Science.gov

Sample records for compressive stress induced

  1. A review of inducing compressive residual stress - shot peening; on structural metal and welded connection

    NASA Astrophysics Data System (ADS)

    Kanchidurai, S.; Krishanan, P. A.; Baskar, K.; Saravana Raja Mohan, K.

    2017-07-01

    Shot peening treatment (SPT) is a significant mechanical method to enhance the surface of the material by inducing compressive residual stress on the layer. This study provides a review of prominent improvement in fatigue life on high strength aluminium alloy, steel and welded connection by SPT. Compressive residual stress measurement and its factors data are extracted from assorted literature, optimized peening process commented in this paper, also different types of mechanical peening methods and its effectiveness are mentioned. Fatigue life improvement is focused commented to welded structural connections. The extracted results shows significant changes in the surface layer of metals, aluminium alloy 15 - 250% of fatigue life improvement, steel plain members 6-200% of fatigue life improvement, welded connections 50-75% of fatigue life improvement and significant improvement in mechanical properties like roughness reduction, wear, hardness, tensile strength, corrosion and scuffing.

  2. Axisymmetric deformations and stresses of unsymmetrically laminated composite cylinders in axial compression with thermally-induced preloading effects

    NASA Technical Reports Server (NTRS)

    Paraska, Peter J.

    1993-01-01

    This report documents an analytical study of the response of unsymmetrically laminated cylinders subjected to thermally-induced preloading effects and compressive axial load. Closed-form solutions are obtained for the displacements and intralaminar stresses and recursive relations for the interlaminar shear stress were obtained using the closed-form intralaminar stress solutions. For the cylinder geometries and stacking sequence examples analyzed, several important and as yet undocumented effects of including thermally-induced preloading in the analysis are observed. It should be noted that this work is easily extended to include uniform internal and/or external pressure loadings and the application of strain and stress failure theories.

  3. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression

    SciTech Connect

    Orgeas, L.; Favier, D.

    1998-09-18

    The thermomechanical behavior of stress-induced martensitic transformation in an equiatomic NiTi alloy was investigated with respect to different deformation modes including uniaxial tension, compression and shear of plate specimens at different temperatures above the M{sub s} temperature. Results showed that loading conditions have significant influences on the deformation behavior of the alloy. In particular, deformation behavior was observed to be asymmetric in tension and in compression. The physical origins of such an asymmetry ar explored. Comparison among the results obtained from the tension, compression and shear tests disproves the use of classical Von Mises equivalent in the modelling of the three-dimensional behavior of martensitic transformation in this alloy. Based on this analysis, another criterion for yielding, which involves the third stress invariant, is therefore suggested.

  4. Compressive Stress Induces Dephosphorylation of the Myosin Regulatory Light Chain via RhoA Phosphorylation by the Adenylyl Cyclase/Protein Kinase A Signaling Pathway

    PubMed Central

    Takemoto, Kenji; Ishihara, Seiichiro; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Mechanical stress that arises due to deformation of the extracellular matrix (ECM) either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC) via the RhoA/RhoA-associated protein kinase (ROCK) pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853). Because myosin phosphatase targeting subunit 1 (Thr853) is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form) increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188) that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188) induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188). Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells. PMID:25734240

  5. Measurement and control for mechanical compressive stress

    NASA Astrophysics Data System (ADS)

    Li, Qing; Ye, Guang; Pan, Lan; Wu, Xiushan

    2001-12-01

    At present, the indirect method is applied to measuring and controlling mechanical compressive stress, which is the measurement and control of rotating torque of screw with torque transducer during screw revolving. Because the friction coefficient between every screw-cap and washer, of screw-thread is different, the compressive stress of every screw may is different when the machinery is equipped. Therefore, the accurate measurement and control of mechanical compressive stress is realized by the direct measurement of mechanical compressive stress. The author introduces the research of contrast between compressive stress and rotating torque in the paper. The structure and work principle of a special washer type transducer is discussed emphatically. The special instrument cooperates with the washer type transducer for measuring and controlling mechanical compressive stress. The control tactics based on the rate of compressive stress is put to realize accurate control of mechanical compressive stress.

  6. Cyclical compressive stress induces differentiation of rat primary mandibular condylar chondrocytes through phosphorylated myosin light chain II.

    PubMed

    Liu, Limin; Chen, Lin; Mai, Zhihui; Peng, Zhuli; Yu, Kafung; Liu, Guanqi; Ai, Hong

    2016-11-01

    The role of myosin light chain II (MLC‑II) in cellular differentiation of rat mandibular condylar chondrocytes (MCCs) induced by cyclical uniaxial compressive stress (CUCS) remains unclear. In the current study, a four‑point bending system was used to apply CUCS to primary cultured MCCs from rats. It was identified that CUCS stimulated features of cellular differentiation including morphological alterations, cytoskeleton rearrangement and overproduction of proteoglycans. Furthermore, CUCS promoted runt‑related transcription factor‑2 (RUNX2) expression at mRNA (P<0.01) and protein levels (P<0.05) and elevated alkaline phosphatase (ALP) activity (P<0.01), which are both markers of osteogenic differentiation. Under conditions of stress, western blotting indicated that the ratio of phosphorylated MLC‑II to total MLC‑II was increased significantly (P<0.05). Silencing MLC‑II by RNA interference reduced ALP activity (P<0.01), and eliminated RUNX2 mRNA expression (P<0.01). Addition of the MLC kinase inhibitor, ML‑7, reduced the CUCS‑associated upregulation of RUNX2 expression (P<0.01) and ALP activity (P<0.01). The data indicated that CUCS promoted cellular differentiation of rat primary MCCs, and this was suggested to be via the phosphorylation of MLC‑II.

  7. Compressive Stress-Induced Microcracks and Effective Elastic Properties of Limestone and Concrete. Phase 1

    DTIC Science & Technology

    1991-04-19

    McLennan (Technical Consultant) Ph.D. Rock Mechanics, University of Toronto, 1980. Thesis Title: " Hydraulic Fracturing : A Fracture Mechanics Approach...the principal stresses. Certain techniques such as micro- hydraulic fracturing , televiewer surveys and mapping of borehole breakouts have been used to

  8. Stress analysis of shear/compression test

    SciTech Connect

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-06-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed.

  9. THE EFFECT OF REPEATED COMPRESSIVE DYNAMIC LOADING ON THE STRESS-INDUCED MARTENSITIC TRANSFORMATION IN NiTi SHAPE MEMORY ALLOYS

    SciTech Connect

    D. MILLER; W. THISSELL; ET AL

    2000-08-01

    It has been shown that quasi-static, cyclic, isothermal mechanical loading influences the mechanical response of the stress-induced martensitic transformation in fully annealed NiTi Shape Memory Alloys (SMAs). As the cycle number increases, hardening of the stress-strain response during the martensitic phase transformation is seen along with a decrease in the threshold stress for initiation of stress-induced martensite. Also, the amount of plastic strain and detwinned martensitic strain decreases as the cycle number increases. However, NiTi SMAs have not been experimentally explored under high compressive strain rates. This research explores the cyclic near-adiabatic stress-induced martensitic loading using a Split Hopkinskin Pressure Bar (SHPB). The results of the dynamic loading tests are presented with emphasis on the loading rate, stress-strain response, specimen temperature and post-test microstructural evaluation. The results from the high strain rate tests show similarities with the quasi-static results in the hardening of the stress-strain response and shifting of the threshold stress for initiation of stress-induced martensite.

  10. Phenomenological theory of electric-field-induced phase transition behavior of antiferroelectric ceramic (Pb,Ba,La)(Zr,Sn,Ti)O3 under uniaxial compressive pre-stress

    NASA Astrophysics Data System (ADS)

    Xu, Yonghao; Feng, Yujun; Zhang, Na; Yan, Yangxi; Liao, Liming

    2012-08-01

    The phase transition behavior of antiferroelectric ceramic (Pb,Ba,La)(Zr,Sn,Ti)O3 under uniaxial compressive pre-stress is observed at stress up to 100 MPa using a homebuilt experimental setup in conjunction with a modified Sawyer-Tower circuit. The results reveal that the saturation polarization (Psat) decrease with increasing compressive pre-stress, while the phase transition fields increase as the compressive pre-stress increases. Meanwhile the applied pre-stress virtually does not affect the transition field hysteresis (ΔE). The longitudinal strain (S) increases with increasing compressive pre-stress and reaches to maximum at 20 MPa, and then gradually decreases. A phenomenological thermodynamic theory has been developed to model the first-order phase transition behavior of the material.

  11. Endoplasmic reticulum stress regulates rat mandibular cartilage thinning under compressive mechanical stress.

    PubMed

    Li, Huang; Zhang, Xiang-Yu; Wu, Tuo-Jiang; Cheng, Wei; Liu, Xin; Jiang, Ting-Ting; Wen, Juan; Li, Jie; Ma, Qiao-Ling; Hua, Zi-Chun

    2013-06-21

    Compressive mechanical stress-induced cartilage thinning has been characterized as a key step in the progression of temporomandibular joint diseases, such as osteoarthritis. However, the regulatory mechanisms underlying this loss have not been thoroughly studied. Here, we used an established animal model for loading compressive mechanical stress to induce cartilage thinning in vivo. The mechanically stressed mandibular chondrocytes were then isolated to screen potential candidates using a proteomics approach. A total of 28 proteins were identified that were directly or indirectly associated with endoplasmic reticulum stress, including protein disulfide-isomerase, calreticulin, translationally controlled tumor protein, and peptidyl-prolyl cis/trans-isomerase protein. The altered expression of these candidates was validated at both the mRNA and protein levels. The induction of endoplasmic reticulum stress by mechanical stress loading was confirmed by the activation of endoplasmic reticulum stress markers, the elevation of the cytoplasmic Ca(2+) level, and the expansion of endoplasmic reticulum membranes. More importantly, the use of a selective inhibitor to block endoplasmic reticulum stress in vivo reduced the apoptosis observed at the early stages of mechanical stress loading and inhibited the proliferation observed at the later stages of mechanical stress loading. Accordingly, the use of the inhibitor significantly restored cartilage thinning. Taken together, these results demonstrated that endoplasmic reticulum stress is significantly activated in mechanical stress-induced mandibular cartilage thinning and, more importantly, that endoplasmic reticulum stress inhibition alleviates this loss, suggesting a novel pharmaceutical strategy for the treatment of mechanical stress-induced temporomandibular joint diseases.

  12. Compressive stress system for a gas turbine engine

    DOEpatents

    Hogberg, Nicholas Alvin

    2015-03-24

    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  13. Turbulent shear stresses in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Laderman, A. J.; Demetriades, A.

    1979-01-01

    Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.

  14. Penetrative convective flows induced by internal heating and mantle compressibility

    NASA Technical Reports Server (NTRS)

    Machetel, Philippe; Yuen, David A.

    1989-01-01

    Penetrative convective flows induced in a spherical shell by combined effects of internal heating and mantle compressibility are investigated using mathematical and numerical formulations for compressible spherical shell convection. Isothermal stress-free boundary conditions applied at the top and the bottom of the shell are solved using a time-dependent finite difference code in a temperature, vorticity, stream function formulation for Rayleigh numbers ranging from the critical Rc up to 2000 Rc. Results indicate that compressibility, together with internal heating, could be a mechanism capable of generating spontaneously layered convection and local melting in the mantle and that non-Boussinesq effects must be considered in interpretations of geophysical phenomena.

  15. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    PubMed Central

    Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress. PMID:25177717

  16. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    PubMed

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  17. Compressive residual stress relaxation in hardened steel during cyclic and static load

    NASA Astrophysics Data System (ADS)

    Cseh, D.; Mertinger, V.

    2017-05-01

    The benefits of applied compressive residual stress on fatigue properties of materials is a well-known phenomenon, but not well described in all respects. The fatigue life and the fatigue limit could be improved by targeted created compressive residual stress in the surface layers therefore, diversified surface compressing methods are developed and used in the engineering industry. The relaxation of the compressive residual stress state during a cyclic and static load is determinative for the life time of a componenet. Compressive stress relaxation was experimentally determined during the cyclic and static load. The compressive residual stress was induced by shot penning on the surface of stainless steel, micro alloyed high strength steel and hardened steel specimens. The residual stress state was investigated nondestructively by X-ray diffraction method then these specimens were load. After a certain number of cycles the fatigue load was stopped and the residual stress state was recorded again and again until fracture. To investigate the relaxation process during static load a four-point bending bench was used. The compressive residual stress relaxation was correlated to the applied fatigue stress level, the cycle number the quality of alloys.

  18. A loading system for creep testing under constant compressive stress

    NASA Technical Reports Server (NTRS)

    Dobes, F.; Zverina, O.; Cadek, J.

    1987-01-01

    A critical analysis is made of layouts assuring constant stress under creep, pointing out the difficulties of using these layouts for compressive testing. A new mechanical system to maintain stress during creep testing is proposed. Constant stress is achieved by a definite motion of the load. The proposed system can be used in tensile or compressive testing. Practical measurements reveal that the stress constancy error is not greater than plus or minus 1.5 percent up to relative deformation of 30 percent.

  19. Stress-induced flowering

    PubMed Central

    Wada, Kaede C

    2010-01-01

    Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering. PMID:20505356

  20. Compression Fracture of CFRP Laminates Containing Stress Intensifications.

    PubMed

    Leopold, Christian; Schütt, Martin; Liebig, Wilfried V; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl; Fiedler, Bodo

    2017-09-05

    For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains

  1. Compression Fracture of CFRP Laminates Containing Stress Intensifications

    PubMed Central

    Schütt, Martin; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl

    2017-01-01

    For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains

  2. Polymer-induced compression of biological hydrogels

    NASA Astrophysics Data System (ADS)

    Datta, Sujit; Preska Steinberg, Asher; Ismagilov, Rustem

    Hydrogels - such as mucus, blood clots, and the extracellular matrix - provide critical functions in biological systems. However, little is known about how their structure is influenced by many of the polymeric materials they come into contact with regularly. Here, we focus on one critically important biological hydrogel: colonic mucus. While several biological processes are thought to potentially regulate the mucus hydrogel structure, the polymeric composition of the gut environment has been ignored. We use Flory-Huggins solution theory to characterize polymer-mucus interactions. We find that gut polymers, including those small enough to penetrate the mucus hydrogel, can in fact alter mucus structure, changing its equilibrium degree of swelling and forcing it to compress. The extent of compression increases with increasing polymer concentration and size. We use experiments on mice to verify these predictions with common dietary and therapeutic gut polymers. Our results provide a foundation for investigating similar, previously overlooked, polymer-induced effects in other biological hydrogels.

  3. Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering.

    PubMed

    Shachar, Michal; Benishti, Nessi; Cohen, Smadar

    2012-01-01

    Cardiac tissue engineering presents a challenge due to the complexity of the muscle tissue and the need for multiple signals to induce tissue regeneration in vitro. We investigated the effects of compression (1 Hz, 15% strain) combined with fluid shear stress (10(-2) -10(-1) dynes/cm(2) ) provided by medium perfusion on the outcome of cardiac tissue engineering. Neonatal rat cardiac cells were seeded in Arginine-Glycine-Aspartate (RGD)-attached alginate scaffolds, and the constructs were cultivated in a compression bioreactor. A daily, short-term (30 min) compression (i.e., "intermittent compression") for 4 days induced the formation of cardiac tissue with typical striation, while in the continuously compressed constructs (i.e., "continuous compression"), the cells remained spherical. By Western blot, on day 4 the expression of the gap junction protein connexin 43 was significantly greater in the "intermittent compression" constructs and the cardiomyocyte markers (α-actinin and N-cadherin) showed a trend of better preservation compared to the noncompressed constructs. This regime of compression had no effect on the proliferation of nonmyocyte cells, which maintained low expression level of proliferating cell nuclear antigen. Elevated secretion levels of basic fibroblast growth factor and transforming growth factor-β in the daily, intermittently compressed constructs likely attributed to tissue formation. Our study thus establishes the formation of an improved cardiac tissue in vitro, when induced by combined mechanical signals of compression and fluid shear stress provided by perfusion.

  4. Bone Response to Static Compressive Stress at Bone-Implant Interface: A Pilot Study of Critical Static Compressive Stress.

    PubMed

    Ikumi, Noriharu; Suzawa, Tetsuo; Yoshimura, Kentaro; Kamijo, Ryutaro

    2015-01-01

    Mechanical imbalance caused by mechanical overload or poor bone quality around a dental implant can result in osseointegration failure. To avoid that, it is important to identify an appropriate safety stress margin (critical stress level). For this study, a novel device was developed to generate a quantitative amount of static compressive stress under an aseptic closed condition. The aim was to clarify the amount of critical stress produced on the cortical bone when static compression is applied to the osseointegrated bone-implant interface. Small parts for bone sustaining, load generation, and load transmittance were developed to generate quantitative static compressive stress at the bone-implant interface and implanted inside the tibial cortical bone in adult beagle dogs. Each tibia in two dogs received bone-sustaining parts, then after 2 months, the load-transmitting parts were placed into the bone-sustaining parts. After another 2 months, various magnitudes of static compressive stress (0-180 MPa) were generated by tightening the load-generating part to the osseointegrated bone-implant interface. After 7 days, the animals were euthanized, and dissected blocks were prepared for histomorphometric analyses. There were no obvious signs of bone resorption or loss of osseointegration in any of the dogs. The change in shape of osteon was not influenced by the amount of static compressive stress. However, periosteal reactions were observed under the cortical bone on the opposite side. These results indicate that osseointegrated bone-implant interfaces show minimal response based on the magnitude of static compressive stress, even when such stress is greater than 120 MPa.

  5. Effects of compressive stress on a steel cube using tensor magnetization and magnetostriction analysis

    NASA Astrophysics Data System (ADS)

    Liorzou, F.; Atherton, D. L.

    1999-04-01

    Measurements of the effects of a compressive stress on magnetization and magnetostriction loops of a cubic sample from a steel pipe are presented. The compressive stress was applied perpendicularly to the magnetic field and, in order to take account of the anisotropy of the sample, measurements were performed in all three orthogonal directions with field applied successively parallel to each direction of the cube edges. This gives rise to 3×3 matrices defining the magnetization and magnetostriction tensors. Analysis of each element of the tensors enabled, firstly, the initial preferential orientation of the magnetic domains due to the texture to be identified and, secondly, permitted us to follow the changes in the bulk easy axis induced when the compressive stress was applied. Valuable information about these changes in the domain arrangements was obtained from analysis of the off-diagonal elements of the magnetization tensor.

  6. Magnitude-dependent response of osteoblasts regulated by compressive stress

    PubMed Central

    Shen, Xiao-qing; Geng, Yuan-ming; Liu, Ping; Huang, Xiang-yu; Li, Shu-yi; Liu, Chun-dong; Zhou, Zheng; Xu, Ping-ping

    2017-01-01

    The present study aimed to investigate the role of magnitude in adaptive response of osteoblasts exposed to compressive stress. Murine primary osteoblasts and MC3T3-E1 cells were exposed to compressive stress (0, 1, 2, 3, 4, and 5 g/cm2) in 3D culture. Cell viability was evaluated, and expression levels of Runx2, Alp, Ocn, Rankl, and Opg were examined. ALP activity in osteoblasts and TRAP activity in RAW264.7 cells co-cultured with MC3T3-E1 cells were assayed. Results showed that compressive stress within 5.0 g/cm2 did not influence cell viability. Both osteoblastic and osteoblast-regulated osteoclastic differentiation were enhanced at 2 g/cm2. An increase in stress above 2 g/cm2 did not enhance osteoblastic differentiation further but significantly inhibited osteoblast-regualted osteoclastic differentiation. This study suggested that compressive stress regulates osteoblastic and osteoclastic differentiation through osteoblasts in a magnitude-dependent manner. PMID:28317941

  7. A primary study on the performance of piezoceramic based smart aggregate under various compressive stresses

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Yang, Antai; Zhao, Yanru; Du, Chengcheng

    2017-10-01

    The reliability of piezoceramic based smart aggregate (SA) used for damage detection of concrete structures has already been validated by laboratory tests. However, the in situ concrete members are generally under a big range of stress levels, and the performance of SA under various compressive stresses is still unclear. In this study, an electronic universal testing machine was employed to apply different stresses on the SAs. The received signals of SA sensor accompanying with different drive signals were recorded. The experimental results show that the amplitude of received signals increases firstly, and then tends to be stable with stress. This enhancement is mainly induced by the decrease in thickness of epoxy resin layer caused by compressive stress. It indicates that the change of load applied on monitored concrete members embedded with SAs may lead to a change in monitoring signal amplitude even in elastic range, but it does not stand for the change of health state of monitored concrete member.

  8. Toward compression of small cell population: harnessing stress in passive regions of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Poulin, Alexandre; Rosset, Samuel; Shea, Herbert

    2014-03-01

    We present a dielectric elastomer actuator (DEA) for in vitro analysis of mm2 biological samples under periodic compressive stress. Understanding how mechanical stimuli affect cell functions could lead to significant advances in diseases diagnosis and drugs development. We previously reported an array of 72 micro-DEAs on a chip to apply a periodic stretch to cells. To diversify our cell mechanotransduction toolkit we have developed an actuator for periodic compression of small cell populations. The device is based on a novel design which exploits the effects of non-equibiaxial pre-stretch and takes advantage of the stress induced in passive regions of DEAs. The device consists of two active regions separated by a 2mm x 2mm passive area. When connected to an AC high-voltage source, the two active regions periodically compress the passive region. Due to the non-equibiaxial pre-stretch it induces uniaxial compressive strain greater than 10%. Cells adsorbed on top of this passive gap would experience the same uniaxial compressive stain. The electrodes configuration confines the electric field and prevents it from reaching the biological sample. A thin layer of silicone is casted on top of the device to ensure a biocompatible environment. This design provides several advantages over alternative technologies such as high optical transparency of the area of interest (passive region under compression) and its potential for miniaturization and parallelization.

  9. Laser shock processing induced residual compression: Impact on predicted crack growth threshold performance

    NASA Astrophysics Data System (ADS)

    Shepard, M. J.

    2005-08-01

    Design credit is not currently taken for laser shock processing (LSP) induced compressive residual stresses in damage tolerant design. The inclusion of these and other compressive stresses in design practice has the potential to dramatically increase predicted fatigue crack growth threshold performance and damage tolerant design life. In the current effort, Ti-6Al-4V coupons will be subjected to shot peening, glass bead peening, and high intensity laser shock processing. The in-depth residual stresses due to processing will be analyzed and then input into a linear elastic fracture mechanics analysis code to predict fatigue crack growth threshold performance. This analysis establishes both the utility and feasibility of incorporating LSP-induced compressive residual stresses into damage tolerant design practice.

  10. Uniaxial-stress-driven transformation in cold compressed glassy carbon

    NASA Astrophysics Data System (ADS)

    Yao, Mingguang; Fan, Xianhong; Zhang, Weiwei; Bao, Yongjun; Liu, Ran; Sundqvist, Bertil; Liu, Bingbing

    2017-09-01

    We show that transformation of glassy carbon (GC) into a translucent superhard carbon phase by cold-compression is obtained in the presence of a uniaxial stress field. This transition accompanies with sp2 to sp3 bonding change in GC, and it is found that the uniaxial stress strongly favors this bonding transition. The transformation of GC causes photoluminescence and significantly increases light transmissivity. Upon decompression, the high pressure phase can be maintained under large uniaxial stress at a chamber pressure even down to ˜10 GPa. We discuss possible mechanisms of these transitions by a distinct bonding process that occurs in noncrystalline carbon.

  11. Trabecular bone microdamage and microstructural stresses under uniaxial compression.

    PubMed

    Nagaraja, Srinidhi; Couse, Tracey L; Guldberg, Robert E

    2005-04-01

    The balance between local remodeling and accumulation of trabecular bone microdamage is believed to play an important role in the maintenance of skeletal integrity. However, the local mechanical parameters associated with microdamage initiation are not well understood. Using histological damage labeling, micro-CT imaging, and image-based finite element analysis, regions of trabecular bone microdamage were detected and registered to estimated microstructural von Mises effective stresses and strains, maximum principal stresses and strains, and strain energy density (SED). Bovine tibial trabecular bone cores underwent a stepwise uniaxial compression routine in which specimens were micro-CT imaged following each compression step. The results indicate that the mode of trabecular failure observed by micro-CT imaging agreed well with the polarity and distribution of stresses within an individual trabecula. Analysis of on-axis subsections within specimens provided significant positive relationships between microdamage and each estimated tissue stress, strain and SED parameter. In a more localized analysis, individual microdamaged and undamaged trabeculae were extracted from specimens loaded within the elastic region and to the apparent yield point. As expected, damaged trabeculae in both groups possessed significantly higher local stresses and strains than undamaged trabeculae. The results also indicated that microdamage initiation occurred prior to apparent yield at local principal stresses in the range of 88-121 MPa for compression and 35-43 MPa for tension and local principal strains of 0.46-0.63% in compression and 0.18-0.24% in tension. These data provide an important step towards understanding factors contributing to microdamage initiation and establishing local failure criteria for normal and diseased trabecular bone.

  12. Critical stress of thin-walled cylinders in axial compression

    NASA Technical Reports Server (NTRS)

    Batdorf, S B; Schildcrout, Murry; Stein, Manuel

    1947-01-01

    Empirical design curves are presented for the critical stress of thin-wall cylinders loaded in axial compression. These curves are plotted in terms of the nondimensional parameters of small-deflection theory and are compared with theoretical curves derived for the buckling of cylinders with simply supported and clamped edges. An empirical equation is given for the buckling of cylinders having a length-radius ratio greater than about 0.75.

  13. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  14. Stress-induced cardiomyopathy

    PubMed Central

    Lisung, Fausto Gabriel; Shah, Ankit B; Levitt, Howard L; Coplan, Neil B

    2015-01-01

    A woman in her early 70s presented with chest pain, dyspnoea and diaphoresis 30 min after her husband expired in our hospital. Cardiac markers were elevated and there were acute changes in ECG suggestive for acute coronary syndrome. Echocardiogram showed apical akinesis, basal segment hyperkinesis with an ejection fraction of 30%. Cardiac catheterisation was performed showing non-obstructive coronary arteries, leading to the diagnosis of stress-induced cardiomyopathy. The patient improved with medical management. Repeat echocardiogram 2 months later showed resolution of heart failure with an ejection fraction of 65–70%. PMID:25858931

  15. Vortex-induced disturbance field in a compressible shear layer

    NASA Technical Reports Server (NTRS)

    Papamoschou, D.; Lele, S. K.

    1992-01-01

    The disturbance field induced by a small isolated vortex in a compressible shear layer is studied using direct simulation in a convected frame. The convective Mach number, M(sub c), is varied from 0.1 to 1.25. The vorticity perturbation is rapidly sheared by the mean velocity gradient. The resulting disturbance pressure field is observed to decrease both in magnitude and extent with increasing M(sub c), becoming a narrow transverse zone for M(sub c) greater than 0.8. A similar trend is seen for the perturbation velocity magnitude and for the Reynolds shear stress. By varying the vortex size, we verified that the decrease in perturbation levels is due to the mean-flow Mach number and not the Mach number across the vortex. At high M(sub c), the vortex still communicates with the edges of the shear layer, although communication in the mean-flow direction is strongly inhibited. The growth rate of perturbation kinetic energy declines with M(sub c) primarily due to the reduction in shear stress. For M(sub c) greater than or equal to 0.6, the pressure dilatation also contributes to the decrease of growth rates. Calculation of the perturbation field induced by a vortex doublet revealed the same trends as in the single-vortex case, illustrating the insensitivity of the Mach-number effect to the specific form of initial conditions.

  16. R&D 100, 2016: Stress-Induced Fabrication

    ScienceCinema

    Fan, Hongyou; Brennan, Tom; Wise, Jack; Liu, Sheng; Hickman, Randy

    2016-12-09

    Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.

  17. R&D 100, 2016: Stress-Induced Fabrication

    SciTech Connect

    Fan, Hongyou; Brennan, Tom; Wise, Jack; Liu, Sheng; Hickman, Randy

    2016-11-07

    Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.

  18. Relationship between streaming potential and compressive stress in bovine intervertebral tissue.

    PubMed

    Fujisaki, Kazuhiro; Tadano, Shigeru; Asano, Nozomu

    2011-09-02

    The intervertebral disc is formed by the nucleus pulposus (NP) and annulus fibrosus (AF), and intervertebral tissue contains a large amount of negatively charged proteoglycan. When this tissue becomes deformed, a streaming potential is induced by liquid flow with positive ions. The anisotropic property of the AF tissue is caused by the structural anisotropy of the solid phase and the liquid phase flowing into the tissue with the streaming potential. This study investigated the relationship between the streaming potential and applied stress in bovine intervertebral tissue while focusing on the anisotropy and loading location. Column-shaped specimens, 5.5 mm in diameter and 3 mm thick, were prepared from the tissue of the AF, NP and the annulus-nucleus transition region (AN). The loading direction of each specimen was oriented in the spinal axial direction, as well as in the circumferential and radial directions of the spine considering the anisotropic properties of the AF tissue. The streaming potential changed linearly with stress in all specimens. The linear coefficients k(e) of the relationship between stress and streaming potential depended on the extracted positions. These coefficients were not affected by the anisotropy of the AF tissue. In addition, these coefficients were lower in AF than in NP specimens. Except in the NP specimen, the k(e) values were higher under faster compression rate conditions. In cyclic compression loading the streaming potential changed linearly with compressive stress, regardless of differences in the tissue and load frequency.

  19. Influence of high deformation rate, brain region, transverse compression, and specimen size on rat brain shear stress morphology and magnitude.

    PubMed

    Haslach, Henry W; Gipple, Jenna M; Leahy, Lauren N

    2017-01-26

    An external mechanical insult to the brain, such as a blast, may create internal stress and deformation waves, which have shear and longitudinal components that can induce combined shear and compression of the brain tissue. To isolate the consequences of such interactions for the shear stress and to investigate the role of the extracellular fluid in the mechanical response, translational shear stretch at 10/s, 60/s, and 100/s translational shear rates under either 0% or 33% fixed transverse compression is applied without preconditioning to rat brain specimens. The specimens from the cerebrum, the cerebellum grey matter, and the brainstem white matter are nearly the full length of their respective regions. The translational shear stress response to translational shear deformation is characterized by the effect that each of four factors, high deformation rate, brain region, transverse compression, and specimen size, have on the shear stress magnitude averaged over ten specimens for each combination of factors. Increasing the deformation rate increases the magnitude of the shear stress at a given translational shear stretch, and as tested by ANOVAs so does applying transverse fixed compression of 33% of the thickness. The stress magnitude differs by the region that is the specimen source: cerebrum, cerebellum or brainstem. The magnitude of the shear stress response at a given deformation rate and stretch depends on the specimen length, called a specimen size effect. Surprisingly, under no compression a shorter length specimen requires more shear stress, but under 33% compression a shorter length specimen requires less shear stress, to meet a required shear deformation rate. The shear specimen size effect calls into question the applicability of the classical shear stress definition to hydrated soft biological tissue.

  20. Symmetry induced compression of discrete phase space

    NASA Astrophysics Data System (ADS)

    Krawczyk, Małgorzata J.

    2011-06-01

    A compressed representation is described of the state space of discrete systems with some kind of symmetry of its states. An initial state space is represented as a network of states. Two states are linked if some single process leads from one state to another. The network can be compressed by a grouping of states into classes. States in the same class are represented by nodes of equal degree. Further, subclasses are defined: states belong to the same subclass if their neighbouring states belong to the same subclasses. The goal is that the equilibrium probability distribution of states in the initial network can be found from the probability of subclasses in the compressed network. The approach is applied to three exemplary systems: two pieces of a triangular lattice (25 and 36 nodes) with Ising spins at the lattice nodes, and a roundabout with three access roads and three exit roads. The compression is from 3630 ground states to 12 subclasses, from 263 640 ground states to 409 subclasses, and from 729 states to 55 subclasses, respectively.

  1. Retention of Compressive Residual Stresses Introduced by Shot Peening in a Powder Metal Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Danetti, Andrew; Draper, Susan L.; Locci, Ivan E.; Telesman, Jack

    2016-01-01

    The fatigue lives of disk superalloys can be increased by shot peening their surfaces, to induce compressive residual stresses near the surface that impede cracking there. As disk application temperatures increase for improved efficiency, the persistence of these beneficial stresses could be impaired, especially with continued fatigue cycling. The objective of this work was to study the retention of residual stresses introduced by shot peening, when subjected to fatigue and high temperatures. Fatigue specimens of powder metallurgy processed nickel-base disk superalloy ME3 were prepared with consistent processing and heat treatment. They were then shot peened using varied conditions. Strain-controlled fatigue cycles were run at room temperature and 704 C, to allow re-assessment of residual stresses.

  2. Proteasome inhibition alleviates prolonged moderate compression-induced muscle pathology

    PubMed Central

    2011-01-01

    Background The molecular mechanism initiating deep pressure ulcer remains to be elucidated. The present study tested the hypothesis that the ubiquitin proteasome system is involved in the signalling mechanism in pressure-induced deep tissue injury. Methods Adult Sprague Dawley rats were subjected to an experimental compression model to induce deep tissue injury. The tibialis region of the right hind limb was subjected to 100 mmHg of static pressure for six hours on each of two consecutive days. The compression pressure was continuously monitored by a three-axial force transducer within the compression indentor. The left hind limb served as the intra-animal control. Muscle tissues underneath the compressed region were collected and used for analyses. Results Our results demonstrated that the activity of 20S proteasome and the protein abundance of ubiquitin and MAFbx/atrogin-1 were elevated in conjunction with pathohistological changes in the compressed muscle, as compared to control muscle. The administration of the proteasome inhibitor MG132 was found to be effective in ameliorating the development of pathological histology in compressed muscle. Furthermore, 20S proteasome activity and protein content of ubiquitin and MAFbx/atrogin-1 showed no apparent increase in the MG132-treated muscle following compression. Conclusion Our data suggest that the ubiquitin proteasome system may play a role in the pathogenesis of pressure-induced deep tissue injury. PMID:21385343

  3. A study of turbulence on compression ramps with k-epsilon and Reynolds stress models

    NASA Technical Reports Server (NTRS)

    Lee, J.; Taulbee, D. B.; Holden, M. S.

    1990-01-01

    A theoretical study was conducted to determine the effects of adverse pressure gradient and compressibility in modeling turbulent compressible flows. The kinetic energy/dissipation and Reynolds stress model predictions are presented and compared with experimental data. The effects of compressibility, which include the mass averaged fluctuation term, the pressure dilatation term, and the dilatation dissipation, are important in modeling the turbulent compressible flows. The normal stresses and longitudinal strain rates also have an effect in the prediction of turbulent energy productions on the curved surfaces. A new compressible formulation of the pressure strain term, which includes the dilatation effects, in the Reynolds stress equation is presented.

  4. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  5. Schwannosis induced medullary compression in VACTERL syndrome.

    PubMed

    Treacy, A; Redmond, M; Lynch, B; Ryan, S; Farrell, M; Devaney, D

    2009-01-01

    A 7-year-old boy with a history of VACTERL syndrome was found collapsed in bed. MRI had shown basilar invagination of the skull base and narrowing of the foramen magnum. Angulation, swelling and abnormal high signal at the cervicomedullary junction were felt to be secondary to compression of the medulla. Neuropathologic examination showed bilateral replacement of the medullary tegmentum by an irregularly circumscribed cellular lesion which was composed of elongated GFAP/S 100-positive cells with spindled nuclei and minimal atypia. The pathologic findings were interpreted as intramedullary schwannosis with mass effect. Schwannosis, is observed in traumatized spinal cords where its presence may represent attempted, albeit aberrant, repair by inwardly migrating Schwann cells ofperipheral origin. In our view the compressive effect of the basilar invagination on this boy's medulla was of sufficient magnitude to have caused tumoral medullary schwannosis with resultant intermittent respiratory compromise leading to reflex anoxic seizures.

  6. Vertebral Compression Exacerbates Osteoporotic Pain in an Ovariectomy-Induced Osteoporosis Rat Model.

    PubMed

    Suzuki, Miyako; Orita, Sumihisa; Miyagi, Masayuki; Ishikawa, Tetsuhiro; Kamoda, Hiroto; Eguchi, Yawara; Arai, Gen; Yamauchi, Kazuyo; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Kubota, Go; Inage, Kazuhide; Sainoh, Takeshi; Kawarai, Yuya; Yoshino, Kensuke; Ozawa, Tomoyuki; Aoki, Yasuchika; Toyone, Tomoaki; Takahashi, Kazuhisa; Kawakami, Mamoru; Ohtori, Seiji; Inoue, Gen

    2013-09-10

    Study Design. Basic pain study using osteoporotic rodent models.Objective. To examine alterations in distribution of pain-related neuropeptides following compressive force on osteoporotic vertebrae and their chronic pain-related properties.Summary of Background Data. We previously reported significantly increased production of calcitonin gene-related peptide (CGRP), a marker of inflammatory pain, in the dorsal root ganglia (DRG) of vertebrae in osteoporosis-model ovariectomized (OVX) rats. Here, we hypothesized that longitudinal compressive force on vertebrae can affect osteoporotic pain properties, which has not been examined yet.Methods. OVX rats were used as the osteoporosis model. Female Sprague Dawley rats were prepared and Fluoro-Gold (FG) neurotracer was applied to the periosteal surface of the Co5 vertebra. After FG-labeling, the animals were divided into 4 groups: Control, Control + compression, OVX, and OVX + compression. The Control groups were not ovariectomized. In the compression groups, K-wires were stabbed transversely through Co4 and Co6 with Co5 compressed longitudinally by rubber bands bridged between the two. One, 2, 4, and 8 weeks after surgery, bilateral S1 to S3 DRGs were excised for immunofluorescence assays. Expression of CGRP and activating transcription factor 3 (ATF-3), a marker of neuronal injury, were compared among the 4 groups.Results. Sustained upregulation of CGRP in DRG neurons was observed following compression of the Co5 vertebra, and Co5 compression caused significant increase in CGRP production in DRG neurons, while a greater level of ATF-3 upregulation was observed in DRGs in OVX rats following dynamic vertebral compression 8 weeks after surgery, implying potential neuropathic pain.Conclusion: There was sustained upregulation of CGRP and ATF3 in DRGs in osteoporotic model rats compared with controls, and levels were further enhanced by dynamic vertebral compression. These findings imply that dynamic compression stress on

  7. Plasticity in human sound localization induced by compressed spatial vision.

    PubMed

    Zwiers, Marcel P; Van Opstal, A John; Paige, Gary D

    2003-02-01

    Auditory and visual target locations are encoded differently in the brain, but must be co-calibrated to maintain cross-sensory concordance. Mechanisms that adjust spatial calibration across modalities have been described (for example, prism adaptation in owls), though rudimentarily in humans. We quantified the adaptation of human sound localization in response to spatially compressed vision (0.5x lenses for 2-3 days). This induced a corresponding compression of auditory localization that was most pronounced for azimuth (minimal for elevation) and was restricted to the visual field of the lenses. Sound localization was also affected outside the field of visual-auditory interaction (shifted centrally, not compressed). These results suggest that spatially modified vision induces adaptive changes in adult human sound localization, including novel mechanisms that account for spatial compression. Findings are consistent with a model in which the central processing of sound location is encoded by recruitment rather than by a place code.

  8. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  9. Compressive and Tensile Stress in CdSe Semiconductor Quantum Dots

    SciTech Connect

    Meulenberg, R W; Jennings, T; Strouse, G F

    2004-06-02

    Compressive and tensile stress in colloidal CdSe quantum dots (QDs) is examined using resonance Raman spectroscopy. We find that the dispersion of the longitudinal optical phonon mode with size does not follow theoretical calculations based on phonon confinement models. To account for these deviations, the presence of compressive or tensile stress in the QDs was proposed. We find that CdSe QDs prepared via a single source precursor (SSP) method exhibit compressive stress, while CdSe QDs prepared via high temperature lyothermal methods exhibit tensile stress. Evidence is provided that the SSP CdSe QDs stress is directly related to a surface effect.

  10. Compressibility effects in Rayleigh-Taylor instability-induced flows.

    PubMed

    Gauthier, S; Le Creurer, B

    2010-04-13

    We present a tentative review of compressibility effects in Rayleigh-Taylor instability-induced flows. The linear, nonlinear and turbulent regimes are considered. We first make the classical distinction between the static compressibility or stratification, and the dynamic compressibility owing to the finite speed of sound. We then discuss the quasi-incompressible limits of the Navier-Stokes equations (i.e. the low-Mach number, anelastic and Boussinesq approximations). We also review some results about stratified compressible flows for which instability criteria have been derived rigorously. Two types of modes, convective and acoustic, are possible in these flows. Linear stability results for perfect fluids obtained from an analytical approach, as well as viscous fluid results obtained from numerical approaches, are also reviewed. In the turbulent regime, we introduce Chandrasekhar's observation that the largest structures in the density fluctuations are determined by the initial conditions. The effects of compressibility obtained by numerical simulations in both the nonlinear and turbulent regimes are discussed. The modifications made to statistical models of fully developed turbulence in order to account for compressibility effects are also treated briefly. We also point out the analogy with turbulent compressible Kelvin-Helmholtz mixing layers and we suggest some lines for further investigations.

  11. Microcapsule Buckling Triggered by Compression-Induced Interfacial Phase Change.

    PubMed

    Salmon, Andrew Roy; Parker, Richard M; Groombridge, Alexander S; Maestro, Armando; Coulston, Roger J; Hegemann, Jonas; Kierfeld, Jan; Scherman, Oren A; Abell, Chris

    2016-10-04

    There is an emerging trend towards the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression. This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, (T/R)buck.

  12. Changes in ferroelectric properties of ceramics in lead magnesium niobate-lead titanate system with compressive stress

    NASA Astrophysics Data System (ADS)

    Unruan, Muangjai; Wongmaneerung, Rewadee; Ngamjarurojana, Athipong; Laosiritaworn, Yongyut; Ananta, Supon; Yimnirun, Rattikorn

    2008-09-01

    Effects of compressive stress on the ferroelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics were investigated. The ceramics with the formula (1-x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 or (1-x)PMN-(x)PT (x =0.1-0.5) were prepared by a conventional mixed-oxide method. Dense perovskite-phase PMN-PT ceramics with a uniform microstructure were obtained. The ferroelectric properties were measured under compressive stress (0-75 MPa) using a homebuilt compressometer in conjunction with a modified Sawyer-Tower circuit. The experimental results revealed that the superimposed compression stress significantly reduced both the dissipation energy and the polarizations of the near morphotropic phase boundary compositions, i.e., 0.8PMN-0.2PT, 0.7PMN-0.3PT, and 0.6PMN-0.4PT, while the stress influence was much less in other compositions. On the contrary, the applied compressive stress showed little or no influence on the coercive field. These results were interpreted through the non-180° ferroelastic domain switching processes and the stress induced decrease in the switchable part of domains.

  13. C-phycocyanin alleviates osteoarthritic injury in chondrocytes stimulated with H2O2 and compressive stress.

    PubMed

    Young, In-Chi; Chuang, Sung-Ting; Hsu, Chia-Hsien; Sun, Yu-Jun; Lin, Feng-Huei

    2016-12-01

    During the progression of osteoarthritis (OA), dysregulation of extracellular matrix anabolism, abnormal generation of reactive oxygen species (ROS) and inflammatory cytokines have been shown to accelerate the degradation process of cartilage. The potency of c-phycocyanin (C-PC) to protect cellular components against oxidative stress, along with its anti-inflammation and anti-apoptosis effects, are well documented; however, effects of C-PC on OA are still unclear. In this study, we aimed to investigate the effects of C-PC on OA using H2O2 or compression-stimulated OA-like porcine chondrocyte models. The results showed that C-PC had the ability to inhibit ROS production, reverse caspase-3 activity, and reduce apoptosis cell population. C-PC also reversed aggrecan and type II collagen gene expressions after stimulation with 1mM H2O2 or 60psi of compression. Inhibition of IL-6 and MMP-13 genes was observed in compression-stimulated chondrocytes but not in H2O2-treated cells. In dimethylmethylene blue assay and alcian blue staining, C-PC maintained the sulfated-glycosaminoglycan (sGAG) content after stimulation with compression. We concluded that C-PC can prevent early signs of OA caused by compressive stress and attenuate H2O2-induced oxidative stress. Therefore, we suggest that C-PC can be used as a potential drug candidate for chronic OA treatment.

  14. Integrins mediate mechanical compression-induced endothelium-dependent vasodilation through endothelial nitric oxide pathway.

    PubMed

    Lu, Xiao; Kassab, Ghassan S

    2015-09-01

    Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation, the mechanism whereby arterial compression elicits NO production is unclear. We cannulated isolated swine (n = 39) myocardial (n = 69) and skeletal muscle (n = 60) arteriole segments and exposed them to cyclic transmural pressure generated by either intraluminal or extraluminal pressure pulses to simulate compression in contracting muscle. We found that the vasodilation elicited by internal or external pressure pulses was equivalent; moreover, vasodilation in response to pressure depended on changes in arteriole diameter. Agonist-induced endothelium-dependent and -independent vasodilation was used to verify endothelial and vascular smooth muscle cell viability. Vasodilation in response to cyclic changes in transmural pressure was smaller than that elicited by pharmacological activation of the NO signaling pathway. It was attenuated by inhibition of NO synthase and by mechanical removal of the endothelium. Stemming from previous observations that endothelial integrin is implicated in vasodilation in response to shear stress, we found that function-blocking integrin α5β1 or αvβ3 antibodies attenuated cyclic compression-induced vasodilation and NOx (NO(-)2 and NO(-)3) production, as did an RGD peptide that competitively inhibits ligand binding to some integrins. We therefore conclude that integrin plays a role in cyclic compression-induced endothelial NO production and thereby in the vasodilation of small arteries during cyclic transmural pressure loading. © 2015 Lu and Kassab.

  15. Sustained Focal Cortical Compression Reduces Electrically-Induced Seizure Threshold

    PubMed Central

    Ding, Ming-Chieh; Lo, Eng H.; Stanley, Garrett B.

