recent studies have questioned the reliability of this claim. Several studies have suggested Gum Metal deforms by dislocation slip. Others have suggested the possibility of transformation-induced plasticity. The present study was undertaken in order to help clarify if and how Gum Metal can reach ideal strength. Two different experiments, ex situ nanoindentation and quantitative in situ nanopillar compression in a transmission electron microscope to correlate real-time deformation behavior, were performed on a single composition of Gum Metal, Ti-23Nb-0.7Ta-2Zr-1.20 at. %, obtained from Toyota Central R&D Laboratories. Nanoindented specimens were thinned from the bottom surface until the pits of multiple indentations became electron-transparent allowing for qualitative analysis of the deformation microstructure in both fully cold-worked and solution-treated specimens. Real-time load-displacement behavior from the nanopillar compression tests was correlated with real-time video recorded during each compression to determine both the compressive strength of each pillar and the timing and strengths of different deformation behaviors observed. Combining the results from both experiments provided several important conclusions. First, Gum Metal approaches and can attain ideal strength in nanopillars regardless of processing condition. While dislocations exist in Gum Metal, they can be tightly pinned by obstacles with spacing less than ˜20 nm, which should inhibit their motion at strengths below the ideal shear strength. The plastic deformation of Gum Metal is not controlled by giant faults or by stress-induced phase transformations. Both of these phenomena, while active, are not the source of plasticity in Gum Metal.

  14. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  15. The effects of boric acid and phosphoric acid on the compressive strength of glass-ionomer cements.

    PubMed

    Prentice, Leon H; Tyas, Martin J; Burrow, Michael F

    2006-01-01

    Both boric acid (H3BO3) and phosphoric acid (H3PO4) are components of dental cements, commonly incorporated into glass (as ingredients in the melt) and occasionally added to the powder or liquid components. This study investigated the effect of boric acid addition to an experimental glass-ionomer powder and the effect of phosphoric acid addition to a glass-ionomer liquid on the 24-h compressive strength. Boric acid powder was added in various concentrations to an experimental glass-ionomer powder and, separately, phosphoric acid was added to an experimental glass-ionomer liquid. Powders and liquids were dosed into capsules at various powder:liquid ratios and cements thus formed were assessed for 24-h compressive strength. Incorporation of boric acid in glass-ionomer powder resulted in a pronounced decrease (p < 0.05 at 1% boric acid) in compressive strength. Addition of phosphoric acid produced initially stronger cements (up to 13% increase at 1% phosphoric acid) before also declining. The incorporation of less than 2% w/w phosphoric acid in glass-ionomer liquids may improve cement strengths without compromising clinical usefulness. The incorporation of boric acid in glass-ionomer cements is contraindicated.

  16. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    NASA Astrophysics Data System (ADS)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  17. The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO2 Nanoparticles

    PubMed Central

    Pimenta Teixeira, Karine; Perdigão Rocha, Isadora; De Sá Carneiro, Leticia; Flores, Jessica; Dauer, Edward A.; Ghahremaninezhad, Ali

    2016-01-01

    This paper investigates the effect of curing temperature on the hydration, microstructure, compressive strength, and transport of cement pastes modified with TiO2 nanoparticles. These characteristics of cement pastes were studied using non-evaporable water content measurement, X-ray diffraction (XRD), compressive strength test, electrical resistivity and porosity measurements, and scanning electron microscopy (SEM). It was shown that temperature enhanced the early hydration. The cement pastes cured at elevated temperatures generally showed an increase in compressive strength at an early age compared to the cement paste cured at room temperature, but the strength gain decreased at later ages. The electrical resistivity of the cement pastes cured at elevated temperatures was found to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at elevated temperatures. It was observed that high temperature curing decreased the compressive strength and electrical resistivity of the cement pastes at late ages in a more pronounced manner when higher levels of TiO2 nanoparticles were added. PMID:28774073

  18. A High Strain-Rate Investigation of a Zr-Based Bulk Metallic Glass and an HTPB Polymer Composite

    DTIC Science & Technology

    2011-03-01

    95 8. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791-796. 9...Letters 45, 615-616. 59. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791

  19. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    PubMed

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle <45°) might be utilized for reducing mass and/or improving performance. The compressive properties of shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  20. Dissipative processes under the shock compression of glass

    NASA Astrophysics Data System (ADS)

    Savinykh, A. S.; Kanel, G. I.; Cherepanov, I. A.; Razorenov, S. V.

    2016-03-01

    New experimental data on the behavior of the K8 and TF1 glasses under shock-wave loading conditions are obtained. It is found that the propagation of shock waves is close to the self-similar one in the maximum compression stress range 4-12 GPa. Deviations from a general deformation diagram, which are related to viscous dissipation, take place when the final state of compression is approached. The parameter region in which failure waves form in glass is found not to be limited to the elastic compression stress range, as was thought earlier. The failure front velocity increases with the shock compression stress. Outside the region covered by a failure wave, the glasses demonstrate a high tensile dynamic strength (6-7 GPa) in the case of elastic compression, and this strength is still very high after transition through the elastic limit in a compression wave.

  1. Method for testing the strength and structural integrity of nuclear fuel particles

    DOEpatents

    Lessing, P.A.

    1995-10-17

    An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.

  2. Method for testing the strength and structural integrity of nuclear fuel particles

    DOEpatents

    Lessing, Paul A.

    1995-01-01

    An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.

  3. [Compressive and bend strength of experimental admixed high copper alloys].

    PubMed

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  4. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.

    PubMed

    Elbadawi, M; Shbeh, M

    2018-01-01

    The present study investigated the effects of hydroxyapatite (HA) reinforced with yttria on porous scaffolds fabricated via honeycomb ceramic extrusion. Yttria was selected as it has been demonstrated to toughen other ceramics. Moreover, yttria has been surmised to suppress dehydroxylation in HA, a characteristic that prefigures decomposition thereof during sintering into mechanically weaker phases. However, the compressive strength of yttria-reinforced hydroxyapatite (Y-HA) porous scaffolds has hitherto not been reported. Y-HA was synthesised by calcining a commercially available HA with 10wt% yttria at 1000°C. Y-HA was then fabricated into porous scaffolds using an in-house honeycomb extruder, and subsequently sintered at 1200 and 1250°C. The results were compared to the uncalcined as-received commercial powder (AR-HA) and calcined pure HA powder at 1000°C (C-HA). It was discovered that calcination alone caused marked improvements to the stoichiometry, thermal stability, porosity and compressive strength of scaffolds. The improvements were ascribed to the calcined powders with less susceptibility to both agglomeration and enhanced densification. Still, differences were observed between C-HA and Y-HA at 1250°C. The compressive strength increased from 105.9 to 127.3MPa, a larger microporosity was descried and the HA matrix in Y-HA was more stoichiometric. The latter was confirmed by XRD and EDS analyses. Therefore, it was concluded that the reinforcing of hydroxyapatite with yttria improved the compressive strength and suppressed dehydroxylation of porous HA scaffolds. In addition, the compressive strength achieved demonstrated great potential for load-bearing application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.

    2001-01-01

    Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.

  6. Unhole and open hole compressive behaviours of hybrid Kevlar/glass fibre reinforced silica nanocomposites

    NASA Astrophysics Data System (ADS)

    Shaari, Norazean; Jumahat, Aidah

    2018-06-01

    The paper presents the effects of hybridization and silica nanoparticles on unhole and open hole compressive behaviours of woven Kevlar/glass fibre hybrid composite laminates. Residual compressive strength and stiffness were determined from an open hole compression (OHC) test conducted according to ASTM D6484-09, whereas the fractured surface behaviour was observed under scanning electron microscope (SEM). Silica nanoparticles were mixed into the epoxy resins using vacuum mechanical stirrer. Then, composite laminates were prepared using vacuum bagging method. Three different silica nanoparticles contents (5 wt%, 13 wt% and 25 wt%) were incorporated into the resin system with three different hybrid system (20:80, 50:50 and 80:20 of Kevlar fibres to glass fibres ratio). Results showed that the lowest compressive strength was observed in Kevlar fibre reinforced polymer. Therefore, hybridization of glass fibres with Kevlar fibres reduced the compressive strength of hybrid composites. However, the incorporation of silica nanoparticles into the epoxy resins improved the compressive properties of the hybrid composites. From the observation of the fractured surface, different fracture behaviours were observed in both Kevlar fibre and glass fibre composites. Fibre barrelling and crimping was observed in Kevlar fibres while glass fibres showed a fibre fracture with serrated and rough surfaces.

  7. Compression of thick laminated composite beams with initial impact-like damage

    NASA Technical Reports Server (NTRS)

    Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.

    1992-01-01

    While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.

  8. Randomized controlled trial comparing treatment outcome of two compression bandaging systems and standard care without compression in patients with venous leg ulcers.

    PubMed

    Wong, I K Y; Andriessen, A; Charles, H E; Thompson, D; Lee, D T F; So, W K W; Abel, M

    2012-01-01

    In Hong Kong, at the time of the study, compression treatment was not considered usual care for venous leg ulcer patients. This randomized controlled trial compared quality of life (QOL) aspects in venous leg ulcer patients of over 55-years of age, of short-stretch compression (SSB), four-layer compression bandaging (4LB) and usual care (UC) (moist wound healing dressing, no compression). Study period was 24-weeks, the primary outcome was the patient functional status, disease-specific and generic health-related QOL measures and ulcer healing rates, comparing week 1 vs. week 24 (end) results. Assessments included photogrammetry, Brief Pain Inventory, SF-12 Health Survey, Charing Cross Venous Ulcer Questionnaire and Frenchay Activity Index. Data analysis was performed using, where appropriate; Kaplan Meier and log rank chi-square and the repeated measures analysis of variance test. A total of 321 patients participated in the study, 45 (14%) withdrew for various reasons. Compression bandaging in both groups significantly reduced pain (P < 0.0001) and improved functional status and QOL. Healing rate at 24 weeks for both compression groups was significant (P < 0.001); for SSB this was 72.0% (77/107) vs. 67.3% in the 4LB group (72/107) and 29.0% (31/107) with usual care. The reduction in ulcer area from weeks 12 to 24 was significant only for SSB (P < 0.047). Compression was shown to be feasible for elderly community care patients in Hong Kong and is currently implemented as part of standard venous leg ulcer treatment. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  9. Prediction of reinforced concrete strength by ultrasonic velocities

    NASA Astrophysics Data System (ADS)

    Sabbağ, Nevbahar; Uyanık, Osman

    2017-06-01

    This study was aimed to determine the strength of the reinforced concrete and to reveal the reinforcement effect on the concrete strength by Ultrasonic P and S wave velocities. Studies were conducted with prepared 9 different concrete designs of showing low, medium and high strength features. 4 kinds of cubic samples which unreinforced and including 10, 14 or 20 mm diameter reinforcement were prepared for these designs. Studies were carried out on total 324 samples including 9 samples for each design of these 4 kinds. The prepared samples of these designs were subjected to water curing. On some days of the 90-day period, P and S wave measurements were repeated to reveal the changes in seismic velocities of samples depending on whether reinforced or unreinforced of samples and diameter of reinforcement. Besides, comparisons were done by performing uniaxial compressive strength test with crushing of 3 samples on 7th, 28th and 90th days. As a result of studies and evaluations, it was seen that values of seismic velocities and uniaxial compressive strength increased depending on reinforcement and diameter of reinforcement in low strength concretes. However, while the seismic velocities were not markedly affected from reinforcement or reinforcement diameter in high strength concrete, uniaxial compressive strength values were negatively affected.

  10. The influence of lay-up and thickness on composite impact damage and compression strength

    NASA Technical Reports Server (NTRS)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  11. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    NASA Astrophysics Data System (ADS)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  12. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1993-01-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  13. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  14. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  15. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  16. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  17. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  18. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  19. Compressive strength of damaged and repaired composite plates

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Yi-Fei; Springer, George S.; Lee, Hung-Joo

    1992-01-01

    Tests were performed assessing the effectiveness of repair in restoring the mechanical properties of damaged, solid composite plates made either of Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, or ICI APC-2 graphite-PEEK. The plate length, the layup and the amount of damage were also varied. Damage was introduced in the plates either by impacting them with a solid projectile or by applying a transverse static load. Some (75 percent) or all (100 percent) of the damaged zone was then cut out, and the plate was repaired by plugging and patching the hole. The effectiveness of the repair was evaluated by measuring the compressive strengths of undamaged plates, damaged plates with no cutout, damaged plates with a cutout, and repaired plates. The data at an intermediate stage of repair provide information on the effect of each repair step on the compressive strength. The results indicated that for the solid plates used in these tests, the repair methods used herein did not improve the compressive strength of already damaged plates.

