Sample records for compressor capacity control

  1. Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods

    DOEpatents

    Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian

    2016-03-15

    A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.

  2. Centrifugal compressor controller for minimizing power consumption while avoiding surge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, P.F.; Junk, B.S.; Renaud, M.A.

    1987-08-18

    For use with a variable capacity centrifugal compressor driven by an electric motor, a controller is described for adjusting the capacity of the compressor to satisfy a demand, minimize electric power consumption and avoid a surge condition. The controller consists of: a. means for sensing an operating parameter that is indicative of the capacity of the compressor; b. means for setting a selected setpoint that represents a desired value of the operating parameter; c. surge sensing means for detecting an impending surge by sensing fluctuation in the electric current supplied to the compressor motor, wherein an impending surge is detectedmore » whenever fluctuations in excess of a predetermined amplitude occur in excess of a predetermined frequency; and d. control means, responsive to the operating parameter sensing means, the setpoint setting means, and the surge sensing means, for controlling the compressor, such that its capacity is minimally above a level that would cause a surge condition yet is sufficient to maintain the operating parameter at the setpoint.« less

  3. Conception of a test bench to generate known and controlled conditions of refrigerant mass flow.

    PubMed

    Martins, Erick F; Flesch, Carlos A; Flesch, Rodolfo C C; Borges, Maikon R

    2011-07-01

    Refrigerant compressor performance tests play an important role in the evaluation of the energy characteristics of the compressor, enabling an increase in the quality, reliability, and efficiency of these products. Due to the nonexistence of a refrigerating capacity standard, it is common to use previously conditioned compressors for the intercomparison and evaluation of the temporal drift of compressor performance test panels. However, there are some limitations regarding the use of these specific compressors as standards. This study proposes the development of a refrigerating capacity standard which consists of a mass flow meter and a variable-capacity compressor, whose speed is set based on the mass flow rate measured by the meter. From the results obtained in the tests carried out on a bench specifically developed for this purpose, it was possible to validate the concept of a capacity standard. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Refrigeration system having standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  5. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOEpatents

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor motor for at least a predetermined time in response to a condition of the control means operative to initiate a change in the operating direction of the compressor when it restarts.

  6. Control apparatus for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  7. Recycle dynamics during centrifugal compressor ESD, start-up and surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Jones, B.J.; Richards, D.J.

    1996-12-31

    Recycle systems are important components in the operation of centrifugal compressor stations. They are essential during a start-up operation, for surge protection and for emergency shutdown (ESD). These operations are inherently dynamic where interactions between equipment, control and gas flow occur in a complex manner with the associated risk of compressor surge. Of particular importance are the effects or recycle system capacity, the recycle valve characteristics, check valve dynamic behavior, piping geometry and capacitance around the compressor unit, and the performance characteristics of the centrifugal compressor itself. This paper presents numerical results of the effects of some of these parametersmore » on surge control, ESD and unit startup. These parameters are: (1) The effects of damping the surge control flow signal in an attempt to suppress the signal noise, on the integrity of the surge control system; (2) The effects of recycle valve characteristics, stroke time and valve capacity on ESD; (3) The effects of recycle line size on ESD; and (4) The effects of the recycle valve closing time (or rate) on the startup operation, with the intent of shortening this time to minimum for environmental reasons. Results were obtained from the solution of the pertinent dynamic equations describing the gas and equipment dynamics which has been verified against field and laboratory measurements. The samples presented in this paper were applied to a 24 MW natural gas compressor station on the NOVA Gas Transmission system, and to a scale-down laboratory model. Influence of other parameters from this investigation were published elsewhere and are cited in the reference section.« less

  8. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    DOEpatents

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  9. Evaluation of System Architectures for the Army Aviation Ground Power Unit

    DTIC Science & Technology

    2014-12-01

    this state of operation induces wear that reduces pump life. Variable capacity control methods using a constant displacement pump are drive speed...options for use with constant displacement pumps, the fluid or magnetic coupling devices are the most attractive. Variable frequency control cannot...compressor prior to the combustor. The cmTent system turbine exhaust temperature controls to 1250°F, much higher than the compressor exit

  10. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartmentsmore » to their set point temperatures.« less

  11. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  12. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  13. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  14. Research and development of energy-efficient high back-pressure compressor

    NASA Astrophysics Data System (ADS)

    1983-09-01

    Improved-efficiency compressors were developed in four capacity sizes. Changes to the baseline compressor were made to the motors, valve plates, and mufflers. The adoption of a slower running speed compressor required larger displacements to maintain the desired capacity. This involved both bore and stroke modifications. All changes that were made to the compressor are readily adaptable to manufacture. Prototype compressors were built and tested. The largest capacity size (4000 Btu/h) was selected for testing in a vending machine. Additional testing was performed on the prototype compressors in order to rate them on an alternate refrigerant. A market analysis was performed to determine the potential acceptance of the improved-efficiency machines by a vending machine manufacturer, who supplies a retail sales system of a major soft drink company.