    2008-01-01

    Brain injury can often result in the subsequent appearance of seizures, suggesting an alteration in neural excitability associated with the balance between neuronal excitation and inhibition. The process by which this occurs has yet to be fully elucidated. The specific nature of the changes in excitation and inhibition is still unclear, as is the process by which the seizures appear following injury. In this study, we investigated the effects of focal cortical compression on electrically-induced localized seizure threshold in rats. Male Long Evans rats were implanted with stimulating screw electrodes in their motor cortices above the regions controlling forelimb movement. Initial seizure threshold was determined in the animals using a ramped electrical stimulation procedure prior to any compression. Following initial threshold determination, animals underwent sustained cortical compression and then following a 24 hour recovery period had their seizure thresholds tested again with electrical stimulation. Reliability of threshold measurements was confirmed through repeated measurements of seizure threshold. Localized seizure threshold was significantly lowered following sustained cortical compression as compared to control cases. Taken together, the results here suggest a change in global brain excitability following localized, focal compression. PMID:18495350

  16. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-05-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.

  17. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-03-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, i.e. lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro and macro-cracks.

  18. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway.

  19. Effects of mechanical-bending and process-induced stresses on metal effective work function

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Chu, Min; Huang, Anping; Thompson, Scott

    2013-01-01

    Effective work function (EWF) change is investigated under both externally-applied mechanical stresses and process-induced stresses. Four-point wafer bending and ring bending techniques are used to generate uniaxial and biaxial mechanical stresses, respectively. For the process-induced stresses, bowing technique and charge pumping method are used for stress characterization and interface state measurement. It was found that higher stress presents in devices with thinner metal gate, regardless the thermal treatment cycle. EWF decreases under both tensile and compressive stress was observed due to the increase of defect activation energy lowering induced donor-like interface states.

  20. Antioxidant-Induced Stress

    PubMed Central

    Villanueva, Cleva; Kross, Robert D.

    2012-01-01

    Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these “drugs”. The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that “antioxidant-induced stress” results when antioxidants overwhelm the body’s free radicals. PMID:22408440

  1. Change in dynamic young's modulus of nuclear-grade isotropic graphite during tensile and compressive stressing

    NASA Astrophysics Data System (ADS)

    Yoda, S.; Eto, M.; Oku, T.

    1983-12-01

    The effect of mechanical stresses on the dynamic Young's modulus measured by the ultrasonic wave method was examined for an isotropic graphite. Young's modulus of the graphite decreased with increasing applied stress, though the amount of its decrease was different between tensile and compressive stresses. The change in Young's modulus under mechanical stresses clearly corresponded to the stress-strain behavior of the graphite. Change in pore volume caused by mechanical stressing plays an important role in the decrease in Young's modulus under tension and compression. The change in Young's modulus was well represented by the formula E/E 0 = exp(- Aɛ + B) within a limited strain. A and B in the equation appeared to differ between tension and compression. The strain above which the formula showed deviation would be associated with the formation of cracks as observed in previous work.

  2. Induced groundwater flux by increases in the aquifer's total stress.

    PubMed

    Chang, Ching-Min; Yeh, Hund-Der

    2015-01-01

    Fluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values.

  3. Stress proteins induced by arsenic.

    PubMed

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  4. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    NASA Astrophysics Data System (ADS)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  5. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  6. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.

    PubMed

    Hossain, R; Pahlevani, F; Quadir, M Z; Sahajwalla, V

    2016-10-11

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels' performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  7. High Compressive Stresses Near the Surface of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Martel, S. J.; Logan, J. M.; Stock, G. M.

    2012-12-01

    Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front

  8. Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution

    NASA Astrophysics Data System (ADS)

    Chen, L. Y.; Ge, Q.; Qu, S.; Jiang, Q. K.; Nie, X. P.; Jiang, J. Z.

    2008-05-01

    The limited plastic deformation and lack of work hardening seriously restrict the applications of bulk metallic glasses (BMGs). Here, large macroscopic compressive plastic deformation (over 15%) and work-hardening-like behavior were achieved in a monolithic BMG through tailoring loading stress distribution experimentally. Numerical analysis was also carried out to investigate the stress distribution under the same mechanical condition. It is shown that loading induced stress gradient is responsible for the achievement mentioned above.

  9. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Magnfält, D.; Fillon, A.; Boyd, R. D.; Helmersson, U.; Sarakinos, K.; Abadias, G.

    2016-02-01

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  10. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    SciTech Connect

    Magnfält, D. Sarakinos, K.; Fillon, A.; Abadias, G.; Boyd, R. D.; Helmersson, U.

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  11. The stress-induced surface wave velocity variations in concrete

    NASA Astrophysics Data System (ADS)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  12. Stress relaxation in vanadium under shock and shockless dynamic compression

    SciTech Connect

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.; Savinykh, A. S.; Zaretsky, E. B.

    2015-07-28

    Evolutions of elastic-plastic waves have been recorded in three series of plate impact experiments with annealed vanadium samples under conditions of shockless and combined ramp and shock dynamic compression. The shaping of incident wave profiles was realized using intermediate base plates made of different silicate glasses through which the compression waves were entered into the samples. Measurements of the free surface velocity histories revealed an apparent growth of the Hugoniot elastic limit with decreasing average rate of compression. The growth was explained by “freezing” of the elastic precursor decay in the area of interaction of the incident and reflected waves. A set of obtained data show that the current value of the Hugoniot elastic limit and plastic strain rate is rather associated with the rate of the elastic precursor decay than with the local rate of compression. The study has revealed the contributions of dislocation multiplications in elastic waves. It has been shown that independently of the compression history the material arrives at the minimum point between the elastic and plastic waves with the same density of mobile dislocations.

  13. Mechanically induced residual stresses: Modelling and characterisation

    NASA Astrophysics Data System (ADS)

    Stranart, Jean-Claude E.

    Accurate characterisation of residual stress represents a major challenge to the engineering community. This is because it is difficult to validate the measurement and the accuracy is doubtful. It is with this in mind that the current research program concerning the characterisation of mechanically induced residual stresses was undertaken. Specifically, the cold expansion of fastener holes and the shot peening treatment of aerospace alloys, aluminium 7075 and titanium Ti-6Al-4V, are considered. The objective of this study is to characterise residual stresses resulting from cold working using three powerful techniques. These are: (i) theoretical using three dimensional non-linear finite element modelling, (ii) semi-destructive using a modified incremental hole drilling technique and (iii) nondestructive using a newly developed guided wave method supplemented by traditional C-scan measurements. The three dimensional finite element results of both simultaneous and sequential cold expansion of two fastener holes revealed the importance of the separation distance, the expansion level and the loading history upon the development and growth of the plastic zone and unloading residual stresses. It further showed that the commonly adopted two dimensional finite element models are inaccurate and incapable of predicting these residual stresses. Similarly, the dynamic elasto-plastic finite element studies of shot peening showed that the depth of the compressed layer, surface and sub-surface residual stresses are significantly influenced by the shot characteristics. Furthermore, the results reveal that the separation distance between two simultaneously impacting shots governs the plastic zone development and its growth. In the semi-destructive incremental hole drilling technique, the accuracy of the newly developed calibration coefficients and measurement techniques were verified with a known stress field and the method was used to measure peening residual stresses. Unlike

  14. Band-Moment Compression of AVIRIS Hyperspectral Data and its Use in the Detection of Vegetation Stress

    NASA Technical Reports Server (NTRS)

    Estep, L.; Davis, B.

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test farm at Shelton, Nebraska. An experimental field was set off in plots that were differentially treated with anhydrous ammonia. Four replicates of 0-kg/ha to 200-kg/ha plots, in 50-kg/ha increments, were set out in a random block design. Low-altitude (GSD of 3 m) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data were collected over the site in 224 bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to reduce data load while maintaining or enhancing algorithm performance for vegetation stress detection, band-moment compression and analysis was applied to the AVIRIS image cube. The results indicated that band-moment techniques compress the AVIRIS dataset significantly while retaining the capability of detecting environmentally induced vegetation stress.

  15. Drilling-induced core fractures and in situ stress

    NASA Astrophysics Data System (ADS)

    Li, Yongyi; Schmitt, Douglas R.

    1998-03-01

    The relationship between the shapes of drilling-induced core fractures and the in situ state of stress is developed. The stress concentrations at the well bore bottom are first determined using a complete three-dimensional finite element analysis. Existing in situ compressional stresses generate large tensions in the immediate vicinity of the bottom hole which are sufficient to rupture the rock. Tensile fracture trajectories within these concentrated stress fields are predicted using a simple model of fracture propagation. These modeled fracture trajectories resemble well the observed shapes of drilling-induced core disking, petal, and petal-centerline fractures. Further, this agreement suggests that both the shape of the drilling-induced fracture and the location at which it initiates depends on the in situ stress state existing in the rock mass prior to drilling; the core fractures contain substantial information on in situ stress conditions. In all faulting regimes the coring-induced fractures initiate near the bit cut except for most cases under thrust faulting regime where the fracture initiates on the well bore axis. Further, under thrust faulting conditions only disk fractures appear possible. Both petal and disking fractures can be produced in strike-slip and normal faulting regimes depending upon the relative magnitudes between the least compressive horizontal principal stress and the vertical overburden stress. The predicted fracture shapes are in good qualitative agreement with observations of drilling-induced fractures described in the literature from laboratory experiments and field programs in which in situ stresses are measured by other means. The relationship of the morphology of coring induced fractures and in situ stresses suggests that the fractures can be used as independent complementary indicators in identifying stress regimes.

  16. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, M.; Bedgar, D. L.; Piastuch, W.; Davin, L. B.; Lewis, N. G.

    2001-01-01

    In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.

  17. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity.

    PubMed

    Kwon, M; Bedgar, D L; Piastuch, W; Davin, L B; Lewis, N G

    2001-07-01

    In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.

  18. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, M.; Bedgar, D. L.; Piastuch, W.; Davin, L. B.; Lewis, N. G.

    2001-01-01

    In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.

  19. Hypersonic mixed-compression inlet shock-induced combustion ramjets

    NASA Astrophysics Data System (ADS)

    Alexander, Derrick

    This study investigates the performance and flow field features of a mixed-compression inlet shock-induced combustion ramjet (shcramjet). In a shcramjet, oncoming air is compressed with shocks in the inlet and then further compressed and mixed with hydrogen fuel in a duct prior to shock-induced combustion and expansion of the combustion products through a divergent nozzle to provide thrust. Numerical studies are undertaken using the WARP code that solves the Favre-averaged Navier-Stokes equations closed by the Wilcox k-o turbulence model. Hydrogen/air combustion is solved via the twenty reaction, nine species combustion model of Jachimowski. Mixing augmentation through the use of cantilevered ramp injector arrays on opposite shcramjet inlet walls is studied and the influence of relative array locations is quantified. Increased spanwise distance between adjacent injectors on opposite walls allows for increased jet penetration and fuel distributions in the center of the engine duct. Chemically reacting studies verify an air buffer is created between the fuel and walls that suppresses premature ignition while still allowing for an air based mixing efficiency of up to 0.46-0.54. Combustion is produced over aerodynamic wedges with the spatial flow variation dictating both detonation and shock-induced combustion can be present over constant angle wedges. The initial inlet angle must be as high as possible, while avoiding premature ignition, to generate the pressure in the combustor needed for significant positive thrust. Thrust production from combustion is found to be insensitive to wedge angle if combustion is initiated across the cross-sectional area. Strong recirculation regions are formed via shock/boundary layer interactions in the confined engine duct. Mitigation of the recirculation is demonstrated with correct placement of the nozzle expansion in conjunction with air blowing in the boundary layer at a mass flow rate on the order of that of the fuel injection

  20. Analysis of the complex stress state during early loading in cylindrical compression-shear specimens

    NASA Astrophysics Data System (ADS)

    Pfeiffer, S.; Frint, P.; F-X Wagner, M.

    2017-03-01

    In most engineering applications, materials are subjected to complex load cases rather than the simple uniaxial ones typically used for material characterization. To experimentally study the material behavior under a combination of compression and shear, an inclined compression specimen can be used. This specimen has been applied in various earlier experimental studies, typically to investigate shear localization under quasi-static or impact loading. In this contribution, we analyze the stress state in a compression-shear specimen in detail using an elastic-ideal plastic finite element simulation. The effects of specimen aspect ratio (height/diameter), inclination angle, and friction conditions between specimen and tool plates are investigated using the material parameters of different conventional steels as input. Shear stress distributions in characteristic shear directions on specific planes in the specimen that control the subsequent plastic deformation behavior are evaluated. Our results show that, even in the absence of friction, shear stresses are distributed heterogeneously in the inclined specimen, which differs from the stress distribution in a conventional compression specimen. Moreover, the highest shear and equivalent stresses always occur at the edges of the short diagonal plane of the specimen, independent of the investigated parameters. This study contributes to a more detailed understanding of the elasto-plastic mechanics in compression-shear specimens, and it specifically provides information for the analysis of the onset of early plastic deformation.

  1. Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer

    DTIC Science & Technology

    1990-02-01

    source vector containing the terms causing production, destruc- tion and redistribution of the Reynolds stresses . To numerically obtain the solution...OTIC FiLE Copy W. . NASA Contractor Report 182002 ICASE Report No. 90-18 0 ZICASE APPLICATION OF A REYNOLDS STRESS TURBULENCE MODEL TO THE...Virginia 23665-5225 k L APPLICATION OF A REYNOLDS STRESS TURBULENCE . MODEL TO THE COMPRESSIBLE SHEAR LAYER S. Sarkar1 .1’eSo For Institute for

  2. Development, characterization, and modeling of ballistic impact on composite laminates under compressive pre-stress

    NASA Astrophysics Data System (ADS)

    Kerr-Anderson, Eric

    Structural composite laminates were ballistically impacted while under in-plane compressive pre-stress. Residual properties, damage characterization, and energy absorption were compared to determine synergistic effects of in-plane compressive pre-stress and impact velocity. A fixture was developed to apply in-plane compressive loads up to 30 tons to structural composites during an impact event using a single-stage light-gas gun. Observed failure modes included typical conical delamination, the development of an impact initiated shear crack (IISC), and the shear failure of a pre-stressed composite due to impact. It was observed that the compressive failure threshold quadratically decreased in relation to the impact velocity up to velocities that caused partial penetration. For all laminates impacted at velocities causing partial or full penetration up to 350 ms-1, the failure threshold was consistent and used as an experimental normalization. Samples impacted below 65% of the failure threshold witnessed no significant change in damage morphology or residual properties when compared to typical conical delamination. Samples impacted above 65% of the failure threshold witnessed additional damage in the form of a shear crack extending perpendicular to the applied load from the point of impact. The presence of an IISC reduced the residual properties and even caused failure upon impact at extreme combinations. Four failure envelopes have been established as: transient failure, steady state failure, impact initiated shear crack, and conical damage. Boundaries and empirically based equations for residual compressive strength have been developed for each envelope with relation to two E-glass/vinyl ester laminate systems. Many aspects of pre-stressed impact have been individually examined, but there have been no comprehensive examinations of pre-stressed impact. This research has resulted in the exploration and characterization of compressively pre-stressed damage for impact

  3. The compressive stress effect on the magnetostriction and magnetization for Sm-Dy-Fe composites

    NASA Astrophysics Data System (ADS)

    Wang, Bowen; Wang, Zhihua; Hao, Yanming; Weng, Ling; Huang, Wenmei; Yan, Weili

    2012-04-01

    Sm0.88Dy0.12Fe2 rod composites were fabricated under a compaction pressure of 800 MPa along the rod direction and in a magnetic field of 200 kA/m along the direction, perpendicular to the rod axis. It is found that the magnetostriction λ|| parallel to the rod direction is almost unchanged with increasing the compressive stress up to 20 MPa and shows a large unsaturated magnetostriction value of -620 × 10-6 at 600 kA/m. The magnetostriction λ⊥ perpendicular to rod axis increases with increasing the compressive stress when the magnetic field is larger than 300 kA/m. The variation of the magnetostriction and magnetization with compressive stress has been discussed. This result is very important to application of Sm-Dy-Fe composites.

  4. Transverse vibrations of embedded nanowires under axial compression with high-order surface stress effects

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Pang, M.; Chen, W. Q.

    2015-02-01

    Implementing the high-order surface stress model into the Bernoulli-Euler beam theory, the transverse vibration of an axially compressed nanowire embedded in elastic medium is investigated. Closed-form expression is obtained for the natural frequency of a simply supported nanowire. The influences of compressive axial load, high-order surface stress and surrounding elastic medium on the natural frequency are discussed. Additionally, the analytical solution of axial buckling load for the simply supported nanowire is derived, which takes into account the effects of high-order surface stress and surrounding elastic medium. It is concluded from numerical results that the natural frequency of transverse vibration of the nanowire is dependent upon axial load, surrounding elastic medium, and high-order surface stress. Similarly, the dependences of the buckling load on surrounding elastic medium and high-order surface stress are significant.

  5. Horizontal compressive stress regime on the northern Cascadia margin inferred from borehole breakouts

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Malinverno, A.; Wang, K.; Goldberg, D.; Guerin, G.

    2016-09-01

    During Integrated Ocean Drilling Program Expedition 311 five boreholes were drilled across the accretionary prism of the northern Cascadia subduction zone. Logging-while-drilling borehole images are utilized to determine breakout orientations to define maximum horizontal compressive stress orientations. Additionally, wireline logging data at two of these sites and from Site 889 of Ocean Drilling Program Leg 146 are used to define breakouts from differences in the aperture of caliper arms. At most sites, the maximum horizontal compressive stress SHmax is margin-normal, consistent with plate convergence. Deviations from this trend reflect local structural perturbations. Our results do not constrain stress magnitudes. If the margin-normal compressional stress is greater than the vertical stress, the margin-normal SHmax direction we observe may reflect current locking of a velocity-weakening shallow megathrust and thus potential for trench-breaching, tsunamigenic rupture in a future megathrust earthquake.

  6. Pre-stressed/pre-compressed gas turbine nozzle

    DOEpatents

    Jang, Hoyle; Itzel, Gary Michael; Yu, Yufeng Phillip

    2002-01-01

    A method of increasing low cycle fatigue life of a turbine nozzle comprising a plurality of stationary airfoils extending between radially inner and outer ring segments comprising a) providing at least one radial passage in each of the plurality of airfoils; b) installing a rod in the radial passage extending between the radially inner and outer ring segments and fixing one end of the rod to one of the inner and outer rings; and c) pre-loading the rod to compress the airfoil between the inner and outer ring segments.

  7. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.

    PubMed

    Van Loocke, M; Lyons, C G; Simms, C K

    2008-01-01

    The compressive properties of skeletal muscle are important in impact biomechanics, rehabilitation engineering and surgical simulation. However, the mechanical behaviour of muscle tissue in compression remains poorly characterised. In this paper, the time-dependent properties of passive skeletal muscle were investigated using a combined experimental and theoretical approach. Uniaxial ramp and hold compression tests were performed in vitro on fresh porcine skeletal muscle at various rates and orientations of the tissue fibres. Results show that above a very small compression rate, the viscoelastic component plays a significant role in muscle mechanical properties; it represents approximately 50% of the total stress reached at a compression rate of 0.5% s(-1). A stiffening effect with compression rate is observed especially in directions closer to the muscle fibres. Skeletal muscle viscoelastic behaviour is thus dependent on compression rate and fibre orientation. A model is proposed to represent the observed experimental behaviour, which is based on the quasi-linear viscoelasticity framework. A previously developed strain-dependent Young's Moduli formulation was extended with Prony series to account for the tissue viscoelastic properties. Parameters of the model were obtained by fitting to stress-relaxation data obtained in the muscle fibre, cross-fibre and 45 degrees directions. The model then successfully predicted stress-relaxation behaviour at 60 degrees from the fibre direction (errors <25%). Simultaneous fitting to data obtained at compression rates of 0.5% s(-1), 1%s(-1) and 10% s(-1) was performed and the model provided a good fit to the data as well as good predictions of muscle behaviour at rates of 0.05% s(-1) and 5% s(-1) (errors <25%).

  8. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown

    NASA Astrophysics Data System (ADS)

    Liu, Zhaohong; Wang, Yulei; Wang, Hongli; Bai, Zhenxu; Li, Sensen; Zhang, Hengkang; Wang, Yirui; He, Weiming; Lin, Dianyang; Lu, Zhiwei

    2017-06-01

    A laser pulse temporal compression technique combining stimulated Brillouin scattering (SBS) and laser-induced breakdown (LIB) is proposed in which the leading edge of the laser pulse is compressed using SBS, and the low intensity trailing edge of the laser pulse is truncated by LIB. The feasibility of the proposed scheme is demonstrated by experiments in which a pulse duration of 8 ns is compressed to 170 ps. Higher compression ratios and higher efficiency are expected under optimal experimental conditions.

  9. Introduction of Enhanced Compressive Residual Stress Profiles in Aerospace Components Using Combined Mechanical Surface Treatments

    NASA Astrophysics Data System (ADS)

    Gopinath, Abhay; Lim, Andre; Nagarajan, Balasubramanian; Cher Wong, Chow; Maiti, Rajarshi; Castagne, Sylvie

    2016-11-01

    Mechanical surface treatments such as Shot Peening (SP) and Deep Cold Rolling (DCR) are being used to introduce Compressive Residual Stress (CRS) at the surface and subsurface layers of aerospace components, respectively. This paper investigates the feasibility of a combined introduction of both the surface and sub-surface compressive residual stress on Ti6Al4V material through a successive application of the two aforementioned processes, one after the other. CRS profiles between individual processes were compared to that of combination of processes to validate the feasibility. It was found out that shot peening introduces surface compressive residual stress into the already deep cold rolled sample, resulting in both surface and sub-surface compressive residual stresses in the material. However the drawback of such a combination would be the increased surface roughness after shot peening a deep cold rolled sample which can be critical especially in compressor components. Hence, a new technology, Vibro-Peening (VP) may be used as an alternative to SP to introduce surface stress at reduced roughness.

  10. Inducing dynamical bistability by reversible compression of an optical piston.

    PubMed

    Schnoering, Gabriel; Genet, Cyriaque

    2015-04-01

    We study the reversible crossover between stable and bistable phases of an overdamped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers's theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat balanced between potential energy changes and the total amount of work performed by the piston. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.

  11. Inducing dynamical bistability by reversible compression of an optical piston

    NASA Astrophysics Data System (ADS)

    Schnoering, Gabriel; Genet, Cyriaque

    2015-04-01

    We study the reversible crossover between stable and bistable phases of an overdamped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers's theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat balanced between potential energy changes and the total amount of work performed by the piston. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.

  12. Application of a Reynolds stress turbulence model to the compressible shear layer

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Balakrishnan, L.

    1990-01-01

    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.

  13. Application of a Reynolds stress turbulence model to the compressible shear layer

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Balakrishnan, L.

    1990-01-01

    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.

  14. The role of compressive stresses in jointing on Vancouver Island, British Columbia

    NASA Astrophysics Data System (ADS)

    Bessinger, Brad; Cook, Neville G. W.; Myer, Larry; Nakagawa, Seiji; Nihei, Kurt; Benito, Pascual; Suarez-Rivera, Roberto

    2003-06-01

    This study demonstrates that joint-parallel compressive stresses were integral to the development of joint sets on Vancouver Island, British Columbia. The mapped study area contains paleostress indicators in the form of calcareous concretions, which have multiple, internal fractures in precisely the same orientation as one of the surrounding joint sets in the sandstone matrix. Field and laboratory tests indicate that the stiffest concretions are the most likely to be fractured; however, results from numerical simulations using measured rock properties preclude an origin for the concretion fractures from either a far-field uniaxial tensile or compressive stress. Fracturing is only found to be possible if the concretions possessed a lower Poisson's ratio than the sandstone at the time of fracturing. In the latter case, a far-field uniaxial compressive stress may have generated tensile effective stresses in the vicinity of high modulus concretions, seeding the field site with an initial population of concretion fractures and joints. Given the close spacing of some joints, their extension cannot be satisfactorily explained without invoking grain-scale compression-driven tensile fracturing mechanisms.

  15. Optimum Injection Pressure of a Cavitating Jet for Introducing Compressive Residual Stress into Stainless Steel

    NASA Astrophysics Data System (ADS)

    Soyama, Hitoshi; Nagasaka, Kazuya; Takakuwa, Osamu; Naito, Akima

    Introducing compressive residual stress by a cavitating jet into the sub-surface of components used in nuclear power plants can mitigate stress corrosion cracking in these components. Although applying the jet is an effective method for this purpose, it should be used without causing damage to the surface from water jet droplets arising from high-pressure injection of the water jet. Thus, in introducing compressive residual stress, the injection pressure needs to be optimized. In this paper, in order to determine the optimum injection pressure, the residual stress of stainless steel treated by a jet at various injection pressures was measured using an X-ray diffraction method. The injection pressure of the jet was varied from 5 MPa to 300 MPa, and the diameter of the nozzle throat of the jet was varied from 0.35 mm to 2.0 mm. The variation of residual stress with depth was measured by alternating X-ray diffraction measurements with electropolishing. It was revealed that a cavitating jet at an injection pressure of 10 MPa with a nozzle diameter of 2.0 mm can introduce higher compressive residual stress to deeper into stainless steel compared with a jet at 300 MPa with a nozzle diameter of 0.35 mm when the downstream pressure of the nozzle was constant.

  16. Polar nature of stress-induced twin walls in ferroelastic CaTiO3

    NASA Astrophysics Data System (ADS)

    Yokota, H.; Niki, S.; Haumont, R.; Hicher, P.; Uesu, Y.

    2017-08-01

    A compressive uniaxial mechanical stress is applied on ferroelastic CaTiO3 (CTO), and a change in the domain structure is observed under a polarization microscope and a second harmonic generation (SHG) microscope. New twin walls (TWs) appear perpendicular to the original TWs under stress. The SHG microscope observations and analyses confirm that this type of stress-induced TWs is polar, similar to the original TWs, and is crystallographically prominent with monoclinic symmetry m. A quantitative estimation of this stress-induced effect reveals that CTO is hard ferroelastic in the sense that the TW movement requires a large stress. A possible application of this phenomenon is discussed.

  17. Numerical study of Reynolds stress in compressible flows

    NASA Technical Reports Server (NTRS)

    Vandromme, D.; Hamin, H.

    1985-01-01

    A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients also play a very important role for these processes, but at different locations within the boundary layer.

  18. Numerical study of Reynolds stress in compressible flows

    NASA Technical Reports Server (NTRS)

    Vandromme, D.; Hamin, H.

    1985-01-01

    A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients also play a very important role for these processes, but at different locations within the boundary layer.

  19. Compressive pre-stress effects on magnetostrictive behaviors of highly textured Galfenol and Alfenol thin sheets

    NASA Astrophysics Data System (ADS)

    Downing, Julia R.; Na, Suok-Min; Flatau, Alison B.

    2017-05-01

    Fe-Ga (Galfenol) and Fe-Al (Alfenol) are rare-earth-free magnetostrictive alloys with mechanical robustness and strong magnetoelastic coupling. Since highly textured Galfenol and Alfenol thin sheets along <100> orientations have been developed with magnetostrictive performances of ˜270 ppm and ˜160 ppm, respectively, they have been of great interest in sensor and energy harvesting applications. In this work, we investigate stress-dependent magnetostrictive behaviors in highly textured rolled sheets of NbC-added Fe80Al20 and Fe81Ga19 alloys with a single (011) grain coverage of ˜90%. A compact fixture was designed and used to introduce a uniform compressive pre-stress to those thin sheet samples along a [100] direction. As compressive pre-stress was increased to above 100 MPa, the maximum observed magnetostriction increased 42% in parallel magnetostriction along the stress direction, λ//, in highly textured (011) Fe81Ga19 thin sheets for a compressive pre-stress of 60 MPa. The same phenomena were observed for (011) Fe80Al20 (maximum increase of 88% with a 49 MPa compressive stress). This trend is shown to be consistent with published results on the effect of pre-stress on magnetostriction in rods of single crystal and textured polycrystalline Fe-Ga alloy of similar compositions, and single crystal data gathered using our experimental set up. Interestingly, the saturating field (Hs) does not vary with pre-stresses, while the saturating field in rod-shaped samples of Fe-Ga increases with an increase of pre-stress. This suggests that for a range of compressive pre-stresses, thin sheet samples have larger values of d33 transduction coefficients and susceptibility than rod-shaped samples of similar alloy compositions, and hence they should provide performance benefits when used in sensor and actuator device applications. Thus, we discuss potential reasons for the unexpected trends in Hs with pre-stress, and present preliminary results from tests conducted to

  20. Processing-induced-transformations (PITs) during direct compression: impact of compression speeds on phase transition of caffeine.

    PubMed

    Juban, Audrey; Briancon, Stephanie; Puel, François

    2016-11-01

    For pharmaceutical industry, understanding solid-phase transition of the active pharmaceutical ingredient (API) induced by the manufacturing process is a key issue. Caffeine was chosen as a model API since it exhibits a polymorphic transformation during tableting. This study investigated the impact of the compression speed on the phase transition of anhydrous Form I (CFI) into Form II. Tablets were made from pure CFI and binary mixtures of CFI/microcrystalline cellulose, with an electric press well instrumented at three different compression speeds (50, 500 and 4500 mm min(-1)). For each velocity of the mobile punch studied, tablets made from three compression pressures (50, 100 and 200 MPa) were analyzed. The determination of the CFI transition degree was performed using a Differential Scanning Calorimetry (DSC). The CFI transition degree was monitored during three months in order to obtain the transformation profile of the API in tablets and in uncompressed powder. The modeling of the profile with a stretched exponential kinetic law (Johnson-Mehl-Avrami model) was used for the identification of the transition mechanism. The direct compression process triggered the polymorphic transformation in tablet when a sufficient compression pressure is applied. The velocity of the punch did neither impact the transition degree just after compression nor the transformation profile. The transition mechanism remained driven by nucleation for several operating conditions. Consequently, the punch velocity is not a decisive process parameter for avoiding such phase transition in tableting. As already observed, the compression pressure did not influence the transition whatever the compression speed and the velocity.

  1. Ion induced stress relaxation in dense sputter-deposited DLC thin films

    NASA Astrophysics Data System (ADS)

    Aijaz, Asim; Kubart, Tomas

    2017-07-01

    Deposition of high-density and low-stress hydrogen-free diamond like carbon (DLC) thin films is demonstrated using a pulsed ionized sputtering process. This process is based on high power impulse magnetron sputtering, and high C ionization is achieved using Ne as the sputtering gas. The intrinsic compressive stress and its evolution with respect to ion energy and ion flux are explained in terms of the compressive stress based subplantation model for DLC growth by Davis. The highest mass density was ˜2.7 g/cm3, and the compressive stresses did not exceed ˜2.5 GPa. The resulting film stresses are substantially lower than those achieved for the films exhibiting similar mass densities grown by filtered cathodic vacuum arc and pulsed laser deposition methods. This unique combination of high mass density and low compressive stress is attributed to the ion induced stress relaxation during the pulse-off time which corresponds to the post thermal spike relaxation timescales. We therefore propose that the temporal ion flux variations determine the magnitude of the compressive stress observed in our films.

  2. Damage and Plastic Deformation Modeling of Beishan Granite Under Compressive Stress Conditions

    NASA Astrophysics Data System (ADS)

    Chen, L.; Wang, C. P.; Liu, J. F.; Liu, J.; Wang, J.; Jia, Y.; Shao, J. F.

    2015-07-01

    Based on experimental investigations, we propose a coupled elastoplastic damage model to simulate the mechanical behavior of granite under compressive stress conditions. The granite is taken from the Beishan area, a preferable region for China's high-level radioactive waste repository. Using a 3D acoustic emission monitoring system in mechanical tests, we focus on the cracking process and its influence on the macroscopic mechanical behavior of the granite samples. It is verified that the crack propagation coupled with fractional sliding along the cracks is the principal mechanism controlling the failure process and nonlinear mechanical behavior of granite under compressive stress conditions. Based on this understanding, the coupled elastoplastic damage model is formulated in the framework of the thermodynamics theory. In the model, the coupling between damage and plastic deformation is simulated by introducing the independent damage variable in the plastic yield surface. As a preliminary validation of the model, a series of numerical simulations are performed for compressive tests conducted under different confining pressures. Comparisons between the numerical and simulated results show that the proposed model can reproduce the main features of the mechanical behavior of Beishan granite, particularly the damage evolution under compressive stress conditions.

  3. In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression.

    PubMed

    Zimmermann, Elizabeth A; Bouguerra, Séréna; Londoño, Irene; Moldovan, Florina; Aubin, Carl-Éric; Villemure, Isabelle

    2017-03-11

    Longitudinal bone growth in children/adolescents occurs through endochondral ossification at growth plates and is influenced by mechanical loading, where increased compression decreases growth (i.e., Hueter-Volkmann Law). Past in vivo studies on static vs dynamic compression of growth plates indicate that factors modulating growth rate might lie at the cellular level. Here, in situ viscoelastic deformation of hypertrophic chondrocytes in growth plate explants undergoing stress-controlled static vs dynamic loading conditions was investigated. Growth plate explants from the proximal tibia of pre-pubertal rats were subjected to static vs dynamic stress-controlled mechanical tests. Stained hypertrophic chondrocytes were tracked before and after mechanical testing with a confocal microscope to derive volumetric, axial and lateral cellular strains. Axial strain in hypertrophic chondrocytes was similar for all groups, supporting the mean applied compressive stress's correlation with bone growth rate and hypertrophic chondrocyte height in past studies. However, static conditions resulted in significantly higher lateral (p<0.001) and volumetric cellular strains (p≤0.015) than dynamic conditions, presumably due to the growth plate's viscoelastic nature. Sustained compression in stress-controlled static loading results in continued time-dependent cellular deformation; conversely, dynamic groups have less volumetric strain because the cyclically varying stress limits time-dependent deformation. Furthermore, high frequency dynamic tests showed significantly lower volumetric strain (p=0.002) than low frequency conditions. Mechanical loading protocols could be translated into treatments to correct or halt progression of bone deformities in children/adolescents. Mimicking physiological stress-controlled dynamic conditions may have beneficial effects at the cellular level as dynamic tests are associated with limited lateral and volumetric cellular deformation.

  4. Cyclic Compressive Stress Regulates Apoptosis in Rat Osteoblasts: Involvement of PI3K/Akt and JNK MAPK Signaling Pathways

    PubMed Central

    Jiang, Dawei; Wang, Tianchen; Zhang, Yinquan; Ma, Hui

    2016-01-01

    It is widely accepted that physiological mechanical stimulation suppresses apoptosis and induces synthesis of extracellular matrix by osteoblasts; however, the effect of stress overloading on osteoblasts has not been fully illustrated. In the present study, we investigated the effect of cyclic compressive stress on rat osteoblasts apoptosis, using a novel liquid drop method to generate mechanical stress on osteoblast monolayers. After treatment with different levels of mechanical stress, apoptosis of osteoblasts and activations of mitogen-activated protein kinases (MAPKs) and PI3-kinase (PI3K)/Akt signaling pathways were investigated. Osteoblasts apoptosis was observed after treated with specific inhibitors prior to mechanical stimulation. Protein levels of Bax/Bcl-2/caspase-3 signaling were determined using western blot with or without inhibitors of PI3K/Akt and phosphorylation of c-jun N-terminal kinase (JNK) MAPK. Results showed that mechanical stimulation led to osteoblasts apoptosis in a dose-dependent manner and a remarkable activation of MAPKs and PI3K/Akt signaling pathways. Activation of PI3K/Akt protected against apoptosis, whereas JNK MAPK increased apoptosis via regulation of Bax/Bcl-2/caspase-3 activation. In summary, the PI3K/Akt and JNK MAPK signaling pathways played opposing roles in osteoblasts apoptosis, resulting in inhibition of apoptosis upon small-magnitude stress and increased apoptosis upon large-magnitude stress. PMID:27806136

  5. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  6. Femtosecond laser induced damage of pulse compression gratings

    NASA Astrophysics Data System (ADS)

    Kong, Fanyu; Huang, Haopeng; Wang, Leilei; Shao, Jianda; Jin, Yunxia; Xia, Zhilin; Chen, Junming; Li, Linxin

    2017-12-01

    Laser induced damage of Au-coated gratings (ACG) and metal multilayer dielectric gratings (MMDG) for pulse compression were measured using 800 ± 35 nm femto-laser with pulse width of 30.2 fs. The -1st order diffraction efficiency of the ACG is over 90% in wavelength range from 700 to 1000 nm. The MMDG has a 148 nm bandwidth (750-897 nm) with -1st order diffraction efficiency greater than 90%. The laser damage experiment on grating samples was performed in air for single-shot damage. The single-shot damage threshold of the ACG and MMDG was determined to be 0.32 ± 0.02 J/cm2 and 0.31 ± 0.02 J/cm2, respectively. The damage morphologies of the ACG revealed that the damage was attributed to the pinholes at the base of the grating pillars and the weak adhesion between metal layer and photoresist gratings layer. The damage feature combined with near field distribution of MMDG indicated that the damage was due to the nonlinear ionization process of the valence electrons in HfO2 film. According to analysis results, the laser damage resistance of the ACG can be enhanced through avoiding the appearance of pinholes and increasing adhesion between metal layer and photoresist layer. And for the MMDG, good performance of HfO2 film, low near field enhancement and single HfO2 grating structures may increase its laser damage resistance.

  7. Anharmonicity induced thermal modulation in stressed graphene

    NASA Astrophysics Data System (ADS)

    Jiang, JianJun; Fu, WeiCheng; Chen, JiGe; Zhao, Hong

    2017-07-01

    Thermal properties are essentially decided by atomic geometry and thus stress is the most direct way for manipulating. In this paper, we investigate stress modulation of thermal conductivity of graphene by molecular dynamics simulations and discuss the underlying microscopic mechanism. It is found that thermal conductivity of flexural-free graphene increases with compression and decreases with strain, while thermal conductivity of flexural-included graphene decreases with both compression and strain. Such difference in thermal behavior originates from the changes in the anharmonicity of the interatomic potential, where the wrinkle scattering is responsible for the thermal conductivity diminishment in flexural-included graphene under strain. By comparing the results obtained from the Tersoff and AIREBO potentials, it is revealed that the degree of the symmetry of interatomic potential determines the thermal conductivity variation of graphene. Our results indicate that the symmetry of interatomic potential should be taken into careful consideration in constructing the lattice model of graphene.

  8. Fluid Production Induced Stress Analysis Surrounding an Elliptic Fracture

    NASA Astrophysics Data System (ADS)

    Pandit, Harshad Rajendra

    Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America. During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture. In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture. The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.

  9. A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    1992-01-01

    This report outlines the development of a general purpose aerodynamic solver for compressible turbulent flows. Turbulent closure is achieved using either two equation or Reynolds stress transportation equations. The applicable equation set consists of Favre-averaged conservation equations for the mass, momentum and total energy, and transport equations for the turbulent stresses and turbulent dissipation rate. In order to develop a scheme with good shock capturing capabilities, good accuracy and general geometric capabilities, a multi-block cell centered finite volume approach is used. Viscous fluxes are discretized using a finite volume representation of a central difference operator and the source terms are treated as an integral over the control volume. The methodology is validated by testing the algorithm on both two and three dimensional flows. Both the two equation and Reynolds stress models are used on a two dimensional 10 degree compression ramp at Mach 3, and the two equation model is used on the three dimensional flow over a cone at angle of attack at Mach 3.5. With the development of this algorithm, it is now possible to compute complex, compressible high speed flow fields using both two equation and Reynolds stress turbulent closure models, with the capability of eventually evaluating their predictive performance.

  10. Stress annealing of Fe-Ga transduction alloys for operation under tension and compression

    SciTech Connect

    Wun-Fogle, M.; Restorff, J.B.; Clark, A.E.; Dreyer, Erin; Summers, Eric

    2005-05-15

    The addition of Ga to bcc {alpha}-Fe increases the magnetostriction of Fe in the [100] direction (a factor of 12 for Fe{sub 81}Ga{sub 19}). The effect of annealing highly textured polycrystalline Fe{sub 81.6}Ga{sub 18.4} rods under compressive stresses of -100 and -150 MPa for 10-100 min at temperatures between 625 deg. C and 635 deg. C was examined. After annealing, all samples showed nearly full performance at near-zero stresses. Samples annealed with -100 MPa stress maintained a high magnetostriction up to {approx}20 MPa tensile stress; the sample annealed with -150 MPa stress maintained its magnetostriction up to {approx}30 MPa.

  11. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors.

    PubMed

    Stylianopoulos, Triantafyllos; Martin, John D; Chauhan, Vikash P; Jain, Saloni R; Diop-Frimpong, Benjamin; Bardeesy, Nabeel; Smith, Barbara L; Ferrone, Cristina R; Hornicek, Francis J; Boucher, Yves; Munn, Lance L; Jain, Rakesh K

    2012-09-18

    The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.

  12. The interactions of compressive stress and weathering in driving rock fracture.

    NASA Astrophysics Data System (ADS)

    de Vilder, Saskia; Brain, Matthew; Rosser, Nick; Vann Jones, Emma

    2016-04-01

    Weathering plays an important role in weakening a rock mass before failure. The stresses generated by failure triggering events are often an order of magnitude smaller than those required to fracture rock. The compressive stresses of the slope resulting from gravitational load are also in themselves insufficient to result in fracture. Therefore, the rock must have been weakened prior to failure. Recent studies have shown that local stress concentrations within a slope can determine the effectiveness of weathering events. Currently however, the exact impact of this is not well constrained with few studies undertaken to analyse rock weathering under stress. To address this, we report the results of a laboratory testing programme designed to assess the influence of compressive stress on the effectiveness of weathering, specifically saltwater wetting and drying. In these laboratory tests, rock cores were placed under a constant 2 MPa uniaxial compressive stress, corresponding to the approximate compressive stresses at the base of a 60 m high, near-vertical rock slope. The cores consist of moderately strong grey Staithes Siltstone (unconfined compressive stress, UCS, range of 20 - 30 MPa), found along the North Yorkshire coastline, United Kingdom. The samples were subjected to saltwater wetting and drying cycles of 6 hours, designed to mimic the submersion of a coastal cliff by the tide. Modified oedometers were used to place the samples under stress as wetting and drying occurred. We tested 4 samples which had been 'preloaded' in unconfined compression to 13.5 MPa (i.e. exceeding the crack initiation threshold but insufficient to cause fracture) to simulate the role of accumulated damage (i.e. creating a population of microcracks) in the rock slope, along with 4 samples which were not 'preloaded', and 8 samples with varying geometries to simulate the role of cliff-face topography in concentrating stress. Each test had a corresponding control sample which was not placed

  13. Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion.

    PubMed

    Park, Seonghun; Nicoll, Steven B; Mauck, Robert L; Ateshian, Gerard A

    2008-03-01

    The objective of this study was to test the hypothesis that enzymatic degradation by collagenase significantly reduces dynamic moduli and increases compressive strains of bovine articular cartilage under physiological compressive stress levels and loading frequencies. Twenty-seven distal femoral cartilage plugs (3 mm diameter) were loaded in a custom apparatus under load control, with a load up to 40 N and loading frequencies of 0.1, 1, 10, and 40 Hz, before and after incubation in physiological buffered saline containing various concentrations of collagenase (0, 2, and 10 U/mL). Collagenase digestion reduced the equilibrium Young's modulus by 49% with 2 U/mL and 61% with 10 U/mL, while the decrease in dynamic modulus at 40 Hz was in the range of 13-20% with 2 U/mL and 24-33% with 10 U/mL, relative to respective controls. The amplitudes of dynamic compressive strains increased from 22 +/- 6% to 26 +/- 8% at 0.1 Hz and 9.6 +/- 3.3% to 13.5 +/- 3.2% at 40 Hz, with 10 U/mL collagenase. This experimental study serves to confirm that collagen contributes significantly to the dynamic compressive properties of cartilage, by demonstrating that collagenase digestion impairs these properties, under stress amplitudes and frequencies which are representative of physiological loading conditions.

  14. Measurements of the stress supported by the crush zone in open hole composite laminates loaded in compression

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    Measurements of the stress supported by the crush zone in open hole specimens loaded in compression were carried out on two composite laminates, AS4/PEEK and IM6/HST-7, containing circular holes of three different diameters. Compression tests were conducted in a specially designed high-axial-alignment material test system machine. Results indicated that the local stress supported in the crush zone is much less than the stress required to initiate the crush, providing the reason for the finding of Guynn et al. (1987) that the Dugdale model does not accurately predict the load-damage size relationship of open hole composite specimens loaded in compression.

  15. Explosion-induced stress changes estimated from vibrating-wire stressmeter measurements near the Mighty Epic event, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.; Kibler, J.D.

    1983-01-01

    Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.

  16. Shear-Induced Isostructural Phase Transition and Metallization of Layered Tungsten Disulfide under Nonhydrostatic Compression

    SciTech Connect

    Duwal, Sakun; Yoo, Choong-Shik

    2016-02-16

    Pressure-induced structural and electronic transformations of tungsten disulfide (WS2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2Hc phase to hexagonal 2Ha phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS2 under non-hydrostatic compression. Interestingly, this transition is absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS2 that may occur at low temperature near the metallization.

  17. Shear-Induced Isostructural Phase Transition and Metallization of Layered Tungsten Disulfide under Nonhydrostatic Compression

    DOE PAGES

    Duwal, Sakun; Yoo, Choong-Shik

    2016-02-16

    Pressure-induced structural and electronic transformations of tungsten disulfide (WS2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2Hc phase to hexagonal 2Ha phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS2 under non-hydrostatic compression. Interestingly, this transition is absent in hydrostatic conditionsmore » using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS2 that may occur at low temperature near the metallization.« less

  18. Varied laser induced damage phenomena of gold coated gratings for pulse compression

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Huang, Haopeng; Kong, Fanyu; Wang, Leilei; Jin, Yunxia

    2017-08-01

    In this paper, gold-coated gratings for pulse compression have been prepared and their laser damage experiments have been performed. Varied laser damage morphologies have been observed: when a 60 fs-pulsed laser with energy density slightly higher than the damage threshold was used, damage morphology with a characteristic of discrete distribution of small pits was appeared. These damage pits are linearly distributed at the junction of ridges and grooves. If the laser energy density is much higher than the damage threshold, the gold films was overall ablated and the grating structure disappeared. Besides, if the gold film has poor adhesion, it was peeled off. When a 450 ps-pulsed laser with energy density slightly higher than the damage threshold was used, part of grating ridges will be ablated and an obvious line exists between the ablated area and the unchanged area. In theory, the laser induced temperature field and stress field in gold-coated gratings were calculated based on the electromagnetic field using the finite element method. It is demonstrated that the temperature and thermal stress distribution characteristics are affected by the laser heating rate and the heat diffusion time (the calculated diffusion time ranges from 6 fs to 450 ps), which determines the laser damage characteristics. The possible damage drivers have electron hydrodynamic pressure, thermal ablation and thermal stress.