  20. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    PubMed

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  1. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    NASA Astrophysics Data System (ADS)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  2. The Effects of Partnered Exercise on Physical Intimacy in Couples Coping with Prostate Cancer

    PubMed Central

    Lyons, Karen S.; Winters-Stone, Kerri M.; Bennett, Jill A.; Beer, Tomasz M.

    2015-01-01

    Objective The study examined whether couples coping with prostate cancer participating in a partnered exercise program - Exercising Together (ET) - experienced higher levels of physical intimacy (i.e., affectionate & sexual behavior) than couples in a usual care (UC) control group. Method Men and their wives (n=64 couples) were randomly assigned to either the ET or UC group. Couples in the ET group engaged in partnered strength-training twice weekly for six months. Multilevel modeling was used to explore the effects of ET on husband and wife engagement in both affectionate and sexual behaviors over time. Results Controlling for relationship quality, wives in ET showed significant increases in engagement in affectionate behaviors compared to wives in UC. No intervention effects were found for husbands. Conclusion Couple-based approaches to physical intimacy, after a cancer diagnosis, that facilitate collaborative engagement in non-sexual physical activities for the couple have potential to be effective for wives. More research is needed in this area to determine couples most amenable to such exercise strategies, optimal timing in the cancer trajectory, and the benefits of combining partnered exercise with more traditional relationship-focused strategies. PMID:26462060

  3. Reward uncertainty enhances incentive salience attribution as sign-tracking

    PubMed Central

    Anselme, Patrick; Robinson, Mike J. F.; Berridge, Kent C.

    2014-01-01

    Conditioned stimuli (CSs) come to act as motivational magnets following repeated association with unconditioned stimuli (UCSs) such as sucrose rewards. By traditional views, the more reliably predictive a Pavlovian CS-UCS association, the more the CS becomes attractive. However, in some cases, less predictability might equal more motivation. Here we examined the effect of introducing uncertainty in CS-UCS association on CS strength as an attractive motivation magnet. In the present study, Experiment 1 assessed the effects of Pavlovian predictability versus uncertainty about reward probability and/or reward magnitude on the acquisition and expression of sign-tracking (ST) and goal-tracking (GT) responses in an autoshaping procedure. Results suggested that uncertainty produced strongest incentive salience expressed as sign-tracking. Experiment 2 examined whether a within-individual temporal shift from certainty to uncertainty conditions could produce a stronger CS motivational magnet when uncertainty began, and found that sign-tracking still increased after the shift. Overall, our results support earlier reports that ST responses become more pronounced in the presence of uncertainty regarding CS-UCS associations, especially when uncertainty combines both probability and magnitude. These results suggest that Pavlovian uncertainty, although diluting predictability, is still able to enhance the incentive motivational power of particular CSs. PMID:23078951

  4. Analysis of the microstructure and mechanical performance of composite resins after accelerated artificial aging.

    PubMed

    De Oliveira Daltoé, M; Lepri, C Penazzo; Wiezel, J Guilherme G; Tornavoi, D Cremonezzi; Agnelli, J A Marcondes; Reis, A Cândido Dos

    2013-03-01

    Researches that assess the behavior of dental materials are important for scientific and industrial development especially when they are tested under conditions that simulate the oral environment, so this work analyzed the compressive strength and microstructure of three composite resins subjected to accelerated artificial aging (AAA). Three composites resins of 3M (P90, P60 and Z100) were analyzed and were obtained 16 specimens for each type (N.=48). Half of each type were subjected to UV-C system AAA and then were analyzed the surfaces of three aged specimens and three not aged of each type through the scanning electron microscope (SEM). After, eight specimens of each resin, aged and not aged, were subjected to compression test. After statistical analysis of compressive strength values, it was found that there was difference between groups (α <0.05). The resin specimens aged P60 presented lower values of compressive strength statistically significant when compared to the not subject to the AAA. For the other composite resins, there was no difference, regardless of aging, a fact confirmed by SEM. The results showed that the AAA influenced the compressive strength of the resin aged P60; confirmed by surface analysis by SEM, which showed greater structural disarrangement on surface material.

  5. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  6. Developing a Material Strength Design Value Based on Compression after Impact Damage for the Ares I Composite Interstage

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Jackson, J. R.

    2009-01-01

    The derivation of design values for compression after impact strength for two types of honeycomb sandwich structures are presented. The sandwich structures in this study had an aluminum core and composite laminate facesheets of either 16-ply quasi or 18-ply directional lay-ups. The results show that a simple power law curve fit to the data can be used to create A- and B-basis residual strength curves.

  7. Hydrogen effects on materials for CNG/H2 blends.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, David; Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  8. Feasibility Tests on Concrete with Very-High-Volume Supplementary Cementitious Materials

    PubMed Central

    Yang, Keun-Hyeok; Jeon, Yong-Su

    2014-01-01

    The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (R SCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to R SCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at R SCM of 0.9. Hence, it is recommended that R SCM needs to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete. PMID:25162049

  9. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    NASA Astrophysics Data System (ADS)

    Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc

    2018-03-01

    The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  10. Experimental Study on Cementitious Composites Embedded with Organic Microcapsules

    PubMed Central

    Wang, Xianfeng; Xing, Feng; Zhang, Ming; Han, Ningxu; Qian, Zhiwei

    2013-01-01

    The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed that strength could increase by up to nine percent with the addition of a small amount of microcapsules and then decrease with an increasing amount of microcapsules. An orthogonal test for investigating the strength recovery rate was designed and implemented for bending and compression using the factors of water/cement ratio, amount of microcapsules, and preloading rate. It is shown that the amount of microcapsules plays a key role in the strength recovery rate. Chloride ion permeability tests were also carried out to investigate the recovery rate and healing effect. The initial damage was obtained by subjecting the specimens to compression. Both the recovery rate and the healing effect were nearly proportional to the amount of microcapsules. The obtained cementitious composites can be seen as self-healing owing to their recovery behavior for both strength and permeability. PMID:28788318

  11. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.

    PubMed

    Kockal, Niyazi Ugur; Ozturan, Turan

    2010-07-15

    Influence of different lightweight fly ash aggregates on the behavior of concrete mixtures was discussed. The performance characteristics of lightweight concretes (LWCs) and normalweight concrete (NWC) were investigated through compressive strength, modulus of elasticity and splitting tensile strength representing the mechanical behavior; through rapid chloride permeability representing the transport properties and through rapid freezing and thawing cycling representing the durability of concrete. In order to investigate the aggregate-cement paste interfacial transition zone (ITZ), SEM observations were performed. Regression and graphical analysis of the experimental data obtained were also performed. An increase in compressive strength was observed with the increase in oven-dry density. The ratios of splitting tensile strength to compressive strength of lightweight aggregate concretes were found to be similar to that of normalweight concrete. All the 28- and 56-day concrete specimens had a durability factor greater than 85 and 90, respectively, which met the requirement for freezing and thawing durability. 2010 Elsevier B.V. All rights reserved.

  12. Development of novel dental nanocomposites reinforced with polyhedral oligomeric silsesquioxane (POSS).

    PubMed

    Wu, Xiaorong; Sun, Yi; Xie, Weili; Liu, Yanju; Song, Xueyu

    2010-05-01

    It has been the focus to develop low shrinkage dental composite resins in recent ten years. A major difficulty in developing low shrinkage dental materials is that their deficiency in mechanical properties cannot satisfy the clinical purpose. The aim of this study is to develop novel dental nanocomposites incorporated with polyhedral oligomeric silsesquioxane (POSS). It is especially interesting to evaluate the volumetric shrinkage and mechanical properties, improve the shrinkage, working performances and service life of dental composite resins. The effect of added POSS on the composites' mechanical properties has been evaluated. The weight percentages of added POSS are 0, 2, 5, 10 and 15wt% respectively. Fourier-transform infra-red spectroscopy and X-ray diffraction were used to characterize their microstructures. Physico-mechanical properties that were investigated included volumetric shrinkage, flexural strength, flexural modulus, compressive strength, compressive modulus, Viker's hardness and fracture energy. Furthermore, the possible reinforced mechanism has been discussed. The shrinkage of novel nanocomposites decreased from 3.53% to 2.18%. The nanocomposites incorporated with POSS showed greatly improved mechanical properties, for example, with only 2wt% POSS added, the nanocompsite's flexural strength increased 15%, compressive strength increased 12%, hardness increased 15% and uncommonly, even the toughness of resins was obviously increased. With 5wt% POSS polymerized, compressive strength increased from 192MPa to 251MPa and compressive modulus increased from 3.93GPa to 6.62GPa, but flexure strength began to decline from 87MPa to 75MPa. This finding indicated that the reinforcing mechanism of flexure state maybe different from that of compressive state. The mechanical properties and volumetric shrinkage of dental composite resins polymerized with POSS can be improved significantly. In current study, the nanocomposite with 2wt% POSS incorporated is observed to achieve the best improved effects. 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Previous concrete as one of the technology to overcome the puddle

    NASA Astrophysics Data System (ADS)

    Agung Putra Handana, M.; Karolina, Rahmi; Syahputra, Eko; Zulfikar

    2018-03-01

    Some construction waste has been utilized as a material in certain concrete compositions for engineering building materials. One is a concrete that has been removed after testing at a laboratory called recycle concrete. Disposed concrete, crushed and filtered with filter number 50; 37.5; 19; 9.5; and 4.75 mm are subsequently converted into rough aggregate materials in the manufacture of pervious concrete to be tested for compressive strength and infiltration velocity to water. Pervious concrete test specimens in the form of cylinders with dimensions (15 x 30) cm and plate-shaped with dimension (100 x 100 x 10) cm with the quality plan Fc ' = 15 MPa at age 28 days. The research methodology consisted of testing of wear, test object preparation, periodic maintenance, visual inspection, compressive strength testing, and infiltration rate of specimens against water (based on ASTM C1701). Treatment of specimens by spraying periodically before the test time. From the results of the Los Angeles wear test, it appears that recycled aggregate has an average wear rate of 20.88% (based on SNI 03-2417-1991) on the Los Angeles test) and the visual test on the specimen is appropriate (based on SNI 03 -0691-1996 on paving block) as the basis for testing the specimens. The largest compressive strength was found in pervious concrete with 9.5 mm graded aggregates of 5.89 MPa, while the smallest compressive strength of 50 mm gradation was 2.15 MPa and had a compressive strength of 28% of pervious concrete compressive strength on generally (based on SNI 03-6805-2002). The fastest infiltration speed occurs in 50 mm pervious gradient concrete at 4.52 inc / hr and is late in 9.5 mm grading of 2.068 inc / hr or an inflation rate inflation rate of 54.25% for gradation of 9.5 mm to 50 mm gradation, So that in accordance with the purpose of pervious concrete use, concrete that can drain water to the bottom layer

  14. The Influence of Addition of Plastiment-VZ to Concrete Characteristics in Riau Province

    NASA Astrophysics Data System (ADS)

    Wahyuni Megasari, Shanti; Winayati

    2017-12-01

    Riau Province has an area of 8,702,000 ha consisting of 7,121.344,00 ha of forest and 3,867,000 ha in the form of peatlands. Peat structures are soft and have pores that make it easy to hold water. Peat water has a high color intensity, low pH, high organic content and has an acidic properties So it does not qualify as a mixture of concrete. To meet the needs of water in the concrete mix then water should be obtained from another place but it will require a greater cost and time. To resolve the issue, the advancement of concrete technology has resulted in admixture that can help in maintaining the quality of concrete. Plastiment-VZ is a plasticizer material that can increase workability of concrete without adding water. However, for the use in the field, the selection of admixture must be adjusted to the planned concrete situation and condition. Excessive use of admixture will also result in uneconomical concrete. The design of the job mix using the Department of Environment (DOE) method with compressive strength concrete plan fc ' = 25 MPa. The percentage of Plastiment-VZ addition is 0%, 0,05%; 0,10%; 0,15% and 0,20% to the weight of cement. The reduction of the amount of water in this study is 10% of the total amount of water. Specimens in each variation were made using cylinder mold with 15 cm in diameter and 30 cm high. After specimens are created and maintained, testing of compressive strength concrete held in 28 days. The test results show that the trend of average compressive strength has increased along with the addition of Plastiment-VZ percentage. The equation resulting from the average compressive strength is y = -362,7x2 + 133,3x + 28,10 with value R2 = 0,969. The highest average compressive strength value was obtained in the addition of 0,20% Plastiment-VZ at 40,76 MPa. Statistical testing with Analysis of Variance - ANOVA states that there is a very real interaction or treatment between the compressive strength of the concrete with the addition of Plastiment-VZ. So it can be concluded that the reduction of the amount of water with the addition of Plastiment-VZ has an effect on the increasing of concrete compressive strength characteristics.