  15. System solution to improve energy efficiency of HVAC systems

    NASA Astrophysics Data System (ADS)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  16. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Baxter, Van D.; Abdelaziz, Omar

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Alberto Regio; Kuehl, Steven J.; Litch, Andrew D.

    A refrigerator appliance including a multi-capacity compressor and a refrigerant circuit with two conduits and pressure reducing devices arranged in parallel between an evaporator and a condenser. Refrigerant can flow through one, both or none of the conduits and pressure reducing devices. The appliance also has a heat exchanger in contact with either one pressure reducing device, or one conduit between the pressure reducing device and the valve system. The appliance also includes a controller for priming the compressor above a nominal capacity for a predetermined or calculated duration at the beginning of an ON-cycle.

  18. Design of a Hydrogen Community for Santa Monica

    DTIC Science & Technology

    2011-01-01

    transportation of hydrogen fuel have been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations...been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations. Hydrogen dispensing using...tanks (Storage capacity of 198 kg of H2 at 350 and 700 bar), four compressors which assist in dispensing 400 kg of hydrogen in 14 hours, two hydrogen

  19. Multiple volume compressor for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  20. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling themore » cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.« less

  1. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOEpatents

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  2. 78 FR 18331 - East Tennessee Natural Gas, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Glade Spring Compressor Station and Fordtown Compressor Station. The Kingsport Expansion Project would...; and modifications at the Fordtown Compressor Station. Washington County, Virginia construction of... increase capacity. modifications at the Glade Spring Compressor Station. Washington and Smyth Counties...

  3. High speed variable delivery helical screw compressor/expander automotive air conditioning and waste heat energy recovery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.

    1980-09-02

    A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less

  4. New Compressor Added to Glenn's 450- psig Combustion Air System

    NASA Technical Reports Server (NTRS)

    Swan, Jeffrey A.

    2000-01-01

    In September 1999, the Central Process Systems Engineering Branch and the Maintenance and the Central Process Systems Operations Branch, released for service a new high pressure compressor to supplement the 450-psig Combustion Air System at the NASA Glenn Research Center at Lewis Field. The new compressor, designated C-18, is located in Glenn s Central Air Equipment Building and is remotely operated from the Central Control Building. C-18 can provide 40 pounds per second (pps) of airflow at pressure to our research customers. This capability augments our existing system capacity (compressors C 4 at 38 pps and C-5 at 32 pps), which is generated from Glenn's Engine Research Building. The C-18 compressor was originally part of Glenn's 21-Inch Hypersonic Tunnel, which was transferred from the Jet Propulsion Laboratory to Glenn in the mid-1980's. With the investment of construction of facilities funding, the compressor was modified, new mechanical and electrical support equipment were purchased, and the unit was installed in the basement of the Central Air Equipment Building. After several weeks of checkout and troubleshooting, the new compressor was ready for long-term, reliable operations. With a total of 110 pps in airflow now available, Glenn is well positioned to support the high-pressure air test requirements of our research customers.

  5. Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater

    NASA Astrophysics Data System (ADS)

    Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun

    2010-06-01

    For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.

  6. 75 FR 6013 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... heating exceeds the high-stage compressor capacity for cooling. Finally, the test procedure must account... test method to cover Hallowell's three-capacity compressor. The two (of three potential) active stages... pumps for the heating mode as follows: a. Conduct one Maximum Temperature Test (H0 1 ), two High...

  7. High efficiency novel window air conditioner

    DOE PAGES

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  8. High efficiency novel window air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  9. Vulnerability Analysis of an All-Electric Warship

    DTIC Science & Technology

    2010-06-01

    active. Damage Control: Fire fighting, dewatering, lighting, electrical receptacles (for powering damage control equipment such as submersible pumps ...sufficient radar not available. This also requires an increase in chill water capacity by adding pump , compressor, and ASW pump . Remaining ventilation systems...Activate towed-array sonar, if applicable. Increase speed to 25 knots. Non-Vital Loads: All non-vital loads. Examples include galley equipment, heat

  10. Improved heat switch for gas sorption compressor

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1985-01-01

    Thermal conductivities of the charcoal bed and the copper matrix for the gas adsorption compressor were measured by the concentric-cylinder method. The presence of the copper matrix in the charcoal bed enhanced the bed conductance by at least an order of magnitude. Thermal capacities of the adsorbent cell and the heat leaks to two compressor designs were measured by the transient method. The new gas adsorption compressor had a heat switch that could transfer eight times more heat than the previous one. The cycle time for the new prototype compressor is also improved by a factor of eight to within the minute range.