  19. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  20. Experimental Study on Properties of Methane Diffusion of Coal Block under Triaxial Compressive Stress

    PubMed Central

    Zhao, Hong-Bao

    2014-01-01

    Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters. PMID:25531000

  1. Design of a squeeze film magnetorheological brake considering compression enhanced shear yield stress of magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Hirani, H.

    2013-02-01

    A magnetorheological brake, consisting of rotating disks immersed in a MR fluid and enclosed in an electromagnet, is proposed to replace the conventional heavy weight low response hydraulic disk brake. The frictional characteristics of the proposed brake can be controlled by regulating the yield stress of the MR fluid as function of magnetic field and normal compressive force. The controllable yield stress retards the surfaces of rotating disks, thus MR fluid can be used as a brake lining material. The present research work attempts designing a squeeze film MR brake by accounting compression enhanced shear yield stress of magnetorheological fluid. Theoretical calculations indicate that the estimated braking torque of the six plate squeeze film MR brake, under compression, is in the order of 600Nm. To validate the theoretical design and its findings, a prototype of single-plate squeeze film MR disk brake has been developed. Experimental test setup helps to illustrate braking torque under different control currents (0.0 to 1.25 A).

  2. Experimental study on properties of methane diffusion of coal block under triaxial compressive stress.

    PubMed

    Zhao, Hong-Bao

    2014-01-01

    Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters.

  3. The Trier Social Stress Test protocol for inducing psychological stress.

    PubMed

    Birkett, Melissa A

    2011-10-19

    This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety. Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity. In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers. These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor). Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience. Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST. In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task. Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and

  4. Stress induced obesity: lessons from rodent models of stress

    PubMed Central

    Patterson, Zachary R.; Abizaid, Alfonso

    2013-01-01

    Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the

  5. Phase transitions in BaTiO3 under uniaxial compressive stress: Experiments and phenomenological analysis

    NASA Astrophysics Data System (ADS)

    Schader, Florian H.; Khakpash, Nasser; Rossetti, George A.; Webber, Kyle G.

    2017-02-01

    The relative permittivity of polycrystalline BaTiO3 was measured from -150 °C to 250 °C at compressive bias stresses up to -500 MPa. Mechanical loading shifted the rhombohedral-orthorhombic, orthorhombic-tetragonal, and tetragonal-cubic phase transition temperatures and produced a pronounced broadening of the dielectric softening in the vicinity of all three transitions. The inter-ferroelectric rhombohedral-orthorhombic and orthorhombic-tetragonal phase transitions were found to be less stress sensitive than the ferroelectric-paraelectric transition occurring between tetragonal and cubic phases at the Curie point. The application of compressive stress resulted in a strong suppression of the relative permittivity, such that at the highest applied stress of -500 MPa, the permittivity in the single phase regions away from the phase transitions was found to display only a weak dependence on temperature between -100 °C and 125 °C. The experimental observations closely followed the predictions of a 2-4-6 Landau polynomial wherein the dielectric stiffness and higher-order dielectric stiffness coefficients are linear functions of uniaxial stress.

  6. Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ minimum compressive stress

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazuo; Haimson, Bezalel C.

    1991-10-01

    Characteristics of pressure decay curves obtained after shut-in in hydraulic fracturing stress measurements are studied in detail in an effort to enhance the reliability of the minimum compressive in situ stress determination. The analysis utilizes linear theory of elasticity, fracture mechanics, and global mass balance of fracturing fluid after shut-in. A small amount of crack growth takes place almost instantaneously just after shut-in due to equilibration of injected-fluid pressure within the fracture. Thereafter, the fracture gradually closes commensurate with the amount of fluid leakage into the rock and the net compliance of the pressured system consisting of the rock, the fracture, and the tubing conveying pressurized fluid from the surface to the depth of testing. Theoretical considerations and laboratory and field data suggest the closure process after shut-in can be considered to consist of three major stages: from cessation of fracture growth until fracture tip closure (stage I), from just after fracture tip closure until complete fracture closure (stage II), and from just after complete fracture closure until the test is stopped (stage III). An analysis of these stages reveals that the inverse of the pressure decrease rate is linear with respect to the fluid pressure in stages I and III. It is also shown that the far-field minimum compressive stress can be determined on the basis of these characteristics. The method of determination of the in situ minimum compressive stress is successfully applied to a sampling of shut-in curves obtained in laboratory and field experiments.

  7. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    SciTech Connect

    Macon, David James; Brannon, Rebecca Moss; Strack, Otto Eric

    2014-02-01

    Mechanical testing of porous materials generates physical data that contain contributions from more than one underlying physical phenomenon. All that is measurable is the (3z(Bensemble(3y (Bhardening modulus. This thesis is concerned with the phenomenon of dilatation in triaxial compression of porous media, which has been modeled very accurately in the literature for monotonic loading using models that predict dilatation under triaxial compression (TXC) by presuming that dilatation causes the cap to move outwards. These existing models, however, predict a counter-intuitive (and never validated) increase in hydrostatic compression strength. This work explores an alternative approach for modeling TXC dilatation based on allowing induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral direction) with no increase in hydrostatic strength. Induced elastic anisotropy is introduced through the use of a distortion operator. This operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and deformed compliance and has the same eigenprojectors as the elastic compliance. In the undeformed state, the distortion operator is equal to the fourth-order identity. Through the use of the distortion operator, an evolved stress tensor is introduced. When the evolved stress tensor is substituted into an isotropic yield function, a new anisotropic yield function results. In the case of the von Mises isotropic yield function (which contains only deviatoric components), it is shown that the distortion operator introduces a dilatational contribution without requiring an increase in hydrostatic strength. In the thesis, an introduction and literature review of the cap function is given. A transversely isotropic compliance is presented, based on a linear combination of natural bases constructed about a transverse-symmetry axis. Using a probabilistic distribution of cracks constructed for the case of transverse isotropy

  8. Prediction of machining induced residual stresses

    NASA Astrophysics Data System (ADS)

    Pramod, Monangi; Reddy, Yarkareddy Gopi; Prakash Marimuthu, K.

    2017-07-01

    Whenever a component is machined, residual stresses are induced in it. These residual stresses induced in the component reduce its fatigue life, corrosion resistance and wear resistance. Thus it is important to predict and control the machining-induced residual stress. A lot of research is being carried out in this area in the past decade. This paper aims at prediction of residual stresses during machining of Ti-6Al-4V. A model was developed and under various combinations of cutting conditions such as, speed, feed and depth of cut, the behavior of residual stresses were simulated using Finite Element Model. The present work deals with the development of thermo-mechanical model to predict the machining induced residual stresses in Titanium alloy. The simulation results are compared with the published results. The results are in good agreement with the published results. Future work involves optimization or the cutting parameters that effect the machining induced residual stresses. The results obtained were validated with previous work.

  9. Drug-Induced Oxidative Stress and Toxicity

    PubMed Central

    Deavall, Damian G.; Martin, Elizabeth A.; Horner, Judith M.; Roberts, Ruth

    2012-01-01

    Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity. PMID:22919381

  10. Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion.

    PubMed

    Fornaciai, Michele; Arrighi, Roberto; Burr, David C

    2016-03-22

    Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing.

  11. Effect of residual stresses induced by prestressing on rolling element fatigue life

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  12. Tensile and compressive stress-strain behavior of heat treated boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.

    1978-01-01

    An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.

  13. Stress induces transient auditory hypersensitivity in rats.

    PubMed

    Mazurek, Birgit; Haupt, Heidemarie; Joachim, Ricarda; Klapp, Burghard F; Stöver, Timo; Szczepek, Agnieszka J

    2010-01-01

    Exposure to harsh environment induces stress reactions that increase probability of survival. Stress influences the endocrine, nervous and immune systems and affects the functioning of a variety of organs. Numerous researchers demonstrated that a 24-h exposure to an acoustic rodent repellent provokes stress reaction in exposed animals. In addition to the activated hypothalamic-pituitary-adrenal (HPA) axis, exposed animals had pathological reactions in the reproductive organs, bronchia and skin. Here, we examined the effect of above stress model on the auditory system of Wistar rats. We found that 24-h stress decreases the thresholds and increases the amplitudes of auditory brainstem responses and distortion product otoacoustic emissions. Resultant auditory hypersensitivity was transient and most pronounced between 3 and 6h post-stress, returning to control levels one week later. The concentration of corticosterone and tumor necrosis factor alpha was systemically elevated in stressed animals between 3 and 6h post-stress, confirming the activation of the HPA axis. In addition, expression of the HPA-axis-associated genes: glucocorticoid receptor (GR) and hypoxia-inducible factor 1 alpha (Hif1a) was modulated in the auditory tissues. In detail, in the inferior colliculus, we found an up-regulation of GR mRNA 3h post-stress and continuous up-regulation of Hif1a up to 24h post-stress. In the spiral ganglion, we found no differences in gene expression between stressed and control animals. In the organ of Corti, expression of GR mRNA remained stable, whereas that of Hif1a was significantly down-regulated one week after stress. In addition, the expression of an outer hair cell marker prestin was significantly up-regulated 6h post-stress. We conclude that 24-h stress induces transient hypersensitivity of the auditory system and modulates gene expression in a tissue-specific manner. Stress-induced auditory hypersensitivity could have evolutionary consequence by giving animals

  14. Stress concentration localization in doubly periodic square systems of circular holes in uniaxial compression

    NASA Astrophysics Data System (ADS)

    Mokryakov, V. V.

    2016-07-01

    We consider the stress concentration points in infinite elastic doubly periodic perforated plates (lattices) under the conditions of external uniaxial compression. Special attention is paid to the internal localization of stress concentrations (i.e., to the case of stress concentration origination inside the material rather than on the boundaries of the holes). We consider a parametric domain (depending on the angle of application of the external load and the structure parameter of the lattice) and calculate the domain dimensions (the extreme values of the parameters). We discover a point in the parametric domain at which the following three cases of fracture initiation are possible: two cases on the hole contour and one case inside the material.

  15. Do cool water or physiologic saline compresses enhance resolution of experimentally-induced irritant contact dermatitis?

    PubMed

    Levin, C Y; Maibach, H I

    2001-09-01

    Acute irritant contact dermatitis (ICD) is frequently treated with cool water or saline compresses. While presumed effective, little quantitative evaluation documents the treatment's benefit. This study sought to determine the efficacy of both distilled water and physiologic saline compresses on experimentally-induced ICD. 24-h application of both the lipophilic nonanoic acid (NAA) and the hydrophilic sodium lauryl sulfate (SLS) were used to induce irritant contact dermatitis in 9 healthy volunteers. Following irritation, compresses were applied 0.5 h 2x daily for 4 consecutive days. Transepidermal water loss (TEWL), laser Doppler flowmetry (LDF), chromametry and visual scoring were used to quantify results. Cool compresses of both water and saline significantly reduced TEWL and LDF, with no statistically significant difference between the efficacy of the saline or water compresses. Chromametry and visual scoring did not detect a significant effect with either the water or saline compresses. The results suggest an improvement with 2x-daily application of either water or physiologic saline compresses in the treatment of acute ICD, though true clinical benefit will be elucidated through further experimentation. Certainly, the current recommendation regarding the use of cool compresses for treating ICD should not be discarded.

  16. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells.

    PubMed

    Lin, Hui; Ma, Xuan; Wang, Bai-Chuan; Zhao, Lei; Liu, Jian-Xiang; Pu, Fei-Fei; Hu, Yi-Qiang; Hu, Hong-Zhi; Shao, Zeng-Wu

    2017-09-20

    Edaravone is a strong free radical scavenger most used for treating acute ischemic stroke. In this study we investigated the protective effects and underlying mechanisms of edaravone on compression-induced damage in rat nucleus pulposus (NP) cells. Cell viability was determined using MTT assay methods. NP cell apoptosis was measured by Hoechst 33,258 staining and Annexin V/PI double staining. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and intracellular calcium ([Ca(2+)]i) were determined by fluorescent probes DCFH-DA, JC-1 and Fluo-3/AM, respectively. Apoptosis-related proteins (cleaved caspase-3, cytosolic cytochrome c, Bax and Bcl-2) and extracellular matrix proteins (aggrecan and collagen II) were analyzed by western blot. Edaravone attenuated the compression-induced decrease in viability of NP cells in a dose-dependent manner. 33,258 and Annexin V/PI double staining showed that edaravone protected NP cells from compression-induced apoptosis. Further studies confirmed that edaravone protected NP cells against compression-induced mitochondrial pathway of apoptosis by inhibiting overproduction of ROS, collapse of MMP and overload of [Ca(2+)]i. In addition, edaravone promoted the expression of aggrecan and collagen II in compression-treated NP cells. These results strongly indicate that edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Edaravone could be a potential new drug for treatment of IDD. Copyright © 2017. Published by Elsevier Inc.

  17. The influence of uniaxial compressive stress on the phase transitions and dielectric properties of NaNO2

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Bulut, Nebahat; Salehli, Ferid

    2016-06-01

    The effect of uniaxial stress on dielectric properties of sodium nitrite (NaNO2) ferroelectric has been investigated. The real part of the dielectric susceptibility was measured at the frequency of 1 kHz without and on applying compressive uniaxial stress along different crystallographic directions using a uniaxial compress meter. Extraordinary changes in the dielectric constant of NaNO2 under the influence of applied uniaxial stresses were observed for the first time. The shifts of the phase transition points Ti and Tc under the uniaxial stresses σyy and σzz were investigated. The "uniaxial pressure-temperature" phase diagram of NaNO2 was obtained from these results. The observed phenomena were interpreted on the base of the phenomenological Landau theory of phase transitions in NaNO2 by taking into account the uniaxial compressive stress effect. A best agreement between the theoretical predictions and experimental results has been revealed.

  18. Stress response of bovine artery and rat brain tissue due to combined translational shear and fixed unconfined compression

    NASA Astrophysics Data System (ADS)

    Leahy, Lauren

    During trauma resulting from impacts and blast waves, sinusoidal waves permeate the brain and cranial arterial tissue, both non-homogeneous biological tissues with high fluid contents. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat brain tissue and bovine aortic tissue. Both tissues exhibit Mullins effect in shear. Harmonic wavelet decomposition, a novel application to the mechanical response of these tissues, shows significant 1 Hz and 3 Hz components. The 3 Hz component magnitude in brain tissue, which is much larger than in aortic tissue, may correlate to interstitial fluid induced drag forces that decrease on subsequent cycles perhaps because of damage resulting in easier fluid movement. The fluid may cause the quasiperiodic, viscoelastic behavior of brain tissue. The mechanical response differences under impact may cause shear damage between arterial and brain connections.

  19. Influence of the mechanical stress and the filler content on the hydrostatic compression behaviour of natural rubber

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jan; Stommel, Markus

    2013-12-01

    The behaviour of natural rubber (NR) compounds under mechanical stress is often reported in literature. An important and widely discussed effect that occurs is the Mullins effect. During the first loading cycles in a tensile test for example, a stress-softening effect is observed. This and other effects on the mechanical behaviour are investigated for different rubber materials with and without different types of fillers and filler contents. Besides, the hydrostatic compression behaviour is affected by the type and content of filler as well, which is shown for an NR with and without waxes and different contents of carbon black (CB) in this contribution. In contrast to the Mullins effect, there is no dependence of the number of loading cycles on the volumetric behaviour determined in hydrostatic compression tests. Furthermore, the influence of the previous stress-softening due to mechanical stress on the compression behaviour is elaborated. Cyclic uniaxial tensile tests are performed to realize the stress-softening in the rubber materials. The subsequent compression tests are compared to compression tests without any pre-stretching to determine the influence of previous mechanical loading on the compression behaviour of natural rubber with different filler contents.

  20. Wearing graduated compression stockings augments cutaneous vasodilation in heat-stressed resting humans.

    PubMed

    Fujii, Naoto; Nikawa, Toshiya; Tsuji, Bun; Kondo, Narihiko; Kenny, Glen P; Nishiyasu, Takeshi

    2017-05-01

    We investigated whether graduated compression induced by stockings enhances cutaneous vasodilation in passively heated resting humans. Nine habitually active young men were heated at rest using water-perfusable suits, resulting in a 1.0 °C increase in body core temperature. Heating was repeated twice on separate occasions while wearing either (1) stockings that cause graduated compression (pressures of 26.4 ± 5.3, 17.5 ± 4.4, and 6.1 ± 2.0 mmHg at the ankle, calf, and thigh, respectively), or (2) loose-fitting stockings without causing compression (Control). Forearm vascular conductance during heating was evaluated by forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure to estimate heat-induced cutaneous vasodilation. Body core (esophageal), skin, and mean body temperatures were measured continuously. Compared to the Control, forearm vascular conductance during heating was higher with graduated compression stockings (e.g., 23.2 ± 5.5 vs. 28.6 ± 5.8 units at 45 min into heating, P = 0.001). In line with this, graduated compression stockings resulted in a greater sensitivity (27.5 ± 8.3 vs. 34.0 ± 9.4 units °C(-1), P = 0.02) and peak level (25.5 ± 5.8 vs. 29.7 ± 5.8 units, P = 0.004) of cutaneous vasodilation as evaluated from the relationship between forearm vascular conductance with mean body temperature. In contrast, the mean body temperature threshold for increases in forearm vascular conductance did not differ between the Control and graduated compression stockings (36.5 ± 0.1 vs. 36.5 ± 0.2 °C, P = 0.85). Our results show that graduated compression associated with the use of stockings augments cutaneous vasodilation by modulating sensitivity and peak level of cutaneous vasodilation in relation to mean body temperature. However, the effect of these changes on whole-body heat loss remains unclear.

  1. Impact of Surface Chemistry on Grain Boundary Induced Intrinsic Stress Evolution during Polycrystalline Thin Film Growth

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Sheldon, B. W.; Guo, H.; Xiao, X.; Kothari, A. K.

    2009-02-01

    First principles calculations were integrated with cohesive zone and growth chemistry models to demonstrate that adsorbed species can significantly alter stresses associated with grain boundary formation during polycrystalline film growth. Using diamond growth as an example, the results show that lower substrate temperatures increase the hydrogen content at the surface, which reduces tensile stress, widens the grain boundary separations, and permits additional atom insertions that can induce compressive stress. More generally, this work demonstrates that surface heteroatoms can lead to behavior which is not readily described by existing models of intrinsic stress evolution.

  2. Measurement of thermally induced stresses in continuously welded rail through diffuse ultrasonic backscatter

    NASA Astrophysics Data System (ADS)

    Kube, Christopher M.; Fateh, Mahmood; Ghoshal, Goutam; Turner, Joseph A.

    2012-05-01

    The relationship between grain scattering and uniaxial stress has recently been theoretically developed [1]. The scattering results because of reflections at grain boundaries and discontinuities in the microstructure. The acoustoelastic response of individual grains due to temperature and stress gradients has a direct influence on the strength of the scattering. Measurements of mechanically-induced uniaxial compressive stress on a rail section and thermal stresses within continuously welded rail (CWR) were performed. It was found that this technique can produce measurement resolution of at least 10-4/MPa.

  3. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  4. Pulverization Texturein Fault Damage Zones: A result of Implosion Damage or Dynamic Compressive Stresses?

    NASA Astrophysics Data System (ADS)

    Rockwell, T. K.; Girty, G.; Whearty, J.; Mitchell, T. M.

    2015-12-01

    Micro-brecciation, or pulverization, is recognized as a fundamental component of the architecture and damage products of many large faults, although the precise mechanisms to produce this damage are debated, with both compressive and tensile mechanisms proposed. We characterized several sites along the San Jacinto fault, southern California, where the total depth of exhumation for the life history of the fault can be determined, to study the confining stresses required for pulverization. In basement rock near Anza, where exhumation is less than 100 m, granitic dikes injected into schist of the Burnt Valley Complex are pulverized out to several meters from the fault core, whereas the schist is brecciated at the macro-scale and contains narrow centimeter-thick seams of black cataclasite. Similar relationships are observed in Horse Canyon, which is exhumed about 400 m below a regional Tertiary erosion surface, where granitic dikes emplaced into schist are pulverized out to distances of several tens of meters from the fault core. These observations imply that very low confining stress is required for micro-brecciation in granitic rock. Unconsolidated sandstones (alluvial fan deposits) along the SJF in Rock House Canyon are undeformed where the deposits are exhumed by about 70 m, but show incipient pulverization (high-density, sub-grain cracking) at 120 m depth of exhumation. Cracks oriented perpendicular to the fault formed in individual quartz and feldspar grains out to a few meters from the fault core. These observations suggest that the confining stress required for onset of pulverization in unconsolidated deposits is on the order of 2-2.5 MPa. As the tensile strength of quartz is an order of magnitude higher than these confining stresses, the most likely mechanism that is producing this damage is dynamic compressive stresses during passage of the rupture front.

  5. Numerical study of one-dimensional compression of granular materials. II. Elastic moduli, stresses, and microstructure

    NASA Astrophysics Data System (ADS)

    Khalili, Mohamed Hassan; Roux, Jean-Noël; Pereira, Jean-Michel; Brisard, Sébastien; Bornert, Michel

    2017-03-01

    The elastic moduli of a transversely isotropic model granular material, made of slightly polydisperse elastic-frictional spherical beads, in equilibrium along a one-dimensional (oedometric) compression path, as described in the companion paper [M. H. Khalili et al., Phys. Rev. E 95, 032907 (2017)], 10.1103/PhysRevE.95.032907, are investigated by numerical simulations. The relations of the five independent moduli to stresses, density, coordination number, fabric and force anisotropies are studied for different internal material states along the oedometric loading path. It is observed that elastic moduli, as in isotropic packs, are primarily determined by the coordination number, with anomalously small shear moduli in poorly coordinated systems, whatever their density. Such states also exhibit faster increasing moduli in compression, and larger off-diagonal moduli and Poisson ratios. Anisotropy affects the longitudinal moduli C11 in the axial direction and C22 in the transverse directions, and the shear modulus in the transverse plane C44, more than the shear modulus in a plane containing the axial direction C55. The results are compared to available experiments on anisotropic bead packs, revealing, despite likely differences in internal states, a very similar range of stiffness level (linked to coordination), and semiquantitative agreement as regards the influence of anisotropy. Effective medium theory (the Voigt approach) provides quite inaccurate predictions of the moduli. It also significantly underestimates ratios C11/C22 (varying between 1 and 2.2) and C55/C44 (varying from 1 to 1.6), which characterize elastic anisotropy, except in relatively weakly anisotropic states. The bulk modulus for isotropic compression and the compliance corresponding to stress increments proportional to the previous stress values are the only elastic coefficients to be correctly estimated by available predictive relations. We discuss the influences of fabric and force anisotropies

  6. Assessment and application of Reynolds stress closure models to high-speed compressible flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Sarkar, S.; Speziale, C. G.; Balakrishnan, L.; Abid, R.; Anderson, E. C.

    1990-01-01

    The paper presents results from the development of higher order closure models for the phenomological modeling of high-speed compressible flows. The work presented includes the introduction of an improved pressure-strain correlationi model applicable in both the low- and high-speed regime as well as modifications to the isotropic dissipation rate to account for dilatational effects. Finally, the question of stiffness commonly associated with the solution of two-equation and Reynolds stress transport equations in wall-bounded flows is examined and ways of relaxing these restrictions are discussed.

  7. Assessment and application of Reynolds stress closure models to high-speed compressible flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Sarkar, S.; Speziale, C. G.; Balakrishnan, L.; Abid, R.; Anderson, E. C.

    1990-01-01

    The paper presents results from the development of higher order closure models for the phenomological modeling of high-speed compressible flows. The work presented includes the introduction of an improved pressure-strain correlationi model applicable in both the low- and high-speed regime as well as modifications to the isotropic dissipation rate to account for dilatational effects. Finally, the question of stiffness commonly associated with the solution of two-equation and Reynolds stress transport equations in wall-bounded flows is examined and ways of relaxing these restrictions are discussed.

  8. Stress Drops for Potentially Induced Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Beroza, G. C.; Ellsworth, W. L.

    2015-12-01

    Stress drop, the difference between shear stress acting across a fault before and after an earthquake, is a fundamental parameter of the earthquake source process and the generation of strong ground motions. Higher stress drops usually lead to more high-frequency ground motions. Hough [2014 and 2015] observed low intensities in "Did You Feel It?" data for injection-induced earthquakes, and interpreted them to be a result of low stress drops. It is also possible that the low recorded intensities could be a result of propagation effects. Atkinson et al. [2015] show that the shallow depth of injection-induced earthquakes can lead to a lack of high-frequency ground motion as well. We apply the spectral ratio method of Imanishi and Ellsworth [2006] to analyze stress drops of injection-induced earthquakes, using smaller earthquakes with similar waveforms as empirical Green's functions (eGfs). Both the effects of path and linear site response should be cancelled out through the spectral ratio analysis. We apply this technique to the Guy-Greenbrier earthquake sequence in central Arkansas. The earthquakes migrated along the Guy-Greenbrier Fault while nearby injection wells were operating in 2010-2011. Huang and Beroza [GRL, 2015] improved the magnitude of completeness to about -1 using template matching and found that the earthquakes deviated from Gutenberg-Richter statistics during the operation of nearby injection wells. We identify 49 clusters of highly similar events in the Huang and Beroza [2015] catalog and calculate stress drops using the source model described in Imanishi and Ellsworth [2006]. Our results suggest that stress drops of the Guy-Greenbrier sequence are similar to tectonic earthquakes at Parkfield, California (the attached figure). We will also present stress drop analysis of other suspected induced earthquake sequences using the same method.

  9. Protective effect of caspase inhibition on compression-induced muscle damage

    PubMed Central

    Teng, Bee T; Tam, Eric W; Benzie, Iris F; Siu, Parco M

    2011-01-01

    Abstract There are currently no effective therapies for treating pressure-induced deep tissue injury. This study tested the efficacy of pharmacological inhibition of caspase in preventing muscle damage following sustained moderate compression. Adult Sprague–Dawley rats were subjected to prolonged moderate compression. Static pressure of 100 mmHg compression was applied to an area of 1.5 cm2 in the tibialis region of the right limb of the rats for 6 h each day for two consecutive days. The left uncompressed limb served as intra-animal control. Rats were randomized to receive either vehicle (DMSO) as control treatment (n = 8) or 6 mg kg−1 of caspase inhibitor (z-VAD-fmk; n = 8) prior to the 6 h compression on the two consecutive days. Muscle tissues directly underneath the compression region of the compressed limb and the same region of control limb were harvested after the compression procedure. Histological examination and biochemical/molecular measurement of apoptosis and autophagy were performed. Caspase inhibition was effective in alleviating the compression-induced pathohistology of muscle. The increases in caspase-3 protease activity, TUNEL index, apoptotic DNA fragmentation and pro-apoptotic factors (Bax, p53 and EndoG) and the decreases in anti-apoptotic factors (XIAP and HSP70) observed in compressed muscle of DMSO-treated animals were not found in animals treated with caspase inhibitor. The mRNA content of autophagic factors (Beclin-1, Atg5 and Atg12) and the protein content of LC3, FoxO3 and phospho-FoxO3 that were down-regulated in compressed muscle of DMSO-treated animals were all maintained at their basal level in the caspase inhibitor treated animals. Our data provide evidence that caspase inhibition attenuates compression-induced muscle apoptosis and maintains the basal autophagy level. These findings demonstrate that pharmacological inhibition of caspase/apoptosis is effective in alleviating muscle damage as induced by prolonged compression

  10. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  11. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  12. ER stress-induced cell death mechanisms

    PubMed Central

    Sano, Renata; Reed, John C.

    2013-01-01

    The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. PMID:23850759

  13. Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys

    SciTech Connect

    Liu, Y.; Xie, Z.; Van Humbeeck, J.; Delaey, L.

    1998-07-24

    The stress-strain curves of polycrystalline martensitic NiTi shape memory alloys are often different for loading under tension and compression. Under tension, a flat stress-plateau occurs, while under compression, the material is quickly strain hardened and no flat stress-plateau is observed. Cyclic deformation under tension-compression also shows that it is more difficult to deform the material during compression than during tension, where an asymmetric stress-strain loop is obtained. TEM observations show that, under tension to 4% strain, martensite variants are partially reoriented via migration of variant interfaces with formation of dislocation networks mainly along the junction plane areas, and no significantly plastic deformation has been observed inside the martensite twin bands. While under compression to 4% strain, a high density of dislocations has been generated in both the martensite twin bands and the variant accommodation area, and no significant martensite reorientation via variant interfacial migration has been observed. This shows that the deformation mechanism of martensitic polycrystalline NiTi SMAs under tension is different from that under compression.

  14. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    PubMed Central

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N.; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M.; Tsao, Philip S.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease. PMID:26512646

  15. Stress induced hypotension in pure autonomic failure

    PubMed Central

    Thijs, R D; van Dijk, J G

    2006-01-01

    A 47 year old woman with pure autonomic failure complained of dizziness during emotional stress. Emotional stimuli have not previously been reported to cause hypotension in patients with autonomic failure. In the patient, ambulatory blood pressure recording revealed severe hypotension (50/30 mm Hg) after a stressful event. During a tilt table test, hyperventilation was shown to cause a significant fall of blood pressure. This suggests that emotional stress can induce hypotension, probably through hyperventilation, in subjects with autonomic failure. PMID:16354738

  16. Excitation of stress waves in overlayer films induced by a sudden heating of the substrate

    NASA Astrophysics Data System (ADS)

    Gu, Xiang; Urbassek, Herbert M.

    2006-11-01

    Using molecular-dynamics simulation, we study the excitation of stress waves in crystalline Ar overlayer films adsorbed on a metal substrate. When the metal is suddenly heated, e.g. by a short-pulse laser, the thermal expansion excites stress waves in the overlayer film. The oscillations induced by the stress wave in the film are long-lived and are damped only when the film starts melting; they vanish upon ablation of the entire film. The heating induced by the stress wave in the overlayer film and the role of the Kapitza effect—i.e. the thermal interface resistance of the metal-Ar boundary—are discussed. The simulated peak stresses agree well with the prediction of thermoelastic theory, if the Kapitza effect is taken into account. For stronger heating, the stress wave is asymmetric in that the compressive part is stronger than the tensile part.

  17. Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Guan, Yingping; Wang, Zhenhua

    2016-09-01

    Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s-1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R), mean absolute relative error ( MARE), and root mean square deviation ( RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields-Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.

  18. Inhomogeneous Relaxation of a Molecular Layer on an Insulator due to Compressive Stress

    NASA Astrophysics Data System (ADS)

    Bocquet, F.; Nony, L.; Mannsfeld, S. C. B.; Oison, V.; Pawlak, R.; Porte, L.; Loppacher, Ch.

    2012-05-01

    We discuss the inhomogeneous stress relaxation of a monolayer of hexahydroxytriphenylene (HHTP) which adopts the rare line-on-line (LOL) coincidence on KCl(001) and forms moiré patterns. The fact that the hexagonal HHTP layer is uniaxially compressed along the LOL makes this system an ideal candidate to discuss the influence of inhomogeneous stress relaxation. Our work is a combination of noncontact atomic force microscopy experiments, density functional theory and potential energy calculations, and a thorough interpretation by means of the Frenkel-Kontorova model. We show that the assumption of a homogeneous molecular layer is not valid for this organic-inorganic heteroepitaxial system since the best calculated energy configuration correlates with the experimental data only if inhomogeneous relaxations of the layer are taken into account.

  19. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Kolli, R. Prakash; Joost, William J.; Ankem, Sreeramamurthy

    2015-06-01

    In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.

  20. Long-term prediction of creep strains of mineral wool slabs under constant compressive stress

    NASA Astrophysics Data System (ADS)

    Gnip, Ivan; Vaitkus, Saulius; Keršulis, Vladislovas; Vėjelis, Sigitas

    2012-02-01

    The results obtained in determining the creep strain of mineral wool slabs under compressive stress, used for insulating flat roofs and facades, cast-in-place floors, curtain and external basement walls, as well as for sound insulation of floors, are presented. The creep strain tests were conducted under a compressive stress of σ c =0.35 σ 10%. Interval forecasting of creep strain was made by extrapolating the creep behaviour and approximated in accordance with EN 1606 by a power equation and reduced to a linear form using logarithms. This was performed for a lead time of 10 years. The extension of the range of the confidence interval due to discount of the prediction data, i.e. a decrease in their informativity was allowed for by an additional coefficient. Analysis of the experimental data obtained from the tests having 65 and 122 days duration showed that the prediction of creep strains for 10 years can be made based on data obtained in experiments with durations shorter than the 122 days as specified by EN 13162. Interval prediction of creep strains (with a confidence probability of 90%) was based on using the mean square deviation of the actual direct observations of creep strains in logarithmic form to have the linear trend in a retrospective area.

  1. Deformation failure characteristics of coal body and mining induced stress evolution law.

    PubMed

    Wen, Zhijie; Qu, Guanglong; Wen, Jinhao; Shi, Yongkui; Jia, Chuanyang

    2014-01-01

    The results of the interaction between coal failure and mining pressure field evolution during mining are presented. Not only the mechanical model of stope and its relative structure division, but also the failure and behavior characteristic of coal body under different mining stages are built and demonstrated. Namely, the breaking arch and stress arch which influence the mining area are quantified calculated. A systematic method of stress field distribution is worked out. All this indicates that the pore distribution of coal body with different compressed volume has fractal character; it appears to be the linear relationship between propagation range of internal stress field and compressed volume of coal body and nonlinear relationship between the range of outburst coal mass and the number of pores which is influenced by mining pressure. The results provide theory reference for the research on the range of mining-induced stress and broken coal wall.

  2. Deformation Failure Characteristics of Coal Body and Mining Induced Stress Evolution Law

    PubMed Central

    Wen, Zhijie; Wen, Jinhao; Shi, Yongkui; Jia, Chuanyang

    2014-01-01

    The results of the interaction between coal failure and mining pressure field evolution during mining are presented. Not only the mechanical model of stope and its relative structure division, but also the failure and behavior characteristic of coal body under different mining stages are built and demonstrated. Namely, the breaking arch and stress arch which influence the mining area are quantified calculated. A systematic method of stress field distribution is worked out. All this indicates that the pore distribution of coal body with different compressed volume has fractal character; it appears to be the linear relationship between propagation range of internal stress field and compressed volume of coal body and nonlinear relationship between the range of outburst coal mass and the number of pores which is influenced by mining pressure. The results provide theory reference for the research on the range of mining-induced stress and broken coal wall. PMID:24967438

  3. [Stress-induced cellular adaptive mutagenesis].

    PubMed

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  4. Involvement of upper torso stress amplification, tissue compression and distortion in the pathogenesis of keloids.

    PubMed

    Bux, Shamin; Madaree, Anil

    2012-03-01

    Keloids are benign tumours composed of fibrous tissue produced during excessive tissue repair triggered by minor injury, trauma or surgical incision. Although it is recognized that keloids have a propensity to form in the upper torso of the body, the predisposing factors responsible for this have not been investigated. It is crucial that the aetiopathoical factors implicated in keloid formation be established to provide guidelines for well-informed more successful treatment. We compared keloid-prone and keloid-protected skin, identified pertinent morphological differences and explored how inherent structural characteristics and intrinsic factors may promote keloid formation. It was determined that keloid prone areas were covered with high tension skin that had low stretch and a low elastic modulus when compared with skin in keloid protected areas where the skin was lax with a high elastic modulus and low pre-stress level. Factors contributing to elevated internal stress in keloid susceptible skin were the protrusion of hard connective tissue such as bony prominences or cartilage into the dermis of skin as well as inherent skin characteristics such as the bundled arrangement of collagen in the reticular dermis, the existent high tension, the low elastic modulus, low stretch ability, contractile forces exerted by wound healing fibroblastic cells and external forces. Stress promotes keloid formation by causing dermal distortion and compression which subsequently stimulate proliferation and enhanced protein synthesis in wound healing fibroblastic cells. The strain caused by stress also compresses and occludes microvessels causing ischaemic effects and reperfusion injury which stimulate growth when blood rich in growth factors returns to the tissue. The growth promoting effects of increased internal stress, primarily, and growth factors released by reperfusing blood, manifest in keloid formation. Other inherent skin characteristics promoting keloid growth during the

  5. Structural evolution of Y3Fe5O12 induced by shock compression

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Matsumoto, Hitoshi

    2017-10-01

    Shock-recovery experiments on both powder and single-crystal samples of Y3Fe5O12 (YIG) are performed by flyer impact. The recovered samples are characterized by X-ray diffraction and Raman spectroscopy. In previous static compression studies, a phase transition from cubic YIG to amorphous YIG has been observed under a pressure of 50 GPa at ambient temperature. During the shock compression of the powder sample, the cubic structure of YIG is transformed to yttrium iron perovskite and hematite. The Raman spectra obtained after the shock compression of single-crystal YIG are not similar to the spectrum for amorphous garnet. The peaks in the Raman spectra can be attributed to yttrium iron perovskite and hematite. The shock-induced heat contributes to the difference in phase transition compared with the results for static compression experiments.

  6. Evolution of distributions and spatial correlations of single-particle forces and stresses during compression of ductile granular materials

    NASA Astrophysics Data System (ADS)

    Frenning, Göran; Alderborn, Göran

    2005-01-01

    Uniaxial compression of disordered packings of millimeter-sized ductile particles formed from microcrystalline cellulose is investigated experimentally, at compression pressures in the vicinity of the minimum pressure required to form a coherent compact. Distributions of normal forces and stresses exerted by individual particles on a confining wall are determined. Spatial force and stress correlations are investigated. The distribution of normal forces is found to narrow with increasing pressure, but no indication of a crossover to a Gaussian decay at high forces is observed. The distribution of normal stresses is found to be considerably more Gaussian in shape for all pressures investigated. This finding may be interpreted as resulting from a positive correlation between the area corresponding to each particle and the force it experienced during compression. Spatial force and stress correlations are observed for distances smaller than three particle diameters. The spatial stress correlations indicate that the mode of stress transmission changes when the compression pressure exceeds the minimum pressure required to form a coherent compact.

  7. A comparison of cartilage stress-relaxation models in unconfined compression: QLV and stretched exponential in combination with fluid flow.

    PubMed

    June, Ronald K; Fyhrie, David P

    2013-01-01

    Cartilage exhibits nonlinear viscoelastic behaviour. Various models have been proposed to explain cartilage stress relaxation, but it is unclear whether explicit modelling of fluid flow in unconfined compression is needed. This study compared Fung's quasi-linear viscoelastic (QLV) model with a stretched-exponential model of cartilage stress relaxation and examined each of these models both alone and in combination with a fluid-flow model in unconfined compression. Cartilage explants were harvested from bovine calf patellofemoral joints and equilibrated in tissue culture for 5 days before stress-relaxation testing in unconfined compression at 5% nominal strain. The stretched exponential models fit as well as the QLV models. Furthermore, the average stretched exponential relaxation time determined by this model lies within the range of experimentally measured relaxation times for extracted proteoglycan aggregates, consistent with the hypothesis that the stretched exponential model represents polymeric mechanisms of cartilage viscoelasticity.

  8. Stress induced changes in testis function.

    PubMed

    López-Calderón, A; Ariznavarreta, C; González-Quijano, M I; Tresguerres, J A; Calderón, M D

    1991-01-01

    The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids.

  9. Loading and Boundary Condition Influences in a Poroelastic Finite Element Model of Cartilage Stresses in a Triaxial Compression Bioreactor

    PubMed Central

    Kallemeyn, Nicole A; Grosland, Nicole M; Pedersen, Doug R; Martin, James A; Brown, Thomas D

    2006-01-01

    Background: We developed a poroelastic finite element (FE) model of cartilage in dynamic triaxial compression to parametrically analyze the effects of loading and boundary conditions on a baseline model. Conventional mechanical tests on articular cartilage such as confined and unconfined compression, indentation, etc., do not fully allow for modulation of compression and shear at physiological levels whereas triaxial compression does. A Triaxial Compression Bioreactor, or TRIAX, has been developed to study chondrocyte responses to multi-axial stress conditions under cyclic loading. In the triaxial setting, however, a cartilage explant's physical testing environment departs from the ideal homogeneous stress state that would occur from strict linear superposition of the applied axial and transverse pressure. Method of Approach: An axisymmetric poroelastic FE model of a cartilage explant (4 mm diameter, 1.5 mm thick) in cyclic triaxial compression was created. Axial and transverse loads (2 MPa at 1 Hz.) were applied via a platen and containment sheath. Parameters of interest included the rise time and magnitude of the applied load, in addition to the containment sheath modulus and the friction coefficient at the cartilage/platen interfaces. Metrics of interest in addition to whole explant axial strain included axial (surface normal) stress, shear stress, pore pressure, and the fluid load carriage fraction within the explant. Results: Strain results were compared to experimental data from explants tested in the TRIAX under conditions similar to the baseline model. Explant biomechanics varied considerably over numbers of load cycles and parameter values. Cyclic loading caused an increase in accumulated strain for the various loading and boundary conditions. Conclusions: Unlike what would be expected from linear superposition of the homogeneous stresses from the applied axial and transverse pressure, we have shown that the stress state within the TRIAX is considerably

  10. Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires.

    PubMed

    Li, Binsong; Wen, Xiaodong; Li, Ruipeng; Wang, Zhongwu; Clem, Paul G; Fan, Hongyou

    2014-06-24

    One-dimensional silver materials display unique optical and electrical properties with promise as functional blocks for a new generation of nanoelectronics. To date, synthetic approaches and property engineering of silver nanowires have primarily focused on chemical methods. Here we report a simple physical method of metal nanowire synthesis, based on stress-induced phase transformation and sintering of spherical Ag nanoparticle superlattices. Two phase transformations of nanoparticles under stress have been observed at distinct length scales. First, the lattice dimensions of silver nanoparticle superlattices may be reversibly manipulated between 0-8 GPa compressive stresses to enable systematic and reversible changes in mesoscale optical coupling between silver nanoparticles. Second, stresses greater than 8 GPa induced an atomic lattice phase transformation, which induced sintering of silver nanoparticles into micron-length scale nanowires. The nanowire synthesis mechanism displays a dependence on both nanoparticle crystal surface orientation and presence of particular grain boundaries to enable nanoparticle consolidation into nanowires.

  11. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  12. Cold stress induces lower urinary tract symptoms.

    PubMed

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs.

  13. Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion

    PubMed Central

    Fornaciai, Michele; Arrighi, Roberto; Burr, David C.

    2016-01-01

    Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing. PMID:27003445

  14. Numerical study of one-dimensional compression of granular materials. I. Stress-strain behavior, microstructure, and irreversibility.

    PubMed

    Khalili, Mohamed Hassan; Roux, Jean-Noël; Pereira, Jean-Michel; Brisard, Sébastien; Bornert, Michel

    2017-03-01

    The behavior of a model granular material, made of slightly polydisperse beads with Hertz-Mindlin elastic-frictional contacts, in oedometric compression (i.e., compression along one axis, with no lateral strain) is studied by grain-level numerical simulations. We systematically investigate the influence of the (idealized) packing process on the microstructure and stresses in the initial, weakly confined equilibrium state, and prepare both isotropic and anisotropic configurations differing in solid fraction Φ and coordination number z. Φ (ranging from maximally dense to moderately loose), z (which might vary independently of Φ in dense systems), fabric and force anisotropy parameters, and the ratio K_{0} of lateral stresses σ_{2}=σ_{3} to stress σ_{1} in the compression direction are monitored in oedometric compression in which σ_{1} varies by more than three orders of magnitude. K_{0} reflects the anisotropy of the assembling process and may remain nearly constant in further loading if the material is already oedometrically compressed (as a granular gas) in the preparation stage. Otherwise, it tends to decrease steadily over the investigated stress range. It is related to force and fabric anisotropy parameters by a simple formula. Elastic moduli, separately computed with an appropriate matrix method, may express the response to very small stress increments about the transversely isotropic well-equilibrated states along the loading path, although oedometric compression proves an essentially anelastic process, mainly due to friction mobilization, with large irreversible effects apparent upon unloading. While the evolution of axial strain ε_{1} and solid fraction Φ (or of the void ratio e=-1+1/Φ) with axial stress σ_{1} is very nearly reversible, especially in dense samples, z is observed to decrease (as previously observed in isotropic compression) after a compression cycle if its initial value was high. K_{0} relates to the evolution of internal variables

  15. New method for predicting lifetime of seals from compression-stress relaxation experiments

    SciTech Connect

    Gillen, K.T.; Keenan, M.R.; Wise, J.

    1998-06-01

    Interpretation of compression stress-relaxation (CSR) experiments for elastomers in air is complicated by (1) the presence of both physical and chemical relaxation and (2) anomalous diffusion-limited oxidation (DLO) effects. For a butyl material, the authors first use shear relaxation data to indicate that physical relaxation effects are negligible during typical high temperature CSR experiments. They then show that experiments on standard CSR samples ({approximately}15 mm diameter when compressed) lead to complex non-Arrhenius behavior. By combining reaction kinetics based on the historic basic autoxidation scheme with a diffusion equation appropriate to disk-shaped samples, they derive a theoretical DLO model appropriate to CSR experiments. Using oxygen consumption and permeation rate measurements, the theory shows that important DLO effects are responsible for the observed non-Arrhenius behavior. To minimize DLO effects, they introduce a new CSR methodology based on the use of numerous small disk samples strained in parallel. Results from these parallel, minidisk experiments lead to Arrhenius behavior with an activation energy consistent with values commonly observed for elastomers, allowing more confident extrapolated predictions. In addition, excellent correlation is noted between the CSR force decay and the oxygen consumption rate, consistent with the expectation that oxidative scission processes dominate the CSR results.