  15. Concrete probe-strength study : final report.

    DOT National Transportation Integrated Search

    1969-12-01

    The Windsor probe - test system was evaluated for determining compressive strength of concrete by comparing probe strengths against cylinder and core strengths from both laboratory and field-poured concrete. Advantages and disadvantages of this syste...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi

    Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less

  17. Effect of palm oil fuel ash on compressive strength of palm oil boiler stone lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd

    2018-04-01

    Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.

  18. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    NASA Astrophysics Data System (ADS)

    Prahara, E.; Meilani

    2014-03-01

    Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  19. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    NASA Astrophysics Data System (ADS)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  20. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices

    PubMed Central

    Jayabalan, M.

    2009-01-01

    The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus. PMID:20126578

  1. A study of a novel coprocessed dry binder composed of α-lactose monohydrate, microcrystalline cellulose and corn starch.

    PubMed

    Mužíková, Jitka; Srbová, Alena; Svačinová, Petra

    2017-12-01

    This paper deals with a study of the novel coprocessed dry binder Combilac®, which contains 70% of α-lactose monohydrate, 20% of microcrystalline cellulose and 10% of native corn starch. These tests include flow properties, compressibility, lubricant sensitivity, tensile strength and disintegration time of tablets. Compressibility is evaluated by means of the energy profile of compression process, test of stress relaxation and tablet strength. The above-mentioned parameters are also evaluated in the physical mixture of α-lactose monohydrate, microcrystalline cellulose and native corn starch and compared with Combilac. Combilac shows much better flowability than the physical mixture of the used dry binders. Its compressibility is better, tablets possess a higher tensile strength. Neither Combilac, nor the physical mixture can be compressed without lubricants due to high friction and sticking to the matrix. Combilac has a higher lubricant sensitivity than the physical mixture of the dry binders. Disintegration time of Combilac tablets is comparable with the disintegration time of tablets made from the physical mixture.

  2. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices.

    PubMed

    Jayabalan, M

    2009-01-01

    The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.

  3. The development and evaluation of advanced Kevlar sandwich structure for application to rotorcraft airframes

    NASA Astrophysics Data System (ADS)

    Minguet, Pierre; Llorente, Steven; Fay, Russell

    1991-05-01

    The results of an evaluation of DuPont Kevlar-based material systems in sandwich structure designed for rotorcraft primary airframe structure are presented in this report. The focus of this work has been to evaluate the durability and compression strength of thin-gage Kevlar sandwich panels and investigate means of improvement. It was found that sandwich panels made with Kevlar 149 fibers can be as strong as Kevlar 49 structures but have reduced compression stiffness properties at typical operating strain levels. Thermal cycling was found to affect permeability but not strength in thin facesheet sandwich structure. Any increased permeability can be prevented with the use of an interleaf or surfacing plies. The surfacing plies investigated also had a beneficial effect on sandwich strength due to their stabilizing effect on the facesheet in compression. Finally, a previously developed model was used to analyze the residual strength of a sandwich panel after impact damage.

  4. Bonded-cell model for particle fracture.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang

    2015-02-01

    Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

  5. Experimental Study on the Strength Characteristics and Water Permeability of Hybrid Steel Fibre Reinforced Concrete

    PubMed Central

    Singh, M. P.; Singh, S. P.; Singh, A. P.

    2014-01-01

    Results of an investigation conducted to study the effect of fibre hybridization on the strength characteristics such as compressive strength, split tensile strength, and water permeability of steel fibre reinforced concrete (SFRC) are presented. Steel fibres of different lengths, that is, 12.5 mm, 25 mm, and 50 mm, having constant diameter of 0.6 mm, were systematically combined in different mix proportions to obtain mono, binary, and ternary combinations at each of 0.5%, 1.0%, and 1.5% fibre volume fraction. A concrete mix containing no fibres was also cast for reference purpose. A total number of 1440 cube specimens of size 100∗100∗100 mm were tested, 480 each for compressive strength, split tensile strength, and water permeability at 7, 28, 90, and 120 days of curing. It has been observed from the results of this investigation that a fibre combination of 33% 12.5 mm + 33% 25 mm + 33% 50 mm long fibres can be adjudged as the most appropriate combination to be employed in hybrid steel fibre reinforced concrete (HySFRC) for optimum performance in terms of compressive strength, split tensile strength and water permeability requirements taken together. PMID:27379298

  6. Chemical treatments for improving compressive strength of linerboard at high moisture conditions

    Treesearch

    D. J. Fahey

    1964-01-01

    Various chemical treatments have been investigated at the Forest Products Laboratory for improving the compressive strength of linerboard exposed at high humidities and after water-soaking. Phenolic resins have been among the more promising chemicals studied, but they vary in performance. The low-condensed water-soluble phenolic resins have given some of the highest...

  7. 75 FR 42292 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... modifications to the Vertical Concrete Cask (VCC) incorporating design features from the MAGNASTOR system for...; an increase in the concrete pad compression strength from 4,000 psi to 6,000 psi; added justification... system while adhering to ALARA principles; (5) an increase in the concrete pad compression strength from...

  8. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    NASA Astrophysics Data System (ADS)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  9. The effect of strength training on quality of prolonged basic cardiopulmonary resuscitation.

    PubMed

    Abelairas-Gómez, Cristian; Barcala-Furelos, Roberto; Szarpak, Łukasz; García-García, Óscar; Paz-Domínguez, Álvaro; López-García, Sergio; Rodríguez-Núñez, Antonio

    2017-01-01

    Providing high-quality chest compressions and rescue breaths are key elements in the effectiveness of cardio-pulmonary resuscitation. To investigate the effects of a strength training programme on the quality of prolonged basic cardiopulmonary resuscitation on a manikin. This was a quasi-experimental trial. Thirty-nine participants with prior basic life support knowledge were randomised to an experimental or control group. They then performed a test of 10 min of chest compressions and mouth-to-mouth ventilation on manikins equipped with a skill reporter tool (baseline or test 1). The experimental group participated in a four-week strength training programme focused on the muscles involved in chest compressions. Both groups were subsequently tested again (test 2). After training, the experimental group significantly increased the mean depth of compression (53.7 ± 2.3 mm vs. 49.9 ± 5.9 mm; p = 0.003) and the correct compression fraction (68.2 ± 21.0% vs. 46.4 ± 29.1%; p = 0.004). Trained subjects maintained chest compression quality over time better than the control group. The mean tidal volume delivered was higher in the experimental than in the control group (701.5 ± 187.0 mL vs. 584.8 ± 113.6 mL; p = 0.040) and above the current resuscitation guidelines. In test 2, the percentage of rescue breaths with excessive volume was higher in the experi-mental group than in the controls (31.5 ± 19.6% vs. 15.6 ± 13.0%; p = 0.007). A simple strength training programme has a significant impact on the quality of chest compressions and its maintenance over time. Additional training is needed to avoid over-ventilation of potential patients.

  10. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    NASA Astrophysics Data System (ADS)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  11. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Rui, Y.

    1989-01-01

    Uniaxial compression tests were performed on off-axis coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. The elasto-plastic and strength properties of AS4/APC-2 composite were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one-parameter failure criterion. Experimental results show that the orthotropic plastic behavior can be characterized quite well using the plasticity model, and the matrix-dominant compressive strengths can be predicted very accurately by the one-parameter failure criterion.

  12. Failure criterion of glass fabric reinforced plastic laminates

    NASA Technical Reports Server (NTRS)

    Haga, O.; Hayashi, N.; Kasuya, K.

    1986-01-01

    Failure criteria are derived for several modes of failure (in unaxial tensile or compressive loading, or biaxial combined tensile-compressive loading) in the case of closely woven plain fabric, coarsely-woven plain fabric, or roving glass cloth reinforcements. The shear strength in the interaction formula is replaced by an equation dealing with tensile or compressive strength in the direction making a 45 degree angle with one of the anisotropic axes, for the uniaxial failure criteria. The interaction formula is useful as the failure criterion in combined tension-compression biaxial failure for the case of closely woven plain fabric laminates, but poor agreement is obtained in the case of coarsely woven fabric laminates.

  13. Micromechanics of compression failures in open hole composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1987-01-01

    The high strength-to-weight ratio of composite materials is ideally suited for aerospace applications where they already are used in commercial and military aircraft secondary structures and will soon be used for heavily loaded primary structures. One area impeding the widespread application of composites is their inherent weakness in compressive strength when compared to the tensile properties of the same material. Furthermore, these airframe designs typically contain many bolted or riveted joints, as well as electrical and hydraulic control lines. These applications produce areas of stress concentration, and thus, further complicate the compression failure problem. Open hole compression failures which represent a typical failure mode for composite materials are addressed.

  14. Laboratory Characterization of Cemented Rock Fill for Underhand Cut and Fill Method of Mining

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Singh, Upendra Kumar; Singh, Gauri Shankar Prasad

    2016-10-01

    Backfilling with controlled specifications is employed for improved ground support and pillar recovery in underground metalliferous mine workings. This paper reports the results of a laboratory study to characterise various mechanical properties of cemented rock fill (CRF) formulations for different compaction levels and cement content percentage for use in underhand cut and fill method of mining. Laboratory test set ups and procedures have been described for conducting compressive and bending tests of CRF block samples. A three dimensional numerical modelling study has also been carried out to overcome the limitations arising due to non-standard dimension of test blocks used in flexural loading test and the test setup devised for this purpose. Based on these studies, specific relations have been established between the compressive and the flexural properties of the CRF. The flexural strength of the wire mesh reinforced CRF is also correlated with its residual strength and the Young's modulus of elasticity under flexural loading condition. The test results of flexural strength, residual flexural strength and modulus show almost linear relations with cement content in CRF. The compressive strength of the CRF block samples is estimated as seven times the flexural strength whereas the compressive modulus is four times the flexural modulus. It has been found that the strengths of CRF of low compaction and no compaction are 75 and 60 % respectively to that of the medium compaction CRF. The relation between the strength and the unit weight of CRF as obtained in this study is significantly important for design and quality control of CRF during its large scale application in underhand cut and fill stopes.

  15. Design variables for mechanical properties of bone tissue scaffolds.

    PubMed

    Howk, Daniel; Chu, Tien-Min G

    2006-01-01

    The reconstruction of segmental defect in long bone is a clinical challenge. Multiple surgeries are typically required to restore the structure and function of the affected defect site. In order to overcome this defect a biodegradable bone tissue engineering scaffold is used. This scaffold acts as a carrier of proteins and growth factors, while also supporting the load that the bone would normally sustain, until the natural bone can regenerate in its place. Work was done to optimize an existing solid free-form scaffold design. The goal of the optimization was to increase the porosity of the scaffold while maintaining the strength of a previously-tested prototype design. With this in mind, eight new designs were created. These designs were drawn using CAD software and then through the use of finite element analysis the theoretical ultimate compressive strength of each design was obtained. Each scaffold design was constructed by casting a thermal-curable poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) suspension into wax molds fabricated on inkjet printing rapid prototyping machine. The constructs were then experimentally tested by applying a uniaxial compressive load. The theoretical and experimental values of ultimate compressive strength and specific strength of each design were compared. Theoretically, the best scaffold design produced from this work improved upon the current design by increasing the porosity by 46% and also increasing the ultimate compressive strength by 27%. The experimental data was found to match the theoretical strength in four designs, but deviate from the theoretical strength in five designs. The reasons for the deviations and their relation to the rapid prototyping manufacturing technique were discussed. The results of this work show that it is possible to increase the porosity and strength of a bone tissue engineering scaffold through simple iterations in architectural design.

  16. [Evaluation of grip strength in normal and obese Wistar rats submitted to swimming with overload after median nerve compression].