  16. Compression failure of fibrous laminated composites in the presence of stress gradients: Experiment and analysis

    SciTech Connect

    Waas, A.M.

    1988-01-01

    A series of experiments were performed to determined the mechanism of failure in compressively loaded laminated plates in the presence of stress gradients generated by a circular cutout. real-time holographic interferometry and in-situ photomicrography of the hole surface, were used to observe the progression of failure. The test specimens are multi-layered composite flat plates, which are loaded in compression. An underlying objective of the present investigation is the identification of the physics of the failure initiation process. It is revealed that the failure is initiated as a localized instability of the 0{degree} plies at the hole surface, approximately at right angels to the loading direction. This instability emanating at the hole edge and propagating into the interior of the specimen with the 0{degree} plies is found to be fiber microbuckling. This initial failure renders a narrow zone of fibers with the 0{degree} plies to loose structural integrity. Subsequent to the 0{degree}-ply failure, extensive delamination cracking is observed with increasing load. The through thickness location of these delaminations is found to depend on the position of the 0{degree} plies. A simple mechanical model is presented for the microbuckling problem.

  17. Acute stress may induce ovulation in women

    PubMed Central

    2010-01-01

    Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating) the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment. PMID:20504303

  18. Stress induced neuroendocrine-immune plasticity

    PubMed Central

    Liezmann, Christiane; Stock, Daniel; Peters, Eva M. J.

    2012-01-01

    Research over the past decade has revealed close interaction between the nervous and immune systems in regulation of peripheral inflammation linking psychosocial stress with chronic somatic disease and aging. Moreover emerging data suggests that chronic inflammations lead to a pro-inflammatory status underlying premature aging called inflammaging. In this context, the spleen can be seen as a switch board monitoring peripherally derived neuroendocrine-immune mediators in the blood and keeping up a close communication with the central stress response via its mainly sympathetic innervation. The effect aims at balanced and well-timed stress axis activation and immune adaptation in acute peripheral inflammatory events. Constant adjustment to the needs generated by environmental and endogenous challenges is provided by neuroendocrine-immune plasticity. However, maladaptive plasticity induced e.g., by chronic stress-axis activation and excessive non-neuronal derived neuroendocrine mediators may be at the heart of the observed stress sensitivity promote inflammaging under chronic inflammatory conditions. We here review the role of neurotransmitters, neuropeptides and neurotrophins as stress mediators modulating the immune response in the spleen and their potential role in inflammaging. PMID:23467333

  19. Correlation of compressive stress with spalling of plasma sprayed ceramic materials

    NASA Technical Reports Server (NTRS)

    Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.

    1983-01-01

    Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic.

  20. Correlation of compressive and shear stress with spalling of plasma-sprayed ceramic materials

    NASA Technical Reports Server (NTRS)

    Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.

    1983-01-01

    Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic. Previously announced in STAR as N83-27016

  1. Magnetic field aberration induced by cycle stress

    NASA Astrophysics Data System (ADS)

    En, Yang; luming, Li; Xing, Chen

    2007-05-01

    Magneto-mechanical effect has been causing people's growing interest because of its relevance to several technology problems. One of them is the variation of surface magnetic field induced by stress concentration under the geomagnetic field. It can be used as an innovative, simple and convenient potential NDE method, called as magnetic memory method. However, whether and how this can be used as a quantitative measurement method, is still a virginal research field where nobody sets foot in. In this paper, circle tensile stress within the elastic region was applied to ferromagnetic sample under geomagnetic field. Experiment results on the relation between surface magnetic field and elastic stress were presented, and a simple model was derived. Simulation of the model was reconciled with the experimental results. This can be of great importance for it provides a brighter future for the promising Magnetic Memory NDE method—the potential possibility of quantitative measurement.

  2. Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression

    PubMed Central

    Polka, Jessica K.

    2014-01-01

    Bacteria from several taxa, including Kurthia zopfii, Myxococcus xanthus, and Bacillus mycoides, have been reported to align growth of their colonies to small features on the surface of solid media, including anisotropies created by compression. While the function of this phenomenon is unclear, it may help organisms navigate on solid phases, such as soil. The origin of this behavior is also unknown: it may be biological (that is, dependent on components that sense the environment and regulate growth accordingly) or merely physical. Here we show that B. subtilis, an organism that typically does not respond to media compression, can be induced to do so with two simple and synergistic perturbations: a mutation that maintains cells in the swarming (chained) state, and the addition of EDTA to the growth media, which further increases chain length. EDTA apparently increases chain length by inducing defects in cell separation, as the treatment has only marginal effects on the length of individual cells. These results lead us to three conclusions. First, the wealth of genetic tools available to B. subtilis will provide a new, tractable chassis for engineering compression sensitive organisms. Second, the sensitivity of colony morphology to media compression in Bacillus can be modulated by altering a simple physical property of rod-shaped cells. And third, colony morphology under compression holds promise as a rapid, simple, and low-cost way to screen for changes in the length of rod-shaped cells or chains thereof. PMID:25289183

  3. Antiamnesic effect of acyl-prolyl-containing dipeptide (GVS-111) in compression-induced damage to frontal cortex.

    PubMed

    Romanova, G A; Mirzoev, T K; Barskov, I V; Victorov, I V; Gudasheva, T A; Ostrovskaya, R U

    2000-09-01

    Antiamnestic effect of acyl-prolyl-containing dipeptide GVS-111 was demonstrated in rats with bilateral compression-induced damage to the frontal cortex. Both intraperitoneal and oral administration of the dipeptide improved retrieval of passive avoidance responses in rats with compression-induced cerebral ischemia compared to untreated controls.

  4. Stress-relaxation response of human menisci under confined compression conditions.

    PubMed

    Martin Seitz, Andreas; Galbusera, Fabio; Krais, Carina; Ignatius, Anita; Dürselen, Lutz

    2013-10-01

    The objective of this study was to determine the viscoelastic properties of human meniscal tissue during stress-relaxation under confined compression conditions. Lateral and medial longitudinal meniscus plugs of 25 donor knees (ntotal=150) were exposed to stress-relaxation tests under confined compression conditions at three compression levels (ε=0.1; 0.15; 0.2). Mathematical modelling using an exponential 1D-diffusion equation was used to predict the viscoelastic properties. Subsequently, finite element (FE) models were created using identical geometry, properties and test conditions as used for the in-vitro tests. Two constitutively different underlying mathematical formulations were applied to the FE models to reveal possible differences in their predictions for the relaxation response. While the first FE model mimicked the analytical model (FE1), the second FE model used a different biphasic, non-linear approach (FE2). Regression analyses showed promising coefficients of determination (R(2)>0.73) between the experimental data and the predictions obtained from the diffusion equation and the two FE models. Mean aggregate modulus, predicted with the diffusion equation (HA=64.0 kPa) was lower than those obtained with the two FE analyses (HA,FE1=91.9 kPa; HA,FE2=81.5 kPa). Mean hydraulic permeability (kFE2=1.5×10(-15)m(4)/Ns) of the second FE2 approach was statistically lower (p<0.01) than the other permeability values (k=3.9×10(-15)m(4)/Ns; kFE1=3.4×10(-15)m(4)/Ns). These differences are mainly due to the different underlying mathematical models used. However, when compared with corresponding literature, the results of the present study indicated good agreement. The results of the present study contribute to a better understanding of the complex nature of meniscal tissue and might also have an impact on the design of future meniscal substitutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Constitutive model for municipal solid waste incorporating mechanical creep and biodegradation-induced compression.

    PubMed

    Sivakumar Babu, G L; Reddy, Krishna R; Chouksey, Sandeep K

    2010-01-01

    A constitutive model is proposed to describe the stress-strain behavior of municipal solid waste (MSW) under loading using the critical state soil mechanics framework. The modified cam clay model is extended to incorporate the effects of mechanical creep and time dependent biodegradation to calculate total compression under loading. Model parameters are evaluated based on one-dimensional compression and triaxial consolidated undrained test series conducted on three types of MSW: (a) fresh MSW obtained from working phase of a landfill, (b) landfilled waste retrieved from a landfill after 1.5 years of degradation, and (c) synthetic MSW with controlled composition. The model captures the stress-strain and pore water pressure response of these three types of MSW adequately. The model is useful for assessing the deformation and stability of landfills and any post-closure development structures located on landfills.

  6. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.

    PubMed

    Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K

    2017-01-15

    The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (Ea) and pre-exponential factor (k0) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, Ea and k0 of pure PLA are 57.54kJ/mol and 9.74×10(7)day(-1), respectively, but 65.5kJ/mol and 9.81×10(8)day(-1) for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature.

  7. A DEM study of oedometric compression of model granular materials Initial state influence, stress ratio, elasticity, irreversibility.

    NASA Astrophysics Data System (ADS)

    Khalili, Mohamed Hassan; Roux, Jean-Noël; Brisard, Sébastien; Pereira, Jean-Michel; Bornert, Michel

    2017-06-01

    A DEM simulation study of spherical beads with elastic-frictional contacts in oedometric compression is carried out for a wide variety of initial states, differing in solid fraction Φ, coordination number z (independent of Φ in dense systems) and inherent anisotropy. Stress ratio K0 = σ2/σ1, along with z, Φ and force and fabric anisotropies are monitored in compressions in which axial stress σ1 varies by more than 3 orders of magnitude. K0 tends to remain constant if the material was already one-dimensionally compressed in the assembling stage. Otherwise, it decreases steadily over the investigated stress range. K0 relates to force and fabric anisotropy parameters by a simple formula. Elastic moduli may express the response to very small stress increments about the transversely isotropic equilibrated states, although oedometric compression proves an essentially anelastic process, mainly due to friction mobilization. Despite apparent nearly reversible increases of axial strain ɛ1 (or density Φ), especially in dense samples, internal state evolutions are strongly irreversible, as evidenced by changes in z and K0. Fabric changes are reflected by anisotropic elastic moduli.

  8. Critical Compressive Stress for Flat Rectangular Plates Supported Along All Edges and Elastically Restrained Against Rotation along the Unloaded Edges

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.

  9. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  10. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  11. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes.

    PubMed

    Gellynck, K; Shah, R; Deng, D; Parkar, M; Liu, W; Knowles, J C; Buxton, P

    2013-06-29

    Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell's ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton's role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs) (D1 ORL UVA), osteoblastic cells (MC3T3-E1) and post-osteoblast/pre-osteocyte-like cells (MLO-A5) were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a 'pseudo-periosteum' in the regeneration of bone defects.

  12. Electronic and optical properties in ZnO:Ga thin films induced by substrate stress

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Ahn, Heejin; Kang, Manil; Um, Youngho; Park, Hyoyeol

    2015-12-01

    The effects of biaxial stress in ZnO:Ga thin films on different substrates, e.g., sapphire(0001), quartz, Si(001), and glass have been investigated by X-ray diffraction, atomic force microscopy, and electrical transport and ellipsometric measurements. A strong dependence of orientation, crystallite size, transport, and electronic properties upon the substrate-induced stress has been found. The structural properties indicate that a tensile stress exists in epitaxial ZnO:Ga films grown on sapphire, Si, and quartz, while a compressive stress appears in films grown on glass. The resistivity of the films decreased with increasing biaxial stress, which is inversely proportional to the product of the carrier concentration and Hall mobility. The refractive index n was found to decrease with increasing biaxial stress, while the optical band gap E0 increased with stress. These behaviors are attributed to lattice contraction and the increase in the carrier concentration that is induced by the stress. Our experimental data suggest that the mechanism of substrate-induced stress is important for understanding the properties of ZnO:Ga thin films and for the fabrication of devices which use these materials.

  13. Mantle-induced subsidence and compression in SE Asia since the early Miocene

    NASA Astrophysics Data System (ADS)

    Yang, Ting; Gurnis, Michael; Zahirovic, Sabin

    2016-03-01

    Rift basins developed extensively across Sundaland, the continental core of Southeast Asia, since the Eocene. Beginning in the early Miocene, basins in southern Sundaland experienced widespread synchronous compression (inversion) and marine inundation, despite a large drop in long-term global sea level. The mechanism for this large-scale synchronous regional sea level rise, basin inversion, and subsidence is not well understood and contrary to expectations from traditional basin models and eustatic sea level trends. We present geodynamic models of mantle convection with both deformable and rigid plate reconstructions to investigate this enigma. Models suggest that a slab stagnates within the transition zone beneath Southeast Asia before the Miocene. The stagnant slab penetrated through the 660 km mantle discontinuity during the early Miocene and formed a slab avalanche event, due to continuous subduction and accumulation of negatively buoyant slabs. This avalanche may have induced large-scale marine inundation, regional compression, and basin inversion across southern Sundaland. We argue mantle convection induced large-scale basin compression, in contrast to conventional plate margin-induced compression; this suggests mantle convection may exert a much stronger control on surface processes than previously recognized.

  14. Conduction-only transport phenomena in compressible bivelocity fluids: diffuse interfaces and Korteweg stresses.

    PubMed

    Brenner, Howard

    2014-04-01

    "Diffuse interface" theories for single-component fluids—dating back to van der Waals, Korteweg, Cahn-Hilliard, and many others—are currently based upon an ad hoc combination of thermodynamic principles (built largely upon Helmholtz's free-energy potential) and so-called “nonclassical” continuum-thermomechanical principles (built largely upon Newtonian mechanics), with the latter originating with the pioneering work of Dunn and Serrin [Arch. Ration. Mech. Anal. 88, 95 (1985)]. By introducing into the equation governing the transport of energy the notion of an interstitial work-flux contribution, above and beyond the usual Fourier heat-flux contribution, namely, jq = -k∇T, to the energy flux, Dunn and Serrin provided a rational continuum-thermomechanical basis for the presence of Korteweg stresses in the equation governing the transport of linear momentum in compressible fluids. Nevertheless, by their failing to recognize the existence and fundamental need for an independent volume transport equation [Brenner, Physica A 349, 11 (2005)]—especially for the roles played therein by the diffuse volume flux j v and the rate of production of volume πν at a point of the fluid continuum—we argue that diffuse interface theories for fluids stand today as being both ad hoc and incomplete owing to their failure to recognize the need for an independent volume transport equation for the case of compressible fluids. In contrast, we point out that bivelocity hydrodynamics, as it already exists [Brenner, Phys. Rev. E 86, 016307 (2012)], provides a rational, non-ad hoc, and comprehensive theory of diffuse interfaces, not only for single-component fluids, but also for certain classes of crystalline solids [Danielewski and Wierzba, J. Phase Equilib. Diffus. 26, 573 (2005)]. Furthermore, we provide not only what we believe to be the correct constitutive equation for the Korteweg stress in the class of fluids that are constitutively Newtonian in their rheological response

  15. Conduction-only transport phenomena in compressible bivelocity fluids: Diffuse interfaces and Korteweg stresses

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2014-04-01

    "Diffuse interface" theories for single-component fluids—dating back to van der Waals, Korteweg, Cahn-Hilliard, and many others—are currently based upon an ad hoc combination of thermodynamic principles (built largely upon Helmholtz's free-energy potential) and so-called "nonclassical" continuum-thermomechanical principles (built largely upon Newtonian mechanics), with the latter originating with the pioneering work of Dunn and Serrin [Arch. Ration. Mech. Anal. 88, 95 (1985)]. By introducing into the equation governing the transport of energy the notion of an interstitial work-flux contribution, above and beyond the usual Fourier heat-flux contribution, namely, jq=-k∇T, to the energy flux, Dunn and Serrin provided a rational continuum-thermomechanical basis for the presence of Korteweg stresses in the equation governing the transport of linear momentum in compressible fluids. Nevertheless, by their failing to recognize the existence and fundamental need for an independent volume transport equation [Brenner, Physica A 349, 11 (2005), 10.1016/j.physa.2004.10.033]—especially for the roles played therein by the diffuse volume flux jv and the rate of production of volume πv at a point of the fluid continuum—we argue that diffuse interface theories for fluids stand today as being both ad hoc and incomplete owing to their failure to recognize the need for an independent volume transport equation for the case of compressible fluids. In contrast, we point out that bivelocity hydrodynamics, as it already exists [Brenner, Phys. Rev. E 86, 016307 (2012), 10.1103/PhysRevE.86.016307], provides a rational, non-ad hoc, and comprehensive theory of diffuse interfaces, not only for single-component fluids, but also for certain classes of crystalline solids [Danielewski and Wierzba, J. Phase Equilib. Diffus. 26, 573 (2005), 10.1007/s11669-005-0002-y]. Furthermore, we provide not only what we believe to be the correct constitutive equation for the Korteweg stress in the

  16. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-08-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  17. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  18. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure.

    PubMed

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  19. Extracting Constitutive Stress-Strain Behavior of Microscopic Phases by Micropillar Compression

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; Walters, J. L.; Wang, M. Y.; Chawla, N.; Rohatgi, A.

    2013-02-01

    The macroscopic behavior of metallic materials is a complex function of microstructure. The size, morphology, volume fraction, crystallography, and distribution of a 2nd phase within a surrounding matrix all control the mechanical properties. Understanding the contributions of the individual microconstituents to the mechanical behavior of multiphase materials has proven difficult due to the inability to obtain accurate constitutive relationships of each individual constituent. In dual-phase steels, for example, the properties of martensite or ferrite in bulk form are not representative of their behavior at the microscale. In this study, micropillar compression was employed to determine the mechanical properties of individual microconstituents in metallic materials with "composite" microstructures, consisting of two distinct microconstituents: (I) a Mg-Al alloy with pure Mg dendrites and eutectic regions and (II) a powder metallurgy steel with ferrite and martensite constituents. The approach is first demonstrated in a Mg-Al directionally solidified alloy where the representative stress-strain behavior of the matrix and eutectic phases was obtained. The work is then extended to a dual-phase steel where the constitutive behavior of the ferrite and martensite were obtained. Here, the results were also incorporated into a modified rule-of-mixtures approach to predict the composite behavior of the steel. The constitutive behavior of the ferrite and martensite phases developed from micropillar compression was coupled with existing strength-porosity models from the literature to predict the ultimate tensile strength of the steel. Direct comparisons of the predictions with tensile tests of the bulk dual-phase steel were conducted and the correlations were quite good.

  20. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression

    PubMed Central

    Dolega, M. E.; Delarue, M.; Ingremeau, F.; Prost, J.; Delon, A.; Cappello, G.

    2017-01-01

    The surrounding microenvironment limits tumour expansion, imposing a compressive stress on the tumour, but little is known how pressure propagates inside the tumour. Here we present non-destructive cell-like microsensors to locally quantify mechanical stress distribution in three-dimensional tissue. Our sensors are polyacrylamide microbeads of well-defined elasticity, size and surface coating to enable internalization within the cellular environment. By isotropically compressing multicellular spheroids (MCS), which are spherical aggregates of cells mimicking a tumour, we show that the pressure is transmitted in a non-trivial manner inside the MCS, with a pressure rise towards the core. This observed pressure profile is explained by the anisotropic arrangement of cells and our results suggest that such anisotropy alone is sufficient to explain the pressure rise inside MCS composed of a single cell type. Furthermore, such pressure distribution suggests a direct link between increased mechanical stress and previously observed lack of proliferation within the spheroids core. PMID:28128198

  1. Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression.

    PubMed

    Yi, Jianru; Yan, Boxi; Li, Meile; Wang, Yu; Zheng, Wei; Li, Yu; Zhao, Zhihe

    2016-04-01

    Caffeine is the kernel component of coffee and has multiple effects on bone metabolism. Here we aimed to investigate the effects of caffeine intake on orthodontic tooth movement (OTM). (1) In the in vivo study, two groups comprising 15 randomly assigned rats each underwent orthodontic treatment. One group ingested caffeine at 25mg/kg body weight per day and the other, plain water. After 3 weeks, the degree of tooth movement and effect on the periodontium were assessed. (2) In the in vitro study, we established a model mimicking the essential bioprocess of OTM, which contained a periodontal ligament tissue model (PDLtm), and a co-culture system of osteoblasts (OBs) and osteoclast precursors (pre-OCs). After being subjected to static compressive force with or without caffeine administration, the conditioned media from the PDLtm were used for the OB/pre-OC co-cultures to induce osteoclastogenesis. (1) In vivo, the caffeine group displayed a significantly greater rate of tooth movement than the control. The alveolar bone mineral density and bone volume fraction were similar between the two groups; however, immunohistochemical staining showed that the caffeine group had significantly more TRAP(+) osteoclasts and higher RANKL expression in the compressed periodontium. (2) In vitro, caffeine at 0.01mM significantly enhanced the compression-induced expression of RANKL and COX-2, as well as prostaglandin E2 production in the PDLtm. Furthermore, the "caffeine+compression"-conditioned media induced significantly more TRAP(+) OC formation when compared with compression alone. Daily intake of caffeine, at least at some specific dosage, may enhance OTM through increasing osteoclastogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of paraquat-induced oxidative stress

    PubMed Central

    Wiemer, Matthias; Osiewacz, Heinz D.

    2014-01-01

    Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247

  3. In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars.

    PubMed

    Renò, Filippo; Sabbatini, Maurizio; Lombardi, Francesca; Stella, Maurizio; Pezzuto, Carla; Magliacani, Gilberto; Cannas, Mario

    2003-01-01

    Hypertrophic scars resulting from severe burns are usually treated by continuous elastic compression. Although pressure therapy reaches success rates of 60-85% its mechanisms of action are still poorly understood. In this study, apoptosis induction and release of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were evaluated in normal (n = 3) and hypertrophic (=7) scars from burns after in vitro mechanical compression. In the absence of compression (basal condition) apoptotic cells, scored using terminal deoxyribonucleotidyl transferase assay, were present after 24 hours in the derma of both normal scar (23 +/- 0.4% of total cell) and hypertrophic scar (11.3 +/- 1.4%). Mechanical compression (constant pressure of 35 mmHg for 24 hours) increased apoptotic cell percentage both in normal scar (29.5 +/- 0.4%) and hypertrophic scar (29 +/- 1.7%). IL-1beta released in the medium was undetectable in normal scar under basal conditions while in hypertrophic scar the IL-1beta concentration was 3.48 +/- 0.2 ng/g. Compression in hypertrophic scar-induced secretion of IL-1beta twofold higher compared to basal condition. (7.72 +/- 0.2 ng/g). TNF-alpha basal concentration measured in normal scar medium was 8.52 +/- 4.01 ng/g and compression did not altered TNF-alpha release (12.86 +/- 7.84 ng/g). TNF-alpha basal release was significantly higher in hypertrophic scar (14.74 +/- 1.42 ng/g) compared to normal scar samples and TNF-alpha secretion was diminished (3.52 +/- 0.97 ng/g) after compression. In conclusion, in our in vitro model, mechanical compression resembling the clinical use of elastocompression was able to strongly increase apoptosis in the hypertrophic scar derma as observed during granulation tissue regression in normal wound healing. Moreover, the observed modulation of IL-1beta and TNF-alpha release by mechanical loading could play a key role in hypertrophy regression induced by elastocompression.

  4. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  5. Stress state in turbopump bearing induced by shrink fitting

    NASA Technical Reports Server (NTRS)

    Sims, P.; Zee, R.

    1991-01-01

    The stress generated by shrink fitting in bearing-like geometries is studied. The feasibility of using strain gages to determine the strain induced by shrink fitting process is demonstrated. Results from a ring with a uniform cross section reveal the validity of simple stress mechanics calculations for determining the stress state induced in this geometry by shrink fitting.

  6. Operator-induced compressive axial forces during implant gold screw fastening.

    PubMed

    Pesun, I J; Brosky, M E; Korioth, T W; Hodges, J; Devoe, B J

    2001-07-01

    The gold screw of an implant is put under tension during fastening. An increase in operator-induced compressive axial force during fastening may diminish screw tension, lower the friction between the screw threads, and allow for increased tightening torque. This study was undertaken to assess and compare the compressive axial forces and torques placed simultaneously on implant gold screws by persons with varying degrees of expertise. A calibrated electric torque driver was used to fasten implant gold screws. Three groups of operators with various levels of implant experience (faculty [F; n = 4], prosthodontic residents [R; n = 4], and undergraduate dental students [S; n = 6]) were asked to repeatedly tighten and loosen a new gold abutment screw into a standard 3.75-mm diameter Branemark abutment. Compressive axial forces during torquing were assessed over the tightening time by means of a miniature load cell adapted to the electric torque driver. Each operator repeated the experiment 3 times after calibration. Within operator and between operator reliability were evaluated. Loosening compressive axial forces were always higher than tightening compressive axial forces, and peak torque was less on loosening than tightening. Faculty placed a smaller range of forces on the screws (mean = 3.29 N, SD +/- 1.45 N) than did the residents (mean = 2.74 N, SD +/- 1.96) or the students (mean = 3.01 N, SD +/- 2.54). The clinical experience of operators seems to influence their application of compressive axial force during gold screw tightening. Less torque during unfastening of gold screws seems to be related to increased axial loading.

  7. Isentropic Compression Loading of HMX and the Pressure-induced Phase Transition at 27 GPa

    SciTech Connect

    Hare, D E; Reisman, D B; Dick, J J; Forbes, J W

    2004-02-25

    The 27 GPa pressure-induced epsilon-phi phase transition in HMX is explored using the Isentropic Compression Experiment (ICE) technique at the Sandia National Laboratories Z-machine facility. Our data indicate that this phase transition is sluggish and if it does occur to any extent under the time scales (200-500 ns) and strain rates (5 x 10{sup 5}) typical of ICE loading conditions, the amount of conversion is small.

  8. Beam and shell modes of buckling of buried pipes induced by compressive ground failure

    SciTech Connect

    Chiou, Y.J.; Chi, S.Y.

    1995-12-31

    The buckling of buried pipeline induced by compressive ground failure was investigated. Both the beam mode of buckling and local shell mode of buckling, and their interactions were studied. The pipeline response was analyzed numerically. The results agree qualitatively with past researches and possess satisfactory comparisons with actual case histories. The relations of critical buried depth versus ratio of pipe diameter to thickness for buried pipe with different imperfections and various soil foundations were established.

  9. Thermal convection of magneto compressible couple-stress fluid saturated in a porous medium with Hall current

    NASA Astrophysics Data System (ADS)

    Mehta, C. B.; Singh, M.; Kumar, S.

    2016-02-01

    An investigation is made on the effect of Hall currents on thermal instability of a compressible couple-stress fluid in the presence of a horizontal magnetic field saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, Hall currents, compressibility, magnetic field and porous medium is derived. For the stationary convection a couple-stress fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. Compressibility, the magnetic filed and couple-stress parameter have stabilizing effects on the system whereas Hall currents and medium permeability have a destabilizing effect on the system, but in the absence of Hall current couple-stress has a destabilizing effect on the system. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field porous medium and Hall currents which were non-existent in their absence.

  10. Acute effect of brisk walking with graduated compression stockings on vascular endothelial function and oxidative stress.

    PubMed

    Okamoto, Takanobu; Sakamaki-Sunaga, Mikako; Min, Seokki; Miura, Takashi; Iwasaki, Tetsuji

    2013-11-01

    The purpose of this study was to investigate the acute effect of brisk walking with and without graduated compression stockings (GCSs) on vascular endothelial function and oxidative stress. Ten young healthy subjects walked briskly for 30 min with (GCS trial) and without (CON trial) GCSs in a randomized crossover trial. Brachial artery flow-mediated dilation (FMD) was measured as the per cent rise in the peak diameter from the baseline value at prior occlusion at each FMD measurement using B-mode ultrasonography before and 30 min after walking in the two trials. Derivatives of reactive oxygen metabolites (d-ROM), as an index of products of reactive oxygen species, and biological anti-oxidant potential (BAP), as an index of anti-oxidant potential, were also measured using a free radical elective evaluator before and 30 min after walking in both trials. FMD significantly decreased after brisk walking in both trials (P<0·05). However, FMD after brisk walking in the GCS trial was significantly higher than that in the CON trial (P<0·05). The d-ROM did not change before and after both trials, whereas the BAP significantly increased after walking in the GCS trial (P<0·05). These findings demonstrate that brisk walking while wearing GCSs suppresses the decrease in FMD and increases BAP.

  11. Cracking Process and Stress Field Evolution in Specimen Containing Combined Flaw Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Lin, Baiquan; Yang, Wei; Zou, Quanle; Kong, Jia; Yan, Fazhi

    2016-08-01

    Hydraulic slotting, an efficient technique for underground enhanced coal bed methane (ECBM) recovery, has been widely used in China. However, its pressure relief mechanism is unclear. Thus far, only limited research has been conducted on the relationships among the mechanical properties, flaw parameters, and crack propagation patterns of coal after hydraulic slotting. In addition, because of the limitations of test methods, an in-depth information is not available for this purpose. In this work, numerical models of specimens containing combined flaws are established based on particle flow code method. Our results provide insights into the effects of flaw inclination angle on the mechanical properties, crack propagation patterns, and temporal and spatial evolution rules of stress field in specimens containing combined flaws during the loading process. Besides, based on the initiation position and underlying mechanism, three types of crack initiation modes are identified from the failure processes of specimens. Finally, the crack propagation pattern is quantitatively described by the fractal dimension, which is found to be inversely proportional to the uniaxial compressive strength and elastic modulus of the specimen. To verify the rationality of the numerical simulation results, laboratory tests were conducted and their results match well with those obtained from the numerical simulation.

  12. Smog induces oxidative stress and microbiota disruption.

    PubMed

    Wong, Tit-Yee

    2017-04-01

    Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations. Copyright © 2017. Published by Elsevier B.V.

  13. Melamine Induces Oxidative Stress in Mouse Ovary.

    PubMed

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  14. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  15. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress

    PubMed Central

    Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén

    2016-01-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus–pituitary–adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. PMID:26668010

  16. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    PubMed

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Compression Induces Ephrin-A2 in PDL Fibroblasts via c-fos

    PubMed Central

    Sen, S.; Diercke, K.; Zingler, S.; Lux, C. J.

    2015-01-01

    Ephrin-A2–EphA2 and ephrin-B2–EphB4 interactions have been implicated in the regulation of bone remodeling. We previously demonstrated a potential role for members of the Eph-ephrin family of receptor tyrosine kinases for bone remodeling during orthodontic tooth movement: compression-dependent upregulation of ephrin-A2 in fibroblasts of the periodontal ligament (PDL) attenuated osteogenesis in osteoblasts of the alveolar bone. However, factors affecting the regulation of ephrin-A2 expression upon the application of compressive forces remained unclear. Here, we report a mechano-dependent pathway of ephrin-A2 induction in PDL fibroblasts (PDLFs) involving extracellular signal–regulated kinases (ERK) 1/2 and c-fos. PDLF subjected to compressive forces (30.3 g/cm2) upregulated c-fos and ephrin-A2 mRNA and protein expression and displayed increased ERK1/2 phosphorylation. Inhibition of the MAP kinase kinase (MEK)/ERK1/2 pathway using the specific MEK inhibitor U0126 significantly reduced ephrin-A2 messenger RNA upregulation upon compression. Silencing of c-fos using a small interfering RNA approach led to a significant inhibition of ephrin-A2 induction upon the application of compressive forces. Interestingly, ephrin-A2 stimulation of PDLF induced c-fos expression and led also to the induction of ephrin-A2 expression. Using a reporter gene construct in murine 3T3 cells, we found that ephrin-A2 was able to stimulate serum response element (SRE)–dependent luciferase activity. As the regulation of c-fos is SRE dependent, ephrin-A2 might induce c-fos via SRE activation. Taken together, we provide evidence for an ERK1/2- and c-fos–dependent regulation of ephrin-A2 in compressed PDLF and suggest a novel pathway for ephrin-A2 induction emanating from ephrin-A2 itself. We showed previously that ephrin-A2 at compression sites might contribute to tooth movement by inhibiting osteogenic differentiation. The regulatory pathway of ephrin-A2 induction during tooth movement

  18. DHEA administration modulates stress-induced analgesia in rats.

    PubMed

    Cecconello, Ana Lúcia; Torres, Iraci L S; Oliveira, Carla; Zanini, Priscila; Niches, Gabriela; Ribeiro, Maria Flávia Marques

    2016-04-01

    An important aspect of adaptive stress response is the pain response suppression that occurs during or following stress exposure, which is often referred to as acute stress-induced analgesia. Dehydroepiandrosterone (DHEA) participates in the modulation of adaptive stress response, changing the HPA axis activity. The effect of DHEA on the HPA axis activity is dependent on the state and uses the same systems that participate in the regulation of acute stress-induced analgesia. The impact of DHEA on nociception has been studied; however, the effect of DHEA on stress-induced analgesia is not known. Thus, the aim of the present study was to evaluate the effect of DHEA on stress-induced analgesia and determine the best time for hormone administration in relation to exposure to stressor stimulus. The animals were stressed by restraint for 1h in a single exposure and received treatment with DHEA by a single injection before the stress or a single injection after the stress. Nociception was assessed with a tail-flick apparatus. Serum corticosterone levels were measured. DHEA administered before exposure to stress prolonged the acute stress-induced analgesia. This effect was not observed when the DHEA was administered after the stress. DHEA treatment in non-stressed rats did not alter the nociceptive threshold, suggesting that the DHEA effect on nociception is state-dependent. The injection of DHEA had the same effect as exposure to acute stress, with both increasing the levels of corticosterone. In conclusion, acute treatment with DHEA mimics the response to acute stress indexed by an increase in activity of the HPA axis. The treatment with DHEA before stress exposure may facilitate adaptive stress response, prolonging acute stress-induced analgesia, which may be a therapeutic strategy of interest to clinics.

  19. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet

    NASA Astrophysics Data System (ADS)

    Dimple; Jena, Nityasagar; De Sarkar, Abir

    2017-06-01

    Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS2 (ML-MoS2) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid-Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the (direct) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm2 V-1 s-1. Such strain sensitive thermoelectric responses in ML-MoS2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting.

  20. External Compression Versus Intravascular Injection: A Mechanistic Animal Model of Filler-Induced Tissue Ischemia.

    PubMed

    Chang, Shu-Hong; Yousefi, Sivash; Qin, Jia; Tarbet, Kristin; Dziennis, Suzan; Wang, Ruikang; Chappell, Michael C

    2016-01-01

    Soft tissue ischemia is a devastating and unpredictable complication following dermal filler injection. Multiple mechanisms to explain this complication have been proposed, including vascular compression, vessel damage, and intraarterial filler emboli. To elucidate the mechanism of injury, the authors introduce a mouse model, imaged with optical microangiography and laser speckle contrast imaging technologies, to demonstrate in vivo microvascular response to soft tissue and intravascular filler injection. To determine the effect of external vascular compression on distal perfusion, the authors attempted to occlude vessels with subcutaneous hyaluronic acid gel (HAG) bolus injections into the pinna of hairless mice. The authors also performed suture ligation of a major vascular bundle. Following these interventions, laser speckle and optical microangiography were performed serially over 1 week follow up. To determine the effect of intravascular HAG injection, the authors devised and validated a novel method of cannulating the mouse external carotid artery for intraarterial access to the pinna vasculature. Using this model, the authors performed intraarterial HAG injections and completed optical microangiography and laser speckle contrast imaging. Despite large HAG bolus injections directly adjacent to vascular bundles, the authors were unable to induce compressive occlusion of the mouse pinna vessels. Vascular occlusion was successfully performed with suture ligation, but optical microangiography and laser speckle contrast imaging confirmed undisturbed distal capillary bed perfusion. With intravascular HAG injection, large segments of pinna showed distinct perfusion reduction along a vascular distribution when compared with preinjection images, most noticeably at the capillary level. The novel mouse pinna model combining intravascular access and in vivo microvascular perfusion imaging has furthered the understanding of the mechanism of filler-induced tissue ischemia

  1. Compression failure of fibrous laminated composites in the presence of stress gradients : experiment and analysis

    NASA Astrophysics Data System (ADS)

    Waas, Anthony M.

    A series of experiments were performed to determine the mechanism of failure in compressively loaded laminated plates in the presence of stress gradients generated by a circular cutout. Real time holographic interferometry and in-situ photomicrography of the hole surface, were used to observe the progression of failure.The test specimens are multi-layered composite flat plates, which are loaded in compression. The plates are made of two material systems, T300/BP907 and IM7/8551-7. Two different lay-ups of T300/BP907 and four different lay-ups of IM7/8551-7 are investigated.The load on the specimen is slowly increased and a series of interferograms are produced during the load cycle. These interferograms are video-recorded. The results obtained from the interferograms and photo-micrographs are substantiated by sectioning studies and ultrasonic C-scanning of some specimens which are unloaded prior to catastrophic failure, but beyond failure initiation. This is made possible by the servo-controlled loading mechanism that regulates the load application and offers the flexibility of unloading a specimen at any given instance in the loadtime history.An underlying objective of the present investigation is the identification of the physics of the failure initiation process. This required testing specimens with different stacking sequences, for a fixed hole diameter, so that consistent trends in the failure process could be identified.It is revealed that the failure is initiated as a localized instability in the 0? plies at the hole surface, approximately at right angles to the loading direction. This instability emanating at the hole edge and propagating into the interior of the specimen within the 0? plies is found to be fiber microbuckling. The microbuckling is found to occur at a local strain level of [...]8600 [mu]strain at the hole edge for the IM material system. This initial failure renders a narrow zone of fibers within the 0? plies to loose structural integrity

  2. Charts relating the compressive buckling stress of longitudinally supported plates to the effective deflectional and rotational stiffness of the supports

    NASA Technical Reports Server (NTRS)

    Anderson, Roger A; Semonian, Joseph W

    1954-01-01

    A stability analysis is made of a long flat rectangular plate subjected to a uniform longitudinal compressive stress and supported along its longitudinal edges and along one or more longitudinal lines by elastic line supports. The elastic supports possess deflectional and rotational stiffness. Such configuration is an idealization of the compression cover skin and internal structure of a wing and tail surfaces. The results of the analysis are presented in the form of charts in which the buckling-stress coefficient is plotted against the buckle length of the plate for a wide range of support stiffnesses. The charts make possible the determination of the compressive buckling stress of plates supported by members whose stiffness may or may not be defined by elementary beam bending and twisting theory but yet whose effective restraint is amenable to evaluation. The deflectional and rotational stiffness provided by longitudinal stiffeners and full-depth webs is discussed and numerical examples are given to illustrate the application of the charts to the design of wing structures.

  3. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve

    PubMed Central

    2012-01-01

    Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks. PMID:23270529

  4. Low-Density, Mechanical Compressible, Water-Induced Self-Recoverable Graphene Aerogels for Water Treatment.

    PubMed

    Ye, Shibing; Liu, Yue; Feng, Jiachun

    2017-07-12

    Graphene aerogels (GAs) have demonstrated great promise in water treatment, acting as separation and sorbent materials, because of their high porosity, large surface area, and high hydrophobicity. In this work, we have fabricated a new series of compressible, lightweight (3.3 mg cm(-3)) GAs through simple cross-linking of graphene oxide (GO) and poly(vinyl alcohol) (PVA) with glutaraldehyde. It is found that the cross-linked GAs (xGAs) show an interesting water-induced self-recovery ability, which can recover to their original volume even under extremely high compression strain or after vacuum-/air drying. Importantly, the amphiphilicity of xGAs can be adjusted facilely by changing the feeding ratio of GO and PVA and it exhibits affinity from polar water to nonpolar organic liquids depended on its amphiphilicity. The hydrophobic xGAs with low feeding ratio of PVA and GO can be used as adsorbent for organic liquid, while the hydrophilic xGAs with high feeding ratio of PVA and GO can be used as the filter material to remove some water-soluble dye in the wastewater. Because of the convenience of our approach in adjusting the amphiphilicity by simply changing the PVA/GO ratio and excellent properties of the resulting xGAs, such as low density, compressive, and water-induced self-recovery, this work suggests a promising technique to prepare GAs-based materials for the water treatment in different environment with high recyclability and long life.

  5. Shock Compression Induced Hot Spots in Energetic Material Detected by Thermal Imaging Microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wei; Dlott, Dana

    2014-06-01

    The chemical reaction of powder energetic material is of great interest in energy and pyrotechnic applications since the high reaction temperature. Under the shock compression, the chemical reaction appears in the sub-microsecond to microsecond time scale, and releases a large amount of energy. Experimental and theoretical research progresses have been made in the past decade, in order to characterize the process under the shock compression. However, the knowledge of energy release and temperature change of this procedure is still limited, due to the difficulties of detecting technologies. We have constructed a thermal imaging microscopy apparatus, and studied the temperature change in energetic materials under the long-wavelength infrared (LWIR) and ultrasound exposure. Additionally, the real-time detection of the localized heating and energy concentration in composite material is capable with our thermal imaging microscopy apparatus. Recently, this apparatus is combined with our laser driven flyer plate system to provide a lab-scale source of shock compression to energetic material. A fast temperature increase of thermite particulars induced by the shock compression is directly observed by thermal imaging with 15-20 μm spatial resolution. Temperature change during the shock loading is evaluated to be at the order of 10^9K/s, through the direct measurement of mid-wavelength infrared (MWIR) emission intensity change. We observe preliminary results to confirm the hot spots appear with shock compression on energetic crystals, and will discuss the data and analysis in further detail. M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Rev. Sci. Instr., 85, 023705 (2014) M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Appl. Phys. Lett., 104, 061907 (2014)} K. E. Brown, W. L. Shaw, X. Zheng, and D. D. Dlott, {Rev. Sci. Instr., 83, 103901 (2012)}

  6. Laboratory evaluation of mechanical properties of rock using an automated triaxial compression test with a constant mean stress criterion

    SciTech Connect

    Mellegard, K.D.; Pfeifle, T.W.

    1999-07-01

    A computerized, servohydraulic test system has been used in the laboratory to perform axisymmetric, triaxial compression tests on natural rock salt using a load path that maintains constant mean stress. The constant mean stress test protocol illustrates that modern test systems allow a nonstandard load path which can focus on a particular aspect of rock characterization; namely, the onset of dilation. Included are discussions of how the constant mean stress test could be used to investigate material anisotropy and determine elastic moduli. The results from the constant mean stress tests are compared to test results from a traditional test method. The paper also addresses system calibration concerns and the effects of pressure changes on the direct-contact extensometers used to measure strain.

  7. Multiple seizure-induced thoracic vertebral compression fractures: a case report

    PubMed Central

    Stilwell, Peter; Harman, Katherine; Hsu, William; Seaman, Brian

    2016-01-01

    Background: Musculoskeletal injuries stemming from forceful muscular contractions during seizures have been documented in the literature. Reports of multiple seizure-induced spinal fractures, in the absence of external trauma and without risk factors for fracture, are rare. Case Presentation: A 28-year-old male, newly diagnosed with epilepsy, presented to a chiropractic clinic with the complaint of mid-thoracic pain beginning after a tonic-clonic seizure with no associated external trauma. Radiographs revealed the impression of five new vertebral compression fractures from T4 to T8. Discussion: This report highlights the importance of a complete history and examination of patients with a history of tonic-clonic seizures and back pain, especially when considering spinal adjustments. Summary: This case report presents an argument that a tonic-clonic seizure, in the absence of external trauma or significant risk factors for fracture, resulted in multiple vertebral compression fractures. PMID:27713581

  8. Origin of compression-induced failure in brittle solids under shock loading

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Li, Y.; Liu, Q. C.; Zhou, X. M.; Liu, L. W.; Liu, C. L.; Zhu, M. H.; Luo, S. N.

    2015-10-01

    The origin of compression-induced failure in brittle solids has been a subject of debate. Using in situ, high-speed, strain field mapping of a representative material, polymethylmethacrylate, we reveal that shock loading leads to heterogeneity in a compressive strain field, which in turn gives rise to localized lateral tension and shear through Poisson's effects, and, subsequently, localized microdamage. A failure wave nucleates from the impact surface and its propagation into the microdamage zone is self-sustained, triggering interior failure. Its velocity increases with increasing shock strength and eventually approaches the shock velocity. The seemingly puzzling phenomena observed in previous experiments, including incubation time, failure wave velocity variations, and surface roughness effects, can all be explained consistently with the nucleation and growth of the microdamage, and the effects of loading strength and preexisting defects.

  9. Biomechanics of Sports-Induced Axial-Compression Injuries of the Neck

    PubMed Central

    Ivancic, Paul C.

    2012-01-01

    Context Head-first sports-induced impacts cause cervical fractures and dislocations and spinal cord lesions. In previous biomechanical studies, researchers have vertically dropped human cadavers, head-neck specimens, or surrogate models in inverted postures. Objective To develop a cadaveric neck model to simulate horizontally aligned, head-first impacts with a straightened neck and to use the model to investigate biomechanical responses and failure mechanisms. Design Descriptive laboratory study. Setting Biomechanics research laboratory. Patients or Other Participants Five human cadaveric cervical spine specimens. Intervention(s) The model consisted of the neck specimen mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Head-first impacts were simulated at 4.1 m/s into a padded, deformable barrier. Main Outcome Measure(s) Time-history responses were determined for head and neck loads, accelerations, and motions. Average occurrence times of the compression force peaks at the impact barrier, occipital condyles, and neck were compared. Results The first local compression force peaks at the impact barrier (3070.0 ± 168.0 N at 18.8 milliseconds), occipital condyles (2868.1 ± 732.4 N at 19.6 milliseconds), and neck (2884.6 ± 910.7 N at 25.0 milliseconds) occurred earlier than all global compression peaks, which reached 7531.6 N in the neck at 46.6 milliseconds (P < .001). Average peak head motions relative to the torso were 6.0 cm in compression, 2.4 cm in posterior shear, and 6.4° in flexion. Neck compression fractures included occipital condyle, atlas, odontoid, and subaxial comminuted burst and facet fractures. Conclusions Neck injuries due to excessive axial compression occurred within 20 milliseconds of impact and were caused by abrupt deceleration of the head and continued forward torso momentum before simultaneous rebound of the head and torso. Improved understanding of neck injury mechanisms during sports-induced impacts

  10. Biomechanics of sports-induced axial-compression injuries of the neck.

    PubMed

    Ivancic, Paul C

    2012-01-01

    Head-first sports-induced impacts cause cervical fractures and dislocations and spinal cord lesions. In previous biomechanical studies, researchers have vertically dropped human cadavers, head-neck specimens, or surrogate models in inverted postures. To develop a cadaveric neck model to simulate horizontally aligned, head-first impacts with a straightened neck and to use the model to investigate biomechanical responses and failure mechanisms. Descriptive laboratory study. Biomechanics research laboratory. Five human cadaveric cervical spine specimens. The model consisted of the neck specimen mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Head-first impacts were simulated at 4.1 m/s into a padded, deformable barrier. Time-history responses were determined for head and neck loads, accelerations, and motions. Average occurrence times of the compression force peaks at the impact barrier, occipital condyles, and neck were compared. The first local compression force peaks at the impact barrier (3070.0 ± 168.0 N at 18.8 milliseconds), occipital condyles (2868.1 ± 732.4 N at 19.6 milliseconds), and neck (2884.6 ± 910.7 N at 25.0 milliseconds) occurred earlier than all global compression peaks, which reached 7531.6 N in the neck at 46.6 milliseconds (P < .001). Average peak head motions relative to the torso were 6.0 cm in compression, 2.4 cm in posterior shear, and 6.4° in flexion. Neck compression fractures included occipital condyle, atlas, odontoid, and subaxial comminuted burst and facet fractures. Neck injuries due to excessive axial compression occurred within 20 milliseconds of impact and were caused by abrupt deceleration of the head and continued forward torso momentum before simultaneous rebound of the head and torso. Improved understanding of neck injury mechanisms during sports-induced impacts will increase clinical awareness and immediate care and ultimately lead to improved protective equipment, reducing the

  11. Investigation on Residual Stress Induced by Shot Peening

    NASA Astrophysics Data System (ADS)

    Zhao, Chunmei; Gao, Yukui; Guo, Jing; Wang, Qiang; Fu, Lichao; Yang, Qingxiang

    2015-03-01

    The high strength steel widely used in the aviation industry was chosen in this paper. The shot peening (SP) tests with different technical parameters were carried out, and compressive residual stress (CRS) distribution along the depth was determined. The phase structures before and after SP were analyzed by XRD and TEM. Microhardness and fatigue life were measured, and the morphology of fatigue fracture was also observed. The effects of different technical parameters on CRS field were investigated, and the CRS features with the characteristic parameters were analyzed deeply to summarize the rules. The results show that the CRS field induced by SP can be expressed by four characteristic parameters: the surface CRS σsrs, the maximum CRS σmrs, the depth of maximum CRS ξm and the depth of CRS (strengthened depth) ξ0. Martensite matrix is not changed by SP, while its boundary changes ambiguous with the formation of dislocations. After SP, the microhardness of the specimen increase, and the fatigue crack source moves inwards. The SP saturated time is 1 min. With the increase of SP intensity, σsrs, σmrs, ξm, and ξ0 all increase. While with the increase of SP angle, ξ0 grows gradually. The strengthen effect behaves more obviously as the shot size increases, and the shot material with larger hardness cause higher level of CRS field. Dual SP mainly increases σsrs value.

  12. An experimental study on the effects of compressive stress on the fatigue crack growth of low-alloy steel

    SciTech Connect

    Jones, D.P.; Hoppe, R.G.; Hechmer, J.L.; James, B.A.

    1993-12-01

    A series of fatigue crack growth rate tests was conducted in order to study effects of negative stress ratio on fatigue crack growth rate of low-alloy steel in air. Four-point bend specimens were used to simulate linear stress distributions typical of pressure vessel applications. This type of testing adds to knowledge on negative stress ratio effects for low-alloy steels obtained in the past from uniform tension-compression tests. Applied bending stress range was varied over twice the yield strength. Load control was used for tests for which the stress range was less than twice the yield strength and deflection control was used for the higher stress range tests. Crack geometries were both short and long fatigue cracks started at notches and tight fatigue cracks for which crack closure could occur over the full crack face. Results are presented in terms of the stress intensity factor ratio R = K{sub MIN}/K{sub MAX}. The negative R-ratio test results were correlated to an equation of the form da/dN = C[{Delta}K/(A-R)]{sup n}, where A, C, and n are curve fitting parameters. It was found that effects of negative R-ratio on fatigue crack growth rates for even the high stress range tests could be bounded by correlating the above equation to only positive R-ratio test results and extending the resulting equation into the negative R-ratio regime.

  13. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    SciTech Connect

    Tawfik, Wael Z.; Hyeon, Gil Yong; Lee, June Key

    2014-10-28

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ∼110 kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100 mA. The LED on the 60-μm-thick sapphire substrate exhibited the highest light output power of ∼59 mW at an injection current of 100 mA, with the operating voltage unchanged.

  14. Lower limb pneumatic compression during dobutamine stress echocardiography in patients with normal resting wall motion: will it increase diagnostic accuracy?

    PubMed

    Abdel-Salam, Zainab; Allam, Lawra; Wadie, Bassem; Enany, Bassem; Nammas, Wail

    2015-01-01

    Pneumatic compression of the lower part of the body increases systemic vascular resistance and left ventricular afterload. We compared the diagnostic accuracy of dobutamine stress echocardiography (DSE) with pneumatic compression of the lower extremities, vs. standard DSE, for detection of angiographically significant coronary artery disease (CAD) in patients with normal baseline resting wall motion. We enrolled 70 consecutive patients with no resting wall motion abnormalities (WMA), who underwent DSE. DSE was repeated with pneumatic compression of the lower extremities three days after the initial standard DSE. A positive test was defined as the induction of WMA in at least two contiguous non-overlap segments at any stage of dobutamine infusion. Significant coronary stenosis was defined as ≥ 50% obstruction of ≥ 1 sizable artery by coronary angiography. The mean age of the study cohort was 54.7 ± 9.9 years; 55.7% were females. Thirty-eight (54.3%) patients had significant CAD. The mean test duration was 15.8 ± 5.1 min for standard DSE and 11.7 ± 4.1 min for DSE with pneumatic compression. Analysis of standard DSE revealed sensitivity, specificity, and positive and negative predictive values of 81.6%, 90.6%, 91.2%, and 80.6%, respectively; overall accuracy was 85.7%. Analysis of DSE with pneumatic compression revealed sensitivity, specificity, and positive and negative predictive values of 89.5%, 87.5%, 89.5%, and 87.5%, respectively; overall accuracy was 88.6%. In symptomatic patients with suspected CAD referred for evaluation by DSE, who have no resting wall motion abnormalities, pneumatic compression of the lower extremities during DSE improved the sensitivity but slightly reduced the specificity for detection of angiographically significant CAD, compared with standard DSE. Moreover, it reduced the test duration.

  15. Stress-induced martensitic transformation in Ni-Ti(-Cu) interlayers controlling stress distribution in functional coatings during sliding

    NASA Astrophysics Data System (ADS)

    Callisti, M.; Polcar, T.

    2015-01-01

    The stress-induced martensitic transformation occurring in sputter-deposited Ni48.1Ti51.9 and Ni43.4Ti49.6Cu7 interlayers, integrated in a W-S-C/Ni-Ti(-Cu) bilayer design, was investigated by transmission electron microscopy, after these bilayers were subjected to different sliding conditions. Martensitic bands across the interlayers were formed depending on the sliding direction with their shape and distribution a function primarily of both applied normal load and grain size. The Ni48.1Ti51.9 interlayer (lateral grain size of ∼3 μm) showed well oriented and ordered martensitic bands extended through the interlayer thickness under low load (5 N). At a higher load (18 N) the growth of these bands was limited by the stabilised martensite formed as a consequence of the high compressive stress, at the interface with the substrate. The Ni43.4Ti49.6Cu7 interlayer (lateral grain size of ∼650 nm) exhibited no significant evidence of stabilised martensite under different loading conditions. The martensitic transformation was limited by the smaller grain size and most of the stress was relaxed by elastic and, to some extent, pseudo-elastic deformation of the austenitic phase. Grain boundaries were found to stop the growth of martensitic bands, thus limiting the activation of the martensitic transformation into the neighbouring grains during sliding. The grain refinement caused a change in the capability of the interlayer to relax shear and compressive stresses. Such a change was found to affect the formation of the WS2-rich tribolayer on the W-S-C sliding surface, and consequently the shear stress transmitted down throughout the bilayers thickness. Accordingly, different levels of deformation were observed on the top layer.

  16. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation

    PubMed Central

    Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Choi, Yoon Pyo; Lee, Joo Hyun; Kim, Ji Eun; Han, Hyun Ho; Mun, Seong Gyeong; Cho, Nam Hoon

    2017-01-01

    Tumor growth generates mechanical compression, which may trigger mechanotransduction in cancer and stromal cells and promote tumor progression. However, very little is known about how compression stimulates signal transduction and contributes to tumor progression. In the present study, we demonstrated that compression enhances a tumor progression phenotype using an in vitro compression model, and validated the results from the in vitro model with high- and low-compressed breast cancer tissues. Mechanical compression induced miR-9 downregulation by DNMT3A-dependent promoter methylation in the MDA-MB-231 and BT-474 breast cancer cell lines and in cancer-associated fibroblasts. The overexpression of miR-9 target genes (LAMC2, ITGA6, and EIF4E) was induced by miR-9 downregulation, which eventually enhanced vascular endothelial growth factors production. Demethylation and decompression could reverse compression-induced miR-9 downregulation and following overexpression of miR-9 target genes and VEGFA. PMID:28252641

  17. Analysis of stress states in compression stage of high pressure torsion using slab analysis method and finite element method

    NASA Astrophysics Data System (ADS)

    Wang, Wenke; Song, Yuepeng; Gao, Dongsheng; Yoon, Eun Yoo; Lee, Dong Jun; Lee, Chong Soo; Kim, Hyoung Seop

    2013-09-01

    High pressure torsion (HPT) is useful for achieving substantial grain refinement to ultrafine grained/nanocrystalline states in bulk metallic solids. Most publications that analyzed the HPT process used experimental and numerical simulation approaches, whereas theoretical stress analyses for the HPT process are rare. Because of the key role of compression stage for the deformation of HPT, this paper aims to conduct a theoretical analysis and to establish a practical formula for stress and forming parameters of HPT process using the slab analysis method. Three equations were obtained via equations derivation to describe the normal stress states corresponding to the three zones of plastic deformation for HPT process as stick zone, drag zone and slip zone. As to the compression stage of HPT, the stress distribution results using the finite element method agree well with those using the slab analysis method. There are drag and stick zones on the contact surface of the HPT sample, as verified by the finite element method (FEM) and slab analysis method.

  18. Effect of non-uniform thickness of samples in stress relaxation tests under unconfined compression of samples of articular discs.

    PubMed

    Commisso, Maria S; Martínez-Reina, Javier; Mayo, Juana; Domínguez, Jaime; Tanaka, Eiji

    2014-04-11

    A precise information of the biomechanical properties of soft tissues is required to develop a suitable simulation model, with which the distribution of stress and strain in the complex structures can be estimated. Many soft tissues have been mechanically characterized by stress relaxation tests under unconfined or confined compression. In general, full-thickness samples are extracted to reduce the damage in the tissue as much as possible. However, it is not guaranteed that these samples have a uniform thickness or, in other words, planar parallel faces. In particular, in the articular disc of the temporomandibular joint, many studies can be found testing full-thickness samples for which that thickness is known to be non-uniform, while making the assumption of uniaxial stress state to extract the mechanical properties from those tests. That inaccuracy may have a strong influence in some cases and needs a profound revision. The main goal of this work is to quantify the error committed in that assumption and the influence of the variation of thickness on that error in a particular test: stress relaxation tests under unconfined compression. Based on this error and defining an allowable tolerance, a criterion is established to reject samples depending on their aspect ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  20. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  1. Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe-3%Si non-oriented steel

    NASA Astrophysics Data System (ADS)

    Perevertov, O.

    2017-04-01

    The influence of applied elastic tensile stress up to 120 MPa and compressive stress up to 35 MPa on the magnetic hysteresis curves of non-oriented Fe-3%Si steel is studied. In two tensile stress ranges the hysteresis loop changed monotonously - low stress below 10 MPa facilitated the magnetization process, while above 15 MPa tension deteriorated magnetic properties. This difference in behavior corresponds to two different mechanisms - 1) favoring by tensile stress magnetic easy axes closest to the filed direction and 2) appearance of large demagnetizing fields at grain boundaries and the sample surface. Compression continuously deteriorated magnetic properties and made the hysteresis loop constricted above a few MPa. The effective field as a product of two functions - of the magnetization and of the stress gave excellent agreement with experimental curves for both tensile stress ranges and for compression. The sensitivity of magnetization to compression was approximately five times larger than to tension. The complex hysteresis loop behavior under tension and compression was explained on the basis of our previous results on stressed grain-oriented steel of the same composition, in which the magnetic domains were also studied.

  2. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets.

    PubMed

    Kim, Baek Gil; Kang, Suki; Han, Hyun Ho; Lee, Joo Hyun; Kim, Ji Eun; Lee, Sung Hwan; Cho, Nam Hoon

    2016-05-10

    Tumor growth-generated mechanical compression may increase or decrease expression of microRNAs, leading to tumor progression. However, little is known about whether mechanical compression induces aberrant expression of microRNAs in cancer and stromal cells. To investigate the relationship between compression and microRNA expression, microRNA array analysis was performed with breast cancer cell lines and cancer-associated fibroblasts (CAFs) exposed to different compressive conditions. In our study, mechanical compression induced alteration of microRNA expression level in breast cancer cells and CAFs. The alteration was greater in the breast cancer cells than CAFs. Mechanical compression mainly induced upregulation of microRNAs rather than downregulation. In a parallel mRNA array analysis, more than 25% of downregulated target genes were functionally involved in tumor suppression (apoptosis, cell adhesion, and cell cycle arrest), whereas generally less than 15% were associated with tumor progression (epithelial-mesenchymal transition, migration, invasion, and angiogenesis). Of all cells examined, MDA-MB-231 cells showed the largest number of compression-upregulated microRNAs. miR-4769-5p and miR-4446-3p were upregulated by compression in both MDA-MB-231 cells and CAFs. Our results suggest that mechanical compression induces changes in microRNA expression level, which contribute to tumor progression. In addition, miR-4769-5p and miR-4446-3p may be potential therapeutic targets for incurable cancers, such as triple negative breast cancer, in that this would reduce or prevent downregulation of tumor-suppressing genes in both the tumor and its microenvironment simultaneously.

  3. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets

    PubMed Central

    Kim, Baek Gil; Kang, Suki; Han, Hyun Ho; Lee, Joo Hyun; Kim, Ji Eun; Lee, Sung Hwan; Cho, Nam Hoon

    2016-01-01

    Tumor growth–generated mechanical compression may increase or decrease expression of microRNAs, leading to tumor progression. However, little is known about whether mechanical compression induces aberrant expression of microRNAs in cancer and stromal cells. To investigate the relationship between compression and microRNA expression, microRNA array analysis was performed with breast cancer cell lines and cancer-associated fibroblasts (CAFs) exposed to different compressive conditions. In our study, mechanical compression induced alteration of microRNA expression level in breast cancer cells and CAFs. The alteration was greater in the breast cancer cells than CAFs. Mechanical compression mainly induced upregulation of microRNAs rather than downregulation. In a parallel mRNA array analysis, more than 25% of downregulated target genes were functionally involved in tumor suppression (apoptosis, cell adhesion, and cell cycle arrest), whereas generally less than 15% were associated with tumor progression (epithelial-mesenchymal transition, migration, invasion, and angiogenesis). Of all cells examined, MDA-MB-231 cells showed the largest number of compression-upregulated microRNAs. miR-4769-5p and miR-4446-3p were upregulated by compression in both MDA-MB-231 cells and CAFs. Our results suggest that mechanical compression induces changes in microRNA expression level, which contribute to tumor progression. In addition, miR-4769-5p and miR-4446-3p may be potential therapeutic targets for incurable cancers, such as triple negative breast cancer, in that this would reduce or prevent downregulation of tumor-suppressing genes in both the tumor and its microenvironment simultaneously. PMID:27027350

  4. Salubrious effects of oxytocin on social stress-induced deficits

    PubMed Central

    Smith, Adam S.; Wang, Zuoxin

    2012-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. PMID:22178036

  5. Microscopic studies of cellular damage induced by compression waves in different environments

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Brown, Katherine A.; Proud, William G.

    2011-06-01

    The cellular basis of induced-damage in biological samples under dynamic loading conditions is largely uncharacterized. In this study we propose a new approach to investigate the effects of compression waves on in-vitro grown Stem cells extracted from BALB/c mice. A modified split Hopkinson pressure bar system is used to simulate damage in the biological samples: the cells are inserted in a confinement chamber either in their growing media or on a 3D scaffold, they are subjected to compression waves and finally recovered for further analysis. The difference in mechanical impedance between the cells and the hosting environments is believed to be a key point in the generation of damage. To discriminate the effects of the different mechanical supports on cell morphology pre and after compression, membrane and cytoskeletal proteins disruptions are investigated using fluorescence confocal microscopy. Understanding the underlying mechanism of damage at the microscopic scale could set the basis for the development of therapeutic applications at the cellular level.

  6. Cellular characterization of compression induced-damage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.

    2011-06-01

    Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.

  7. Detecting computer-induced errors in remote-sensing JPEG compression algorithms.

    PubMed

    Nguyen, Cung; Redinbo, G Robert

    2006-07-01

    The JPEG image compression standard is very sensitive to errors. Even though it contains error resilience features, it cannot easily cope with induced errors from computer soft faults prevalent in remote-sensing applications. Hence, new fault tolerance detection methods are developed to sense the soft errors in major parts of the system while also protecting data across the boundaries where data flow from one subsystem to the other. The design goal is to guarantee no compressed or decompressed data contain computer-induced errors without detection. Detection methods are expressed at the algorithm level so that a wide range of hardware and software implementation techniques can be covered by the fault tolerance procedures while still maintaining the JPEG output format. The major subsystems to be addressed are the discrete cosine transform, quantizer, entropy coding, and packet assembly. Each error detection method is determined by the data representations within the subsystem or across the boundaries. They vary from real number parities in the DCT to bit-level residue codes in the quantizer, cyclic redundancy check parities for entropy coding, and packet assembly. The simulation results verify detection performances even across boundaries while also examining roundoff noise effects in detecting computer-induced errors in processing steps.

  8. A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closures for compressible turbulence

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1993-01-01

    The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.

  9. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  10. Malonate induces the assembly of cytoplasmic stress granules.

    PubMed

    Fu, Xue; Gao, Xingjie; Ge, Lin; Cui, Xiaoteng; Su, Chao; Yang, Wendong; Sun, Xiaoming; Zhang, Wei; Yao, Zhi; Yang, Xi; Yang, Jie

    2016-01-01

    Malonate, a classic inhibitor of respiratory electron transport chain, induces mitochondrial stress. Stress granules (SGs) are a kind of dynamic foci structure during stress. The study on the connection of mitochondrial stress and SG assembly is still limited. Here, we demonstrated that malonate treatment leads to SG formation and translation inhibition, apart from mitochondrial stress, including enhanced ROS formation, reduced mitochondrial Δψm and ATP level. The phosphorylation levels of eIF2α and 4EBP1 protein were affected upon mitochondrial dysfunction. However, knockdown of 4EBP1 affected SG formation, rather than eIF2α. In addition, an increase of ATP level under mitochondrial stress enhanced malonate-induced SG aggregation. Overall, malonate stimulation triggers mitochondrial stress and induces the assembly of non-canonical cellular SGs via 4EBP1 pathway.

  11. Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi

    SciTech Connect

    Gall, K.; Sehitoglu, H.; Chumlyakov, Y.I.; Kireeva, I.V.

    1999-03-10

    The purpose of this work is to thoroughly understand tension-compression asymmetry in precipitated NiTi using unique experimental results and micro-mechanical modeling. For the first time, tensile and compressive stress-strain behaviors were established on aged single crystals ([100], [110], and [111] orientations) and polycrystalline NiTi. The single crystal and polycrystalline Ti-50.8 at.% Ni materials were given both peak aged and over aged heat treatments. The drawn polycrystalline NiTi has a strong texture of the {l_angle}111{r_angle}{l_brace}110{r_brace} type, thus it deformed in a manner consistent with the [111] single crystals. In contrast to the phenomenological theory of martensitic transformations (analogous to Schmid`s law), the critical resolved shear stress required to trigger the transformation, {tau}{sub crss}, in the peak-aged single crystals was dependent on both the stress direction and crystallographic orientation. Using micro-mechanical modeling, the deviation from Schmid`s law was attributed to the unique orientation relationship that exists between the Ti{sub 3}Ni{sub 4} precipitates (their coherent stress fields) and the 24 martensite correspondence variant pairs. The over-aged single crystals generally obeyed Schmid`s law within experimental error, consistent with the proposed micro-mechanical model. Qualitatively, the tension-compression asymmetry and orientation dependence of the recoverable strain level, {var_epsilon}{sub 0}, was consistent with the phenomenological theory for martensitic transformations. However, the peak- and over-aged single crystals generally both demonstrated smaller {var_epsilon}{sub 0} magnitudes than predicted. The differences for both crystals were attributed to the inhibition of martensite detwinning coupled with several unique microstructural effects.

  12. Transient bond scission of polytetrafluoroethylene under laser-induced shock compression studied by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazutaka; Wakabayashi, Kunihiko; Konodo, Ken-Ichi

    2001-06-01

    Nanosecond time-resolved Raman spectroscopy has been performed to study polymer films, polytetrafluoroethylene (PTFE), under laser driven shock compression at laser power density of 4.0 GW/cm^2. The overtone-mode line of PTFE showed red shift (18 cm-1) at delay time of 9.3 ns due to the shock compression and corresponding pressure was estimated to be approximately 2.7 GPa by analyzing static and shock compression data. The estimated pressure was in good agreement with that estimated by ablation pressure in glass-confined geometry. A new vibrational line at 1900 cm-1 appeared only under shock compression and was assigned to the C=C streching in transient species such as a monomer (C_2F_4) produced by the shock-induced bond scission. Intensity of the new line increased with increasing delay time along propagation of the shock compression with a shock velocity of 2.5 km/s.

  13. MODELING SOLIDIFICATION-INDUCED STRESSES IN CERAMIC WASTE FORMS CONTAINING NUCLEAR WASTES

    SciTech Connect

    Charles W. Solbrig; Kenneth J. Bateman

    2010-11-01

    The goal of this work is to produce a ceramic waste form (CWF) that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state 915 C to form a sodalite glass matrix, and solidifying for long-term storage. Less long term leaching is expected if the solidifying cooling rate doesn’t cause cracking. In addition to thermal stress, this paper proposes that a stress is formed during solidification which is very large for fast cooling rates during solidification and can cause severe cracking. A solidifying glass or ceramic cylinder forms a dome on the cylinder top end. The temperature distribution at the time of solidification causes the stress and the dome. The dome height, “the length deficit,” produces an axial stress when the solid returns to room temperature with the inherent outer region in compression, the inner in tension. Large tensions will cause cracking of the specimen. The temperature deficit, derived by dividing the length deficit by the coefficient of thermal expansion, allows solidification stress theory to be extended to the circumferential stress. This paper derives the solidification stress theory, gives examples, explains how to induce beneficial stresses, and compares theory to experimental data.

  14. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  15. A computer program for plotting stress-strain data from compression, tension, and torsion tests of materials

    NASA Technical Reports Server (NTRS)

    Greenbaum, A.; Baker, D. J.; Davis, J. G., Jr.

    1974-01-01

    A computer program for plotting stress-strain curves obtained from compression and tension tests on rectangular (flat) specimens and circular-cross-section specimens (rods and tubes) and both stress-strain and torque-twist curves obtained from torsion tests on tubes is presented in detail. The program is written in FORTRAN 4 language for the Control Data 6000 series digital computer with the SCOPE 3.0 operating system and requires approximately 110000 octal locations of core storage. The program has the capability of plotting individual strain-gage outputs and/or the average output of several strain gages and the capability of computing the slope of a straight line which provides a least-squares fit to a specified section of the plotted curve. In addition, the program can compute the slope of the stress-strain curve at any point along the curve. The computer program input and output for three sample problems are presented.

  16. Stress-Shielding Effect of Nitinol Swan-Like Memory Compressive Connector on Fracture Healing of Upper Limb

    NASA Astrophysics Data System (ADS)

    Fu, Q. G.; Liu, X. W.; Xu, S. G.; Li, M.; Zhang, C. C.

    2009-08-01

    In this article, the stress-shielding effect of a Nitinol swan-like memory compressive connector (SMC) is evaluated. Patients with fracture healing of an upper limb after SMC internal fixation or stainless steel plate fixation were randomly selected and observed comparatively. With the informed consent of the SMC group, minimal cortical bone under the swan-body and swan-neck was harvested; and in the steel plate fixation group, minimal cortical bone under the steel plate and opposite side to the steel plate was also harvested for observation. Main outcome measurements were taken such as osteocyte morphology, Harversian canal histological observation under light microscope; radiographic observation of fracture healing, and computed tomography quantitative scanning of cortical bone. As a conclusion, SMC has a lesser stress-shielding effect to fixed bone than steel plate. Finally, the mechanism of the lesser stress-shielding effect of SMC is discussed.

  17. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    PubMed

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd.

  18. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    SciTech Connect

    Vaidyanathan, R.; Bourke, M.A.M.; Dunand, D.C.

    1998-12-31

    Superelastic NiTi (51.0 at% Ni) with 0, 10 and 20 vol% TiC particles were deformed under uniaxial compression as neutron diffraction spectra were simultaneously obtained. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. A detailed Rietveld determination is made of the phase fractions and the evolving strains in the reinforcing TiC particles and the austenite as it transforms to martensite on loading (and its subsequent back transformation on unloading). These strains are used to shed light on the phenomenon of load transfer in composites where the matrix undergoes a stress-induced phase transformation.

  19. Differentiating stress to wheat fields induced by Diuraphis noxia from other stress causing factors

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a method to differentiate two categories of stress to wheat fields, stress induced by the Russian wheat aphid, Diuraphis noxia (Mordvilko), and stress caused by other factors. The study used a set of 11 spatial pattern metrics derived from multispectral im...

  20. Magnitude and influencing factors of respiration-induced liver motion during abdominal compression in patients with intrahepatic tumors.

    PubMed

    Hu, Yong; Zhou, Yong-Kang; Chen, Yi-Xing; Zeng, Zhao-Chong

    2017-01-10

    The purpose of this study was to use 4-dimensional-computed tomography (4D-CT) to evaluate respiration-induced liver motion magnitude and influencing factors in patients with intrahepatic tumors undergoing abdominal compression. From January 2012 to April 2016, 99 patients with intrahepatic tumors were included in this study. They all underwent 4D-CT to assess respiratory liver motion. This was performed during abdominal compression in 53 patients and during free-breathing (no abdominal compression) in 46 patients. We defined abdominal compression as being effective in managing the breath amplitude if respiration-induced liver motion in the cranial-caudal (CC) direction during compression was ≤5 mm and as being ineffective if >5 mm of motion was observed. Gender, age, body mass index (BMI), transarterial chemoembolization history, liver resection history, tumor area, tumor number, and tumor size (diameter) were determined. Multivariate logistic regression analysis was used to analyze influencing factors associated with a breath amplitude ≤5 mm in the CC direction. The mean respiration-induced liver motion during abdominal compression in the left-right (LR), CC, anterior-posterior (AP), and 3-dimensional vector directions was 2.9 ± 1.2 mm, 5.3 ± 2.2 mm, 2.3 ± 1.1 mm and 6.7 ± 2.1 mm, respectively. Univariate analysis indicated that gender and BMI significantly affected abdominal compression effectiveness (both p < 0.05). Multivariate analysis confirmed these two factors as significant predictors of effective abdominal compression: gender (p = 0.030) and BMI (p = 0.006). There was a strong correlation between gender and compression effectiveness (odds ratio [OR] = 7.450) and an even stronger correlation between BMI and compression effectiveness (OR = 10.842). The magnitude of respiration-induced liver motion of patients with intrahepatic carcinoma undergoing abdominal compression is affected by gender and BMI, with

  1. Processing-induced-transformations (PITs) during direct compression: Impact of tablet composition and compression load on phase transition of caffeine.

    PubMed

    Juban, Audrey; Briançon, Stéphanie; Puel, François

    2016-03-30

    In the pharmaceutical field, solid-state transitions that may occur during manufacturing of pharmaceuticals are of great importance. The phase transition of a model API, caffeine Form I (CFI), was studied during direct compression process by analysing the impacts of the operating conditions (process and formulation). This work is focused on two formulation parameters: nature of the diluent and impact of the caffeine dilution, and one process parameter: the compression pressure that may impact the phase transition of CFI. Tablets were made from pure CFI and from binary mixture of CFI/diluent (microcrystalline cellulose or anhydrous dicalcium phosphate). A kinetic study performed during six months helped to highlight the influence of these parameters on the CFI transition degree. Results showed a triggering effect of the direct compression process, transformation was higher in tablets than in uncompressed powders. Whatever the pressure applied, CFI transition degree was almost constant and uniformly occurring throughout the tablet volume. Nevertheless, several differences on the evolution of the CFI transition degree were observed between binary mixtures of CFI/diluent. An analysis of the transition mechanism with a stretched exponential law of the Johnson-Mehl-Avrami model shows that tableting accelerates the polymorphic transition without modifying its mechanism controlled by nucleation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of white, grey, and pia mater properties on tissue level stresses and strains in the compressed spinal cord.

    PubMed

    Sparrey, Carolyn J; Manley, Geoffrey T; Keaveny, Tony M

    2009-04-01

    Recent demographics demonstrate an increase in the number of elderly spinal cord injury patients, motivating the desire for a better understanding of age effects on injury susceptibility. Knowing that age and disease affect neurological tissue, there is a need to better understand the sensitivity of spinal cord injury mechanics to variations in tissue behavior. To address this issue, a plane-strain, geometrically nonlinear, finite element model of a section of a generic human thoracic spinal cord was constructed to model the response to dorsal compression. The material models and stiffness responses for the grey and white matter and pia mater were varied across a range of reported values to observe the sensitivity of model outcomes to the assigned properties. Outcome measures were evaluated for percent change in magnitude and alterations in spatial distribution. In general, principal stresses (114-244% change) and pressure (75-119% change) were the outcomes most sensitive to material variation. Strain outcome measures were less sensitive (7-27% change) than stresses (74-244% change) to variations in material tangent modulus. The pia mater characteristics had limited (<4% change) effects on outcomes. Using linear elastic models to represent non-linear behavior had variable effects on outcome measures, and resulted in highly concentrated areas of elevated stresses and strains. Pressure measurements in both the grey and white matter were particularly sensitive to white matter properties, suggesting that degenerative changes in white matter may influence perfusion in a compressed spinal cord. Our results suggest that the mechanics of spinal cord compression are likely to be affected by changes in tissue resulting from aging and disease, indicating a need to study the biomechanical aspects of spinal cord injury in these specific populations.

  3. Experimentally induced stress validated by EMG activity.

    PubMed

    Luijcks, Rosan; Hermens, Hermie J; Bodar, Lonneke; Vossen, Catherine J; Van Os, Jim; Lousberg, Richel

    2014-01-01

    Experience of stress may lead to increased electromyography (EMG) activity in specific muscles compared to a non-stressful situation. The main aim of this study was to develop and validate a stress-EMG paradigm in which a single uncontrollable and unpredictable nociceptive stimulus was presented. EMG activity of the trapezius muscles was the response of interest. In addition to linear time effects, non-linear EMG time courses were also examined. Taking into account the hierarchical structure of the dataset, a multilevel random regression model was applied. The stress paradigm, executed in N = 70 subjects, consisted of a 3-minute baseline measurement, a 3-minute pre-stimulus stress period and a 2-minute post-stimulus phase. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. EMG activity during the entire experiment was conform a priori expectations: the pre-stimulus phase showed a significantly higher mean EMG activity level compared to the other two phases, and an immediate EMG response to the stimulus was demonstrated. In addition, the analyses revealed significant non-linear EMG time courses in all three phases. Linear and quadratic EMG time courses were significantly modified by subjective anticipatory stress level, measured just before the start of the stress task. Linking subjective anticipatory stress to EMG stress reactivity revealed that subjects with a high anticipatory stress level responded with more EMG activity during the pre-stimulus stress phase, whereas subjects with a low stress level showed an inverse effect. Results suggest that the stress paradigm presented here is a valid test to quantify individual differences in stress susceptibility. Further studies with this paradigm are required to demonstrate its potential use in mechanistic clinical studies.

  4. Horizontal stresses induced by vertical processes in planetary lithospheres

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    1993-01-01

    Understanding the state of stress in the elastic lithosphere is of fundamental importance for planetary geophysics, as it is the link between the observed geologic structures on the surface and the processes which form and modify these structures. As such, it can provide valuable constraints for the difficult problem of determining interior structure and processes. On the Earth, most large scale, organized deformation can be related to lateral tectonics associated with plate dynamics; however, the tectonics on many extraterrestrial bodies (such as the Moon, Mars, and most of the outer-planet satellites) appears to be primarily vertical in nature, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. The largest stress contributions from vertical loading come from the flexure of the lithosphere, which induces both bending moments and membrane stresses. We are concerned here only with nonflexural changes in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. It is also of interest for providing a reference state of stress for interpreting stress measurements in the crust of the Earth.

  5. Modeling Iceberg Calving From Ice Shelves Using a Stress Based Calving Law: The Stabilizing Effect of Vertical Compression

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Macayeal, D. R.; Alley, R.

    2008-12-01

    Iceberg calving from ice shelves and ice tongues provides an efficient mechanism to transfer larges amounts of ice to the ocean in a near-instantaneous fashion. This not only drastically changes the mass balance of the ice shelf, but the geometry of the ice-sheet-shelf system. The potential for a positive feedback between the ice shelf and the flow of inland ice ('buttressing') combined with the sensitive of ice shelves to forcing from both the atmosphere and the ocean suggests that iceberg calving is an important process. However, iceberg calving remains a poorly understood process. As a first step, we attempt to construct a calving law for ice shelves, based on a combination of scaling and physical arguments, which yields appropriate steady states. This leads us to postulate that calving rate is primarily a function of the ratio of tensile stress to vertical compressive stress, i.e., the calving rate is a function of the ratio of the largest to smallest principle stress. Implementing this calving law in a numerical model, we show that this law predicts that (i) embayed ice shelves are stable; (ii) ice shelves do not protrude (much) beyond their embayment. More importantly, this calving law provides a criterion for ice shelf instability: if a small calving event causes the tensile stress to increase faster than the compressive stress, the ice shelf will retreat and vice versa. Using this stability criterion we map out the 'phase-space' of parameters (basal melting/freezing, lateral shear, divergence of embayment walls) that allow a steady-state ice shelf to exist as opposed to those combinations of parameters that do not permit a steady-state ice shelf. Comparing our predictions of the parameter regime where ice shelves are stable with the observed parameter regime of healthy ice shelves can provide an independent estimate showing where our (and other) calving laws fails.

  6. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  7. Sertraline induces endoplasmic reticulum stress in hepatic cells.

    PubMed

    Chen, Si; Xuan, Jiekun; Couch, Letha; Iyer, Advait; Wu, Yuanfeng; Li, Quan-Zhen; Guo, Lei

    2014-08-01

    Sertraline is used for the treatment of depression, and is also used for the treatment of panic, obsessive-compulsive, and post-traumatic stress disorders. Previously, we have demonstrated that sertraline caused hepatic cytotoxicity, with mitochondrial dysfunction and apoptosis being underlying mechanisms. In this study, we used microarray and other biochemical and molecular analyses to identify endoplasmic reticulum (ER) stress as a novel molecular mechanism. HepG2 cells were exposed to sertraline and subjected to whole genome gene expression microarray analysis. Pathway analysis revealed that ER stress is among the significantly affected biological changes. We confirmed the increased expression of ER stress makers by real-time PCR and Western blots. The expression of typical ER stress markers such as PERK, IRE1α, and CHOP was significantly increased. To study better ER stress-mediated drug-induced liver toxicity; we established in vitro systems for monitoring ER stress quantitatively and efficiently, using Gaussia luciferase (Gluc) and secreted alkaline phosphatase (SEAP) as ER stress reporters. These in vitro systems were validated using well-known ER stress inducers. In these two reporter assays, sertraline inhibited the secretion of Gluc and SEAP. Moreover, we demonstrated that sertraline-induced apoptosis was coupled to ER stress and that the apoptotic effect was attenuated by 4-phenylbutyrate, a potent ER stress inhibitor. In addition, we showed that the MAP4K4-JNK signaling pathway contributed to the process of sertraline-induced ER stress. In summary, we demonstrated that ER stress is a mechanism of sertraline-induced liver toxicity. Published by Elsevier Ireland Ltd.

  8. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  9. Modeling and in situ characterization of lithiation-induced stress in electrodes during the coupled mechano-electro-chemical process

    NASA Astrophysics Data System (ADS)

    Xie, Haimei; Zhang, Qian; Song, Haibin; Shi, Baoqin; Kang, Yilan

    2017-02-01

    Stress is one of the key factors leading to capacity fading and triggering safety issues in lithium-ion batteries. In this paper, the stress in layered electrodes during the electrochemical process is investigated. Considering the electrochemically induced changes in the elastic modulus of the electrode material, a stress model is established to obtain a modified Stoney stress equation. In addition, in situ bending deformation of the Si composite electrode during lithiation and delithiation is measured to be determined as a function of Li concentration. Combined with the established stress model, the lithiation-induced stress in the Si composite electrode material is quantitatively characterized. It is shown that the maximum compressive stress is 8.53 MPa. Furthermore, the differences between the established stress model and the classical Stoney stress equation are compared and discussed. Lithiation results in softening of the Si composite electrode material, which affects the stress during lithiation. The experimental results clearly demonstrate that softening of the Si composite electrode material significantly decreases and alleviates the stress.

  10. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  11. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    PubMed

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Grinding Induced Changes in Residual Stresses of Carburized Gears

    SciTech Connect

    Lemaster, Robert A; Boggs, Bryan L; Bunn, Jeffrey R; Hubbard, Camden R; Watkins, Thomas R

    2009-01-01

    This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory. Two of the gears were hobbed, carburized, quenched and tempered, but not finished. The remaining three gears were processed similarly, but were finish ground. The residual stresses were measured at 64 different locations on a tooth from each gear. Residual stresses were also measured at fewer points on other teeth to determine the tooth-to-tooth variation. Tooth profile measurements were made of the finished and unfinished gear samples. The results show a fairly uniform and constant compressive residual field in the nonfinished gears. There was a significant reduction in the average residual stress measured in the finished gears. Additionally, there was a significant increase in the variability of the residual stress that was introduced by the grinding process. Analysis of the data suggests a linear relationship between the change in average residual stress and the amount of material removed by the grinding process.

  13. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  14. Metabolic Stress Induced by Arginine Deprivation Induces Autophagy Cell Death in Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Research, 69(2):700-708...TITLE: Metabolic stress induced by arginine deprivation induces autophagy cell death in prostate cancer PRINCIPAL INVESTIGATOR: Richard Bold, MD...4. TITLE AND SUBTITLE Metabolic stress induced by arginine deprivation induces autophagy cell 5a. CONTRACT NUMBER death in prostate cancer 5b

  15. Statistical Description of Wave Induced Vibratory Stresses in Ships.

    DTIC Science & Technology

    1980-12-01

    AD-Aill 186 NORSKE VERITAS OSLO FIG 13/10 STATISTICAL DESCRIPTION OF WAVE INDUCED VIBRATORY STRESSES IN S--ETC(U) I DEC 80 S GRAN DTC623-80-C-20007...UNCLASSIFIED 80-1171 USCG-M-2-81 NL Ummli.mm....m REPORT NO. CG-M-2-814 STATISTICAL DESCRIPTION OF WAVE INDUCED VIBRATORY STRESSES IN SHIPS Sverre Gran...Ttle anld Si ,fb.le 5. Roer, Dole December 1980 Statistical Description of Wave Induced Decmber 1980 Vibratory Stresses in Ships 6. Pef om.. O,’gOr n

  16. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    PubMed

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2016-12-07

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R

  17. Stress-induced changes in wheat grain composition and quality.

    PubMed

    Ashraf, M

    2014-01-01

    Abiotic stresses such as drought, salinity, waterlogging, and high temperature cause a myriad of changes in the metabolism of plants, and there is a lot of overlap in these changes in plants in response to different stresses such as drought and salinity. These stress-induced metabolic changes cause impaired crop growth thereby resulting in poor yield. The metabolic changes taking place in several plant species due to a particular abiotic stress have been revealed from the whole plant to the molecular level by researchers, but most studies have focused on organs such as leaf, stem, and root. Information on such stress-induced changes in seed or grains is infrequent in the literature. From the information that is available, it is now evident that abiotic stress can induce considerable changes in the composition and quality of cereal grains including those of wheat, the premier staple food crop in the world. Thus, the present review discusses how far different types of stresses, mainly salinity, drought, high temperature, and waterlogging, can alter the wheat grain composition and quality. By fully uncovering the stress-induced changes in the nutritional values of wheat grains it would be possible to establish whether balanced supplies of essential nutrients are available to the human population from the wheat crop grown on stress-affected areas.

  18. Investigation of Shock-Induced Chemical Reactions in Mo-Si Powder Mixtures Using Instrumented Experiments with PVDF Stress Gauges

    SciTech Connect

    Vandersall, K S; Thadhani, N N

    2001-05-29

    Shock-induced chemical reactions in {approx}58% dense Mo+2Si powder mixtures were investigated using time-resolved instrumented experiments, employing PVDF-piezoelectric stress gauges placed at the front and rear surfaces of the powders to measure the input and propagated stresses, and wave speed through the powder mixture. Experiments performed on the powders at input stresses less than 4 GPa, showed characteristics of powder densification and dispersed propagated wave stress profiles with rise time > {approx}40 nanoseconds. At input stress between 4-6 GPa, the powder mixtures showed a sharp rise time (<{approx}10 ns) of propagated wave profile and an expanded state of products revealing evidence of shock-induced chemical reaction. At input stresses greater than 6 GPa, the powder mixtures showed a slower propagated-stress-wave rise time and transition to a low-compressibility (melt) state indicating lack of shock-induced reaction. The results illustrate that premature melting of Si, at input stresses less than the crush-strength of the powder mixtures, restricts mixing between reactants and inhibits ''shock-induced'' reaction initiation.

  19. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress.

    PubMed

    Shor, Erika; Fox, Catherine A; Broach, James R

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors.

  20. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    PubMed Central

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  1. ER stress induced by ionising radiation in IEC-6 cells.

    PubMed

    Zhang, Bo; Wang, Yan; Pang, Xueli; Su, Yongping; Ai, Guoping; Wang, Tao

    2010-06-01

    Ionising radiation (IR) can evoke a series of biochemical events inside the cell. However, whether IR can directly induce endoplasmic reticulum (ER) stress is not clear. In our previous study, we found that there might be a causative link between IR and ER stress. In this study, we further characterised the type of ER stress induced by IR. Rat intestinal epithelial cells IEC-6 were irradiated at a dose of 10 Gy, and total RNA and proteins were harvested at indicated time points. The mRNA and protein expression of immunoglobulin heavy chain binding protein (BiP) and glucose regulated protein 94 (GRP94) was detected along with proteins associated with ER stress signal pathways. Our results indicated that IR induced up-regulation of ER stress marker including BiP and GRP94 at protein and mRNA levels in IEC-6 cells. Increased phosphorylation of eukaryotic translation initiation factor 2 (eIF2alpha) and induced mRNA splicing of X-box binding protein 1 (XBP1) suggested that PERK (interferon-induced double-stranded RNA-activated protein kinase (PRKR) -like endoplasmic reticulum kinase) and IRE1 (inositol requirement 1) signal transduction pathways were involved in this kind of ER stress. However, the active form of activating transcription factor 6 (ATF6) did not change significantly in irradiated cells, which suggested that the ATF6 pathway was not involved. Thus, we concluded that IR could induce moderate ER stress directly in IEC-6 cells.

  2. Salubrious effects of oxytocin on social stress-induced deficits.

    PubMed

    Smith, Adam S; Wang, Zuoxin

    2012-03-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While positive social interactions can attenuate stress and promote health, the social environment can also be a major source of stress when it includes social disruption, confrontation, isolation, or neglect. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.

  3. Caffeine attenuated ER stress-induced leptin resistance in neurons.

    PubMed

    Hosoi, Toru; Toyoda, Keisuke; Nakatsu, Kanako; Ozawa, Koichiro

    2014-05-21

    Exposing the endoplasmic reticulum (ER) to stress causes the accumulation of unfolded proteins, and subsequently results in ER stress. ER stress may be involved in various disorders such as obesity, diabetes, and neurodegenerative diseases. Leptin is an important circulating hormone, that inhibits food intake and accelerates energy consumption, which suppresses body weight gain. Recent studies demonstrated that leptin resistance is one of the main factors involved in the development of obesity. We and other groups recently reported the role of ER stress in the development of leptin resistance. Therefore, identifying drugs that target ER stress may be a promising fundamental strategy for the treatment of obesity. In the present study, we investigated whether caffeine could affect ER stress and the subsequent development of leptin resistance. We showed that caffeine exhibited chaperone activity, which attenuated protein aggregation. Caffeine also inhibited the ER stress-induced activation of IRE1 and PERK, which suggested the attenuation of ER stress. Moreover, caffeine markedly improved ER stress-induced impairments in the leptin-induced phosphorylation of STAT3. Therefore, these results suggest caffeine may have pharmacological properties that ameliorate leptin resistance by reducing ER stress.

  4. Uniaxial Compression Experiments on PZT 95/5-2Nb Ceramic: Evidence for an Orientation-Dependent, ''Maximum Compressive Stress'' Criterion for Onset of the F(R1)()A(O) Polymorphic Phase Transformation

    SciTech Connect

    Carlson, L.W.; Grazier, J.M.; Holcomb, D.J.; Montgomery, S.T.; Zeuch, D.H.