    PubMed

    Coradinia, Josinéia Gresele; Kakihata, Camila Mayumi Martin; Kunz, Regina Inês; Errero, Tatiane Kamada; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor

    2015-01-01

    To verify the functionality through muscle grip strength in animals with obesity induced by monosodium glutamate (MSG) and in control animals, which suffered compression of the right median nerve, and treated with swimming with overload. During the first five days of life, neonatal Wistar rats received subcutaneous injections of MSG. The control group received a hypertonic saline solution. Forty-eight rats were divided into six groups: G1 (control); G2 (control + injury); G3 (control + injury + swimming); G4 (obese); G5 (obese + injury); G6 (obese + injury + swimming). The animals in groups G2, G3, G5 and G6 were submitted to compression of the median nerve and G3 and G6 groups were treated, after injury, with swimming exercise with load for three weeks. The swimming exercise had a progressive duration, according to the week, of 20, 30 and 40minutes. Muscle strength was assessed using a grip strength meter preoperatively and on the 3rd, 7th, 14th and 21st days after surgery. The results were expressed and analyzed using descriptive and inferential statistics. When the grip strength was compared among assessments regardless of group, in the second assessment the animals exhibited lower grip strength. G1 and G4 groups had greater grip strength, compared to G2, G3, G4 and G6. The swimming exercise with overload has not been effective in promoting improvement in muscle grip strength after compression injury of the right median nerve in control and in obese-MSG rats. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  17. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-07-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  18. A STUDY OF COMPRESSION PROCESS AND PROPERTIES OF TABLETS WITH MICROCRYSTALLINE CELLULOSE AND COLLOIDAL SILICON DIOXIDE.

    PubMed

    Muzikova, Jitka; Louzenska, Marketa; Pekarek, Tomas

    2016-09-01

    This paper compares the compressibility and properties of tablets from Prosolv SMCC 90 and a mixture of Avicel PH-102 and colloidal silicon dioxide with a different specific surface. The effect of an addition of the lubricant magnesium stearate on these parameters under varying conditions of mixing and the homogeneity of the lubricant in the mixtures are also examined. Compressibility is evaluated by means of the energy balance of the compression process; the examined properties of tablets are tensile strength and disintegration time. The total energy of compression was increased with compression force, the highest being in Prosolv SMCC 90. Its values did not differ for differing conditions of mixing with the lubricant. Plasticity was slightly decreased with compression force and in the mixture with magnesium stearate it was not influenced by the conditions of mixing. Tablets made from Prosolv SMCC 90 and Avicel PH-102 were stronger than those from the mixtures from Avicel PH-102 and both types of Aerosil. The addition of magnesium stearate markedly decreased the strength of tablets from Avicel PH-102. An increase in the period and frequency of mixing with the lubricant resulted in a further decrease in strength. Disintegration time was longer in tablets from Avicel PH-102 and Prosolv SMCC 90, and it was further prolonged by an addition of magnesium stearate.

  19. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-03-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  20. The use of glass powder in making batako

    NASA Astrophysics Data System (ADS)

    Nursyamsi, N.; Indrawan, I.

    2018-02-01

    Along with the increase in construction materials, innovation is needed to lessen the use of them, and one of them is by using cement [1]. In this research, it is reduced by glass powder; the reason for using it as the substitution of cement is that some chemical elements in cement are similar to those in glass powder such as SiO2, A12o3, Fe2O3, and CaO. The glass powder used was the one who passed sieve no. 100 and was hampered in sieve no. 200. It passed sieve no. 200 with its composition of 0%, 10%, 15%, 20%, 25%, and 30% from the volume of the use of cement. The specimen would treat within 28 days before the testing of compressive strength, water absorption, and tensile strength [2]. The variation which produced optimum result would mix with the foaming agent as the material for reducing the weight of the specimen. After that, the test of compressive strength, water absorption, and tensile strength on the installment of batako walls were done. The data analyzed by using SNI 02-0349-1989[3] reference about concrete brick for wall installment. The variation of 20% of glass powder passing sieve no. 200 gave optimum result. A specimen of the variation on glass powder of 20% which passed sieve no. 200 and the foaming agent was higher than the compressive strength of the specimen which used glass powder substitution of 0% of passing sieve no. 200 and foaming agent. The compressive strength of batako walls which used the batako construction with glass powder substitution of 20% of passing sieve no. 200 and the foaming agent was also higher than the compressive strength of the assaying object which used glass powder substitution of 0% of passing sieve no. 200 and foaming agent.

  1. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Liang; Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan; Ko, Ming-Sheng

    2011-06-15

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, includingmore » nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.« less

  2. Evaluation on Compressive Characteristics of Medical Stents Applied by Mesh Structures

    NASA Astrophysics Data System (ADS)

    Hirayama, Kazuki; He, Jianmei

    2017-11-01

    There are concerns about strength reduction and fatigue fracture due to stress concentration in currently used medical stents. To address these problems, meshed stents applied by mesh structures were interested for achieving long life and high strength perfromance of medical stents. The purpose of this study is to design basic mesh shapes to obatin three dimensional (3D) meshed stent models for mechanical property evaluation. The influence of introduced design variables on compressive characteristics of meshed stent models are evaluated through finite element analysis using ANSYS Workbench code. From the analytical results, the compressive stiffness are changed periodically with compressive directions, average results need to be introduced as the mean value of compressive stiffness of meshed stents. Secondly, compressive flexibility of meshed stents can be improved by increasing the angle proportional to the arm length of the mesh basic shape. By increasing the number of basic mesh shapes arranged in stent’s circumferential direction, compressive rigidity of meshed stent tends to be increased. Finaly reducing the mesh line width is found effective to improve compressive flexibility of meshed stents.

  3. (Finite) statistical size effects on compressive strength.

    PubMed

    Weiss, Jérôme; Girard, Lucas; Gimbert, Florent; Amitrano, David; Vandembroucq, Damien

    2014-04-29

    The larger structures are, the lower their mechanical strength. Already discussed by Leonardo da Vinci and Edmé Mariotte several centuries ago, size effects on strength remain of crucial importance in modern engineering for the elaboration of safety regulations in structural design or the extrapolation of laboratory results to geophysical field scales. Under tensile loading, statistical size effects are traditionally modeled with a weakest-link approach. One of its prominent results is a prediction of vanishing strength at large scales that can be quantified in the framework of extreme value statistics. Despite a frequent use outside its range of validity, this approach remains the dominant tool in the field of statistical size effects. Here we focus on compressive failure, which concerns a wide range of geophysical and geotechnical situations. We show on historical and recent experimental data that weakest-link predictions are not obeyed. In particular, the mechanical strength saturates at a nonzero value toward large scales. Accounting explicitly for the elastic interactions between defects during the damage process, we build a formal analogy of compressive failure with the depinning transition of an elastic manifold. This critical transition interpretation naturally entails finite-size scaling laws for the mean strength and its associated variability. Theoretical predictions are in remarkable agreement with measurements reported for various materials such as rocks, ice, coal, or concrete. This formalism, which can also be extended to the flowing instability of granular media under multiaxial compression, has important practical consequences for future design rules.

  4. Reinforcement of Dental Methacrylate with Glass Fiber after Heated Silane Application

    PubMed Central

    Fonseca, Rodrigo Borges; de Paula, Marcella Silva; Favarão, Isabella Negro; Kasuya, Amanda Vessoni Barbosa; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Carlo, Hugo Lemes

    2014-01-01

    This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27BC; P-sil: 155.89 ± 45.27BC; I-sil/heat: 130.20 ± 22.11C; P-sil/heat: 169.86 ± 50.29AB; I: 131.87 ± 15.86C. For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77ab; P-sil: 867.61 ± 102.76d; I-sil/heat: 1162.98 ± 222.07c; P-sil/heat: 1499.35 ± 339.06a; and I: 1245.78 ± 211.16bc. Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate. PMID:24967361

  5. New true-triaxial rock strength criteria considering intrinsic material characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong

    2018-02-01

    A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.

  6. Properties of two composite materials made of toughened epoxy resin and high-strain graphite fiber

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Smith, Donald L.

    1988-01-01

    Results are presented from an experimental evaluation of IM7/8551-7 and IM6/18081, two new toughened epoxy resin, high strain graphite fiber composite materials. Data include ply-level strengths and moduli, notched tension and compression strengths and compression-after-impact assessments. The measured properties are compared with those of other graphite-epoxy materials.

  7. New rapid method for determining edgewise compressive strength of corrugated fiberboard

    Treesearch

    John W. Koning

    1986-01-01

    The objective of this study was to determine if corrugated fiberboard specimens that had been necked down with a common router would yield acceptable edgewise compressive strength values. Tests were conducted on specimens prepared using a circular saw and router, and the results were compared with those obtained on specimens prepared according to TAPPI Test Method T...

  8. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Coleman, Nichola J; Booth, Samantha; Dimkov, Aleksandar; Hurt, Andrew

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent.

  9. Effect of Sodium Hydroxide Molarity on Physical, Mechanical and Thermal Conductivity of Metakaolin Geopolymers

    NASA Astrophysics Data System (ADS)

    Ain Jaya, Nur; Yun-Ming, Liew; Bakri Abdullah, Mohd Mustafa Al; Cheng-Yong, Heah; Hussin, Kamarudin

    2018-03-01

    In the present work, the effect of different sodium hydroxide (NaOH) molarity (6M, 8M, 10M, 12M and 14M) on the physical, mechanical and thermal conductivity of metakaolin geopolymers (MkGPs) was investigated. Geopolymers were prepared by activating the metakaolin with a mixture of NaOH with sodium silicate (Na2SiO3). The products obtained were characterized after 28 days of curing. The density, porosity, compressive strength and thermal conductivity (TC) were determined. In general, the NaOH molarity has a significant effect on the compressive strength of the MkGPs. The highest compressive strength was 14.6 MPa achieved with 10M of NaOH solution. The thermal conductivity of MkGPs measured in this work was low in the range between 0.71-0.97 W/mK. NaOH molarity had a significant effect on compressive strength but a marginal effect on thermal conductivity of MkGPs. The thermal conductivity was mainly affected by the bulk density and thus the total porosity. The results showed that the geopolymer can be considered to be used as the thermal insulating material.

  10. Nature's technical ceramic: the avian eggshell

    PubMed Central

    Hahn, Eric N.; Sherman, Vincent R.; Pissarenko, Andrei; Rohrbach, Samuel D.; Fernandes, Daniel J.

    2017-01-01

    Avian eggshells may break easily when impacted at a localized point; however, they exhibit impressive resistance when subjected to a well-distributed compressive load. For example, a common demonstration of material strength is firmly squeezing a chicken egg along its major axis between one's hands without breaking it. This research provides insight into the underlying mechanics by evaluating both macroscopic and microstructural features. Eggs of different size, varying from quail (30 mm) to ostrich (150 mm), are investigated. Compression experiments were conducted along the major axis of the egg using force-distributing rubber cushions between steel plates and the egg. The force at failure increases with egg size, reaching loads upwards of 5000 N for ostrich eggs. The corresponding strength, however, decreases with increasing shell thickness (intimately related to egg size); this is rationalized by a micro-defects model. Failure occurs by axial splitting parallel to the loading direction—the result of hoop tensile stresses due to the applied compressive load. Finite-element analysis is successfully employed to correlate the applied compressive force to tensile breaking strength for the eggs, and the influence of geometric ratio and microstructural heterogeneities on the shell's strength and fracture toughness is established. PMID:28123095

  11. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    NASA Astrophysics Data System (ADS)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  12. Uniaxial compressive behavior of micro-pillars of dental enamel characterized in multiple directions.

    PubMed

    Yilmaz, Ezgi D; Jelitto, Hans; Schneider, Gerold A

    2015-04-01

    In this work, the compressive elastic modulus and failure strength values of bovine enamel at the first hierarchical level formed by hydroxyapatite (HA) nanofibers and organic matter are identified in longitudinal, transverse and oblique direction with the uniaxial micro-compression method. The elastic modulus values (∼70 GPa) measured here are within the range of results reported in the literature but these values were found surprisingly uniform in all orientations as opposed to the previous nanoindentation findings revealing anisotropic elastic properties in enamel. Failure strengths were recorded up to ∼1.7 GPa and different failure modes (such as shear, microbuckling, fiber fracture) governed by the orientation of the HA nanofibers were visualized. Structural irregularities leading to mineral contacts between the nanofibers are postulated as the main reason for the high compressive strength and direction-independent elastic behavior on enamels first hierarchical level. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Properties of three graphite/toughened resin composites

    NASA Technical Reports Server (NTRS)

    Smith, Donald L.; Dow, Marvin B.

    1991-01-01

    Results are presented from an experimental evaluation of IM7/977-2, IM7/F655, and T800/F3900. Data presented include ply-level (unidirectional laminate) strength and moduli, unnotched and notched (open hole) tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths. These data are compared with properties of other toughened (IM7/8551-7 and IM6/18081) and brittle (T300/5208) graphite-epoxy materials. The IM7/977-2, IM7/F655, and T800/F3900 materials are substantially stronger and more damage tolerant than widely used first generation composite materials such as T300/5208. The T800/F3900 outperforms IM7/977-2 and IM7/F655 materials in tolerance to projectile impacts. Compression-after-impact strengths were found to be dependent on impactor velocity for a given impact energy. The open hole compression properties of all three materials are degraded by the combination of heat and moisture.

  14. Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial

    NASA Astrophysics Data System (ADS)

    Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.

  15. Elevated-temperature application of the IITRI compression test fixture for graphite/polyimide filamentary composites

    NASA Technical Reports Server (NTRS)

    Raju, B. B.; Camarda, C. J.; Cooper, P. A.

    1979-01-01

    Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).

  16. A comparison of mechanical properties of some foams and honeycombs

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  17. A review in high early strength concrete and local materials potential

    NASA Astrophysics Data System (ADS)

    Yasin, A. K.; Bayuaji, R.; Susanto, T. E.

    2017-11-01

    High early strength concrete is one of the type in high performance concrete. A high early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa). There are 4 (four) important factors that must be considered in the making process, those factors including: portland cement type, cement content, water to cement ratio, and admixture. In accordance with its high performance, the production cost is estimated to be 25 to 30% higher than conventional concrete. One effort to cut the production cost is to utilize local materials. This paper will also explain about the local materials which were abundantly available, cheap, and located in strategic coast area of East Java Province, that is: Gresik, Tuban and Bojonegoro city. In addition, the application of this study is not limited only to a large building project, but also for a small scale building which has one to three-story. The performance of this concrete was apparently able to achieve the quality of compressive strength of 27 MPa at the age of 24 hours, which qualified enough to support building structurally.

  18. Evaluation of chitosan-hydroxyapatite-collagen composite strength as scaffold material by immersion in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Sari, N. K.; Indrani, D. J.; Johan, C.; Corputty, J. E. M.

    2017-08-01

    The reconstruction of bone tissue defects is a major challenge facing oral and maxillofacial surgeons. The essential elements needed for tissue engineering are cells, scaffolds (matrix), and stimulant molecules (growth factors). The mechanical properties of chitosan-hydroxyapatite-collagen scaffolds produced by BATAN, Jakarta, have not yet been studied. This study therefore analyzed the mechanical properties of chitosan-hydroxyapatite-collagen composite scaffolds prepared by BATAN, Jakarta, before and after immersion in simulated body fluid (SBF) for eight days. The compressive and tensile strengths of the chitosan-hydroxyapatite-collagen composite scaffolds were analyzed after immersion in SBF at 37°C for eight days. Each scaffold was removed and dried at room temperature on days 0, 2, 4, 6, and 8. The data obtained were processed and analyzed. Variations in the compressive strength and tensile strength were attributed to several aspects, such the specimen size, which was not uniform, the scaffold composition, scaffold pore size, which was also not uniform, and the degradation of the polymer. The chitosan-hydroxyapatite-collagen composite scaffold does not exhibit differences in the tensile strength and compressive strength before and after immersion in SBF.

  19. Reuse of waste iron as a partial replacement of sand in concrete.

    PubMed

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.

  20. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    NASA Astrophysics Data System (ADS)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  1. Integration of pharmacists into patient-centered medical homes in federally qualified health centers in Texas.

    PubMed

    Wong, Shui Ling; Barner, Jamie C; Sucic, Kristina; Nguyen, Michelle; Rascati, Karen L

    To describe the integration and implementation of pharmacy services in patient-centered medical homes (PCMHs) as adopted by federally qualified health centers (FQHCs) and compare them with usual care (UC). Four FQHCs (3 PCMHs, 1 UC) in Austin, TX, that provide care to the underserved populations. Pharmacists have worked under a collaborative practice agreement with internal medicine physicians since 2005. All 4 FQHCs have pharmacists as an integral part of the health care team. Pharmacists have prescriptive authority to initiate and adjust diabetes medications. The PCMH FQHCs instituted co-visits, where patients see both the physician and the pharmacist on the same day. PCMH pharmacists are routinely proactive in collaborating with physicians regarding medication management, compared with UC in which pharmacists see patients only when referred by a physician. Four face-to-face, one-on-one semistructured interviews were conducted with pharmacists working in 3 PCMH FQHCs and 1 UC FQHC to compare the implementation of PCMH with emphasis on 1) structure and workflow, 2) pharmacists' roles, and 3) benefits and challenges. On co-visit days, the pharmacist may see the patient before or after physician consultation. Pharmacists in 2 of the PCMH facilities proactively screen to identify diabetes patients who may benefit from pharmacist services, although the UC clinic pharmacists see only referred patients. Strengths of the co-visit model include more collaboration with physicians and more patient convenience. Payment that recognizes the value of PCMH is one PCMH principle that is not fully implemented. PCMH pharmacists in FQHCs were integrated into the workflow to address specific patient needs. Specifically, full-time in-house pharmacists, flexible referral criteria, proactive screening, well defined collaborative practice agreement, and open scheduling were successful strategies for the underserved populations in this study. However, reimbursement plans and provider status for pharmacists should be established to sustain this model of care. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Effect of Tai Chi on physical function, fall rates and quality of life among older stroke survivors.

    PubMed

    Taylor-Piliae, Ruth E; Hoke, Tiffany M; Hepworth, Joseph T; Latt, L Daniel; Najafi, Bijan; Coull, Bruce M

    2014-05-01

    To examine the effect of a 12-week Tai Chi (TC) intervention on physical function and quality of life. Single-blind, randomized controlled trial. General community. Community-dwelling survivors of stroke (N=145; 47% women; mean age, 70y; time poststroke: 3y; ischemic stroke: 66%; hemiparesis: 73%) who were aged ≥50 years and were ≥3 months poststroke. Yang style 24-posture short-form TC (n=53), strength and range of movement exercises (SS) (n=44), or usual care (UC) (n=48) for 12 weeks. The TC and SS groups attended a 1-hour class 3 times per week, whereas the UC group had weekly phone calls. Physical function: Short Physical Performance Battery, fall rates, and 2-minute step test; quality of life: Medical Outcomes Study 36-Item Short-Form Health Survey, Center for Epidemiologic Studies Depression Scale, and Pittsburgh Sleep Quality Index. During the intervention, TC participants had two thirds fewer falls (5 falls) than the SS (14 falls) and UC (15 falls) groups (χ(2)=5.6, P=.06). There was a significant group by time interaction for the 2-minute step test (F2,142=4.69, P<.01). Post hoc tests indicated that the TC (t53=2.45, P=.02) and SS (t44=4.63, P<.01) groups had significantly better aerobic endurance over time, though not in the UC group (t48=1.58, P=.12). Intervention adherence rates were 85%. TC and SS led to improved aerobic endurance, and both are suitable community-based programs that may aid in stroke recovery and community reintegration. Our data suggest that a 12-week TC intervention was more effective in reducing fall rates than SS or UC interventions. Future studies examining the effectiveness of TC as a fall prevention strategy for community-dwelling survivors of stroke are recommended. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Effect of waste banner as fiber on mechanical properties of concrete

    NASA Astrophysics Data System (ADS)

    Rahmawati, Anis; Saputro, Ida Nugroho

    2017-06-01

    Banner is broadly used as advertisement media and event backdrop that is usually only used at one moment, resulting to a lot of waste banners. Banner made from nylon fiber is covered by polyvinyl. Nylon is well known as a material with high tensile strength. This research was done as a preliminary investigation on the opportunity of using the waste banner as fiber material of concrete by evaluating its mechanical properties, namely compressive and flexural strength. Research conducted by making cylinder shape specimens of 15 mm in diameter and 300 mm in height for the compressive strength test. While the specimen shape for flexural strength test was a rectangular prism with dimension of 150 mm in height, 150 mm in width, and 600 mm in length. Fiber generated from waste banner was added in concrete mixtures with percentage of 0.00%, 0.20%, 0.40%, 0.60%, 0.80%, and 1.00% by weight of concrete. The concrete strength was tested at 28 days after standard moisture and temperature curing. Experimental results indicated that the addition of 0.20% of waste banner obtained the highest compressive strength that was 21.967 Mpa, while 0.40% of waste banner obtained the highest flexural strength of 4.663 Mpa.

  4. Comparison of impact results for several polymeric composites over a wide range of low impact velocities

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.

    1991-01-01

    Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.

  5. Ultra-high modulus organic fiber hybrid composites

    NASA Technical Reports Server (NTRS)

    Champion, A. R.

    1981-01-01

    An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.

  6. Effect of carbonation on leachability, strength and microstructural characteristics of KMP binder stabilized Zn and Pb contaminated soils.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Wu, Hao-liang

    2016-02-01

    This study presents a systematic investigation of effects of carbonation on the contaminant leachability and unconfined compressive strength of KMP stabilized contaminated soils. A field soil spiked with Zn and Pb individually and together is stabilized using a new KMP additive under standard curing conditions and also with carbonation. The KMP additive is composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The stabilized soils are tested for acid neutralization capacity, toxic characteristics leaching characteristics, contaminant speciation and unconfined compression strength. X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy analyses are performed to assess reaction products. The results demonstrate that carbonation increases both acid buffer capacity index and unconfined compressive strength, but decreases leachability of KMP stabilized soils. These results are interpreted based on the changes in chemical speciation of Zn and Pb and also stability and solubility of the reaction products (metal phosphates and carbonates) formed in the soils. Overall, this study demonstrates that carbonation has positive effects on leachability and strength of the KMP stabilized soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete.

    PubMed

    Wang, Xiao-Yong

    2017-01-26

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel-space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  8. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates

    PubMed Central

    Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2018-01-01

    This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055

  9. Effect of overglazed and polished surface finishes on the compressive fracture strength of machinable ceramic materials.

    PubMed

    Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi

    2010-11-01

    Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.

  10. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  11. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete

    PubMed Central

    Wang, Xiao-Yong

    2017-01-01

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods. PMID:28772472

  12. Behavioral and psychosocial effects of intensive lifestyle management for women with coronary heart disease.

    PubMed

    Toobert, D J; Glasgow, R E; Nettekoven, L A; Brown, J E

    1998-11-01

    Females, especially older women, historically have been excluded from coronary heart disease (CHD) studies. The PrimeTime program was a randomized clinical trial designed to study the effects of a comprehensive lifestyle management program (very low-fat vegetarian diet, smoking cessation, stress-management training, moderate exercise, and group support) on changes in behavioral risk factors among postmenopausal women with CHD. The study also explored program effects on four psychosocial clusters: coping with stress, distress, social support, and self-efficacy. The program produced significant behavioral improvements in 4- and 12-months adherence to diet, physical activity, and stress-management in the PrimeTime women compared to the Usual Care (UC) group. In addition, the PrimeTime participants demonstrated improvements relative to UC on psychosocial measures of self-efficacy, perceived social support, and ability to cope with stress. Strengths and weaknesses of the study, and implications for future research are discussed.

  13. Investigation on Flexure Test of Composite Beam of Repair Materials and Substrate Concrete for Durable Repair

    NASA Astrophysics Data System (ADS)

    Pattnaik, Rashmi R.; Rangaraju, Prasada Rao

    2014-12-01

    An experimental study was conducted on composite beam of repair materials and substrate concrete to investigate the failures of concrete repair due to differences in strength of repair materials and substrate concrete. In this investigation the flexural strength, load-deflection curves and failure patterns of the composite beam specimens are studied for the durability of the concrete repair. Flexure test was conducted to simulate tensile stress in the concrete repair material. Compressive strength and split tensile strength of the repair materials and substrate concrete are investigated to aid in the analysis of the concrete repair. It was observed that the repair materials of higher compressive strength than the substrate concrete are causing an incompatible failure in the concrete repair.

  14. Effect of CO2 concentration on strength development and carbonation of a MgO-based binder for treating fine sediment.