    1999-01-01

    Some time ago we presented evidence that, under nonhydrostatic loading, the F{sub R1} {r_arrow} A{sub O} polymorphic phase transformation in unpoled PZT 95/5-2Nb ceramic began when the maximum compressive stress equaled the hydrostatic pressure at which the transformation otherwise took place. More recently, we showed that this simple stress criterion did not apply to nonhydrostatically compressed, poled ceramic. However, unpoled ceramic is isotropic, whereas poled ceramic has a preferred crystallographic orientation and is mechanically anisotropic. If we further assume that the transformation depends not only on the magnitude of the compressive stress, but also its orientation relative to some feature(s) of PZT 95/5-2Nb's crystallography, then these disparate results can be qualitatively resolved. In this report, we first summarize the existing results for unpoled and poled ceramic. Using our orientation-dependent hypothesis and these results, we derive simple arithmetic expressions that accurately describe our previously-observed effects of nonhydrostatic stress on the transformation of unpoled ceramic. We then go on to test new predictions based on the orientation-dependent model. It has long been known that the transformation can be triggered in uniaxial compression: the model specifically requires a steadily increasing axial stress to drive the transformation of a randomly-oriented polycrystal to completion. We show that when the stress is held constant during uniaxial compression experiments, the transformation stops, supporting our hypothesis. We close with a discussion of implications of our model, and ways to test it using poled ceramic.

  5. Neurobiology of Stress-Induced Reproductive Dysfunction In Female Macaques

    PubMed Central

    Bethea, Cynthia L.; Centeno, Maria Luisa; Cameron, Judy L.

    2012-01-01

    It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress-sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable characteristics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (Stress Sensitive) or to continue to ovulate (Stress Resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus and have reduced GnRH transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases. PMID:18931961

  6. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  7. Enhancement of superconductivity in FeSe thin crystals induced by biaxial compressive strain

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Zhang, Z. T.; Wang, W. K.; Zhou, Y. H.; Kan, X. C.; Chen, X. L.; Gu, C. C.; Zhang, L.; Pi, L.; Yang, Z. R.; Zhang, Y. H.

    2017-06-01

    We report on the enhancement of superconductivity in FeSe thin crystals induced by in-plane biaxial compressive strain, with an underlying scotch tape as an in-situ strain generator. It is found that, due to the compressive strain, the superconducting transition temperature Tc ≈ 9 K of FeSe is increased by 30%-40% and the upper critical field Hc2(0) ≈ 14.8 T is increased by ∼ 20%. In parallel, the T*, which characterizes an onset of enhanced spin fluctuations, is raised up from 69 K to 87 K. On the other hand, the structural transition temperature Ts ≈ 94 K, below which an orthorhombic structure and an electronic nematic phase settle in, is suppressed down by ∼ 5 K. These findings reveal clear evolutions of the orders/fluctuations under strain effect in FeSe, the structurally simplest iron-based superconductor where the lattice/spin/charge degrees of freedom are closely coupled to one another. Moreover, the presented research provides a simple and clean way to manipulate the superconductivity in the layered iron compounds and may promote applications in related materials.

  8. Microwave-induced thermal acoustic tomography for breast tumor based on compressive sensing.

    PubMed

    Zhu, Xiaozhang; Zhao, Zhiqin; Wang, Jinguo; Song, Jian; Liu, Qing Huo

    2013-05-01

    Microwave-induced thermal acoustic tomography (MITAT) is an innovative technique to image biomedical tissues based on their electric properties. It has the advantages of both high contrast and high spatial resolution. Image reconstruction method in MITAT is always a critical issue. In this paper, a CS-MITAT (CS: compressive sensing) imaging method is proposed. Compressive sensing (CS) is a recently developed sparse signal representation and analysis framework which handles medical imaging measurements using low sampling rate or increasing imaging quality. The CS-MITAT imaging method applies CS theory to the MITAT for breast tumor imaging. In this method, an over-complete dictionary is established to make sparse measurements in the spatial domain. This treatment greatly saves measurement time. Simulations and experiments with real breast tumor tissues demonstrate the feasibility and effectiveness of the method. Compared with conventional time reversal mirror method which has been used in MITAT research, CS-MITAT provides the same peak signal-to-noise ratio imaging quality by using significantly fewer acoustic sensor positions or scanning times.

  9. Laser-Induced Shock Compression of Copper and Copper Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Schneider, M. S.; Gregori, F.; Kad, B. K.; Kalantar, D. H.; Remington, B. A.; Meyers, M. A.

    2004-07-01

    Single crystal copper and copper 2-wt% aluminum alloy with [1¯34] and [001] orientations are compressed by means of a high energy short pulse laser. Pressures ranging from 20 GPa to 60 GPa are achieved. The shocked samples are recovered and the residual defect substructure is analyzed by transmission electron microscopy. Results show systematic differences depending on orientation and stacking fault energy. Samples with orientations [001] are symmetrical with simultaneous activation of eight slip systems. This leads to a higher work hardening rate. The [1¯34] orientation is asymmetrical with one dominating slip system, and thus a reduced work hardening rate due to a prolonged easy glide region for dislocations. These differences in work hardening response affect the stresses required to achieve the twinning threshold pressure. The effects of stacking fault energy on the defect substructure and threshold twinning are also characterized. Experimental results are rationalized in terms of a constitutive description of the slip-twinning transition using a modified MTS equation. Differences in the mechanical response of the orientations and the chemical compositions are responsible for differences in the shear stress in the specimens at the imposed pressures and associated strains.

  10. A rat model of chronic syringomyelia induced by epidural compression of the lumbar spinal cord.

    PubMed

    Lee, Ji Yeoun; Kim, Shin Won; Kim, Saet Pyoul; Kim, Hyeonjin; Cheon, Jung-Eun; Kim, Seung-Ki; Paek, Sun Ha; Pang, Dachling; Wang, Kyu-Chang

    2017-02-17

    OBJECTIVE There has been no established animal model of syringomyelia associated with lumbosacral spinal lipoma. The research on the pathophysiology of syringomyelia has been focused on Chiari malformation, trauma, and inflammation. To understand the pathophysiology of syringomyelia associated with occult spinal dysraphism, a novel animal model of syringomyelia induced by chronic mechanical compression of the lumbar spinal cord was created. METHODS The model was made by epidural injection of highly concentrated paste-like kaolin solution through windows created by partial laminectomy of L-1 and L-5 vertebrae. Behavioral outcome in terms of motor (Basso-Beattie-Bresnahan score) and urinary function was assessed serially for 12 weeks. Magnetic resonance images were obtained in some animals to confirm the formation of a syrinx and to monitor changes in its size. Immunohistochemical studies, including analysis for glial fibrillary acidic protein, NeuN, CC1, ED-1, and caspase-3, were done. RESULTS By 12 weeks after the epidural compression procedure, syringomyelia formation was confirmed in 85% of the rats (34 of 40) on histology and/or MRI. The syrinx cavities were found rostral to the epidural compression. Motor deficit of varying degrees was seen immediately after the procedure in 28% of the rats (11 of 40). In 13 rats (33%), lower urinary tract dysfunction was seen. Motor deficit improved by 5 weeks after the procedure, whereas urinary dysfunction mostly improved by 2 weeks. Five rats (13%, 5 of 40) died 1 month postoperatively or later, and 3 of the 5 had developed urinary tract infection. At 12 weeks after the operation, IHC showed no inflammatory process, demyelination, or accelerated apoptosis in the spinal cords surrounding the syrinx cavities, similar to sham-operated animals. CONCLUSIONS A novel experimental model for syringomyelia by epidural compression of the lumbar spinal cord has been created. The authors hope that it will serve as an important research

  11. Exercise-induced stress response as an adaptive tolerance strategy.

    PubMed Central

    Sonneborn, J S; Barbee, S A

    1998-01-01

    Interaction between the quality of the environment and the health of the exposed population determines the survival response of living organisms. The phenomenon of induced tolerance by exposure to threshold levels of stressors to stimulate natural defense mechanisms has potential therapeutic value. The paucity of information on predictability of individual response and information on the operative fundamental mechanisms limit applicability of the adaptive tolerance strategy. A potential biomarker of the stress response includes members of the stress-inducible ubiquitin gene family. Transcript sizes detected with Northern blot analysis identify different classes of ubiquitin gene family members and the intensity of the radioactive signal allows abundance determinations. Using moderate exercise as the stressor, significant increase (p < 0.028) in abundance of inducible polyubiquitin genes was found in human blood. Both the potential of exercise as a model system of a natural stress inducer and polyubiquitin as a biomarker of stress were established in these studies. Images Figure 1 Figure 2 PMID:9539026

  12. Suture compression induced midpalatal suture chondrocyte apoptosis with increased caspase-3, caspase-9, Bad, Bak, Bax and Bid expression.

    PubMed

    Lan, Tingting; Zhao, Hanchi; Xiang, Bilu; Wang, Jun; Liu, Yang

    2017-07-22

    Previous studies found bone resorption and chondrocytes loss in mouse models of mid-palatal suture when given continuous compressive force, although chondrocytes response remained unknown. Herein, we design this study to determine how continuous compression force induces chondrocytes apoptosis. Thirty C57BL/6 male mice (aged 6 weeks) were randomly assigned into controls (not ligated to a spring), blank controls (ligated with no compression) and the compression group (ligated with 20-g compression). After 4 d, palatal tissues were sampled and stained by TB and safranin-O. Tunel staining measured the percentage of apoptotic chondrocytes, and immunohistochemistry was performed to label apoptosis-associated proteins (e.g., Bcl-2, Bcl-xl, Bax, Bak, Bid, Bad, caspase-3, caspase-8 and caspase-9). Intergroup comparison was made by the rank sum test, and P < 0.05 was defined as statistical significance. After 7d of induction, TB and safranin-O staining revealed that the cartilage area in the compression group was significantly decreased, while the control group remained largely unaltered. Tunel staining showed that apoptotic cell numbers in the mid-palatal suture were significantly higher than the control group. Immunohistochemistry showed that mice in the compression group had significantly increased expression of caspase-3, caspase-9, Bad, Bak, Bax and Bid; However, caspase-8 remained unaltered. No expression of Bcl-2 and Bcl-xl was detected. Continuous compression force induces chondrocytes apoptosis in the mid-palatal suture. This process might be associated with the mitochondrial pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C., Jr.

    1982-01-01

    Laser induced fluorescence is an attractive nonintrusive approach for measuring molecular number density in compressible flows although this technique does not produce a signal that is directly related to the number density. Saturation and frequency detuned excitation are explored as means for minimizing the quenching effect using iodine as the molecular system because of its convenient absorption spectrum. Saturation experiments indicate that with available continuous wave laser sources of Gaussian transverse intensity distribution only partial saturation could be achieved in iodine at the pressures of interest in gas dynamics. Using a fluorescence lineshape theory, it is shown that for sufficiently large detuning of a narrow bandwidth laser from a molecular transition, the quenching can be cancelled by collisional broadening over a large range of pressures and temperatures. Experimental data obtained in a Mach 4.3 underexpanded jet of nitrogen seeded with iodine for various single mode argon laser detunings from a strong iodine transition at 5145 A are discussed.

  14. FMRFamide signaling promotes stress-induced sleep in Drosophila

    PubMed Central

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D.; Raizen, David M.; Williams, Julie A.

    2015-01-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress. PMID:25668617

  15. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  16. FMRFamide signaling promotes stress-induced sleep in Drosophila.

    PubMed

    Lenz, Olivia; Xiong, Jianmei; Nelson, Matthew D; Raizen, David M; Williams, Julie A

    2015-07-01

    Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress.

  17. Emotional Intelligence, Personality, and Task-Induced Stress

    ERIC Educational Resources Information Center

    Matthews, Gerald; Emo, Amanda K.; Funke, Gregory; Zeidner, Moshe; Roberts, Richard D.; Costa, Paul T.; Schulze, Ralf

    2006-01-01

    Emotional intelligence (EI) may predict stress responses and coping strategies in a variety of applied settings. This study compares EI and the personality factors of the Five Factor Model (FFM) as predictors of task-induced stress responses. Participants (N = 200) were randomly assigned to 1 of 4 task conditions, 3 of which were designed to be…

  18. Multiple slip in copper single crystals deformed in compression under uniaxial stress

    SciTech Connect

    Florando, J N; LeBlanc, M M; Lassila, D H

    2006-11-30

    Uniaxial compression experiments on copper single crystals, oriented to maximize the shear for one slip system, show some unexpected results. In addition to the expected activity on the primary slip system, the results show appreciable activity perpendicular to the primary system. The magnitude of the activity orthogonal to the primary varies from being equal to the primary for the as-fabricated samples to 1/5 of the primary in the samples annealed after fabrication.

  19. Chlorpyrifos induces endoplasmic reticulum stress in JEG-3 cells.

    PubMed

    Reyna, Luciana; Flores-Martín, Jésica; Ridano, Magali E; Panzetta-Dutari, Graciela M; Genti-Raimondi, Susana

    2017-04-01

    Chlorpyrifos (CPF) is an organophosphorous pesticide widely used in agricultural, industrial, and household applications. We have previously shown that JEG-3 cells are able to attenuate the oxidative stress induced by CPF through the adaptive activation of the Nrf2/ARE pathway. Considering that there is a relationship between oxidative stress and endoplasmic reticulum stress (ER), herein we investigated whether CPF also induces ER stress in JEG-3 cells. Cells were exposed to 50μM or 100μM CPF during 24h in conditions where cell viability was not altered. Western blot and PCR assays were used to explore the protein and mRNA levels of ER stress biomarkers, respectively. CPF induced an increase of the typical ER stress-related proteins, such as GRP78/BiP and IRE1α, a sensor for the unfolded protein response, as well as in phospho-eIF2α and XBP1 mRNA splicing. Additionally, CPF led to a decrease in p53 protein expression. The downregulation of p53 levels induced by CPF was partially blocked when cells were exposed to CPF in the presence of the proteasome inhibitor MG132. Altogether, these findings point out that CPF induces ER stress in JEG-3 cells; however these cells are able to attenuate it downregulating the levels of the pro-apoptotic protein p53.

  20. ATR inhibition rewires cellular signaling networks induced by replication stress.

    PubMed

    Wagner, Sebastian A; Oehler, Hannah; Voigt, Andrea; Dalic, Denis; Freiwald, Anja; Serve, Hubert; Beli, Petra

    2016-02-01

    The slowing down or stalling of replication forks is commonly known as replication stress and arises from multiple causes such as DNA lesions, nucleotide depletion, RNA-DNA hybrids, and oncogene activation. The ataxia telangiectasia and Rad3-related kinase (ATR) plays an essential role in the cellular response to replication stress and inhibition of ATR has emerged as therapeutic strategy for the treatment of cancers that exhibit high levels of replication stress. However, the cellular signaling induced by replication stress and the substrate spectrum of ATR has not been systematically investigated. In this study, we employed quantitative MS-based proteomics to define the cellular signaling after nucleotide depletion-induced replication stress and replication fork collapse following ATR inhibition. We demonstrate that replication stress results in increased phosphorylation of a subset of proteins, many of which are involved in RNA splicing and transcription and have previously not been associated with the cellular replication stress response. Furthermore, our data reveal the ATR-dependent phosphorylation following replication stress and discover novel putative ATR target sites on MCM6, TOPBP1, RAD51AP1, and PSMD4. We establish that ATR inhibition rewires cellular signaling networks induced by replication stress and leads to the activation of the ATM-driven double-strand break repair signaling.

  1. Tensile strain / transverse compressive stress effects in Nb{sub 3}Sn multifilamentary wires with CuNb reinforcing stabilizer

    SciTech Connect

    Katagiri, K.; Shoji, Y.; Noto, K.

    1997-06-01

    In order to improve the strain/stress characteristics of the critical current I{sub c}, the use of external CuNb reinforcing stabilizer, instead of the conventional Cu stabilizer, with bronze processed Nb{sub 3}Sn multifilamentary superconducting wires was examined up to the magnetic field of 14T and at a temperature of 4.2K. Although the axial tensile strain sensitivity of I{sub c} was not changed, the strain for peak I{sub c} as well as the reversible strain limit increased by 0.14% when the Cu stabilizer was replaced by the CuNb reinforcing stabilizer. On the other hand, the transverse compressive stress sensitivity of I{sub c} decreased and the reversible stress limit increased. An increase in both a bronze to Nb ratio and Sn content in bronze matrix resulted in a higher stress tolerance and, as a consequence, the contribution of the CuNb reinforcement became relatively small.

  2. Heat stress-induced life span extension in yeast.

    PubMed

    Shama, S; Lai, C Y; Antoniazzi, J M; Jiang, J C; Jazwinski, S M

    1998-12-15

    The yeast Saccharomyces cerevisiae has a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently early in life. The increased longevity was due to a reduction in the mortality rate that persisted over many cell divisions (generations) but was not permanent. The genes RAS1 and RAS2 were necessary to observe this effect of heat stress. The RAS2 gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether. RAS1, on the other hand, appears to have a role in signaling life extension induced by transient, mild heat stress, which is distinct from its life-span-curtailing effect in the absence of stress and its lack of involvement in the response to chronic heat stress. This distinction between the RAS genes may be partially related to their different effects on growth-promoting genes and stress-responsive genes. The ras2 mutation clearly hindered resumption of growth and recovery from stress, while the ras1 mutation did not. The HSP104 gene, which is largely responsible for induced thermotolerance in yeast, was necessary for life extension induced by transient heat stress. An interaction between mitochondrial petite mutations and heat stress was found, suggesting that mitochondria may be necessary for life extension by transient heat stress. The results raise the possibility that the RAS genes and mitochondria may play a role in the epigenetic inheritance of reduced mortality rate afforded by transient, mild heat stress.

  3. Stress Inducement: The Silent Combat Multiplier

    DTIC Science & Technology

    1991-12-19

    Advanced Military Studies United States Army Command and General Staff College Fort Leavenworth, Kansas First Term AY 91-92 Approved for PNbfic Rcke...PUBLIC RELEASE; DISTRIBUTION UNLIMITED IU. ABSTRACT (Ma&tmum2OworW) SEE ATTACHED 14. SUBJECT TERMS IS. NUMBER OF PAGES STRESS PSYCHOLOGICAL ASPECTS OF...advantage by taking actions which increase enemy stress levels. The psychological dimensions of the modern battlefield are examined to determine if factors

  4. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  5. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  6. Note: mounting ultra-high vacuum windows with low stress-induced birefringence.

    PubMed

    Solmeyer, Neal; Zhu, Kunyan; Weiss, David S

    2011-06-01

    We have developed a way to mount ultra-high vacuum windows onto standard ConFlat(®) vacuum systems with very low stress-induced birefringence. Each window is sealed to a stainless steel flange with a compressed indium wire, and that flange is connected to a vacuum chamber with another indium seal. We find that deformation of a standard ConFlat flange during indium sealing dominates the stress on the window, so an extra-rigid flange is needed for minimal birefringence. With this mounting scheme, the typical residual birefringence is Δn = 2.3 × 10(-7) and is unchanged by a 120 °C bake.

  7. CFD analysis of thermally induced thermodynamic losses in the reciprocating compression and expansion of real gases

    NASA Astrophysics Data System (ADS)

    Taleb, Aly I.; Sapin, Paul; Barfuß, Christoph; Fabris, Drazen; Markides, Christos N.

    2017-03-01

    compared to the real-gas model for heavier gases. This discrepancy is most pronounced at rotational speeds where the losses are highest. The real-gas model predicts a peak loss of 8.9% of the compression work, while the ideal-gas model predicts a peak loss of 5.7%. These differences in the work loss are due to the fact that the gas behaves less ideally during expansion than during compression, with the compressibility factor being lower during compression. This behaviour cannot be captured with the ideal-gas law. It is concluded that real-gas effects must be taken into account in order to predict accurately the thermally induced loss mechanism when using heavy fluid molecules in such devices.

  8. A new paradigm to induce mental stress: the Sing-a-Song Stress Test (SSST)

    PubMed Central

    Brouwer, Anne-Marie; Hogervorst, Maarten A.

    2014-01-01

    We here introduce a new experimental paradigm to induce mental stress in a quick and easy way while adhering to ethical standards and controlling for potential confounds resulting from sensory input and body movements. In our Sing-a-Song Stress Test, participants are presented with neutral messages on a screen, interleaved with 1-min time intervals. The final message is that the participant should sing a song aloud after the interval has elapsed. Participants sit still during the whole procedure. We found that heart rate and skin conductance during the 1-min intervals following the sing-a-song stress message are substantially higher than during intervals following neutral messages. The order of magnitude of the rise is comparable to that achieved by the Trier Social Stress Test. Skin conductance increase correlates positively with experienced stress level as reported by participants. We also simulated stress detection in real time. When using both skin conductance and heart rate, stress is detected for 18 out of 20 participants, approximately 10 s after onset of the sing-a-song message. In conclusion, the Sing-a-Song Stress Test provides a quick, easy, controlled and potent way to induce mental stress and could be helpful in studies ranging from examining physiological effects of mental stress to evaluating interventions to reduce stress. PMID:25120425

  9. Rosa rugosa Aqueous Extract Alleviates Endurance Exercise-Induced Stress.

    PubMed

    Seo, Eunjin; You, Yanghee; Yoon, Ho-Geun; Kim, Boemjeong; Kim, Kyungmi; Lee, Yoo-Hyun; Lee, Jeongmin; Chung, Jin Woong; Shim, Sangin; Jun, Woojin

    2015-06-01

    This study was performed to investigate the effect of water extract from Rosa rugosa (RRW) on endurance exercise-induced stress in mice. The mice were orally administered with distilled water or RRW, respectively. The endurance capacity was evaluated by exhaustive swimming using an adjustable-current water pool. Mice administered RRW swam longer before becoming exhausted. Also, RRW administration resulted in less lipid peroxidation, lower muscular antioxidant enzyme activities, and lower cortisol level. The results suggest that RRW can prevent exercise-induced stress by decreasing oxidative stress levels.

  10. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    PubMed

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  11. Environmental stress induces trinucleotide repeat mutagenesis in human cells

    PubMed Central

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A.; Yotnda, Patricia; Wilson, John H.

    2015-01-01

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)—the cause of multiple human diseases—have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519

  12. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  13. Stress proteins are induced by space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo

    The space environment contains two major biologically significant influences such as space radiations and microgravity. Almost all organisms possess essential recognition and response systems for environmental changes. The famous one of cellular stress responses is the gene induction of heat shock protein (HSP). HSP expression is increased under elevated temperatures, and also increased by other sources of cellular stress, including ionizing radiation, oxidative injury, osmotic stress and the unfolded protein response. HSPs assist in the folding and maintenance of newly translated proteins, the refolding of denatured proteins and the further unfolding of misfolded or destabilized proteins to protect the cell from crisis. Based on our space experiment, we report the results and discussion from the viewpoint of HSP expression after exposure to space environment.

  14. Stress-induced obesity and the emotional nervous system.

    PubMed

    Dallman, Mary F

    2010-03-01

    Stress and emotional brain networks foster eating behaviors that can lead to obesity. The neural networks underlying the complex interactions among stressors, body, brain and food intake are now better understood. Stressors, by activating a neural stress-response network, bias cognition toward increased emotional activity and degraded executive function. This causes formed habits to be used rather than a cognitive appraisal of responses. Stress also induces secretion of glucocorticoids, which increases motivation for food, and insulin, which promotes food intake and obesity. Pleasurable feeding then reduces activity in the stress-response network, reinforcing the feeding habit. These effects of stressors emphasize the importance of teaching mental reappraisal techniques to restore responses from habitual to thoughtful, thus battling stress-induced obesity.

  15. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  16. Overlay degradation induced by film stress

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Luo, Shing-Ann; Yang, Mars; Yang, Elvis; Hung, Yung-Tai; Luoh, Tuung; Yang, T. H.; Chen, K. C.

    2017-03-01

    The semiconductor industry has continually sought the approaches to produce memory devices with increased memory cells per memory die. One way to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories is 3D stacked flash cell array. In constructing 3D NAND flash memories, increasing the number of stacked layers to build more memory cell number per unit area necessitates many high-aspect-ratio etching processes accordingly the incorporation of thick and unique etching hard-mask scheme has been indispensable. However, the ever increasingly thick requirement on etching hard-mask has made the hard-mask film stress control extremely important for maintaining good process qualities. The residual film stress alters the wafer shape consequently several process impacts have been readily observed across wafer, such as wafer chucking error on scanner, film peeling, materials coating and baking defects, critical dimension (CD) non-uniformity and overlay degradation. This work investigates the overlay and residual order performance indicator (ROPI) degradation coupling with increasingly thick advanced patterning film (APF) etching hard-mask. Various APF films deposited by plasma enhanced chemical vapor deposition (PECVD) method under different deposition temperatures, chemicals combinations, radio frequency powers and chamber pressures were carried out. And -342MPa to +80MPa film stress with different film thicknesses were generated for the overlay performance study. The results revealed the overlay degradation doesn't directly correlate with convex or concave wafer shapes but the magnitude of residual APF film stress, while increasing the APF thickness will worsen the overlay performance and ROPI strongly. High-stress APF film was also observed to enhance the scanner chucking difference and lead to more serious wafer to wafer overlay variation. To reduce the overlay degradation from ever increasingly thick APF etching hard-mask, optimizing the

  17. Behavior of a plate strip under shear and compressive stresses beyond the buckling limit

    NASA Technical Reports Server (NTRS)

    Kromm, A; Marguerre, K

    1938-01-01

    The present report is an extension of previous theoretical investigations on the elastic behavior of a plate under compression and shear in the region above the critical. The main object is the clarification of the behavior immediately above the buckling limit since no theoretical expressions for this range have thus far been found and since experimentally, too, any degree of regularity in the behavior of the plate in the range between the critical load and about three to four times the critical, is discernible only with difficulty.

  18. Acute psychological stress-induced water intoxication.

    PubMed

    Mukherjee, Sagarika; Antonarakis, Emmanuel S; Asaduzzaman, S; Peters, John R

    2005-01-01

    Excessive water drinking is a recognised feature of schizophrenia. We present here a case of excessive water drinking precipitated by acute psychological stress. A 52-year-old woman, with no previous mental health problems, was found in a state of altered consciousness and was profoundly hyponatraemic. She had consumed excess amount of water due to severe mental stress. She was treated with hypertonic saline followed by fluid restrictions. The water intoxication had caused brain damage which led to behavioural changes and impaired cognition. We describe the pathophysiology of water intoxication.

  19. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  1. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  2. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  3. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    SciTech Connect

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  4. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    PubMed

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Angina and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Raggi, Paolo; Vaccarino, Viola

    2015-01-01

    Objective Mental stress-induced myocardial ischemia is a common phenomenon in patients with coronary artery disease (CAD) and an emerging prognostic factor. Mental stress ischemia is correlated with ambulatory ischemia. However, whether it is related to angina symptoms during daily life has not been examined. Methods We assessed angina-frequency (past month) in 98 post-myocardial infarction (MI) subjects (age 18-60 years) using the Seattle Angina Questionnaire. Patients underwent [99mTc]sestamibi SPECT perfusion imaging at rest, after mental stress, and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed-difference score (SDS), the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjustment for age, sex, smoking, CAD-severity, depressive, anger and anxiety symptoms, each 1-point increase in mental-stress SDS was associated with 1.73-unit increase in the angina-frequency score (95% CI: 0.09-3.37) and 17% higher odds of being in a higher angina-frequency category (OR: 1.17, 95% CI: 1.00-1.38). Depressive symptoms were associated with 12% higher odds of being in a higher angina-frequency category (OR: 1.12, 95% CI: 1.03-1.21). In contrast, exercise/pharmacological stress-induced SDS was not associated with angina-frequency. Conclusion Among young and middle-aged post-MI patients, myocardial ischemia induced by mental stress in the lab, but not by exercise/pharmacological stress, is associated with higher frequency of retrospectively reported angina during the day. Psychosocial stressors related to mental stress ischemia may be important contributory factor to daily angina. PMID:25727240

  6. Quantitative measurement of density and velocity in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C.

    1983-01-01

    A nonintrusive optical technique for the quantitative measurement of molecular density and velocity at a point or in an entire cross-sectional plane of a compressible flowfield is reported. Iodine molecules, seeded into the flowfield reservoir, are excited by a tunable narrow-bandwidth laser and the resulting spatially-resolved fluorescence is collected by a single- or multiple-element detector. A theoretical model for the iodine laser-induced fluorescence process is essential for quantitative measurements and is developed using a rate-equation approach. Density measurements using laser-induced fluorescence are normally complicated by collisional quenching; however, the theory predicts that the off-resonant fluorescent signal is directly proportional to density. Velocity is directly related to the Doppler shift of the iodine absorption line, determined by monitoring the broadband fluorescent signal as the laser is tuned in frequency. Experiments in a steady supersonic flowfield are compared with numerical calculations to demonstrate the accuracy of the approach for density and velocity measurement and the lack of perturbation to the flowfield by the iodine seeding. Extensions of the current approach to density and velocity measurement in lower Mach number flows, to the measurement of pressure and temperature, and to temporally-resolved measurements are discussed.

  7. Contact force measurements and stress-induced anisotropy in granular materials.

    PubMed

    Majmudar, T S; Behringer, R P

    2005-06-23

    Interparticle forces in granular media form an inhomogeneous distribution of filamentary force chains. Understanding such forces and their spatial correlations, specifically in response to forces at the system boundaries, represents a fundamental goal of granular mechanics. The problem is of relevance to civil engineering, geophysics and physics, being important for the understanding of jamming, shear-induced yielding and mechanical response. Here we report measurements of the normal and tangential grain-scale forces inside a two-dimensional system of photoelastic disks that are subject to pure shear and isotropic compression. Various statistical measures show the underlying differences between these two stress states. These differences appear in the distributions of normal forces (which are more rounded for compression than shear), although not in the distributions of tangential forces (which are exponential in both cases). Sheared systems show anisotropy in the distributions of both the contact network and the contact forces. Anisotropy also occurs in the spatial correlations of forces, which provide a quantitative replacement for the idea of force chains. Sheared systems have long-range correlations in the direction of force chains, whereas isotropically compressed systems have short-range correlations regardless of the direction.

  8. Experimental investigation and modelling of compressibility induced by damage in carbon black-reinforced natural rubber

    NASA Astrophysics Data System (ADS)

    Cantournet, Sabine; Layouni, Khaled; Laiarinandrasana, Lucien; Piques, Roland

    2014-05-01

    While natural rubber is commonly considered as an incompressible material, this study shows how carbon black-reinforced natural rubber (NR-CB), when subjected to various mechanical loading conditions (uniaxial, hydrostatic, monotonic, cyclic), is affected by volume change. Experiments show a volume variation even for low straining values and a significant volume change for large elongations. Moreover, volume change can be either reversible or not, depending on the loading conditions. It is related to a competition between void growth, chain orientation, and stress softening. At a microscopic scale, in situ Scanning Electron Microscopy (SEM) examinations and image analysis allow one to record damage and microscopic volume change as a function of elongation. Therefore the volume change measured at the microscopic scale is equal to the macroscopic one. Based on the experimental results, this paper shows that the hypothesis of incompressibility is worth being revisited. Thus, a nearly compressible approach was considered, where the strain energy is assumed to be the sum of spherical and deviatoric parts that are both affected by damage. The model was then implemented in a finite-element code. Good agreement was obtained between experimental results and model predictions for low triaxiality test conditions.

  9. Temporal pore pressure induced stress changes during injection and depletion

    NASA Astrophysics Data System (ADS)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  10. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  11. Hydrophobic substances induce water stress in microbial cells

    PubMed Central

    Bhaganna, Prashanth; Volkers, Rita J. M.; Bell, Andrew N. W.; Kluge, Kathrin; Timson, David J.; McGrath, John W.; Ruijssenaars, Harald J.; Hallsworth, John E.

    2010-01-01

    Summary Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes – metabolites that protect against osmotic and chaotrope‐induced stresses – ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope‐induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes. PMID:21255365

  12. Cellular and Molecular Basis for Stress-Induced Depression

    PubMed Central

    Seo, Ji-Seon; Wei, Jing; Qin, Luye; Kim, Yong; Yan, Zhen

    2016-01-01

    Chronic stress plays a crucial role in the development of psychiatric diseases, such as anxiety and depression. Dysfunction of the medial prefrontal cortex (mPFC) has been linked to the cognitive and emotional deficits induced by stress. However, little is known about the molecular and cellular determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a multifunctional protein binding to 5-HT receptors, in layer II/III neurons of the prelimbic cortex (PrL), as well as depression-like behaviors, both of which are reversed by selective serotonin reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of the PrL, p11 is highly concentrated in dopamine D2 receptor-expressing (D2+) glutamatergic neurons. Viral expression of p11 in D2+ PrL neurons alleviates the depression-like behaviors exhibited by genetically manipulated mice with D2+ neuron-specific or global deletion of p11. In stressed animals, overexpression of p11 in D2+ PrL neurons rescues depression-like behaviors by restoring glutamatergic transmission. Our results have identified p11 as a key molecule in a specific cell type that regulates stress-induced depression, which provides a framework for the development of new strategies to treat stress-associated mental illnesses. PMID:27457815

  13. Strategies to ameliorate abiotic stress-induced plant senescence.

    PubMed

    Gepstein, Shimon; Glick, Bernard R

    2013-08-01

    The plant senescence syndrome resembles, in many molecular and phenotypic aspects, plant responses to abiotic stresses. Both processes have an enormous negative global agro-economic impact and endanger food security worldwide. Premature plant senescence is the main cause of losses in grain filling and biomass yield due to leaf yellowing and deteriorated photosynthesis, and is also responsible for the losses resulting from the short shelf life of many vegetables and fruits. Under abiotic stress conditions the yield losses are often even greater. The primary challenge in agricultural sciences today is to develop technologies that will increase food production and sustainability of agriculture especially under environmentally limiting conditions. In this chapter, some of the mechanisms involved in abiotic stress-induced plant senescence are discussed. Recent studies have shown that crop yield and nutritional values can be altered as well as plant stress tolerance through manipulating the timing of senescence. It is often difficult to separate the effects of age-dependent senescence from stress-induced senescence since both share many biochemical processes and ultimately result in plant death. The focus of this review is on abiotic stress-induced senescence. Here, a number of the major approaches that have been developed to ameliorate some of the effects of abiotic stress-induced plant senescence are considered and discussed. Some approaches mimic the mechanisms already used by some plants and soil bacteria whereas others are based on development of new improved transgenic plants. While there may not be one simple strategy that can effectively decrease all losses of crop yield that accrue as a consequence of abiotic stress-induced plant senescence, some of the strategies that are discussed already show great promise.

  14. Swim-stress-induced antinociception in young rats.

    PubMed Central

    Jackson, H. C.; Kitchen, I.

    1989-01-01

    1. Opioid and non-opioid mechanisms have been implicated in the phenomenon of stress-induced antinociception in adult rodents. We have studied stress-induced antinociception in developing rats and characterized differences in the neurochemical basis of this effect in pre- and post-weanling animals. 2. Twenty and 25 day old rats were stressed using warm water (20 degrees C) swimming for 3 or 10 min periods and antinociception was assessed by the tail immersion test (50 degrees C). 3. A 3 min swim in 20 and 25 day old rats produced marked antinociception which was blocked by naloxone, Mr 1452, 16-methyl cyprenorphine and levallorphan but not Mr 1453 or N-methyl levallorphan. The delta-opioid receptor antagonist ICI 174,864 attenuated stress-induced antinociception in 25 day old rats but was without effect in 20 day old animals. 4. A 10 min swim in 25 day old rats produced antinociception which was non-opioid in nature. In contrast, antinociception was not observed in 20 day old rats after a 10 min swim-stress. 5. Pretreatment of animals with dexamethasone blocked 3 min swim-stress antinociception in 20 and 25 day old animals but had no effect on antinociception induced by a 10 min swim. 6. Swim-stress-induced antinociception can be observed in young rats and dissociated into opioid and non-opioid types dependent on the duration of swimming stress. The non-opioid type appears to develop more slowly and cannot be observed in preweanling rats. The opioid type is a predominantly mu-receptor phenomenon in preweanling animals but delta-receptor components are observable in postweanling rats. PMID:2720296

  15. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    NASA Astrophysics Data System (ADS)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  16. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis

    PubMed Central

    2014-01-01

    Background Oxidative stress has been suggested as a mechanism underlying skin aging, as it triggers apoptosis in various cell types, including fibroblasts, which play important roles in the preservation of healthy, youthful skin. Catechins, which are antioxidants contained in green tea, exert various actions such as anti-inflammatory, anti-bacterial, and anti-cancer actions. In this study, we investigated the effect of (+)-catechin on apoptosis induced by oxidative stress in fibroblasts. Methods Fibroblasts (NIH3T3) under oxidative stress induced by hydrogen peroxide (0.1 mM) were treated with either vehicle or (+)-catechin (0–100 μM). The effect of (+)-catechin on cell viability, apoptosis, phosphorylation of c-Jun terminal kinases (JNK) and p38, and activation of caspase-3 in fibroblasts under oxidative stress were evaluated. Results Hydrogen peroxide induced apoptotic cell death in fibroblasts, accompanied by induction of phosphorylation of JNK and p38 and activation of caspase-3. Pretreatment of the fibroblasts with (+)-catechin inhibited hydrogen peroxide-induced apoptosis and reduced phosphorylation of JNK and p38 and activation of caspase-3. Conclusion (+)-Catechin protects against oxidative stress-induced cell death in fibroblasts, possibly by inhibiting phosphorylation of p38 and JNK. These results suggest that (+)-catechin has potential as a therapeutic agent for the prevention of skin aging. PMID:24712558

  17. Design, fabrication and test of lightweight shell structure. [axial compression loads and torsion stress

    NASA Technical Reports Server (NTRS)

    Lager, J. R.

    1975-01-01

    A cylindrical shell structure 3.66 m (144 in.) high by 4.57 m (180 in.) diameter was designed using a wide variety of materials and structural concepts to withstand design ultimate combined loading 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion. The overall cylinder geometry and design loading are representative of that expected on a high performance space tug vehicle. The relatively low design load level results in designs that use thin gage metals and fibrous-composite laminates. Fabrication and structural tests of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods. Three of the designs evaluated, honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiber-glass meteoroid protection layers, were selected for further evaluation.

  18. Marangoni stresses and surface compression rheology of surfactant solutions. Achievements and problems.

    PubMed

    Langevin, D; Monroy, F

    2014-04-01

    In the presence of soluble surfactants, the motion of liquid surfaces involves Marangoni effects. As a consequence, the surfaces exhibit elastic responses, even frequently behaving as rigid surfaces, especially at low surfactant concentration. The Marangoni effects can be conveniently quantified introducing surface viscoelastic compression parameters that characterize the mechanical response of the surface near equilibrium. Many experimental techniques allow measuring the viscoelastic parameters. However, many difficulties are encountered during the interpretation of the surface response in the various types of hydrodynamic velocity fields involved in the different techniques. The role of adsorption and desorption energy barriers appears crucial, despite the fact that little is known yet about their values. In this short review, we will present examples illustrating the different problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Compressive stress-strain response of covalently crosslinked oxidized-alginate/N-succinyl-chitosan hydrogels.

    PubMed

    Rogalsky, Allan D; Kwon, H J; Lee-Sullivan, Pearl

    2011-12-01

    Novel injectable hydrogels have been formed at 37°C under physiological pH using a polymer-polymer crosslinking reaction. Three different formulations were tested. After 1-day cure time at body temperature, the elastic modulus of unswollen samples ranged between 3 and 5 kPa but after 11 additional days at 4°C exceeded the target modulus of 10 kPa. Modulus data showed good agreement with theoretical crosslink density, enabling the prediction of stiffer/faster curing gel formulations. Rubber elasticity theory provided a good fit to the experimental data up to 73% compressive true strain. Based on an analysis of modulus results, it was inferred that despite the presence of two aldehyde functional groups, only one mechanically significant crosslink can form per oxidized repeat unit on the alginate chain. Copyright © 2011 Wiley Periodicals, Inc.

  20. Chewing gum and impasse-induced self-reported stress.

    PubMed

    Torney, Laura K; Johnson, Andrew J; Miles, Christopher

    2009-12-01

    An insoluble anagram task [Zellner, D., Loaiza, S., Gonzalez, Z., Pita, J., Morales, J., Pecora, D., et al. (2006). Food selection changes under stress. Physiology and Behaviour, 87, 789-793] was used to investigate the proposition that chewing gum reduces self-rated stress [Scholey, A., Haskell, C., Robertson, B., Kennedy, D., Milne, A., & Wetherell, M. (2009). Chewing gum alleviates negative mood and reduces cortisol during acute laboratory psychological stress. Physiology and Behaviour, 97, 304-312]. Using a between-participants design, 40 participants performed an insoluble anagram task followed by a soluble anagram task. These tasks were performed with or without chewing gum. Self-rated measures were taken at baseline, post-stressor, and post-recovery task. The insoluble anagram task was found to amplify stress in terms of increases in self-rated stress and reductions in both self-rated calmness and contentedness. However, chewing gum was found not to mediate the level of stress experienced. Furthermore, chewing gum did not result in superior performance on the soluble anagram task. The present study fails to generalise the findings of Scholey et al. to an impasse-induced stress that has social components. The explanation for the discrepancy with Scholey et al. is unclear; however, it is suggested that the impossibility of the insoluble anagram task may negate any secondary stress reducing benefits arising from chewing gum-induced task improvement.

  1. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity

    PubMed Central

    Debevec, Tadej; Millet, Grégoire P.; Pialoux, Vincent

    2017-01-01

    Increased oxidative stress, defined as an imbalance between prooxidants and antioxidants, resulting in molecular damage and disruption of redox signaling, is associated with numerous pathophysiological processes and known to exacerbate chronic diseases. Prolonged systemic hypoxia, induced either by exposure to terrestrial altitude or a reduction in ambient O2 availability is known to elicit oxidative stress and thereby alter redox balance in healthy humans. The redox balance modulation is also highly dependent on the level of physical activity. For example, both high-intensity exercise and inactivity, representing the two ends of the physical activity spectrum, are known to promote oxidative stress. Numerous to-date studies indicate that hypoxia and exercise can exert additive influence upon redox balance alterations. However, recent evidence suggests that moderate physical activity can attenuate altitude/hypoxia-induced oxidative stress during long-term hypoxic exposure. The purpose of this review is to summarize recent findings on hypoxia-related oxidative stress modulation by different activity levels during prolonged hypoxic exposures and examine the potential mechanisms underlying the observed redox balance changes. The paper also explores the applicability of moderate activity as a strategy for attenuating hypoxia-related oxidative stress. Moreover, the potential of such moderate intensity activities used to counteract inactivity-related oxidative stress, often encountered in pathological, elderly and obese populations is also discussed. Finally, future research directions for investigating interactive effects of altitude/hypoxia and exercise on oxidative stress are proposed. PMID:28243207

  2. Compression-induced transformation of aldehydes into polyethers: a first-principles molecular dynamics study.

    PubMed

    Mosey, Nicholas J

    2010-04-07

    First-principles molecular dynamics simulations are used to investigate the behavior of bulk acetaldehyde (MeCHO) under conditions of increasing pressure. The results demonstrate that increasing pressure causes the aldehydes to polymerize, yielding polyethers through a process involving the rapid formation of C-O bonds between multiple neighboring MeCHO molecules. Attempts to induce polyether formation at different densities through the application of geometric constraints show that polymerization occurs only once a critical density of approximately 1.7 g/cm(3) has been reached. The results of simulations performed at several different temperatures are also consistent with a process that is induced by reaching a critical density. The origins of this effect are rationalized in terms of the structural requirements for the formation of C-O bonds between multiple MeCHO molecules in rapid succession. Specifically, the collective formation of C-O bonds requires the typical distance between the sp(2) carbon atoms and oxygen atoms in neighboring MeCHO molecules to reach a value of approximately 2.5 A. Radial distribution functions calculated at different densities show that this structural requirement is reached when the density is near the observed threshold. The observed reaction may be useful in the context of lubrication, with polyethers being effective lubricants and the extreme conditions experienced in sliding contacts providing the ability to reach the high densities needed to induce the reaction. In this context, the calculations indicate that polyether formation is associated with significant energy dissipation, while energy dissipation is minimal once the polyethers are formed. Furthermore, the polyethers are stable with respect to multiple compression/decompression cycles and pressures of at least 60 GPa.

  3. Analysis of flow and wall shear stress in the peroneal veins under external compression based on real-time MR images.

    PubMed

    Wang, Ying; Pierce, Iain; Gatehouse, Peter; Wood, Nigel; Firmin, David; Xu, Xiao Yun

    2012-01-01

    As a widely accepted prophylaxis for deep vein thrombosis, the underlying mechanism of compression stocking still remains unclear. In this study, computational fluid dynamics was applied to in vivo data to provide quantitative insight into the hemodynamic response of the deep venous system to static external compression. The geometry and flow information of deep veins before and after compression was acquired from ten healthy volunteers using magnetic resonance imaging. Our results indicated that application of the compression stocking led to a small reduction in blood flow rate but a significant reduction in cross-sectional area of the peroneal veins in the calf, resulting in an increase in wall shear stress (WSS), but the individual effects were highly variable. The mean volume reduction of the deep veins was 58%, while the time-averaged WSS showed an average increase of 398% after compression (median 98%). The analysis also showed a strong linear correlation between the time-averaged WSS and mean blood velocity, suggesting that flow in the deep veins under the level of compression examined here can be approximated by Poiseuille's law despite local geometric variations. It is hoped that quantitative analysis of WSS in the deep venous system will aid in the future design and optimisation of the compression stocking. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Coulomb interaction-induced jitter amplification in RF-compressed high-brightness electron source ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Li, Jing; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2017-02-01

    We have theoretically and experimentally demonstrated an RF compression-based jitter-amplification effect in high-brightness electron source ultrafast electron diffraction (UED), which degrades the temporal resolution significantly. A detailed analysis and simulations reveal the crucial role of the longitudinal and transverse Coulomb interaction for this jitter-amplification effect, which accord very well with experimental results. An optimized compact UED structure for full compression has been proposed, which can suppress the jitter by half and improve the temporal resolution to sub-100 fs. This Coulomb interaction-induced jitter amplification exists in nearly the whole ultrafast physics field where laser-electron synchronization is required. Moreover, it cannot be suppressed completely. The quantified explanation for the mechanism and optimization provides important guidance for photocathode accelerators and other compression-based ultrashort electron pulse generation and precise control.