    PubMed

    Hwang, Kyung-Yup; Kim, Jin Young; Phan, Hoang Quang Huy; Ahn, Jun-Young; Kim, Tae Yoo; Hwang, Inseong

    2018-05-28

    We previously described a MgO-based binder for treating fine sediment and simultaneously store CO 2 . Here, we describe a study of the physical/mechanical characteristics and carbonation reactions of the MgO-based binder used to solidify/stabilize fine sediment in atmospheres containing different CO 2 concentrations. Carbonation of the sediment treated with the MgO-based binder at the atmospheric CO 2 concentration markedly improved the compressive strength of the product. The compressive strength was 4.78 MPa after 365 days of curing, 1.3 times higher than the compressive strength of sediment treated with portland cement. This improvement was caused by the formation of carbonation products, such as hydromagnesite, nesquehonite, and lansfordite, and the constant high pH (~ 12) of the specimen, which favored the growth of hydration products such as calcium silicate hydrates and portlandite. Very low compressive strengths were found when 50 and 100% CO 2 atmospheres were used because of excessive formation of carbonation products, which occupied 78% of the specimen depth. Abundant carbonation products increased the specimen volume and decreased the pH to 10.2, slowing the growth of hydration products. The absence of brucite in specimens produced in a 100% CO 2 atmosphere indicated that MgO carbonation is favored over hydration at high CO 2 concentrations.

  15. Fiber-reinforced silicone for tracheobronchial stents: An experimental study.

    PubMed

    Vearick, Samanta Bianchi; Demétrio, Kétner Bendo; Xavier, Rogério Gastal; Moreschi, Alexandre Heitor; Muller, André Frotta; Sanches, Paulo Roberto Stefani; Dos Santos, Luis Alberto Loureiro

    2018-01-01

    A trachea is a tubular structure composed of smooth muscle that is reinforced with cartilage rings. Some diseases can cause sagging in smooth muscle and cartilaginous tissue. The end result is reduction (narrowing) of the trachea diameter. A solution to this problem is the use of tracheal stents, which are small tubular devices made of silicone. One is inserted into the trachea to prevent or correct its constriction. The purpose of tracheal stent use is to maintain cartilage support that would otherwise be lost in the airway. Current tracheal stent models present limitations in terms of shape and characteristics of the silicone used in their production. One of the most important is the large thickness of the wall, which makes its placement difficult; this mainly applies to pediatric patients. The wall thickness of the stent is closely related to the mechanical properties of the material. This study aims to test the reinforcement of silicone with three kinds of fibers, and then stents that were produced using fiber with the best compressive strength characteristics. Silicone samples were reinforced with polypropylene (PP), polyamide (PA), and carbon fiber (CF) at concentrations of 2% and 4% (vol%), which then underwent tensile strength and Shore A hardness testing. Samples with fiber showed good characteristics; surface analyses were carried out and they were used to produce stents with an internal diameter of 11 or 13mm and a length of 50mm. Stents underwent compression tests for qualitative evaluation. Samples with 2% and 4% CF blends showed the best mechanical performance, and they were used to produce stents. These samples presented similar compressive strengths at low deformation, but stents with a 4% CF blend exhibited improved compressive strength at deformations greater than 30-50% of their diameter (P ≤ 0.05). The addition of 2% and 4% CF blends conferred greater mechanical strength and resistance to the silicone matrix. This is particularly true at low deformation, which is the condition where the stent is used when implanted. In the finite element compression strength tests, the stent composite showed greater compression strength with the addition of fiber, and the results were in accordance with mechanical compression tests performed on the stents. In vivo tests showed that, after 30 days of post-implantation in sheep trachea, an inflammatory process occurred in the region of the trachea in contact with the stent composite and with the stent without fiber (WF). This response is a common process during the first few days of implantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. On the extraordinary strength of Prince Rupert's drops

    NASA Astrophysics Data System (ADS)

    Aben, H.; Anton, J.; Öis, M.; Viswanathan, K.; Chandrasekar, S.; Chaudhri, M. M.

    2016-12-01

    Prince Rupert's drops (PRDs), also known as Batavian tears, have been in existence since the early 17th century. They are made of a silicate glass of a high thermal expansion coefficient and have the shape of a tadpole. Typically, the diameter of the head of a PRD is in the range of 5-15 mm and that of the tail is 0.5 to 3.0 mm. PRDs have exceptional strength properties: the head of a PRD can withstand impact with a small hammer, or compression between tungsten carbide platens to high loads of ˜15 000 N, but the tail can be broken with just finger pressure leading to catastrophic disintegration of the PRD. We show here that the high strength of a PRD comes from large surface compressive stresses in the range of 400-700 MPa, determined using techniques of integrated photoelasticity. The surface compressive stresses can suppress Hertzian cone cracking during impact with a small hammer or compression between platens. Finally, it is argued that when the compressive force on a PRD is very high, plasticity in the PRD occurs, which leads to its eventual destruction with increasing load.

  17. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  18. Compression response of tri-axially braided textile composites

    NASA Astrophysics Data System (ADS)

    Song, Shunjun

    2007-12-01

    This thesis is concerned with characterizing the compression stiffness and compression strength of 2D tri-axially braided textile composites (2DTBC). Two types of 2DTBC are considered differing only on the resin type, while the textile fiber architecture is kept the same with bias tows at 45 degrees to the axial tows. Experimental, analytical and computational methods are described based on the results generated in this study. Since these composites are manufactured using resin transfer molding, the intended and as manufactured composite samples differ in their microstructure due to consolidation and thermal history effects in the manufacturing cycle. These imperfections are measured and the effect of these imperfections on the compression stiffness and strength are characterized. Since the matrix is a polymer material, the nonuniform thermal history undergone by the polymer at manufacturing (within the composite and in the presence of fibers) renders its properties to be non-homogenous. The effects of these non-homogeneities are captured through the definition of an equivalent in-situ matrix material. A method to characterize the mechanical properties of the in-situ matrix is also described. Fiber tow buckling, fiber tow kinking and matrix microcracking are all observed in the experiments. These failure mechanisms are captured through a computational model that uses the finite element (FE) technique to discretize the structure. The FE equations are solved using the commercial software ABAQUS version 6.5. The fiber tows are modeled as transversely isotropic elastic-plastic solids and the matrix is modeled as an isotropic elastic-plastic solid with and without microcracking damage. Because the 2DTBC is periodic, the question of how many repeat units are necessary to model the compression stiffness and strength are examined. Based on the computational results, the correct representative unit cell for this class of materials is identified. The computational models and results presented in the thesis provide a means to assess the compressive strength of 2DTBC and its dependence on various microstructural parameters. The essential features (for example, fiber kinking) of 2DTBC under compressive loading are captured accurately and the results are validated by the compression experiments. Due to the requirement of large computational resources for the unit cell studies, simplified models that use less computer resources but sacrifice some accuracy are presented for use in engineering design. A combination of the simplified models is shown to provide a good prediction of the salient features (peak strength and plateau strength) of these materials under compression loading. The incorporation of matrix strain rate effects, a study of the effect of the bias tow angle and the inclusion of viscoelastic/viscoplastic behavior for the study of fatigue are suggested as extensions to this work.

  19. On Gravitational Radiation: A Nonlinear Wave Theory in a Viscoelastic Kerr-Lambda Spacetime

    NASA Astrophysics Data System (ADS)

    Gamble, Ronald

    This project presents the experimental results concerning the mix design, fresh and hardened properties of an ultra-high strength concrete that has already been developed for high performance construction applications but now needs to be evaluated for a 3D printing process. The concrete is designed to be extruded through a nozzle and pump system, and have layers printed to analyze deformation within printed layers. The key factors for printable concrete are, the ability to be extruded through a pump and nozzle (flowability) and buildability. The flow of mortar will be studied by looking at the rheological properties of the mix and assessing the acceptable range of shear strength. Three different water to cement ratios and varying dosages of superplasticizers were incorporated to optimize a workable mortar/concrete mix to be applied for 3D printing. A Brookfield DV-III Ultra programmable rheometer was used to determine the viscosity and yield strength of the mortar mixes; these values were used to calculate the shear strength of the printable concrete. Compressive strengths of optimal mixtures were taken to assess the feasibility of 3D printed concrete as compared to traditional means. Compression test was conducted on a High Capacity Series Compression Testing Machine with 2" x 2" mortars cubes. The results indicated that the mortars that have shear ranges between of 0.3 - 0.9 kPa could be used in a 3D printer. The compressive strength of the concrete made with a 25% water/cement ratio and 10% superplasticizer dosage reached 62.8 MPa, which qualifies it as ultrahigh strength mortar. An optimum mix will be validated by printing the most filaments until deformation occurs. The end goal of this project is to develop an optimal concrete to produce the strength needed for 3D printed concrete. Using our predesigned ultra-high strength concrete mix ingredients, we will optimize that mix to have the same performance characteristics and be used in 3D printing applications.

  20. Three-dimensional high-entropy alloy-polymer composite nanolattices that overcome the strength-recoverability trade-off.

    PubMed

    Zhang, Xuan; Yao, Jiahao; Liu, Bin; Yan, Jun; Lu, Lei; Li, Yi; Gao, Huajian; Li, Xiaoyan

    2018-06-14

    Mechanical metamaterials with three-dimensional micro- and nano-architectures exhibit unique mechanical properties, such as high specific modulus, specific strength and energy absorption. However, a conflict exists between strength and recoverability in nearly all the mechanical metamaterials reported recently, in particular the architected micro-/nanolattices, which restricts the applications of these materials in energy storage/absorption and mechanical actuation. Here, we demonstrated the fabrication of three-dimensional architected composite nanolattices that overcome the strength-recoverability trade-off. The nanolattices under study are made up of a high entropy alloy coated (14.2-126.1 nm in thickness) polymer strut (approximately 260 nm in the characteristic size) fabricated via two-photon lithography and magnetron sputtering deposition. In situ uniaxial compression inside a scanning electron microscope showed that these composite nanolattices exhibit a high specific strength of 0.027 MPa/kg m3, an ultra-high energy absorption per unit volume of 4.0 MJ/m3, and nearly complete recovery after compression under strains exceeding 50%, thus overcoming the traditional strength-recoverability trade-off. During multiple compression cycles, the composite nanolattices exhibit a high energy loss coefficient (converged value after multiple cycles) of 0.5-0.6 at a compressive strain beyond 50%, surpassing the coefficients of all the micro-/nanolattices fabricated recently. Our experiments also revealed that for a given unit cell size, the composite nanolattices coated with a high entropy alloy with thickness in the range of 14-50 nm have the optimal specific modulus, specific strength and energy absorption per unit volume, which is related to a transition of the dominant deformation mechanism from local buckling to brittle fracture of the struts.

  1. A study of the properties of tablets from coprocessed dry binders composed of alpha-lactose monohydrate and different types of cellulose.

    PubMed

    Muzíková, J; Zvolánková, J

    2007-12-01

    The paper evaluates the differences between the properties of tablets from two coprocessed dry binders based on alpha-lactose monohydrate and cellulose, MicroceLac 100 and Cellactose 80. The substances differ in the type of contained cellulose; MicroceLac 100 contains 25% of microcrystalline cellulose, Cellactose 80, 25% of powdered cellulose. The properties under study included the tensile strength and disintegration time in dependence on compression force, addition of two concentrations of the lubricant sodium stearylfumarate (Pruv) and a 50% addition of the active ingredients ascorbic acid and acetylsalicylic acid. Using one of the compression forces, the effect of Pruv and magnesium stearate on the above-mentioned properties were compared. In the compression forces of 6 and 8 kN the strength of the compacts from pure Cellactose 80 was lower than that of those from MicroceLac 100 both without and with the lubricant. The lubricant sensitivity of dry binders depended on compression force. Pruv decreased the strength of compacts less than magnesium stearate. The tablets from Cellactose 80 possessed a longer disintegration time than those from MicroceLac 100, excepting the tableting materials containing 0.4 Pruv with a compression force of 6 kN. Disintegration time was prolonged with the use of sodium stearylfumarate and it was increased with compression force much more markedly in the case of Cellactose 80. In the presence of ascorbic acid, the strength of tablets was decreased in the case of both dry binders, but it was higher with MicroceLac100, disintegration time was very short and independent of the type of the dry binder. In the case of acetylsalicylic acid, the strength of tablets was higher with a lesser influence of the type of the dry binder, and disintegration time was longer and especially in the case of Cellactose 80 increased with increasing concentration of Pruv.

  2. [Evaluation of mechanical properties of four kinds of composite resins for inlay].

    PubMed

    Jiang, Ling-ling; Liu, Hong; Wang, Jin-rui

    2011-04-01

    To evaluate the compressive strength, wear resistance, hardness, and soaking fatigue of four composite resins for inlay, which were Ceramage, Surefil, Solitaire 2, and Filtek(TM) Z350. Scanning electron microscope (SEM) was used to analyze the microstructures of the wear surface of the samples. The samples for the compression test, hardness test and wear were prepared. The samples were respectively immersed in the artificial saliva for 2 months for immersed test. The electronic universal testing machine was used to test the compression strength. Hardness was quantified by micro-Vickers hardness test. The wear tester was used for the wear test. SEM was used to analyze the microstructures of the wear surface of samples. All the data was analyzed by using SPSS17.0 software package. The compressive strength of Surefil was the biggest which was significantly higher than the other three resins before soaking (P<0.05). After soaking, there was no significant difference between the composite resins (P>0.05). The hardness of Surefil was the best, and significant difference was found between the hardness of the materials before soaking (P<0.05). After soaking, no significant difference was obtained between the hardness of Surefil and Filtek(TM) Z350 (P>0.05).The compressive strength and hardness of 4 materials decreased after soaking in artificial saliva. But only the compressive strength of Filtek(TM) Z350 had no significant change after immersion (P>0.05). Except Filtek(TM) Z350, there was significant difference between the other three materials (P<0.05). Significant relationship was observed between wear and hardness of three materials (P<0.05). According to SEM observation, abrasive wear occurred in four materials. In addition to Ceramage, other composite resins had adhesive wear. The mechanical property of Surefil is the best, and it is suitable for fabrication of posterior inlay. Filtek(TM) Z350's ability to resist fatigue is the best.

  3. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  4. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil.

    PubMed

    Kaisangsri, Nattapon; Kerdchoechuen, Orapin; Laohakunjit, Natta

    2014-09-22

    Cassava starch foam (CSF) trays blended with zein, gluten, soy protein, kraft fiber, and palm oil at various concentrations: 0, 5, 10 and 15% by weight of starch, were characterized. The addition of zein and gluten into CSF resulted in consolidated and homogeneous structural foams compared to its controls. Moreover, the flexural and compressive strength increased with increasing kraft, zein and gluten. CSF containing 15% kraft gave the highest flexural and compressive strength. However, the addition of palm oil into CSF gave the lowest flexural strength and compressive strength. The observed water absorption and water solubility index of CSFs blended with 15% zein and 15% gluten protein was lowest. Although kraft, zein and gluten could improve mechanical properties, water absorption and water solubility were greater than the expanded polystyrene foam (EPS). The CSF trays in this study might be an alternative for packing low water content foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Anisotropy, size, and aspect ratio effects on micropillar compression of Al-SiC nanolaminate composites

    DOE PAGES

    Mayer, C. R.; Yang, L. W.; Singh, S. S.; ...

    2016-05-20

    Metal-ceramic nanolaminate composites show promise as high strength and toughness materials. Micropillar compression was used to characterize the mechanical behavior of AlSiC multilayers in different orientations including loading at 0°, 45° and 90° with respect to the direction of the layers. The 0° orientation showed the highest strength while the 45° orientation showed the lowest strength. Each orientation showed unique deformation behavior. Effects of pillar size and aspect ratio were also studied. Higher compressive strengths were observed in smaller pillars for all orientations. This effect was shown to be due to a lower probability of flaws using Weibull statistics. Additionally,more » changes in the aspect ratio was shown to have no significant effect on the behavior except an increase in the strain to failure in the 0° orientation. In conclusion, finite element analysis (FEA) was used to simulate and understand the effect of these parameters on the deformation behavior.« less

  6. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  7. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  8. Prediction of shear critical behavior of high-strength reinforced concrete columns using finite element methods

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu

    2017-11-01

    This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.

  9. The effect of curing conditions on the durability of high performance concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  10. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of energy dissipation before the ultimate failure was observed for specimens with bedding layers oriented in shallow angles under both dry and saturated conditions. These results confirm that when rock having bedding layers inclined in shallow angles the failures could be more violent and devastative than the failures of rock with steeply oriented bedding layers. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.

  12. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    PubMed

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effect of Molarity of Sodium Hydroxide and Curing Method on the Compressive Strength of Ternary Blend Geopolymer Concrete

    NASA Astrophysics Data System (ADS)

    Sathish Kumar, V.; Ganesan, N.; Indira, P. V.

    2017-07-01

    Concrete plays a vital role in the development of infrastructure and buildings all over the world. Geopolymer based cement-less concrete is one of the current findings in the construction industry which leads to a green environment. This research paper deals with the results of the use of Fly ash (FA), Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin (MK) as a ternary blend source material in Geopolymer concrete (GPC). The aspects that govern the compressive strength of GPC like the proportion of source material, Molarity of Sodium Hydroxide (NaOH) and Curing methods were investigated. The purpose of this research is to optimise the local waste material and use them effectively as a ternary blend in GPC. Seven combinations of binder were made in this study with replacement of FA with GGBS and MK by 35%, 30%, 25%, 20%, 15%, 10%, 5% and 5%, 10%, 15%, 20%, 25%, 30%, 35% respectively. The molarity of NaOH solution was varied by 12M, 14M and 16M and two types of curing method were adopted, viz. Hot air oven curing and closed steam curing for 24 hours at 60°C (140°F). The samples were kept at ambient temperature till testing. The compressive strength was obtained after 7 days and 28 days for the GPC cubes. The test data reveals that the ternary blend GPC with molarity 14M cured by hot air oven produces the maximum compressive strength. It was also observed that the compressive strength of the oven cured GPC is approximately 10% higher than the steam cured GPC using the ternary blend.

  14. Reinforced cementitous composite with in situ shrinking microfibers

    NASA Astrophysics Data System (ADS)

    Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh

    2017-03-01

    This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.

  15. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  16. Calcium hypochlorite as a disinfecting additive for dental stone.

    PubMed

    Twomey, Jonathan O; Abdelaziz, Khalid M; Combe, Edward C; Anderson, Dwight L

    2003-09-01

    Dental casts come into direct contact with impression materials and other items that are contaminated by saliva and blood from a patient's mouth, leaving the casts susceptible to cross-contamination. Topical methods of disinfecting casts are difficult to control, while immersion methods are potentially destructive. Thus, an additional method to control cross-contamination between patients and laboratory personnel is needed. This study was undertaken in an attempt to develop a dental stone with disinfecting properties and adequate compressive and tensile strengths. Calcium hypochlorite [Ca(OCl)(2)] in aqueous solution in concentrations from 0 to 1.5% was tested as a disinfecting additive to type V dental stone. The compressive and tensile strength properties of the modified stone were measured (MPa) using a universal testing machine at a consistency similar to unmodified stone. Strength data were analyzed by 1-way ANOVA and post hoc Tukey-Kramer procedure (alpha < or =.05). To measure the disinfecting ability, the effect on Bacillis subtilis bacteriophage phi29 was tested in triplicate to find the minimum concentration at which no phage was detected. Additionally, 3 impressions were disinfected with CaviCide, and 3 impressions rinsed in water served as controls. In general, the effect of adding the disinfectant to the stone was a decrease in strength. Exceptions were the dry compressive strength, for which there was a significant increase in strength (P=.048) at 0.5%, and the wet compressive and wet tensile strength, which showed no significant difference between the 1.5% and the control. When Ca(OCl)(2) was added at the concentration 0.5% (2765 ppm available chlorine), the gypsum had acceptable mechanical properties; dry compressive strength was 78.86 +/- 4.12 MPa, and dry tensile strength was 10.64 +/- 1.27 MPa, compared to control values of 67.85 +/- 6.28 and 13.41 +/- 1.24 MPa, respectively. At concentrations of 0.3% and higher (36 1650 ppm of available chlorine), calcium hypochlorite was able to completely inactivate phi29. It is possible to prepare a type V dental stone that contains a disinfectant, has adequate mechanical properties, and will reduce numbers of residual microorganisms. For example, stone mixed with water containing 0.5% Ca(OCl)(2) meets these criteria.

  17. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    PubMed

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  18. Compressive strength of human openwedges: a selection method

    NASA Astrophysics Data System (ADS)

    Follet, H.; Gotteland, M.; Bardonnet, R.; Sfarghiu, A. M.; Peyrot, J.; Rumelhart, C.

    2004-02-01

    A series of 44 samples of bone wedges of human origin, intended for allograft openwedge osteotomy and obtained without particular precautions during hip arthroplasty were re-examined. After viral inactivity chemical treatment, lyophilisation and radio-sterilisation (intended to produce optimal health safety), the compressive strength, independent of age, sex and the height of the sample (or angle of cut), proved to be too widely dispersed [ 10{-}158 MPa] in the first study. We propose a method for selecting samples which takes into account their geometry (width, length, thicknesses, cortical surface area). Statistical methods (Principal Components Analysis PCA, Hierarchical Cluster Analysis, Multilinear regression) allowed final selection of 29 samples having a mean compressive strength σ_{max} =103 MPa ± 26 and with variation [ 61{-}158 MPa] . These results are equivalent or greater than average materials currently used in openwedge osteotomy.

  19. A Damage Tolerance Comparison of Composite Hat-Stiffened and Honeycomb Sandwich Structure for Launch Vehicle Interstage Applications

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2011-01-01

    In this study, a direct comparison of the compression-after-impact (CAI) strength of impact-damaged, hat-stiffened and honeycomb sandwich structure for launch vehicle use was made. The specimens used consisted of small substructure designed to carry a line load of approx..3,000 lb/in. Damage was inflicted upon the specimens via drop weight impact. Infrared thermography was used to examine the extent of planar damage in the specimens. The specimens were prepared for compression testing to obtain residual compression strength versus damage severity curves. Results show that when weight of the structure is factored in, both types of structure had about the same CAI strength for a given damage level. The main difference was that the hat-stiffened specimens exhibited a multiphase failure whereas the honeycomb sandwich structure failed catastrophically.

  20. [Study of mixed dry binders in directly compressible lactoses and microcrystalline cellulose].

    PubMed

    Muzíková, J; Vinklarová, S

    2004-09-01

    The paper evaluated the compressibility of dry binders prepared in the ratios of 3:1, 1:1, and 1:3 from Pharmatosa DCL 15 and DCL 21 and Avicel PH 200, and the sensitivity of the mixtures to an addition of the lubricant magnesium stearate from the standpoint of the effect on the strength of tablets. Mixtures of lactoses with Avicel PH -200 in a ratio of 3:1 proved to be most advantageous. The strengths of tablets made of these mixtures oscillated in the optimal range and they showed the least sensitivity to the added lubricant. An increase in stearate concentration did not result in a marked decrease in the strength of compacts. Pharmatosa DCL 21 in a mixture with Avicel PH 200 yielded stronger compacts at lower compression force than Pharmatosa DCL 15.

  1. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  2. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  3. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    NASA Astrophysics Data System (ADS)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  4. A Comparative Evaluation of Sorption, Solubility, and Compressive Strength of Three Different Glass Ionomer Cements in Artificial Saliva: An in vitro Study

    PubMed Central

    Bhatia, Hind P; Sood, Shveta; Sharma, Naresh

    2017-01-01

    Aim To evaluate and compare the sorption, solubility, and compressive strength of three different glass ionomer cements in artificial saliva - type IX glass ionomer cement, silver-reinforced glass ionomer cement, and zirconia-reinforced glass ionomer cement, so as to determine the material of choice for stress-bearing areas. Materials and methods A total of 90 cylindrical specimens (4 mm diameter and 6 mm height) were prepared for each material following the manufacturer’s instructions. After subjecting the specimens to thermocycling, 45 specimens were immersed in artificial saliva for 24 hours for compressive strength testing under a universal testing machine, and the other 45 were evaluated for sorption and solubility, by first weighing them by a precision weighing scale (W1), then immersing them in artificial saliva for 28 days and weighing them (W2), and finally dehydrating in an oven for 24 hours and weighing them (W3). Results Group III (zirconomer) shows the highest compressive strength followed by group II (Miracle Mix) and least compressive strength is seen in group I (glass ionomer cement type IX-Extra) with statistically significant differences between the groups. The sorption and solubility values in artificial saliva were highest for glass ionomer cement type IX - Extra-GC (group I) followed by zirconomer-Shofu (group III), and the least value was seen for Miracle Mix-GC (group II). Conclusion Zirconia-reinforced glass ionomer cement is a promising dental material and can be used as a restoration in stress-bearing areas due to its high strength and low solubility and sorption rate. It may be a substitute for silver-reinforced glass ionomer cement due to the added advantage of esthetics. Clinical significance This study provides vital information to pediatric dental surgeons on relatively new restorative materials as physical and mechanical properties of the new material are compared with conventional materials to determine the best suited material in terms of durability, strength and dimensional stability. This study will boost confidence among dental surgeons in terms of handling characteristics, cost effectiveness and success rate. This study will help clinically and scientifically; pediatric dental surgeons to use this material in stress-bearing areas in pediatric patients. How to cite this article Bhatia HP, Singh S, Sood S, Sharma N. A Comparative Evaluation of Sorption, Solubility, and Com-pressive Strength of Three Different Glass Ionomer Cements in Artificial Saliva: An in vitro Study. Int J Clin Pediatr Dent 2017;10(1):49-54. PMID:28377656

  5. Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kokkada Ravindranath, Pruthul

    The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence of the bias/over wrapping angle of the MWNT sheets on the carbon fiber was also studied. The predicted compressive strength from the MD results and the multiscale approach for baseline Epoxy case was shown to be in good relation with the experimental results for Epon-862. On adding MWNTs to the epoxy system, a significant improvement in the compressive strength of the PMC was observed. Further, the effect of bias angle of MWNT wrapped over carbon fiber was compared for 0°, 45° and 90°. This is further verified by making use of the Halpin-Tsai.