  5. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model

    PubMed Central

    Cui, Fei-Fei; Pan, Ying-Ying; Xie, Hao-Huang; Wang, Xiao-Hui; Shi, Hong-Xue; Xiao, Jian; Zhang, Hong-Yu; Chang, Hao-Teng; Jiang, Li-Ping

    2016-01-01

    Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER) stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion. PMID:26927073

  6. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model.

    PubMed

    Cui, Fei-Fei; Pan, Ying-Ying; Xie, Hao-Huang; Wang, Xiao-Hui; Shi, Hong-Xue; Xiao, Jian; Zhang, Hong-Yu; Chang, Hao-Teng; Jiang, Li-Ping

    2016-02-25

    Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER) stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.

  7. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  8. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur.

  9. Emotional intelligence, personality, and task-induced stress.

    PubMed

    Matthews, Gerald; Emo, Amanda K; Funke, Gregory; Zeidner, Moshe; Roberts, Richard D; Costa, Paul T; Schulze, Ralf

    2006-06-01

    Emotional intelligence (EI) may predict stress responses and coping strategies in a variety of applied settings. This study compares EI and the personality factors of the Five Factor Model (FFM) as predictors of task-induced stress responses. Participants (N = 200) were randomly assigned to 1 of 4 task conditions, 3 of which were designed to be stressful. Results confirmed that low EI was related to worry states and avoidance coping, even with the FFM statistically controlled. However, EI was not specifically related to task-induced changes in stress state. Results also confirmed that Neuroticism related to distress, worry, and emotion-focused coping, and Conscientiousness predicted use of task-focused coping. The applied utility of EI and personality measures is discussed.

  10. Gender differences in neural correlates of stress-induced anxiety.

    PubMed

    Seo, Dongju; Ahluwalia, Aneesha; Potenza, Marc N; Sinha, Rajita

    2017-01-02

    Although gender differences have been identified as a crucial factor for understanding stress-related anxiety and associated clinical disorders, the neural mechanisms underlying these differences remain unclear. To explore gender differences in the neural correlates of stress-induced anxiety, the current study used functional magnetic resonance imaging to examine brain responses in 96 healthy men and women with commensurable levels of trait anxiety as they engaged in a personalized guided imagery paradigm to provoke stress and neutral-relaxing experiences. During the task, a significant gender main effect emerged, with men displaying greater responses in the caudate, cingulate gyrus, midbrain, thalamus, and cerebellum. In contrast, women showed greater responses in the posterior insula, temporal gyrus, and occipital lobe. Additionally, a significant anxiety ratings × gender interaction from whole-brain regression analyses was observed in the dorsomedial prefrontal cortex, left inferior parietal lobe, left temporal gyrus, occipital gyrus, and cerebellum (P < 0.05, whole-brain family-wise error corrected), with positive associations between activity in these regions and stress-induced anxiety in women, but negative associations in men, indicating that men and women differentially use neural resources when experiencing stress-induced anxiety. The findings suggest that in response to stress, there is a greater use of the medial prefrontal-parietal cortices in experiencing subjective anxiety in women, while decreased use of this circuit was associated with increased subjective anxiety states in men. The current study has implications for understanding gender-specific differences in stress-induced anxiety and vulnerability to stress-related clinical disorders, and for developing more effective treatment strategies tailored to each gender. © 2016 Wiley Periodicals, Inc.

  11. Study of inducer load and stress, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.

  12. Klotho ameliorates chemically induced endoplasmic reticulum (ER) stress signaling.

    PubMed

    Banerjee, Srijita; Zhao, Yanhua; Sarkar, Partha S; Rosenblatt, Kevin P; Tilton, Ronald G; Choudhary, Sanjeev

    2013-01-01

    Both endoplasmic reticulum (ER) stress, a fundamental cell response associated with stress-initiated unfolded protein response (UPR), and loss of Klotho, an anti-aging hormone linked to NF-κB-induced inflammation, occur in chronic metabolic diseases such as obesity and type 2 diabetes. We investigated if the loss of Klotho is causally linked to increased ER stress. We treated human renal epithelial HK-2, alveolar epithelial A549, HEK293, and SH-SH-SY5Y neuroblastoma cells with ER stress-inducing agents, thapsigargin and/or tunicamycin. Effects of overexpression or siRNA-mediated knockdown of Klotho on UPR signaling was investigated by immunoblotting and Real-time PCR. Elevated Klotho levels in HK-2 cells decreased expression of ER stress markers phospho--IRE1, XBP-1s, BiP, CHOP, pJNK, and phospho-p38, all of which were elevated in response to tunicamycin and/or thapsigargin. Similar results were observed using A549 cells for XBP-1s, BiP, and CHOP in response to thapsigargin. Conversely, knockdown of Klotho in HEK 293 cells using siRNA caused further thapsigargin-induced increases in pIRE-1, XBP-1s, and BiP. Klotho overexpression in A549 cells blocked thapsigargin-induced caspase and PARP cleavage and improved cell viability. Our data indicate that Klotho has an important role in regulating ER stress and that loss of Klotho is causally linked to ER stress-induced apoptosis. Copyright © 2013 S. Karger AG, Basel.

  13. Repeated social defeat stress induces chronic hyperthermia in rats.

    PubMed

    Hayashida, Sota; Oka, Takakazu; Mera, Takashi; Tsuji, Sadatoshi

    2010-08-04

    Psychological stressors are known to increase core body temperature (T(c)) in laboratory animals. Such single stress-induced hyperthermic responses are typically monophasic, as T(c) returns to baseline within several hours. However, studies on the effects of repeated psychological stress on T(c) are limited. Therefore, we measured T(c) changes in male Wistar rats after they were subjected to 4 social defeat periods (each period consisting of 7 daily 1h stress exposures during the light cycle followed by a stress-free day). We also assessed affective-like behavioral changes by elevated plus maze and forced swim tests. In the stressed rats, the first social defeat experience induced a robust increase in T(c) (+1.3 degrees C). However, the T(c) of these rats was not different from control animals during the subsequent dark period. In comparison, after 4 periods of social defeat, stressed rats showed a small but significantly higher (+0.2-0.3 degree C) T(c) versus control rats during both light and dark periods. Stressed rats did not show increased anxiety-like behavior versus control rats as assessed by the elevated plus maze test. However, in the forced swim test, the immobility time of stressed rats was significantly longer versus control rats, suggesting an increase in depression-like behavior. Furthermore, hyperthermia and depression-like behavior were still observed 8 days after cessation of the final social defeat session. These results suggest that repeated social defeat stress induces a chronic hyperthermia in rats that is associated with behavior resembling depression but not anxiety.

  14. Critical Compressive Stress for Flat Rectangular Plates Supported Along all Edges and Elastically Restrained Against Rotation Along the Unloaded Edges, Special Report 189

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E.; Stowell, Eldbridge Z.

    1941-01-01

    A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.

  15. Contributions of Domain-Related Phenomena on Dielectric Constant of Lead-Based Ferroelectric Ceramics Under Uniaxial Compressive Pre-Stress

    NASA Astrophysics Data System (ADS)

    Yimnirun, Rattikorn

    The dielectric constant of lead-based ferroelectric ceramics in three different systems, i.e. BT-PZT, PMN-PT and PMN-PZT, was measured under uniaxial compressive pre-stress to investigate the contributions of different domain-phenomena. The dielectric constant was observed at room temperature under the compressive pre-stress up to 15 MPa, 22 MPa and 5 MPa for BT-PZT, PMN-PT and PMN-PZT, respectively, using a homebuilt uniaxial compressometer. Dielectric constant of the BT-PZT ceramics increased significantly with increasing applied stress. Larger changes in the dielectric constant with the applied stress were observed in the PZT-rich compositions. However, for PMN-PT and PMN-PZT ceramic systems, changes in the dielectric constant with the stress were found to depend significantly on the ceramic compositions. The experimental results could be explained by both intrinsic and extrinsic domain-related mechanisms involving domain wall motions, as well as the de-aging phenomenon from the application of the compressive pre-stress. Roles of different types of domains, i.e. micro-domains and nano-domains, were also discussed.

  16. Stress induced telomere shortening: longer life with less mutations?

    PubMed Central

    2014-01-01

    Background Mutations accumulate as a result of DNA damage and imperfect DNA repair machinery. In higher eukaryotes the accumulation and spread of mutations is limited in two primary ways: through p53-mediated programmed cell death and cellular senescence mediated by telomeres. Telomeres shorten at every cell division and cell stops dividing once the shortest telomere reaches a critical length. It has been shown that the rate of telomere attrition is accelerated when cells are exposed to DNA damaging agents. However the implications of this mechanism are not fully understood. Results With the help of in silico model we investigate the effect of genotoxic stress on telomere attrition and apoptosis in a population of non-identical replicating cells. When comparing the populations of cells with constant vs. stress-induced rate of telomere shortening we find that stress induced telomere shortening (SITS) increases longevity while reducing mutation rate. Interestingly, however, the effect takes place only when genotoxic stresses (e.g. reactive oxygen species due to metabolic activity) are distributed non-equally among cells. Conclusions Our results for the first time show how non-equal distribution of metabolic load (and associated genotoxic stresses) combined with stress induced telomere shortening can delay aging and minimize mutations. PMID:24580844

  17. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  18. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    SciTech Connect

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  19. Mechanical Ventilation-Induced Oxidative Stress in the Diaphragm

    PubMed Central

    Falk, Darin J.; Kavazis, Andreas N.; Whidden, Melissa A.; Smuder, Ashley J.; McClung, Joseph M.; Hudson, Matthew B.

    2011-01-01

    Background: Prolonged mechanical ventilation (MV) results in a rapid onset of diaphragmatic atrophy that is primarily due to increased proteolysis. Although MV-induced protease activation can involve several factors, it is clear that oxidative stress is a required signal for protease activation in the diaphragm during prolonged MV. However, the oxidant-producing pathways in the diaphragm that contribute to MV-induced oxidative stress remain unknown. We have demonstrated that prolonged MV results in increased diaphragmatic expression of a key stress-sensitive enzyme, heme oxygenase (HO)-1. Paradoxically, HO-1 can function as either a pro-oxidant or an antioxidant, and the role that HO-1 plays in MV-induced diaphragmatic oxidative stress is unknown. We tested the hypothesis that HO-1 acts as a pro-oxidant in the diaphragm during prolonged MV. Methods: To determine whether HO-1 functions as a pro-oxidant or an antioxidant in the diaphragm during MV, we assigned rats into three experimental groups: (1) a control group, (2) a group that received 18 h of MV and saline solution, and (3) a group that received 18 h of MV and was treated with a selective HO-1 inhibitor. Indices of oxidative stress, protease activation, and fiber atrophy were measured in the diaphragm. Results: Inhibition of HO-1 activity did not prevent or exacerbate MV-induced diaphragmatic oxidative stress (as indicated by biomarkers of oxidative damage). Further, inhibition of HO-1 activity did not influence MV-induced protease activation or myofiber atrophy in the diaphragm. Conclusions: Our results indicate that HO-1 is neither a pro-oxidant nor an antioxidant in the diaphragm during MV. Furthermore, our findings reveal that HO-1 does not play an important role in MV-induced protease activation and diaphragmatic atrophy. PMID:21106654

  20. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  1. Tau protein is essential for stress-induced brain pathology

    PubMed Central

    Lopes, Sofia; Vaz-Silva, João; Pinto, Vitor; Dalla, Christina; Kokras, Nikolaos; Bedenk, Benedikt; Mack, Natalie; Czisch, Michael; Almeida, Osborne F. X.; Sousa, Nuno; Sotiropoulos, Ioannis

    2016-01-01

    Exposure to chronic stress is frequently accompanied by cognitive and affective disorders in association with neurostructural adaptations. Chronic stress was previously shown to trigger Alzheimer’s-like neuropathology, which is characterized by Tau hyperphosphorylation and missorting into dendritic spines followed by memory deficits. Here, we demonstrate that stress-driven hippocampal deficits in wild-type mice are accompanied by synaptic missorting of Tau and enhanced Fyn/GluN2B-driven synaptic signaling. In contrast, mice lacking Tau [Tau knockout (Tau-KO) mice] do not exhibit stress-induced pathological behaviors and atrophy of hippocampal dendrites or deficits of hippocampal connectivity. These findings implicate Tau as an essential mediator of the adverse effects of stress on brain structure and function. PMID:27274066

  2. Reducing stress-induced birefringence in optical fiber ribbons

    NASA Astrophysics Data System (ADS)

    Várallyay, Z.; Arashitani, Y.; Varga, G.

    2011-01-01

    Coated and ribboned optical fibers are liable to external stress of the coating materials which may induce additional birefringence in the fiber glass. This residual stress in the coating may increase the polarization mode dispersion (PMD) of the fibers with a value well above allowed in modern, optical telecommunication systems. We report our numerical efforts on reducing the stress caused birefringence in fiber ribbons optimizing the geometry as well as the material parameters of the coating materials. We found that changing the cross-sectional geometry of the fiber ribbon such as edge shape or the ratio of primary and secondary coatings may lead to significant stress and constitutively PMD reduction in optical fibers. Changing the stiffness or the glass transition temperature (GTT) of the different components may also yield optimal conditions for stress reduction according to our finite element analyzes.

  3. Gravity-induced stresses near a vertical cliff

    USGS Publications Warehouse

    Savage, W.Z.

    1993-01-01

    The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.

  4. Aneuploidy-induced cellular stresses limit autophagic degradation

    PubMed Central

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-01-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state. PMID:26404941

  5. Aneuploidy-induced cellular stresses limit autophagic degradation.

    PubMed

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-10-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state.

  6. Thiamine deficiency induces endoplasmic reticulum stress in neurons.

    PubMed

    Wang, X; Wang, B; Fan, Z; Shi, X; Ke, Z-J; Luo, J

    2007-02-09

    Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. Recently, ER stress has been implicated in a number of neurodegenerative models. We demonstrated here that TD up-regulated several markers of ER stress, such as glucose-regulated protein (GRP) 78, growth arrest and DNA-damage inducible protein or C/EBP-homologus protein (GADD153/Chop), phosphorylation of eIF2alpha and cleavage of caspase-12 in the cerebellum and the thalamus of mice. Furthermore, ultrastructural analysis by electron microscopic study revealed an abnormality in ER structure. To establish an in vitro model of TD in neurons, we treated cultured cerebellar granule neurons (CGNs) with amprolium, a potent inhibitor of thiamine transport. Exposure to amprolium caused apoptosis and the generation of reactive oxygen species in CGNs. Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage.

  7. Novel photon detection based on electronically induced stress in silicon

    NASA Astrophysics Data System (ADS)

    Datskos, Panagiolis G.; Rajic, Slobodan; Datskou, Irene; Egert, Charles M.

    1998-07-01

    The feasibility of microcantilever-based optical detection is demonstrated. Specifically, we report here on an evaluation of laboratory prototypes that are based on commercially available microcantilevers. In this work, optical transduction techniques were used to measure microcantilever response to photons and study the electronic stress in silicon microcantilevers, and their temporal and photometric response. The photo-generation of free charge carriers (electrons, holes) in a semiconductor gives rise to photo-induced (electronic) mechanical strain. The excess charge carriers responsible for the photo-induced stress, were produced via photon irradiation from a diode laser with wavelength (lambda) equals 780 nm. We found that for silicon, the photo-induced stress results in a contraction of the crystal lattice due to the presence of excess electron-hole-pairs. In addition, the photo-induced stress is of opposite direction and about four times larger than the stress resulting from direct thermal excitation. When charge carriers are generated in a short time, a very rapid deflection of the microcantilever is observed (response time approximately microseconds).

  8. Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Zuppini, Anna; Groenendyk, Jody; Cormack, Lori A; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2002-02-26

    In this study, we used calnexin-deficient cells to investigate the role of this protein in ER stress-induced apoptosis. We found that calnexin-deficient cells are relatively resistant to ER stress-induced apoptosis. However, caspase 3 and 8 cleavage and cytochrome c release were unchanged in these cells, indicating that ER to mitochondria "communication" during apoptotic stimulation is not affected in the absence of calnexin. The Bcl-2:Bax ratio was also not significantly changed in calnexin-deficient cells regardless of whether the ER stress was induced with thapsigargin or not. Ca(2+) homeostasis and ER morphology were unaffected by the lack of calnexin, but ER stress-induced Bap31 cleavage was significantly inhibited. Immunoprecipitation experiments revealed that Bap31 forms complexes with calnexin, which may play a role in apoptosis. The results suggest that calnexin may not play a role in the initiation of the ER stress but that the protein has an effect on later apoptotic events via its influence on Bap31 function.

  9. Some Observations of Solder Joint Failure Under Tensile-Compressive Stress

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.

    1993-01-01

    It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was to first make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age.Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.

  10. Block based compressive sensing method of microwave induced thermoacoustic tomography for breast tumor detection

    NASA Astrophysics Data System (ADS)

    Liu, Shuangli; Zhao, Zhiqin; Zhu, Xiaozhang; Lu, Yanxi; Wang, Bingwen; Nie, Zaiping; Liu, Qing-Huo

    2017-07-01

    Microwave induced thermoacoustic tomography (MITAT) is a developing non-ionized technique which has great potential in early breast tumor detection. In our previous work, an imaging method, CS-MITAT, was proposed, which applied the compressive sensing theory in MITAT and achieved a good image. The method converts a signal model into an unconstrained optimization problem with ℓ1 norm regularization, which only exploits the spatial sparsity of targets. In this paper, based on the block sparsity of thermoacoustic signals and target distribution in MITAT, the signals to be detected can be grouped into several blocks and the summation of ℓ2 norm regularization is used to replace the ℓ1 norm regularization of the CS-MITAT method. The combination of ℓ2 and ℓ1 norm regularizations helps the aggregation of nonzero elements which are accumulated in blocks. A priori structural constraint is added to form a more realistic signal model which can improve the image quality. Compared with the conventional approach of time reversal mirror and the method of gradient projection for sparse reconstruction, the alternating direction method of multipliers is applied to solve the convex optimization problem. Simulations and experiments on a real breast tumor demonstrate the effectiveness of the proposed method.

  11. Solvent effect on tolbutamide crystallization induced by compressed CO 2 as antisolvent

    NASA Astrophysics Data System (ADS)

    Subra-Paternault, P.; Roy, C.; Vrel, D.; Vega-Gonzalez, A.; Domingo, C.

    2007-11-01

    The aim of this work is to investigate the crystallization of tolbutamide induced by the addition of compressed carbon dioxide, with a particular focus on the role of the liquor solvent on the product characteristics. Crystals morphology and sizes were documented by microscopy and laser diffraction, respectively; since tolbutamide exists in four polymorph forms, characterizations by powder X-rays diffraction, differential scanning calorimetry and Raman spectroscopy were carried out. When processed from acetone or ethyl acetate, the drug crystallizes as polyedres and in a crystal lattice typical of Form III. If ethanol is added to acetone, Form I appears in the powder and becomes predominant for a content of 29% (in mol) and above; at the same time, mean particles size decreases. However, ethanol improves the solubilization of tolbutamide in the formed CO 2-solvent mixture, and is thus not favourable to a good yield of production. Mixtures of acetone with poor solvents such as diethyl ether and water were tested out; both enable the recovery of a mixture of Forms I and III, but with no significant improvement in sizes or yields compared with pure acetone or acetone-ethanol mixtures. Finally, the comparison with crystals obtained by evaporation indicates that the solvent itself was the main cause of the crystal phase observed, rather than the supercritical treatment.

  12. Calcium regulates cyclic compression-induced early changes in chondrocytes during in vitro cartilage tissue formation.

    PubMed

    Raizman, Igal; De Croos, J N Amritha; Pilliar, Robert; Kandel, Rita A

    2010-10-01

    A single application of cyclic compression (1kPa, 1Hz, 30min) to bioengineered cartilage results in improved tissue formation through sequential catabolic and anabolic changes mediated via cell shape changes that are regulated by α5β1 integrin and membrane-type metalloprotease (MT1-MMP). To determine if calcium was involved in this process, the role of calcium in regulating cell shape changes, MT1-MMP expression and integrin activity in response to mechanical stimulation was examined. Stimulation-induced changes in cell shape and MT1-MMP expression were abolished by chelation of extracellular calcium, and this effect was reversed by re-introduction of calcium. Spreading was inhibited by blocking stretch-activated channels (with gadolinium), while retraction was prevented by blocking the L-Type voltage-gated channel (with nifedipine); both compounds inhibited MT1-MMP upregulation. Calcium A23187 ionophore restored cellular response further supporting a role for these channels. Calcium regulated the integrin-mediated signalling pathway, which was facilitated through Src kinase. Both calcium- and integrin-mediated pathways converged on ERK-MAPK in response to stimulation. While both integrins and calcium signalling mediate chondrocyte mechanotransduction, calcium appears to play the major regulatory role. Understanding the underlying molecular mechanisms involved in chondrocyte mechanotransduction may lead to the development of improved bioengineered cartilage.

  13. Neutron diffraction study on very high elastic strain of 6% in an Fe{sub 3}Pt under compressive stress

    SciTech Connect

    Yamaguchi, Takashi; Fukuda, Takashi Kakeshita, Tomoyuki; Harjo, Stefanus; Nakamoto, Tatsushi

    2014-06-09

    An Fe{sub 3}Pt alloy with degree of order 0.75 exhibits a second-order-like martensitic transformation from a cubic structure to a tetragonal one at about 90 K; its tetragonality c/a changes nearly continuously from 1 to 0.945 on cooling from 90 K to 14 K. We have investigated the change in lattice parameters in a single crystal of the Fe{sub 3}Pt alloy at 93 K under compressive stresses, σ, applied in the [001] direction by neutron diffraction. The tetragonality c/a has decreased continuously from 1 to 0.907 with an increase in |σ| up to |σ| = 280 MPa; the corresponding lattice strain in the [001] direction, due to the continuous structure change, increases from 0% to 6.1%. When the stress of 300 MPa is reached, c/a has changed abruptly from 0.907 to 0.789 due to a first-order martensitic transformation.

  14. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate

    NASA Astrophysics Data System (ADS)

    Franco Navarro, Pedro; Benson, David J.; Nesterenko, Vitali F.

    2015-12-01

    We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves—a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.

  15. Nature of short, high-amplitude compressive stress pulses in a periodic dissipative laminate.

    PubMed

    Franco Navarro, Pedro; Benson, David J; Nesterenko, Vitali F

    2015-12-01

    We study the evolution of high-amplitude stress pulses in periodic dissipative laminates taking into account the nonlinear constitutive equations of the components and their dissipative behavior. Aluminum-tungsten laminate was selected due to the large difference in acoustic impedances of components, the significant nonlinearity of the aluminum constitutive equation at the investigated range of stresses, and its possible practical applications. Laminates with different cell size, which controls the internal time scale, impacted by plates with different thicknesses that determine the incoming pulse duration, were investigated. It has been observed that the ratio of the duration of the incoming pulse to the internal characteristic time determines the nature of the high-amplitude dissipative propagating waves-a triangular oscillatory shock-like profile, a train of localized pulses, or a single localized pulse. These localized quasistationary waves resemble solitary waves even in the presence of dissipation: The similar pulses emerged from different initial conditions, indicating that they are inherent properties of the corresponding laminates; their characteristic length scale is determined by the scale of mesostructure, nonlinear properties of materials, and the stress amplitude; and a linear relationship exists between their speed and amplitude. They mostly recover their shapes after collision with phase shift. A theoretical description approximating the shape, length scale, and speed of these high-amplitude dissipative pulses was proposed based on the Korteweg-de Vries equation with a dispersive term determined by the mesostructure and a nonlinear term derived using Hugoniot curves of components.

  16. Analytical Modeling of Surface Roughness, Hardness and Residual Stress Induced by Deep Rolling

    NASA Astrophysics Data System (ADS)

    Magalhães, Frederico C.; Abrão, Alexandre M.; Denkena, Berend; Breidenstein, Bernd; Mörke, Tobias

    2017-02-01

    Deep rolling is a mechanical surface treatment that can significantly alter the features of metallic components and despite the fact that it has been used for a long time, to date the influence of the interaction among the principal process parameters has not been thoroughly understood. Aiming to fulfill this gap, this work addresses the effect of deep rolling on surface finish and mechanical properties from the analytical and experimental viewpoints. More specifically, the influence of deep rolling pressure and number of passes on surface roughness, hardness and residual stress induced on AISI 1060 steel is investigated. The findings indicate that the surface roughness after deep rolling is closely related to the yield strength of the work material and the available models can satisfactorily predict the former parameter. Better agreement between the mathematical and experimental hardness values is achieved when a single deep rolling pass is employed, as well as when the yield strength of the work material increases. Compressive residual stress is generally induced after deep rolling, irrespectively of the selected heat treatment and deep rolling parameters. Finally, the model proposed to predict residual stress provides results closest to the experimental data especially when the annealed material is considered.

  17. Analytical Modeling of Surface Roughness, Hardness and Residual Stress Induced by Deep Rolling

    NASA Astrophysics Data System (ADS)

    Magalhães, Frederico C.; Abrão, Alexandre M.; Denkena, Berend; Breidenstein, Bernd; Mörke, Tobias

    2016-12-01

    Deep rolling is a mechanical surface treatment that can significantly alter the features of metallic components and despite the fact that it has been used for a long time, to date the influence of the interaction among the principal process parameters has not been thoroughly understood. Aiming to fulfill this gap, this work addresses the effect of deep rolling on surface finish and mechanical properties from the analytical and experimental viewpoints. More specifically, the influence of deep rolling pressure and number of passes on surface roughness, hardness and residual stress induced on AISI 1060 steel is investigated. The findings indicate that the surface roughness after deep rolling is closely related to the yield strength of the work material and the available models can satisfactorily predict the former parameter. Better agreement between the mathematical and experimental hardness values is achieved when a single deep rolling pass is employed, as well as when the yield strength of the work material increases. Compressive residual stress is generally induced after deep rolling, irrespectively of the selected heat treatment and deep rolling parameters. Finally, the model proposed to predict residual stress provides results closest to the experimental data especially when the annealed material is considered.

  18. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    PubMed

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-04

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model.

  19. Electromechanical Assessment of Human Knee Articular Cartilage with Compression-Induced Streaming Potentials.

    PubMed

    Becher, Christoph; Ricklefs, Marcel; Willbold, Elmar; Hurschler, Christof; Abedian, Reza

    2016-01-01

    To assess the electromechanical properties of human knee articular cartilage with compression-induced streaming potentials for reliability among users and correlation with macroscopic and histological evaluation tools and sulfated glycosaminoglycan (sGAG) content. Streaming potentials are induced in cartilage in response to loading when mobile positive ions in the interstitial fluid temporarily move away from negatively charged proteoglycans. Streaming potential integrals (SPIs) were measured with an indentation probe on femoral condyles of 10 human knee specimens according to a standardized location scheme. Interobserver reliability was measured using an interclass correlation coefficient (ICC). The learning curves of 3 observers were evaluated by regression analysis. At each SPI measurement location the degradation level of the tissue was determined by means of the International Cartilage Repair Society (ICRS) score, Mankin score, and sGAG content. The computed ICC was 0.77 (0.70-0.83) indicating good to excellent linear agreement of SPI values among the 3 users. A significant positive linear correlation of the learning index values was observed for 2 of the 3 users. Statistically significant negative correlations between SPI and both ICRS and Mankin scores were observed (r = 0.502, P < 0.001, and r = 0.255, P = 0.02, respectively). No correlation was observed between SPI and sGAG content (r = 0.004, P = 0.973). SPI values may be used as a quantitative means of cartilage evaluation with sufficient reliability among users. Due to the significant learning curve, adequate training should be absolved before routine use of the technique.

  20. Trigeminal Inflammatory Compression (TIC) Injury Induces Chronic Facial Pain and Susceptibility to Anxiety-Related Behaviors

    PubMed Central

    Lyons, Danielle N.; Kniffin, Tracey C.; Zhang, Liping; Danaher, Robert J.; Miller, Craig S.; Bocanegra, Jose L.; Carlson, Charles R.; Westlund, Karin N.

    2015-01-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week 8 post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury which resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model’s chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  1. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity

    PubMed Central

    Wang, Liying

    2013-01-01

    The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed. PMID:24027766

  2. Oxytocin mediates stress-induced analgesia in adult mice

    PubMed Central

    Robinson, D A; Wei, F; Wang, G D; Li, P; Kim, S J; Vogt, S K; Muglia, L J; Zhuo, M

    2002-01-01

    As a neurohormone and as a neurotransmitter, oxytocin has been implicated in the stress response. Descending oxytocin-containing fibres project to the dorsal horn of the spinal cord, an area important for processing nociceptive inputs. Here we tested the hypothesis that oxytocin plays a role in stress-induced analgesia and modulates spinal sensory transmission. Mice lacking oxytocin exhibited significantly reduced stress-induced antinociception following both cold-swim (10 °C, 3 min) and restraint stress (30 min). In contrast, the mice exhibited normal behavioural responses to thermal and mechanical noxious stimuli and morphine-induced antinociception. In wild-type mice, intrathecal injection of the oxytocin antagonist dOVT (200 μm in 5 μl) significantly attenuated antinociception induced by cold-swim. Immunocytochemical staining revealed that, in the mouse, oxytocin-containing neurones in the paraventricular nucleus of the hypothalamus are activated by stress. Furthermore, oxytocin-containing fibres were present in the dorsal horn of the spinal cord. To test whether descending oxytocin-containing fibres could alter nociceptive transmission, we performed intracellular recordings of dorsal horn neurones in spinal slices from adult mice. Bath application of oxytocin (1 and 10 μm) inhibited excitatory postsynaptic potentials (EPSPs) evoked by dorsal root stimulation. This effect was reversed by the oxytocin antagonist dOVT (1 μm). Whole-cell recordings of dorsal horn neurones in postnatal rat slices revealed that the effect of oxytocin could be blocked by the addition of GTP-γ-S to the recording pipette, suggesting activation of postsynaptic oxytocin receptors. We conclude that oxytocin is important for both cold-swim and restraint stress-induced antinociception, acting by inhibiting glutamatergic spinal sensory transmission. PMID:11956346

  3. Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model

    PubMed Central

    2013-01-01

    Background The aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord. Results Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase. Conclusions This analysis showed that, surprisingly, the diverse series of molecular events that

  4. Psychological stress-induced catecholamines accelerates cutaneous aging in mice.

    PubMed

    Romana-Souza, Bruna; Santos Lima-Cezar, Gracineide; Monte-Alto-Costa, Andréa

    2015-12-01

    Psychological stress may be an important extrinsic factor which influences aging process. However, neither study demonstrated the mechanism by which chronic stress participates in skin aging. Aim of this study was to investigate the effects of chronic psychological stress on mice skin. Mice were daily submitted to rotational stress, for 28 days, until euthanasia. After 28 days, mice were killed and normal skin was analyzed. Macroscopically, dorsum skin of chronically stressed mice presented more wrinkled when compared to that of nonstressed mice. In mice skin, chronic stress increased lipid peroxidation, carbonyl protein content, nitrotyrosine levels, neutrophil infiltration, neutrophil elastase, tissue inhibitor of metalloproteinase-1 and metalloproteinase-8 levels. Nevertheless, chronic stress reduced dermis thickness, collagen type I, fibrilin-1 and elastin protein levels in mice skin. In in vitro assays, murine skin fibroblasts were exposed to elevated epinephrine levels plus inhibitors of reactive oxygen species (ROS) and reactive nitrogen species (RNS), fibroblast activity was evaluated in a short time. In skin fibroblast culture, treatment with inhibitors of ROS and RNS synthesis abolished the increase in carbonyl protein content and lipid peroxide accumulation induced by epinephrine. In conclusion, chronic psychological stress may be an important extrinsic factor, which contributes to skin aging in mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Staged Moduli: A Quantitative Method to Analyze the Complete Compressive Stress-Strain Response for Thermally Damaged Rock

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Jinyu; Liu, Shi

    2015-07-01

    The ultrasonic method and destructive test were combined to examine sandstone specimens taken from underground construction field in the Mount Taibai of Qinling Mountains, middle part of China. Staged moduli of the four stages during the uniaxial compression of sandstone after temperature varying from 25 to 1,000 °C were defined, through which the complete stress-strain curves of sandstone were studied quantitatively. Thermal damage of sandstone after different high temperatures was analyzed based on the thermal damage factor (TDF) defined by the modulus of compact stage. The temperature-sensitivity coefficient (TSC) was proposed to describe the sensitivity of TDF to temperature as temperature level varied. Research suggests that the compression process of thermally damaged sandstone is of prominent staged characteristic. The strain of compact stage increases significantly in a near-linear style as temperature rises up. For temperature above 400 °C, the ratio of compaction strain to peak strain increases to more than 50 percent. Changing rules of the four-staged moduli with temperature differs widely, among which the modulus of compact stage has a strong relativity with longitudinal wave velocity. The TDF defined by wave velocity loses sight of the change in density and Poisson's ratio, avoiding the defect of which, the defining method based on modulus of compact stage is of greater veracity. Within the range of 25-200 °C, the TSC is largest and the thermal damage of sandstone is more sensitive to temperature. The results of this article have some guiding significance to rock engineering in high-temperature environment.

  6. Association between Anger and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Kelley, Mary; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Background Mental stress-induced myocardial ischemia is associated with adverse prognosis in coronary artery disease patients. Anger is thought to be a trigger of acute coronary syndromes and is associated with increased cardiovascular risk; however, little direct evidence exists for a link between anger and myocardial ischemia. Methods [99mTc]sestamibi single-photon emission tomography was performed at rest, after mental stress (a social stressor with a speech task), and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed difference score, the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. The Spielberger's State-Trait Anger Expression Inventory was used to assess different anger dimensions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjusting for demographic factors, smoking, coronary artery disease severity, depressive and anxiety symptoms, each interquartile range increment in state-anger score was associated with 0.36 units adjusted increase in ischemia as measured by the summed difference score (95% CI: 0.14-0.59); the corresponding association for trait-anger was 0.95 (95% CI: 0.21-1.69). Anger expression scales were not associated ischemia. None of the anger dimensions were related to ischemia during exercise/pharmacological stress. Conclusion Anger, both as an emotional state and as a personality trait, is significantly associated with propensity to develop myocardial ischemia during mental stress, but not during exercise/pharmacological stress. Patients with this psychological profile may be at increased risk for silent ischemia induced by emotional stress and this may translate into worse prognosis. PMID:25497256

  7. Activation of Gi induces Mechanical Hyperalgesia Post Stress or Inflammation

    PubMed Central

    Dina, Olayinka A.; Khasar, Sachia G.; Gear, Robert W.; Levine, Jon D.

    2009-01-01

    In studies of the role of primary afferent nociceptor plasticity in the transition from acute to chronic pain we recently reported that exposure to unpredictable sound stress or a prior inflammatory response induces long-term changes in the second messenger signaling pathway, in nociceptors, mediating inflammatory hyperalgesia; this change involves a switch from a Gs-cAMP-PKA to a Gi-PKC signaling pathway. To more directly study the role of Gi in mechanical hyperalgesia we evaluated the nociceptive effect of the Gi activator, mastoparan. Intradermal injection of mastoparan in the rat hind paw induces dose-dependent (0.1 ng – 1 μg) mechanical hyperalgesia. The highly selective inhibitor of Gi, Pertussis toxin, and of protein kinase C epsilon (PKCε), PKCεV1–2, both markedly attenuate mastoparan-induced hyperalgesia in stressed rats but had no effect on mastoparan-induced hyperalgesia in unstressed rats. Similar effects were observed, at the site of nociceptive testing, after recovery from carrageenan-induced inflammation. These studies provide further confirmation for a switch to a Gi-activated and PKCε-dependent signaling pathway in primary mechanical hyperalgesia, induced by stress or inflammation. PMID:19275929

  8. Mechanical compression insults induce nanoscale changes of membrane-skeleton arrangement which could cause apoptosis and necrosis in dorsal root ganglion neurons.

    PubMed

    Quan, Xin; Guo, Kai; Wang, Yuqing; Huang, Liangliang; Chen, Beiyu; Ye, Zhengxu; Luo, Zhuojing

    2014-01-01

    In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.

  9. Self-Induced Transparency and Electromagnetic Pulse Compression in a Plasma or an Electron Beam under Cyclotron Resonance Conditions

    SciTech Connect

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.

    2010-12-30

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  10. Infectious particles, stress, and induced prion amyloids

    PubMed Central

    2013-01-01

    Transmissible encephalopathies (TSEs) are believed by many to arise by spontaneous conversion of host prion protein (PrP) into an infectious amyloid (PrP-res, PrPSc) without nucleic acid. Many TSE agents reside in the environment, with infection controlled by public health measures. These include the disappearance of kuru with the cessation of ritual cannibalism, the dramatic reduction of epidemic bovine encephalopathy (BSE) by removal of contaminated feed, and the lack of endemic scrapie in geographically isolated Australian sheep with susceptible PrP genotypes. While prion protein modeling has engendered an intense focus on common types of protein misfolding and amyloid formation in diverse organisms and diseases, the biological characteristics of infectious TSE agents, and their recognition by the host as foreign entities, raises several fundamental new directions for fruitful investigation such as: (1) unrecognized microbial agents in the environmental metagenome that may cause latent neurodegenerative disease, (2) the evolutionary social and protective functions of different amyloid proteins in diverse organisms from bacteria to mammals, and (3) amyloid formation as a beneficial innate immune response to stress (infectious and non-infectious). This innate process however, once initiated, can become unstoppable in accelerated neuronal aging. PMID:23633671

  11. Thiamine Deficiency Induces Endoplasmic Reticulum Stress in Neurons

    PubMed Central

    Wang, Xin; Wang, Bingwei; Fan, Zhiqin; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia

    2007-01-01

    Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. Recently, ER stress has been implicated in a number of neurodegenerative models. We demonstrated here that TD up-regulated several markers of ER stress, such as GRP78, GADD153/Chop, phosphorylation of eIF2α and cleavage of caspase-12 in the cerebellum and the thalamus of mice. Furthermore, ultrastructural analysis by electron microscopic study revealed an abnormality in ER structure. To establish an in vitro model of TD in neurons, we treated cultured cerebellar granule neurons (CGNs) with amprolium, a potent inhibitor of thiamine transport. Exposure to amprolium caused apoptosis and the generation of reactive oxygen species in CGNs. Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage. PMID:17137721

  12. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    SciTech Connect

    Lefevre, Sophie; Sliwa, Dominika; Rustin, Pierre; Camadro, Jean-Michel; Santos, Renata

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  13. Compression induced phase transition of nematic brush: A mean-field theory study

    SciTech Connect

    Tang, Jiuzhou; Zhang, Xinghua; Yan, Dadong

    2015-11-28

    Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bending energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.

  14. Compression induced phase transition of nematic brush: A mean-field theory study

    NASA Astrophysics Data System (ADS)

    Tang, Jiuzhou; Zhang, Xinghua; Yan, Dadong

    2015-11-01

    Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bending energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.

  15. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  16. Stress-Induced Hormones Cortisol and Epinephrine Impair Wound Epithelization.

    PubMed

    Stojadinovic, Olivera; Gordon, Katherine A; Lebrun, Elizabeth; Tomic-Canic, Marjana

    2012-02-01

    Stress-induced disruption of hormonal balance in animals and humans has a detrimental effect on wound healing. After the injury, keratinocytes migrate over the wound bed to repair a wound. However, their nonmigratory phenotype plays a role in pathogenesis of chronic wounds. Despite many therapeutic approaches, there is a dearth of treatments targeting the molecular mechanisms mediated by stress that prevent epithelization. Recent studies show that epidermal keratinocytes synthesize stress hormones. During acute wound healing, cortisol synthesis in the epidermis is tightly controlled. Further, a key intermediate molecule in the cholesterol synthesis pathway, farnesyl pyrophosphate (FPP), can bind glucocorticoid receptor (GR) and activate GR. Additionally, keratinocytes express beta-2-adrenergic-receptor (β2AR), a receptor for the stress hormone epinephrine. Importantly, migratory rates of keratinocytes are reduced by cortisol, FPP, epinephrine, and other β2AR agonists, thus indicating their role in the inhibition of epithelization. Topical inhibition of local glucocorticoid and FPP synthesis, as well as treatment with β2AR antagonists promotes wound epithelization. Modulation of local stress hormone production may represent an important therapeutic target for wound healing disorders. Topical administration of inhibitors of cortisol synthesis, statins, β2AR antagonists, and systemic beta-blockers can decrease cortisol synthesis, FPP, and epinephrine levels, respectively, thus restoring keratinocyte migration capacity. These treatment modalities could represent a novel therapeutic approach for wound healing disorders. Attenuation of the local stress-induced hormonal imbalance in epidermis may advance therapeutic modalities, thereby leading to enhanced epithelization and improved wound healing.

  17. Environmental stresses induce health-promoting phytochemicals in lettuce.

    PubMed

    Oh, Myung-Min; Carey, Edward E; Rajashekar, C B

    2009-07-01

    Plants typically respond to environmental stresses by inducing antioxidants as a defense mechanism. As a number of these are also phytochemicals with health-promoting qualities in the human diet, we have used mild environmental stresses to enhance the phytochemical content of lettuce, a common leafy vegetable. Five-week-old lettuce (Lactuca sativa L.) plants grown in growth chambers were exposed to mild stresses such as heat shock (40 degrees C for 10 min), chilling (4 degrees C for 1d) or high light intensity (800 micromolm(-2)s(-1) for 1d). In response to these stresses, there was a two to threefold increase in the total phenolic content and a significant increase in the antioxidant capacity. The concentrations of two major phenolic compounds in lettuce, chicoric acid and chlorogenic acid, increased significantly in response to all the stresses. Quercetin-3-O-glucoside and luteolin-7-O-glucoside were not detected in the control plants, but showed marked accumulations following the stress treatments. The results suggest that certain phenolic compounds can be induced in lettuce by environmental stresses. Of all the stress treatments, high light produced the greatest accumulation of phenolic compounds, especially following the stress treatments during the recovery. In addition, key genes such as phenylalanine ammonia-lyase (PAL), l-galactose dehydrogenase (l-GalDH), and gamma-tocopherol methyltransferase (gamma-TMT) involved in the biosynthesis of phenolic compounds, ascorbic acid, and alpha-tocopherol, respectively, were rapidly activated by chilling stress while heat shock and high light did not appear to have an effect on the expression of PAL and gamma-TMT. However, l-GalDH was consistently activated in response to all the stresses. The results also show that these mild environmental stresses had no adverse effects on the overall growth of lettuce, suggesting that it is possible to use mild environmental stresses to successfully improve the phytochemical content

  18. Stress in the Adult Rat Exacerbates Muscle Pain Induced by Early-Life Stress

    PubMed Central

    Alvarez, Pedro; Green, Paul G.; Levine, Jon D.

    2013-01-01

    Background Early-life stress and exposure to stressful stimuli play a major role in the development of chronic widespread pain in adults. However, how they interact in chronic pain syndromes remains unclear. Methods Dams and neonatal litters were submitted to a restriction of nesting material (neonatal limited bedding, NLB) for one week. As adults, these rats were exposed to a painless sound stress protocol. The involvement of sympathoadrenal catecholamines, interleukin 6 (IL-6) and tumor necrosis alpha (TNFα) in nociception, was evaluated through of behavioral and ELISA assays, surgical interventions and intrathecal antisense treatments. Results Adult NLB rats exhibited mild muscle hyperalgesia, which was markedly aggravated by sound stress (peaking 15 days after exposure). Adrenal medullectomy did not modify hyperalgesia in NLB rats but prevented its aggravation by sound stress. Sustained administration of epinephrine to NLB rats mimicked sound stress effect. Intrathecal treatment with antisense directed to IL-6-receptor subunit gp130, but not to TNFα type 1 receptor (TNFR1), inhibited hyperalgesia in NLB rats. However, antisense against either gp130 or TNFR1 inhibited sound stress-induced enhancement of hyperalgesia. Compared to control rats, NLB rats exhibit increased plasma levels of IL-6 but decreased levels of TNFα, whereas sound stress increases IL-6 plasma levels in control but not in NLB rats. Conclusions Early-life stress induces a persistent elevation of IL-6, hyperalgesia and susceptibility to chronic muscle pain, which is unveiled by exposure to stress in adults. This probably depends on an interaction between adrenal catecholamines and pro-inflammatory cytokines acting at muscle nociceptor level. PMID:23706525

  19. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders

    PubMed Central

    Gu, Simeng; Wang, Wei; Huang, Jason H.

    2016-01-01

    Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC)/norepinephrine (NE) system is regarded as a critical part of the central “stress circuitry,” whose major function is to induce “fight or flight” behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty). The reason for this discrepancy might be that NE is not only for flight (fear), but also for fight (anger). Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. “Adrenaline rush or norepinephrine rush” and fear and anger emotion might act as biomarkers for mental disorders. PMID:27051536

  20. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  1. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  2. FEM simulation of residual stresses induced by laser Peening

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Sollier, A.; Chaieb, I.; Berthe, L.; Bartnicki, E.; Braham, C.; Fabbro, R.

    2003-08-01

    Benefits from laser Peening have been demonstrated several times in fields like fatigue, wear or stress corrosion cracking. However, in spite of recent work on the calculation of residual stresses, very few authors have considered a finite element method (FEM) approach to predict laser-induced mechanical effect. This comes mainly from the high strain rates involved during LP (10^6 s^{-1}), that necessitate the precise determination of dynamic properties, and also from the possible combination of thermal and mechanical loadings in the case of LP without protective coatings. In this paper, we aim at presenting a global approach of the problem, starting from the determination of loading conditions and dynamic yield strengths, to finish with FEM calculation of residual stress fields induced on a 12% Cr martensitic stainless steel and a 7075 aluminium alloy.