  6. A low cost method of testing compression-after-impact strength of composite laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1991-01-01

    A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.

  7. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Luton, Michael J.

    1995-01-01

    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  8. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-04-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  9. Dynamic Stabilization of Simple Fractures With Active Plates Delivers Stronger Healing Than Conventional Compression Plating

    PubMed Central

    Tsai, Stanley; Bliven, Emily K.; von Rechenberg, Brigitte; Kindt, Philipp; Augat, Peter; Henschel, Julia; Fitzpatrick, Daniel C.; Madey, Steven M.

    2017-01-01

    Objectives: Active plates dynamize a fracture by elastic suspension of screw holes within the plate. We hypothesized that dynamic stabilization with active plates delivers stronger healing relative to standard compression plating. Methods: Twelve sheep were randomized to receive either a standard compression plate (CP) or an active plate (ACTIVE) for stabilization of an anatomically reduced tibial osteotomy. In the CP group, absolute stabilization was pursued by interfragmentary compression with 6 cortical screws. In the ACTIVE group, dynamic stabilization after bony apposition was achieved with 6 elastically suspended locking screws. Fracture healing was analyzed weekly on radiographs. After sacrifice 9 weeks postsurgery, the torsional strength of healed tibiae and contralateral tibiae was measured. Finally, computed tomography was used to assess fracture patterns and healing modes. Results: Healing in both groups included periosteal callus formation. ACTIVE specimens had almost 6 times more callus area by week 9 (P < 0.001) than CP specimens. ACTIVE specimens recovered on average 64% of their native strength by week 9, and were over twice as strong as CP specimens, which recovered 24% of their native strength (P = 0.008). Microcomputed tomography demonstrated that compression plating induced a combination of primary bone healing and gap healing. Active plating consistently stimulated biological bone healing by periosteal callus formation. Conclusions: Compared with compression plating, dynamic stabilization of simple fractures with active plates delivers significantly stronger healing. PMID:27861456

  10. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-06-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  11. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    NASA Astrophysics Data System (ADS)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  12. Nuclear matter compressibility from isoscalar giant monopole resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlomo, S.; Youngblood, D.H.

    1993-02-01

    We examine the status of the nuclear matter compressibility [ital K][sub nm] obtained from experimental data of the strength distribution of the giant monopole resonance in nuclei and employing a least-squares fit to a semiempirical expansion of the nucleus compressibility [ital K][sub [ital A

  13. Polymer concrete overlay test program : final report.

    DOT National Transportation Integrated Search

    1981-12-01

    The results in this report were obtained during the test program which began in 1973. Physical properties of various polymer concretes are listed. They include compressive strength, splitting tensile strength, bond strength, the modulus of elasticity...

  14. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    PubMed

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  15. Hugoniot equation of state and dynamic strength of boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less

  16. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz; Vojtěch, D.; Martínek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140more » MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62 alloy to the creep process in compression compared to AZ91 • Excellent thermal stability and creep resistance of the alloy WE 43 • Improved thermal stability and creep resistance in order WE43 > AJ62 >> AZ91.« less

  17. Compressive Strength and Indentation Damage in Ceramic Materials.

    DTIC Science & Technology

    1978-05-31

    The extent of the plastically deformed region associated with indentation in silicon carbide is determined by means of selected area electron...microfracture mechanisms responsible for the temperature-sensitive compressive strength behavior of polycrystalline Al2O3 and alpha-SiC. It is determined ...that the early stages of damage can be related to the presence or absence of microplasticity , depending upon the ceramic. Further, local plastic flow in

  18. Effect of Alkali Concentration on Fly Ash Geopolymers

    NASA Astrophysics Data System (ADS)

    Fatimah Azzahran Abdullah, Siti; Yun-Ming, Liew; Bakri, Mohd Mustafa Al; Cheng-Yong, Heah; Zulkifly, Khairunnisa; Hussin, Kamarudin

    2018-03-01

    This paper presents the effect of NaOH concentration on fly ash geopolymers with compressive up to 56 MPa at 12M. The physical and mechanical on fly ash geopolymer are investigated. Test results show that the compressive strength result complied with bulk density result whereby the higher the bulk density, the higher the strength. Thus, the lower water absorption and porosity due to the increasing of NaOH concentration.

  19. Description of Primary Education 1st Grade Students' Forms of Holding a Pencil as well as Their Grip and Compression Strengths

    ERIC Educational Resources Information Center

    Temur, Turan

    2011-01-01

    This study aimed to examine how first grade students in primary education held and gripped a pencil and their compressive strength using a descriptive research method. The participants of the research comprises first grade students attending a private school in the city center of Ankara (n=79). All of the four different sections in this private…

  20. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Treesearch

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  1. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt.

    PubMed

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk

    2018-05-14

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.

  3. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing

    PubMed Central

    Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu

    2016-01-01

    In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength. PMID:28773854

  4. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    NASA Astrophysics Data System (ADS)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  5. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure

    NASA Astrophysics Data System (ADS)

    Juban, Audrey; Briançon, Stéphanie; Puel, François; Hoc, Thierry; Nouguier-Lehon, Cécile

    2017-06-01

    In the pharmaceutical field, tablets are the most common dosage form for oral administration in the world. Among different manufacturing processes, direct compression is widely used because of its economics interest and it is a process which avoids the steps of wet granulation and drying processes. Tablets are composed of at least two ingredients: an active pharmaceutical ingredient (API) which is mixed with a diluent. The nature of the powders and the processing conditions are crucial for the properties of the blend and, consequently, strongly influence the mechanical characteristics of tablets. Moreover, tablets have to present a suitable mechanical strength to avoid crumbling or breaking when handling, while ensuring an appropriate disintegration after administration. Accordingly, this mechanical property is an essential parameter to consider. Experimental results showed that proportion of the diluent, fragmentary (DCPA) or plastic (MCC), had a large influence on the tensile strength evolution with API content as well as the compression load applied during tableting process. From these results a model was developed in order to predict the tensile strength of binary tablets by knowing the compression pressure. The validity of this model was demonstrated for the two studied systems and a comparison was made with two existing models.

  6. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents

    PubMed Central

    Nicholson, John W.; Coleman, Nichola J.; Booth, Samantha; Dimkov, Aleksandar

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent. PMID:28620615

  7. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing.

    PubMed

    Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu

    2016-08-27

    In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na⁺ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.

  8. p53 expression in patients with ulcerative colitis - associated with dysplasia and carcinoma: a systematic meta-analysis.

    PubMed

    Lu, Xiaohong; Yu, Yuanjie; Tan, Shiyun

    2017-10-25

    Tumor suppressor gene p53 expression has been reported in patients with ulcerative colitis (UC). However, the correlation between p53 expression and UC remains controversial. The aim of this meta-analysis was to investigate the association between p53 expression and different pathological types of UC. Publications were searched in the PubMed, Embase, EBSCO, Wangfang, and CNKI databases. The overall odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were summarized in this study. Final 19 papers were identified in this meta-analysis, including 1068 patients with UC and 130 normal tissue samples. Immunohistochemical p53 expression was significantly higher in UC without dysplasia and carcinoma (UC group) compared to normal tissue samples (OR = 3.14, P = 0.001), higher in UC with dysplasia than in UC group (OR = 10.76, P < 0.001), and higher in UC with colorectal cancer (CRC) than in UC with dysplasia (OR = 1.69, P = 0.035). Subgroup analysis of ethnicity (UC group vs. normal tissues) showed that p53 expression was correlated with UC in Asians, but not in Caucasians. When UC with dysplasia was compared to UC group, p53 expression was linked to UC with dysplasia among both Asians and Caucasians. When UC-CRC was compared to UC with dysplasia, p53 expression was not associated with UC-CRC in both Caucasians and Asians. p53 expression was closely associated with UC-CRC development. p53 expression showed different ethnic characteristics among different pathological types of UC.

  9. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    PubMed

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  10. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    PubMed Central

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144

  11. Study of the strength of molybdenum under high pressure using electromagnetically applied compression-shear ramp loading

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C. Scott; Asay, James

    2015-06-01

    MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  13. The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures

    NASA Technical Reports Server (NTRS)

    Aitchison, C S; Tuckerman, L B

    1939-01-01

    The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.

  14. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    NASA Astrophysics Data System (ADS)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  15. Finite Element Analysis and Experimentation of an Icosahedron Frame under Compression

    DTIC Science & Technology

    2015-09-17

    Century of Flight. Jules Henri Gi_ard (1825 - 1882), January 2014. URL [Online]. Available: http://www.century-of-flight.net/Aviation%20history/to...20reality/ Jules % 20Henri%20Gi_ard.htm. [4] Compression test. [Online]. Available: http://en.wikipedia.org/wiki/Compressive_strength [5

  16. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    PubMed Central

    Takeda, Hayami; Hashimoto, Shinobu; Yokoyama, Hiroaki; Honda, Sawao; Iwamoto, Yuji

    2013-01-01

    Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials. PMID:28809241

  17. Three-Dimensional Numerical Simulation on Triaxial Failure Mechanical Behavior of Rock-Like Specimen Containing Two Unparallel Fissures

    NASA Astrophysics Data System (ADS)

    Huang, Yan-Hua; Yang, Sheng-Qi; Zhao, Jian

    2016-12-01

    A three-dimensional particle flow code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of rock-like material specimens containing two unparallel fissures under conventional triaxial compression. The micro-parameters of the parallel bond model were first calibrated using the laboratory results of intact specimens and then validated from the experimental results of pre-fissured specimens under triaxial compression. Numerically simulated stress-strain curves, strength and deformation parameters and macro-failure modes of pre-fissured specimens were all in good agreement with the experimental results. The relationship between stress and the micro-crack numbers was summarized. Crack initiation, propagation and coalescence process of pre-fissured specimens were analyzed in detail. Finally, horizontal and vertical cross sections of numerical specimens were derived from PFC3D. A detailed analysis to reveal the internal damage behavior of rock under triaxial compression was carried out. The experimental and simulated results are expected to improve the understanding of the strength failure and cracking behavior of fractured rock under triaxial compression.

  18. Admixing dredged marine clay with cement-bentonite for reduction of compressibility

    NASA Astrophysics Data System (ADS)

    Rahilman, Nur Nazihah Nur; Chan, Chee-Ming

    2017-11-01

    Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.

  19. Immediate and long term effects of compaction on the stress-strain behaviour of soil

    NASA Astrophysics Data System (ADS)

    Noor, Sarah T.; Chowdhury, Prantick; Chowdhury, Tasnim

    2018-04-01

    This paper explores whether delay in construction after compaction can benefit from the gain in soil’s strength and stability point of view. An experimental investigation has been carried out to examine the gradual development of soil’s shear strength by ageing of mechanically compacted soil at three relative densities. In order to separate the gain in strength due to ageing from that occurring from the reduction in soil moisture, the soil samples prepared in moulds were kept in desiccators for different periods of time (1, 9 and 17 days) before testing unconfined compressive strength test. The soil in densely compacted state is found to gain in strength due to ageing faster than that in medium compacted state. Only due to ageing of 9 days or more, unconfined compressive strength of compacted soil is found about 1.7 to 2.4 times of that attained in day 1 after compaction.

  20. Polyimide Composites from 'Salt-Like' Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Hou, Tan H.; Weiser, Erik S.; SaintClair, Terry L.

    2001-01-01

    Four NASA Langley-developed polyimide matrix resins, LaRC(TM)-IA, LaRC(TM)-IAX, LaRC(TM)-8515 and LaRC(TM)-PETI-5, were produced via a 'saltlike' process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behavior and the resin rheology were characterized. Composite molding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fiber/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (30-35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.

Top