  3. Does aspirin-induced oxidative stress cause asthma exacerbation?

    PubMed Central

    Kacprzak, Dorota

    2015-01-01

    Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism. PMID:26170841

  4. Alcohol-induced stress in painful alcoholic neuropathy.

    PubMed

    Dina, Olayinka A; Khasar, Sachia G; Alessandri-Haber, Nicole; Green, Paul G; Messing, Robert O; Levine, Jon D

    2008-01-01

    Chronic alcohol consumption induces a painful small-fiber peripheral neuropathy, the severity of which increases during alcohol withdrawal. Chronic alcohol consumption also produces a sustained increase in stress hormones, epinephrine and corticosterone, that is exacerbated during alcohol withdrawal. We report that adrenal medullectomy and administration of a glucocorticoid receptor antagonist, mifepristone (RU 38486), both prevented and reversed a model of painful peripheral neuropathy in alcohol binge-drinking rats. Chronic administration of stress levels of epinephrine to rats that had undergone adrenal medullectomy and were being fed the alcohol diet reconstituted this phenotype. Intrathecal administration of oligodeoxynucleotides antisense to the beta(2)-adrenergic- or glucocorticoid-receptor also prevented and reversed the pro-nociceptive effects of ethanol. Our results suggest a convergence of the effects of mediators of the hypothalamic-pituitary- and sympathoadrenal-stress axes on sensory neurons in the induction and maintenance of alcohol-induced painful peripheral neuropathy.

  5. An experimental study of compression failure of fibrous laminated composites in the presence of stress gradients

    NASA Technical Reports Server (NTRS)

    Waas, A. M.; Knauss, W. G.; Babcock, C. D., Jr.

    1990-01-01

    Mechanisms of failure in laminates in the presence of a stress raiser were experimentally studied. The damage initiation and propagation throughout the entire load history were examined via real-time holographic interferometry and photomicrography of the hole surface. Multilayered composite flat plates made of T300/BP907 and IM7/8551-7 were tested. It is shown that the failure is initiated as a localized instability in the 0-deg plies at the hole surface approximately at right angles to the loading direction. A series of events is described which culminates in the complete loss of flexural stiffness of each of the delaminated portions, leading to catastrophic failure of the plate.

  6. An experimental study of compression failure of fibrous laminated composites in the presence of stress gradients

    NASA Technical Reports Server (NTRS)

    Waas, A. M.; Knauss, W. G.; Babcock, C. D., Jr.

    1990-01-01

    Mechanisms of failure in laminates in the presence of a stress raiser were experimentally studied. The damage initiation and propagation throughout the entire load history were examined via real-time holographic interferometry and photomicrography of the hole surface. Multilayered composite flat plates made of T300/BP907 and IM7/8551-7 were tested. It is shown that the failure is initiated as a localized instability in the 0-deg plies at the hole surface approximately at right angles to the loading direction. A series of events is described which culminates in the complete loss of flexural stiffness of each of the delaminated portions, leading to catastrophic failure of the plate.

  7. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa.

    PubMed

    Macdonald, Ian A; Kuehn, Meta J

    2013-07-01

    As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.

  8. Stress-Induced Outer Membrane Vesicle Production by Pseudomonas aeruginosa

    PubMed Central

    MacDonald, Ian A.

    2013-01-01

    As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa. PMID:23625841

  9. Predicting stress-induced velocity anisotropy in rocks

    SciTech Connect

    Mavko, G.; Mukerji, T.; Godfrey, N.

    1995-07-01

    A simple transformation, using measured isotropic V{sub P} and V{sub S} versus hydrostatic pressure, is presented for predicting stress-induced seismic velocity anisotropy in rocks. The compliant, crack-like portions of the pore space are characterized by generalized compressional and shear compliances that are estimated form the isotropic V{sub P} and V{sub S}. The physical assumption that the compliant porosity is crack-like means that the pressure dependence of the generalized compliances is governed primarily by normal tractions resolved across cracks and defects. This allows the measured pressure dependence to be mapped form the hydrostatic stress state to any applied nonhydrostatic stress. Predicted P- and S-wave velocities agree reasonably well with uniaxial stress data for Barre Granite and Massillon Sandstone. While it is mechanically similar to methods based on idealized ellipsoidal cracks, the approach is relatively independent of any assumed crack geometry and is not limited to small crack densities.

  10. Flow-Induced Stress Distribution in Porous Scaffolds

    NASA Astrophysics Data System (ADS)

    Papavassiliou, Dimitrios; Voronov, Roman; Vangordon, Samuel; Sikavitsas, Vassilios

    2010-11-01

    Flow-induced stresses help the differentiation and proliferation of mesenchymal cells cultured in porous scaffolds within perfusion bioreactors. The distribution of stresses in a scaffold is thus important for understanding the tissue growth process in such reactors. Computational results for flow through Poly-L-Lactic Acid porous scaffolds that have been produced with salt-leaching techniques, and for scaffolds that have been constructed with nonwoven fibers, indicate that the probability density function (pdf) of the wall stress, when normalized with the mean and the standard deviation of the pdf, appears to follow a single type of pdf. The scaffolds were imaged with micro-CT and the simulations were run with lattice Boltzmann methods. The parameters of the distribution can be obtained using Darcy's law and the Blake-Kozeny-Carman equation. Experimental results available in the literature appear to corroborate the computational findings, leading to the conclusion that stresses in high-porosity porous materials follow a single distribution.

  11. Observation of radiation induced changes in stress and electrical properties in MOS devices

    NASA Technical Reports Server (NTRS)

    Shaw, D. C.; Lowry, L.; Macwilliams, K. P.; Barnes, C. E.

    1992-01-01

    Strain measurements using X-ray diffraction were performed on irradiated commercial and radiation-hardened metal gate CMOS devices in addition to polysilicon gate NMOS devices. I-V curves were taken and V(ot) and V(it) were separated using the subthreshold slope method for all devices. A correlation has been shown to exist between physical strain relaxation and the electrical properties as a function of radiation dose and recovery. Data shown suggest that the physical response (strain relaxation) in the silicon at the oxide interface is a measure of the type of damage induced and the recovery mechanism. Postradiation measurements of Delta V(it) and Delta V(ot) taken immediately after irradiation support the conclusions of V. Zekeriya and T.-P. Ma (1983) and K. Kasama et al. (1986, 1987); compressive stress at the silicon/SiO2 interface does reduce radiation damage in the device.

  12. N-acetylcysteine attenuates dimethylnitrosamine induced oxidative stress in rats.

    PubMed

    Sathish, Priya; Paramasivan, Vijayalakshmi; Palani, Vivekanandan; Sivanesan, Karthikeyan

    2011-03-05

    Oxidative stress has been implicated in the pathogenesis and progression of various hepatic disorders and hence screening for a good hepatoprotective and antioxidant agent is the need of the hour. The present study was aimed to investigate the hepatoprotective and antioxidant property of N-acetylcysteine (NAC) against dimethylnitrosamine (DMN) induced oxidative stress and hepatocellular damage in male Wistar albino rats. Administration of single dose of DMN (5mg/kg b.w.; i.p.) resulted in significant elevation in the levels of serum aspartate transaminase and alanine transaminase, indicating hepatocellular damage. Oxidative stress induced by DMN treatment was confirmed by an elevation in the status of lipid peroxidation (LPO) and reduction in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and in the levels of non-enzymic antioxidants, reduced glutathione, vitamin-C and vitamin-E in the liver tissue. DMN induced oxidative stress and hepatocellular membrane instability was further substantiated by a decline in the status of the membrane bound ATPases in the liver tissue. Post-treatment with NAC (50mg/kg b.w.; p.o.) for 7days effectively protected against the DMN induced insult to liver by preventing the elevation in the status of the serum marker enzymes and LPO, and restoring the activities of both the enzymic and non-enzymic antioxidants and membrane bound ATPases towards normalcy. These results demonstrate that NAC acts as a good hepatoprotective and antioxidant agent in attenuating DMN induced oxidative stress and hepatocellular damage.

  13. Oxidants and antioxidants relevance in rats' pulmonary induced oxidative stress

    PubMed Central

    Zamfir, C; Eloaie Zugun, F; Cojocaru, E; Tocan, L

    2011-01-01

    Introduction: Even if the reactive oxygen species were discovered, described and detailed a long time ago, there is still little data about the mechanisms of oxidative stress, their tissular effects and about an efficient antioxidant strategy, involving animal experimental models. It has been shown that the lung is one of the most exposed organs to the oxidative stress. The particular effects of different types of oxidative stress on lungs were investigated in this experimental study, in order to quantify the intensity and the extent of the pulmonary damage, featuring the antioxidant enzymatic protective role. Methods: The study of lung injury was performed on four distinct groups of Wistar rats: a control group versus a group exposed to continuous light deprivation versus a group exposed to nitrofurantoin versus a group exposed to continuous light deprivation, to nitrofurantoin and vitamin C. Pulmonary samples were taken and treated for microscopic analysis. A qualitative immunohistochemical estimation of pulmonary superoxide dismutase 1(SOD 1) was performed. Blood tests were used in order to reveal the presence and intensity of oxidative stress. Results: Continuous light deprivation and the chronic administration of nitrofurantoin acted as oxidants with a certain involvement in lung damage– vascular and alveolar wall disturbances. Adding an antioxidant, such as vitamin C, considerably improved lung reactivity to oxidative stress. Conclusion: The chronic exposure to oxidants in the induced oxidative stress sustains the development of specific lung alterations. SOD 1 positive reaction underlines the complex enzymatic defense in oxidative stress. PMID:22567046

  14. Extracytoplasmic Stress Responses Induced by Antimicrobial Cationic Polyethylenimines

    PubMed Central

    Lander, Blaine A.; Checchi, Kyle D.; Koplin, Stephen A.; Smith, Virginia F.; Domanski, Tammy L.; Isaac, Daniel D.; Lin, Shirley

    2014-01-01

    The ability of an antimicrobial, cationic polyethylenimine (PEI+) to induce the three known extracytoplasmic stress responses of Escherichia coli was quantified. Exposure of E. coli to PEI+ in solution revealed specific, concentration-dependent induction of the Cpx extracytoplasmic cellular stress response, ~2.0-2.5 fold at 320 μg/mL after 1.5 hours without significant induction of the σE or Bae stress responses. In comparison, exposure of E. coli to a non-antimicrobial polymer, polyethylene oxide (PEO), resulted in no induction of the three stress responses. The antimicrobial small molecule vanillin, a known membrane pore-forming compound, was observed to cause specific, concentration-dependent induction of the σE stress response, ~6-fold at 640 μg/mL after 1.5 hours, without significant induction of the Cpx or Bae stress responses. The different stress response induction profiles of PEI+ and vanillin suggest that although both are antimicrobial compounds, they interact with the bacterial membrane and extracytoplasmic area by unique mechanisms. EPR studies of liposomes containing spin-labeled lipids exposed to PEI+, vanillin, and PEO reveal that PEI+ and PEO increased membrane stability whereas vanillin was found to have no effect. PMID:22797865

  15. Stress-Induced Activation of Heterochromatic Transcription

    PubMed Central

    Tittel-Elmer, Mireille; Bucher, Etienne; Broger, Larissa; Mathieu, Olivier; Paszkowski, Jerzy; Vaillant, Isabelle

    2010-01-01

    Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved. PMID:21060865

  16. Mechanical stress induced mechanism of microtubule catastrophes.

    PubMed

    Hunyadi, Viktória; Chrétien, Denis; Jánosi, Imre M

    2005-05-13

    Microtubules assembled in vitro from pure tubulin can switch occasionally from growing to shrinking states or resume assembly, an unusual behavior termed "dynamic instability of microtubule growth". Its origin remains unclear and several models have been proposed, including occasional switching of the microtubules into energetically unfavorable configurations during assembly. In this study, we have asked whether the excess energy accumulated in these configurations would be of sufficient magnitude to destabilize the capping region that must exist at the end of growing microtubules. For this purpose, we have analyzed the frequency distribution of microtubules assembled in vitro from pure tubulin, and modeled the different mechanical constraints accumulated in their wall. We find that the maximal excess energy that the microtubule lattice can store is in the order of 11 kBT per dimer. Configurations that require distortions up to approximately 20 kBT are allowed at the expense of a slight conformational change, and larger distortions are not observed. Modeling of the different elastic deformations suggests that the excess energy is essentially induced by protofilament skewing, microtubule radial curvature change and inter-subunit shearing, distortions that must destabilize further the tubulin subunits interactions. These results are consistent with the hypothesis that unfavorable closure events may trigger the catastrophes observed at low tubulin concentration in vitro. In addition, we propose a novel type of representation that describes the stability of microtubule assembly systems, and which might be of considerable interest to study the effects of stabilizing and destabilizing factors on microtubule structure and dynamics.

  17. Proteome changes induced by aluminium stress in tomato roots.

    PubMed

    Zhou, Suping; Sauvé, Roger; Thannhauser, Theodore W

    2009-01-01

    Growth inhibition in acid soils due to Al stress affects crop production worldwide. To understand mechanisms in sensitive crops that are affected by Al stress, a proteomic analysis of primary tomato root tissue, grown in Al-amended and non-amended liquid cultures, was performed. DIGE-SDS-MALDI-TOF-TOF analysis of these tissues resulted in the identification of 49 proteins that were differentially accumulated. Dehydroascorbate reductase, glutathione reductase, and catalase enzymes associated with antioxidant activities were induced in Al-treated roots. Induced enzyme proteins associated with detoxification were mitochondrial aldehyde dehydrogenase, catechol oxidase, quinone reductase, and lactoylglutathione lyase. The germin-like (oxalate oxidase) proteins, the malate dehydrogenase, wali7 and heavy-metal associated domain-containing proteins were suppressed. VHA-ATP that encodes for the catalytic subunit A of the vacuolar ATP synthase was induced and two ATPase subunit 1 isoforms were suppressed. Several proteins in the active methyl cycle, including SAMS, quercetin 3-O-methyltransferase and AdoHcyase, were induced by Al stress. Other induced proteins were isovaleryl-CoA dehydrogenase and the GDSL-motif lipase hydrolase family protein. NADPH-dependent flavin reductase and beta-hydroxyacyl-ACP dehydratase were suppressed.

  18. Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI) model.

    PubMed

    Yu, Rongjun

    2016-06-01

    Humans often make decisions in stressful situations, for example when the stakes are high and the potential consequences severe, or when the clock is ticking and the task demand is overwhelming. In response, a whole train of biological responses to stress has evolved to allow organisms to make a fight-or-flight response. When under stress, fast and effortless heuristics may dominate over slow and demanding deliberation in making decisions under uncertainty. Here, I review evidence from behavioral studies and neuroimaging research on decision making under stress and propose that stress elicits a switch from an analytic reasoning system to intuitive processes, and predict that this switch is associated with diminished activity in the prefrontal executive control regions and exaggerated activity in subcortical reactive emotion brain areas. Previous studies have shown that when stressed, individuals tend to make more habitual responses than goal-directed choices, be less likely to adjust their initial judgment, and rely more on gut feelings in social situations. It is possible that stress influences the arbitration between the emotion responses in subcortical regions and deliberative processes in the prefrontal cortex, so that final decisions are based on unexamined innate responses. Future research may further test this 'stress induced deliberation-to-intuition' (SIDI) model and examine its underlying neural mechanisms.

  19. Role of oxidative stress in transformation induced by metal mixture.

    PubMed

    Martín, Silva-Aguilar; Emilio, Rojas; Mahara, Valverde

    2011-01-01

    Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  20. [Exercise-induced shear stress: Physiological basis and clinical impact].

    PubMed

    Rodríguez-Núñez, Iván; Romero, Fernando; Saavedra, María Javiera

    2016-01-01

    The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population.

  1. Complex-Difference Constrained Compressed Sensing Reconstruction for Accelerated PRF Thermometry with Application to MRI Induced RF Heating

    PubMed Central

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.

    2014-01-01

    Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099

  2. Complex difference constrained compressed sensing reconstruction for accelerated PRF thermometry with application to MRI-induced RF heating.

    PubMed

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T; Griswold, Mark A; Collins, Christopher M

    2015-04-01

    Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency shift temperature imaging for MRI-induced radiofrequency heating evaluation. A compressed sensing approach that exploits sparsity of the complex difference between postheating and baseline images is proposed to accelerate proton resonance frequency temperature mapping. The method exploits the intra-image and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex vivo and in vivo studies by comparing performance with previously published techniques. The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local proton resonance frequency temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo. Complex difference based compressed sensing with utilization of a fully sampled baseline image improves the reconstruction accuracy for accelerated proton resonance frequency thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of radiofrequency heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. © 2014 Wiley Periodicals, Inc.

  3. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration

    PubMed Central

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C.; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2010-01-01

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32°C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32°C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm. PMID:21044625

  4. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration.

    PubMed

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2011-01-15

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32 °C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32 °C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm.

  5. Characterization of an inducible oxidative stress system in Bacillus subtilis.

    PubMed

    Bol, D K; Yasbin, R E

    1990-06-01

    Exponentially growing cells of Bacillus subtilis demonstrated inducible protection against killing by hydrogen peroxide when prechallenged with a nonlethal dose of this oxidative agent. Cells deficient in a functional recE+ gene product were as much as 100 times more sensitive to the H2O2 but still exhibited an inducible protective response. Exposure to hydrogen peroxide also induced the recE(+)-dependent DNA damage-inducible (din) genes, the resident prophage, and the product of the recE+ gene itself. Thus hydrogen peroxide is capable of inducing the SOS-like or SOB system of B. subtilis. However, the induction of this DNA repair system by other DNA-damaging agents is not sufficient to activate the protective response to hydrogen peroxide. Therefore, at least one more regulatory network (besides the SOB system) that responds to oxidative stress must exist. Furthermore, the data presented indicate that a functional catalase gene is necessary for this protective response.

  6. Drp1 mediates compression-induced programmed necrosis of rat nucleus pulposus cells by promoting mitochondrial translocation of p53 and nuclear translocation of AIF.

    PubMed

    Lin, Hui; Zhao, Lei; Ma, Xuan; Wang, Bai-Chuan; Deng, Xiang-Yu; Cui, Min; Chen, Song-Feng; Shao, Zeng-Wu

    2017-05-20

    Compression-induced programmed cell death of nucleus pulposus (NP) cells is an important contributor to intervertebral disc degeneration (IDD). Dynamin-related protein 1 (Drp1), a crucial mitochondrial fission protein, triggers programmed necrosis upon cellular injury. However, limited information is available about the role of Drp1 in compression-induced programmed necrosis of NP cells. In the present study, we found that compression resulted in upregulation and mitochondrial translocation of Drp1. Inhibition of Drp1 by siRNA or mitochondrial division inhibitor 1 (mdivi-1) effectively prevented the programmed necrosis of NP cells treated with compression. Furthermore, Drp1 promoted mitochondrial translocation of p53 and nuclear translocation of apoptosis-inducing factor (AIF) in compression-treated NP cells. Inhibition of p53 mitochondrial translocation by pifithrin-μ (PFT-μ) and silencing of AIF expression by siRNA significantly alleviated compression-induced NP cell programmed necrosis. These data indicates that Drp1 mediates compression-induced programmed necrosis of NP cells by promoting mitochondrial translocation of p53 and nuclear translocation of AIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Stress induced reversible crystal transition in poly(butylene succinate)

    NASA Astrophysics Data System (ADS)

    Liu, Guoming; Zheng, Liuchun; Zhang, Xiuqin; Li, Chuncheng; Wang, Dujin

    2015-03-01

    The plastic deformation mechanism of semi-crystalline polymers is a long-studied topic, which is crucial for establishing structure/property relationships. For polymers with stress induced crystal transition, some open questions still need to be answered, such as on which stage of plastic deformation does the crystal transition take place, and more importantly, what happens on the lamellar structure during crystal transition. In this talk, stress-induced reversible crystal transition in poly(butylene succinate) was systematically investigated by in-situ WAXS and SAXS. A ``lamellar thickening'' phenomenon was observed during stretching, which was shown to mainly originated from the reversible crystal transition. This mechanism was shown to be valid in poly(ethylene succinate). The critical stress for the transition was measured in a series of PBS-based crystalline-amorphous multi-block copolymers. Interestingly, these PBS copolymers exhibited identical critical stress independent of amorphous blocks. The universal critical stress for crystal transition was interpreted through a single-microfibril-stretching mechanism. The work is financially supported by the National Natural Science Foundation of China (Grant No. 51203170).

  8. Localized Stress Perturbations in the Northern Newark Basin: Implications for Induced Seismicity and Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.

    2013-12-01

    Induced seismicity has emerged as one of the primary concerns for large-volume underground injections, such as wastewater disposal and carbon sequestration. In order to mitigate potential seismic risks, detailed knowledge of reservoir geometry, occurrence of faults and fractures, and the distribution of in situ stresses is required to predict the effect of pore pressure increase on formation stability. We present a detailed analysis of in situ stress distribution at a potential carbon sequestration site in the northern Newark basin, and then consider fault and fracture stability under injection conditions taking into account the effects of localized stress perturbations, formation anisotropy and poroelasticity. The study utilizes borehole geophysical data obtained in a 2-km-deep well drilled into Triassic lacustrine sediments in Rockland County, NY. A complex pattern of local variations in the stress field with depth and at multiple scales is revealed by borehole breakouts, including: (i) gradual counter-clockwise rotation of horizontal stress orientation and decrease in relative magnitude with depth, (ii) pronounced rotations of the principal horizontal stresses at two depths, ~800 m and ~1200 m, and (iii) small-scale departures from mean orientation at the scale of meters to tens of meters. Localized stress drop near active faults may explain these observations. Seismic profiling in the vicinity of the borehole and along dip and strike of basin sediments suggests the presence of crosscutting, and potentially active, fault zones but their geometry cannot be accurately resolved. Borehole image data from the site indicates the presence of numerous fractures with increasing density over depth that roughly form two sets: high-angle fractures striking NE-SW and sub-horizontal fractures dipping NW. We perform iterative dislocation modeling for various fault orientations and slip distances to match the observed stress distribution in the borehole. Both intersecting and

  9. Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice.

    PubMed

    Moslehi, A; Nabavizadeh, F; Nabavizadeh, Fatemeh; Dehpour, A R; Dehpou, A R; Tavanga, S M; Hassanzadeh, G; Zekri, A; Nahrevanian, H; Sohanaki, H

    2014-09-01

    Endoplasmic reticulum (ER) stress provides abnormalities in insulin action, inflammatory responses, lipoprotein B100 degradation and hepatic lipogenesis. Excess accumulation of triglyceride in hepatocytes may also lead to disorders such as non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Opioid peptides are involved in triglyceride and cholesterol dysregulation, inflammation and cell death. In this study, we evaluated Naltrexone effects on ER stress induced liver injury. To do so, C57/BL6 mice received saline, DMSO and Naltrexone, as control groups. ER stress was induced by tunicamycin (TM) injection. Naltrexone was given before TM administration. Liver blood flow and biochemical serum analysis were measured. Histopathological evaluations, TNF-α measurement and Real-time RT-PCR were also performed. TM challenge provokes steatosis, cellular ballooning and lobular inflammation which significantly reduced in Naltrexone treated animals. ALT, AST and TNF-α increased in the TM group and improved in the Naltrexone plus TM group. Triglyceride and cholesterol levels decreased in TM treated mice with no increase in Naltrexone treated animals. In the Naltrexone plus TM group, gene expression of Bax/Bcl-2 ratio and caspase3 significantly lowered compared with the TM group. In this study, we found that Naltrexone had a notable alleviating role in ER stress induced steatosis and liver injury.

  10. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) is a major pest of winter wheat and barley in the United States. RWA induces stress to the wheat crop by damaging plant foliage, lowering the greenness of plants, and affecting productivity. Multispectral remote sensing is effective at dete...

  11. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Niu, Mu Tong; Zhang, Ji Cai; Wang, Wei; wang, Jian Feng; Xu, Ke

    2017-02-01

    Crystalline qualities of three AlN films grown by cold-wall high temperature hydride vapor phase epitaxy (CW-HT-HVPE) on c-plane sapphire substrates, with different AlN buffer layers (BLs) deposited either by CW-HT-HVPE or by hot-wall low temperature hydride vapor phase epitaxy (HW-LT-HVPE), have been studied. The best film quality was obtained on a 500-nm-thick AlN BL grown by HW-LT-HVPE at 1000 ℃. In this case,the AlN epilayer has the lowest full-width at half-maximum (FWHM) values of the (0002) and (10-12) x-ray rocking curve peaks of 295 and 306 arcsec, respectively, corresponding to the screw and edge threading dislocation (TD) densities of 1.9×108 cm-2 and 5.2×108 cm-2. This improvement in crystal quality of the AlN film can be attributed to the high compressive-stress of BL grown by HW-LT-HVPE,which facilitate the inclination and annihilation of TDs.

  12. [Changes of physiological functions in rats induced by immobilization stress].

    PubMed

    Kuriyama, T; Oishi, K; Kakazu, H; Machida, K

    1998-01-01

    A study was conducted on the changes of physiological function in rats due to immobilization stress. Male Fischer rats (SPF) of 32 weeks of age were housed in individual cages for 4 weeks. Then all rats were immobilized by stainless wire mesh for 6 hours daily for 3 days. Blood was collected before the 1st stress, immediately after the 1st stress, immediately after the 3rd stress and the day after the 3rd stress. The results of this experiment were as follows: (1) The total leukocyte counts in the blood of the rats after the 1st trial was significantly higher than that before the 1st trial. (2) The percentage of lymphocytes in the blood after the 1st trial was significantly lower than that before the 1st trial, whereas that of neutrophils was significantly higher. (3) Correlations between phagocytic activity and superoxide production of neutrophils by histochemical NBT reduction assay showed significantly a positive correlation before the 1st trial. However, no significant correlations were observed in immediately after the 1st trial and the 3rd trial. The day after the 3rd trial, a positive correlation was observed again. These correlations showed that an unsuitable state of the neutrophil function was induced by the immobilization stress. (4) Serum biochemical profiles were affected by the immobilization stress. Also, GOT, GPT, LDH, CK and UA were increased after the 1st trial, whereas, TG, TP, ALB and ALP were decreased after the 1st trial. T-CHO was increased only immediately after the 3rd stress. These results suggest that immobilization stress affected blood cells and serum components, and then the host defense and physiological functions were damaged respectively.

  13. Competition between adsorption-induced swelling and elastic compression of coal at CO2 pressures up to 100 MPa

    NASA Astrophysics Data System (ADS)

    Hol, Sander; Spiers, Christopher J.

    2012-11-01

    Enhanced Coalbed Methane production (ECBM) by CO2 injection frequently proves ineffective due to rapidly decreasing injectivity. Adsorption-induced swelling of the coal matrix has been identified as the principal factor controlling this reduction. To improve understanding of coal swelling in response to exposure to CO2 at high pressures, numerous laboratory studies have been performed in the past decades. These studies consistently reveal an increase in swelling with CO2 pressure. However, it remains unclear what the relative contributions are of adsorption-induced swelling versus elastic compression of the coal framework, and hence what is the true relationship between adsorption-induced swelling and CO2 uptake. Here, we report the results of dilatometry experiments conducted on unconfined, cylindrical coal matrix samples (˜4 mm long and 4 mm in diameter) of high volatile bituminous coal, where we aim to measure the effective volumetric effect of CO2 and to separate this into a component caused by adsorption-induced swelling and a component caused by elastic compression. The experiments were performed using a high pressure eddy current dilatometer that was used to measure one-dimensional sample expansion or contraction (resolution <50 nm). The tests were conducted at a constant temperature of 40 °C, and CO2 pressures up to 100 MPa. Our results show that the matrix samples reveal anisotropic expansion over the full range of CO2 pressures used. Expansion perpendicular to the bedding was about 1.4 times the average expansion measured in the bedding plane. Net volumetric strains, which were computed from the net linear strain in all directions measured, reveal that the response of coal is characterised by an expansion-dominated stage below 10-20 MPa of CO2 pressure and a contraction-dominated stage at higher CO2 pressures. Our data demonstrate direct competition between adsorption-induced swelling and elastic compression in the coal matrix. We propose a model for

  14. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  15. Exercise-Induced Oxidative Stress Responses in the Pediatric Population.

    PubMed

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Mastorakos, George; Fatouros, Ioannis G

    2017-01-17

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  16. ER stress induces epithelial differentiation in the mouse oesophagus.

    PubMed

    Rosekrans, Sanne L; Heijmans, Jarom; Büller, Nikè V J A; Westerlund, Jessica; Lee, Amy S; Muncan, Vanesa; van den Brink, Gijs R

    2015-02-01

    Stress in the endoplasmic reticulum (ER) leads to activation of the unfolded protein response (UPR). Xbp1, a key component of the UPR has recently been linked to the risk of developing oesophageal squamous cell carcinoma, suggesting an important role for the UPR in the oesophageal epithelium. Here we examined the role of ER stress and the UPR in oesophageal epithelial homoeostasis. We examined the expression of components of the UPR in the oesophageal epithelium. We used a pharmacological approach and a genetic approach to examine the effects of ER stress in vivo in the mouse oesophagus. The oesophagus of these mice was examined using immunohistochemistry and real-time reverse transcription (RT)-PCR. Components of the UPR were heterogeneously expressed in the basal layer of the epithelium. Induction of ER stress by 24-h treatment with thapsigargin resulted in depletion of proliferating cells in the basal layer of the oesophagus and induced differentiation. We next activated the UPR by inducible deletion of the major ER chaperone Grp78 in Ah1Cre-Rosa26-LacZ-Grp78(-/-) mice in which mutant cells could be traced by expression of LacZ. In these mice LacZ-positive mutant cells in the basal layer lost their proliferative capacity, migrated towards the oesophageal lumen and were replaced by LacZ-negative non-mutant cells. We observed no apoptosis in mutant cells. These results show that ER stress induces epithelial differentiation in precursor cells in the oesophageal epithelium. This UPR induced differentiation may serve as a quality control mechanism that protects against oesophageal cancer development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Distinct mechanisms are utilized to induce stress sensor gadd45b by different stress stimuli.

    PubMed

    Zumbrun, Steven D; Hoffman, Barbara; Liebermann, Dan A

    2009-12-01

    The GADD45 family of proteins consists of three small proteins, GADD45A, GADD45B, and GADD45G, implicated in modulating the cellular response to genotoxic/physiological stressors. Despite similarities in sequence, structure and function, each gadd45 gene is induced differentially by different stress stimuli. Studies on stress-mediated induction of the gadd45 genes have predominantly focused on gadd45a, with knowledge of gadd45b and gadd45g regulation lacking. To generate a more complete understanding of the regulation of gadd45 genes, a comprehensive analysis of stress-mediated induction of human gadd45b has been carried out using human RKO colorectal carcinoma cells as a model system. Novel data indicate that gadd45b induction in RKO cells is regulated by distinct mechanisms in a stress-specific manner. Methylmethane sulfonate (MMS), a DNA alkylating agent, induces gadd45b transcription through a cohort of both constitutive and inducible bound factors, including NFY, Sp1 and Egr1. In contrast, in a hyperosmotic environment generated with sorbitol, gadd45b mRNA is induced exclusively by mRNA stabilization. These findings indicate that the stress-mediated induction of gadd45b is largely distinct from gadd45a. Furthermore, data obtained provide a novel paradigm for stress-response gene induction, indicating that gadd45b induction by distinct stressors, in the same cell type and under the same experimental settings, is differentially regulated at the level of mRNA transcription or mRNA stability. Importantly, this study also provides the groundwork to further examine the regulation of gadd45b expression in in vivo settings using animal models and tissues obtained from normal individuals and cancer patients prior to and after chemotherapeutic intervention.

  18. ER stress induces NLRP3 inflammasome activation and hepatocyte death

    PubMed Central

    Lebeaupin, C; Proics, E; de Bieville, C H D; Rousseau, D; Bonnafous, S; Patouraux, S; Adam, G; Lavallard, V J; Rovere, C; Le Thuc, O; Saint-Paul, M C; Anty, R; Schneck, A S; Iannelli, A; Gugenheim, J; Tran, A; Gual, P; Bailly-Maitre, B

    2015-01-01

    The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. However, the causes and mechanisms of inflammation-mediated liver damage remain poorly understood. Endoplasmic reticulum (ER) stress is an initiator of cell death and inflammatory mechanisms. Although obesity induces ER stress, the interplay between hepatic ER stress, NLRP3 inflammasome activation and hepatocyte death signaling has not yet been explored during the etiology of chronic liver diseases. Steatosis is a common disorder affecting obese patients; moreover, 25% of these patients develop steatohepatitis with an inherent risk for progression to hepatocarcinoma. Increased plasma LPS levels have been detected in the serum of patients with steatohepatitis. We hypothesized that, as a consequence of increased plasma LPS, ER stress could be induced and lead to NLRP3 inflammasome activation and hepatocyte death associated with steatohepatitis progression. In livers from obese mice, administration of LPS or tunicamycin results in IRE1α and PERK activation, leading to the overexpression of CHOP. This, in turn, activates the NLRP3 inflammasome, subsequently initiating hepatocyte pyroptosis (caspase-1, -11, interleukin-1β secretion) and apoptosis (caspase-3, BH3-only proteins). In contrast, the LPS challenge is blocked by the ER stress inhibitor TUDCA, resulting in: CHOP downregulation, reduced caspase-1, caspase-11, caspase-3 activities, lowered interleukin-1β secretion and rescue from cell death. The central role of CHOP in mediating the activation of proinflammatory caspases and cell death was characterized by performing knockdown experiments in primary mouse hepatocytes. Finally, the analysis of human steatohepatitis liver biopsies showed a correlation between the upregulation of inflammasome and ER stress markers, as well as liver injury. We demonstrate here that ER stress leads to hepatic NLRP3 inflammasome pyroptotic death, thus contributing as a novel mechanism of

  19. Neural circuit for psychological stress-induced hyperthermia

    PubMed Central

    Nakamura, Kazuhiro

    2015-01-01

    Psychological stress-induced hyperthermia (PSH) is a basic physiological stress response to increase physical performances to defend homeostasis and life from stressors, such as natural enemies. However, excessive and long-lasting stressors can lead to chronic hyperthermia, particularly recognized in humans as a psychosomatic symptom called “psychogenic fever.” The sympathetic and neuroendocrine responses that can contribute to PSH include brown adipose tissue (BAT) thermogenesis, cutaneous vasoconstriction, tachycardia and glucocorticoid secretion. Research on the central circuits underlying these stress responses has recently revealed several fundamental circuit mechanisms including hypothalamomedullary pathways driving the sympathetic stress responses. Psychological stress activates a monosynaptic glutamatergic excitatory neurotransmission from the dorsomedial hypothalamus (DMH) to sympathetic premotor neurons in the rostral medullary raphe region (rMR) to drive BAT thermogenesis and tachycardia, leading to the development of PSH. This glutamatergic neurotransmission could be potentiated by orexin neurons in the lateral hypothalamus through their projections to the rMR. Psychological stress also activates another monosynaptic pathway from the DMH to the paraventricular hypothalamic nucleus to stimulate the hypothalamo-pituitary-adrenal axis for the secretion of glucocorticoids. PSH is independent from the prostaglandin-mediated trigger mechanism for inflammation-induced fever, and several forebrain regions are considered to provide stress-driven inputs to the DMH to activate the sympathetic- and neuroendocrine-driving neurons. The circuit mechanism of PSH based on animal experiments would be relevant to understandings of the etiology of psychogenic fever in humans. This review describes the current understandings of the central circuit mechanism of PSH with recent important progress in research. PMID:27227049

  20. Physiological changes induced by chromium stress in plants: an overview.

    PubMed

    Hayat, Shamsul; Khalique, Gulshan; Irfan, Mohammad; Wani, Arif Shafi; Tripathi, Bhumi Nath; Ahmad, Aqil

    2012-07-01

    This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years.

  1. Stress-induced phase transformation in nanocrystalline UO2

    SciTech Connect

    Uberuaga, Blas Pedro; Desai, Tapan

    2009-01-01

    We report a stress-induced phase transfonnation in stoichiometric UO{sub 2} from fluorite to the {alpha}-PbO{sub 2} structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of the {alpha}-PbO{sub 2} phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confinn the existence of the {alpha}-PbO{sub 2} structure, showing that it is energetically favored under tensile loading conditions.

  2. Stress Induced Branching of Growing Crystals on Curved Surfaces.

    PubMed

    Köhler, Christian; Backofen, Rainer; Voigt, Axel

    2016-04-01

    If two-dimensional crystals grow on a curved surface, the Gaussian curvature of the surface induces elastic stress and affects the growth pathway. The elastic stress can be alleviated by incorporating defects or, if this is energetically unfavorable, via an elastic instability which leads to anisotropic growth with branched ribbonlike structures. This instability provides a generic route to grow defect-free crystals on curved surfaces. Depending on the elastic properties of the crystal and the geometric properties of the surface, different growth morphologies with two-, four-, and sixfold symmetry develop. Using a phase field crystal type modeling approach, we provide a microscopic understanding of the morphology selection.

  3. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    SciTech Connect

    Kim, Se-Jong; Kim, Daeyong; Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.

  4. Role of Oxidative Stress in Drug-Induced Kidney Injury

    PubMed Central

    Hosohata, Keiko

    2016-01-01

    The kidney plays a primary role in maintaining homeostasis and detoxification of numerous hydrophilic xenobiotics as well as endogenous compounds. Because the kidney is exposed to a larger proportion and higher concentration of drugs and toxins than other organs through the secretion of ionic drugs by tubular organic ion transporters across the luminal membranes of renal tubular epithelial cells, and through the reabsorption of filtered toxins into the lumen of the tubule, these cells are at greater risk for injury. In fact, drug-induced kidney injury is a serious problem in clinical practice and accounts for roughly 20% of cases of acute kidney injury (AKI) among hospitalized patients. Therefore, its early detection is becoming more important. Usually, drug-induced AKI consists of two patterns of renal injury: acute tubular necrosis (ATN) and acute interstitial nephritis (AIN). Whereas AIN develops from medications that incite an allergic reaction, ATN develops from direct toxicity on tubular epithelial cells. Among several cellular mechanisms underlying ATN, oxidative stress plays an important role in progression to ATN by activation of inflammatory response via proinflammatory cytokine release and inflammatory cell accumulation in tissues. This review provides an overview of drugs associated with AKI, the role of oxidative stress in drug-induced AKI, and a biomarker for drug-induced AKI focusing on oxidative stress. PMID:27809280

  5. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  6. Compression testing of ceramics

    NASA Technical Reports Server (NTRS)

    Sines, G.; Adams, M.

    1978-01-01

    The techniques for determining the compressive strengths of the rapidly developing family of super-strong, but brittle, materials is considered. The uniaxial column compression test is discussed, taking into account the loading block size mismatch, the loading block compliance mismatch, the load transmitting surfaces, and the eccentricity of loading. A description of the uniaxial hollow cylinder compression test is also provided, giving attention to premature failure from compliance tube splitting, stresses from compliance mismatch of the loading block, and premature failure from local rotations. The ring compression test is considered along with the hollow cylinder biaxial compression test.

  7. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo; Aschner, Michael; Rocha, Joao B.T.

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  8. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  9. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells. PMID:16663552

  10. Mechanical stress-induced switching kinetics of ferroelectric thin films at the nanoscale

    NASA Astrophysics Data System (ADS)

    Alsubaie, A.; Sharma, P.; Liu, G.; Nagarajan, V.; Seidel, J.

    2017-02-01

    We investigate ferroelectric domain structure and piezoelectric response under variable mechanical compressive stress in Pb(Zr0.2TiO0.8)O3 (PZT) thin films using high-resolution piezoresponse force microscopy (PFM) and an in situ sample bending stage. Measurements reveal a drastic change in the ferroelectric domain structure which is presented along with details of the mediating switching process involving domain wall motion, nucleation, and domain wall roughening under an applied external mechanical stimulus. Furthermore, local PFM hysteresis loops reveal significant changes in the observed coercive biases under applied stress. The PFM hysteresis loops become strongly imprinted under increasing applied compressive stress.

  11. Layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet induced by ion irradiation

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Tan, Yang; Zhou, Shengqiang; Chen, Feng

    2016-08-01

    We report on the first experimental study of the layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet by applying ion irradiation. The deformation of graphene layers is investigated both theoretically and experimentally. It is observed that after the irradiation of energetic ion beams, the space between separate graphene layers is reduced due to layer-to-layer compression, resulting in tighter contact of the graphene sheet with the surface of the substrate. This processing enables enhanced interaction of the graphene with the evanescent-field wave near the surface, which induces reinforced polarization-dependent light absorption of the graphene. Utilizing the ion-bombarded graphene nanosheets as saturable absorbers, we have realized efficient Q-switched waveguide lasing with enhanced performance through the interaction of the graphene and evanescent field.

  12. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    PubMed Central

    Davis, P.; Döppner, T.; Rygg, J. R.; Fortmann, C.; Divol, L.; Pak, A.; Fletcher, L.; Becker, A.; Holst, B.; Sperling, P.; Redmer, R.; Desjarlais, M. P.; Celliers, P.; Collins, G. W.; Landen, O. L.; Falcone, R. W.; Glenzer, S. H.

    2016-01-01

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen's structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us to extract ionization state as a function of compression. The onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase. PMID:27079420

  13. Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA

    NASA Astrophysics Data System (ADS)

    Wang, Guoyan; Yu, Yanwu; Jiang, Lan; Li, Xiaowei; Xie, Qian; Lu, Yongfeng

    2017-04-01

    Femtosecond (fs) laser Bessel pulses can be employed for high-quality and high-speed fabrication of high-aspect-ratio uniform microhole arrays. This technique exhibits prominent potential in three-dimensional packaging, fluidic devices, fiber sensing, biomedical devices, and aeronautics. However, the fundamental mechanisms remain mysterious. Using the femtosecond time-resolved pump-probe shadowgraph technique, this study revealed that the generation of cylindrical shockwaves inside the bulk material and the corresponding compression mechanism play key roles in the formation of high-aspect-ratio microholes. The phenomena were observed in all experiments of Bessel beam drilling of polymethyl methacrylate. In the aforementioned cases, the compression mechanism was confirmed by measuring sample mass losses that were experimentally determined to be negligible. By contrast, neither cylindrical shockwave nor compression mechanism was observed when a fused silica or Gaussian laser beam was involved.

  14. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    SciTech Connect

    Davis, P.; Döppner, T.; Rygg, J. R.; Fortmann, C.; Divol, L.; Pak, A.; Fletcher, L.; Becker, A.; Holst, B.; Sperling, P.; Redmer, R.; Desjarlais, M. P.; Celliers, P.; Collins, G. W.; Landen, O. L.; Falcone, R. W.; Glenzer, S. H.

    2016-04-18

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us to extract ionization state as a function of compression. Finally, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.

  15. Stress-Induced Phase Transformations in Shape-Memory Polycrystals

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Schlömerkemper, Anja

    2010-06-01

    Shape-memory alloys undergo a solid-to-solid phase transformation involving a change of crystal structure. We examine model problems in the scalar setting motivated by the situation when this transformation is induced by the application of stress in a polycrystalline material made of numerous grains of the same crystalline solid with varying orientations. We show that the onset of transformation in a granular polycrystal with homogeneous elasticity is in fact predicted accurately by the so-called Sachs bound based on the ansatz of uniform stress. We also present a simple example where the onset of phase transformation is given by the Sachs bound, and the extent of phase transformation is given by the constant strain Taylor bound. Finally we discuss the stress-strain relations of the general problem using Milton-Serkov bounds.

  16. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  17. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology

    PubMed Central

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. DOI: http://dx.doi.org/10.7554/eLife.14137.001 PMID:27162170

  18. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology.

    PubMed

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-05-10

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders.

  19. Statins lower calcium-induced oxidative stress in isolated mitochondria.

    PubMed

    Parihar, A; Parihar, M S; Zenebe, W J; Ghafourifar, P

    2012-04-01

    Statins are widely used cholesterol-lowering agents that exert cholesterol-independent effects including antioxidative. The present study delineates the effects of statins, atorvastatin, and simvastatin on oxidative stress and functions of mitochondria that are the primary cellular sources of oxidative stress. In isolated rat liver mitochondria, both the statins prevented calcium-induced cytochrome c release, lipid peroxidation, and opening of the mitochondrial membrane permeability transition (MPT). Both the statins decreased the activity of mitochondrial nitric oxide synthase (mtNOS), lowered the intramitochondrial ionized calcium, and increased the mitochondrial transmembrane potential. Our findings suggest that statins lower intramitochondrial ionized calcium that decreases mtNOS activity, lowers oxidative stress, prevents MPT opening, and prevents the release of cytochrome c from the mitochondria. These results provide a novel framework for understanding the antioxidative properties of statins and their effects on mitochondrial functions.

  20. Effects of oxidative and thermal stresses on stress granule formation in human induced pluripotent stem cells.

    PubMed

    Palangi, Freshteh; Samuel, Samson M; Thompson, I Richard; Triggle, Chris R; Emara, Mohamed M

    2017-01-01

    Stress Granules (SGs) are dynamic ribonucleoprotein aggregates, which have been observed in cells subjected to environmental stresses, such as oxidative stress and heat shock (HS). Although pluripotent stem cells (PSCs) are highly sensitive to oxidative stress, the role of SGs in regulating PSC self-renewal and differentiation has not been fully elucidated. Here we found that sodium arsenite (SA) and HS, but not hydrogen peroxide (H2O2), induce SG formation in human induced (hi) PSCs. Particularly, we found that these granules contain the well-known SG proteins (G3BP, TIAR, eIF4E, eIF4A, eIF3B, eIF4G, and PABP), were found in juxtaposition to processing bodies (PBs), and were disassembled after the removal of the stress. Moreover, we showed that SA and HS, but not H2O2, promote eIF2α phosphorylation in hiPSCs forming SGs. Analysis of pluripotent protein expression showed that HS significantly reduced all tested markers (OCT4, SOX2, NANOG, KLF4, L1TD1, and LIN28A), while SA selectively reduced the expression levels of NANOG and L1TD1. Finally, in addition to LIN28A and L1TD1, we identified DPPA5 (pluripotent protein marker) as a novel component of SGs. Collectively, these results provide new insights into the molecular cues of hiPSCs responses to environmental insults.

  1. Effects of oxidative and thermal stresses on stress granule formation in human induced pluripotent stem cells

    PubMed Central

    Palangi, Freshteh; Samuel, Samson M.; Thompson, I. Richard; Triggle, Chris R.

    2017-01-01

    Stress Granules (SGs) are dynamic ribonucleoprotein aggregates, which have been observed in cells subjected to environmental stresses, such as oxidative stress and heat shock (HS). Although pluripotent stem cells (PSCs) are highly sensitive to oxidative stress, the role of SGs in regulating PSC self-renewal and differentiation has not been fully elucidated. Here we fou