  11. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  12. Enhanced methods for operating refueling station tube-trailers to reduce refueling cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Reddi, Krishna

    A method and apparatus are provided for operating a refueling station including source tube-trailers and at least one compressor to reduce refueling cost. The refueling station includes a gaseous fuel supply source including a plurality of tanks on a tube trailer coupled to a first control unit, and high pressure buffer storage having predefined capacity coupled to a second control unit and the first tanks by a pressure control valve and the first control unit, and at least one compressor. The refueling station is operated at different modes depending on a state of the refueling station at the beginning ofmore » each operational mode. The refueling system is assessed at the end of each operational mode to identify the state of the system and select a next mode of operation. The operational modes include consolidating hydrogen, or any gaseous fuel, within the tubes mounted on the trailer.« less

  13. Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects

    NASA Astrophysics Data System (ADS)

    Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.

    2006-04-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.

  14. Control method for mixed refrigerant based natural gas liquefier

    DOEpatents

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  15. Control means for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Sellers, F. J.; Bennett, G. W. (Inventor)

    1982-01-01

    A means is provided for developing a signal representative of the actual compressor casing temperature, a second signal representative of compressor inlet gas temperature, and a third signal representative of compressor speed. Another means is provided for receiving the gas temperature and compressor speed signals and developing a schedule output signal which is a representative of a reference casing temperature at which a predetermined compressor blade stabilized clearance is provided. A means is also provided for comparing the actual compressor casing temperature signal and the reference casing temperature signal and developing a clearance control system representative of the difference. The clearance control signal is coupled to a control valve which controls a flow of air to the compressor casing to control the clearance between the compressor blades and the compressor casing. The clearance control signal can be modified to accommodate transient characteristics. Other embodiments are disclosed.

  16. Performance of Compressor of XJ-41-V Turbojet Engine. 4; Performance Analysis Over Range of Compressor Speeds from 5000 to 10,000 RPM

    NASA Technical Reports Server (NTRS)

    Creagh, John W. R.; Ginsburg, Ambrose

    1948-01-01

    An investigation of the XJ-41-V turbojet-engine compressor was conducted to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the original compressor indicated the compressor would not meet the desired engine-design air-flow requirements because of an air-flow restriction in the vaned collector. The compressor air-flow choking point occurred near the entrance to the vaned-collector passage and was instigated by a poor mass-flow distribution at the vane entrance and from relatively large negative angles of attack of the air stream along the entrance edges of the vanes at the outer passage wall and large positive angles of attack at the inner passage wall. As a result of the analysis, a design change of the vaned collector entrance is recommended for improving the maximum flow capacity of the compressor.

  17. High Efficiency Room Air Conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However,more » all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.« less

  18. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.« less

  19. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    NASA Astrophysics Data System (ADS)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  20. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

    NASA Astrophysics Data System (ADS)

    Thaduri, Ravi Kiran

    In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

  1. Study on energy saving effect of IHX on vehicle air conditioning system

    NASA Astrophysics Data System (ADS)

    Li, Huguang; Tong, Lin; Xu, Ming; Wei, Wangrui; Zhao, Meng; Wang, Long

    2018-02-01

    In this paper, the performance of Internal Heat Exchanger (IHX) air conditioning system for R134a is investigated in bench test and vehicle test. Comparison for cooling capacity and energy consumption between IHX air conditioning system and traditional tube air conditioning system are conducted. The suction temperature and discharge temperature of compressor is also recorded. The results show that IHX air conditioning system has higher cooling capacity, the vent temperature decrease 2.3 °C in idle condition. But the suction temperature and discharge temperature of compressor increase 10°C. IHX air conditioning system has lower energy consumption than traditional tube air conditioning system. Under the experimental conditions in this paper, the application of IHX can significantly reduce the energy consumption of air conditioning system. At 25°C of environment temperature, AC system energy consumption decrease 14%, compressor energy consumption decrease 16%. At 37°C of environment temperature, AC system energy consumption decrease 16%, compressor energy consumption decrease 13%.

  2. 40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...-controlled, fixed-displacement or pneumatic variable displacement compressor (e.g. a compressor that controls...

  3. Performance Investigations of a Large Centrifugal Compressor from an Experimental Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Ginsburg, Ambrose; Creagh, John W. R.; Ritter, William K.

    1948-01-01

    An investigation was conducted on a large centrifugal compressor from an experimental turbojet engine to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the compressor indicated that the compressor would not meet the desired engine-design air-flow requirements (78 lb/sec) because of an air-flow restriction in the vaned collector (diffuser). Revision of the vaned collector resulted in an increased air-flow capacity over the speed range and showed improved matching of the impeller and diffuser components. At maximum flow, the original compressor utilized approximately 90 percent of the available geometric throat area at the vaned-collector inlet and the revised compressor utilized approximately 94 percent, regardless of impeller speed. The ratio of the maximum weight flows of the revised and original compressors were less than the ratio of effective critical throat areas of the two compressors because of the large pressure losses in the impeller near the impeller inelt and the difference increased with an increase in impeller speed. In order to further increase the pressure ratio and maximum weight flow of the compressor, the impeller must be modified to eliminate the pressure losses therein.

  4. High Efficiency Low Global Warming Potential Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogswell, Frederick; Verma, Parmesh

    During this project UTRC designed a novel compressor for use with new low Global-Warming-Potential (GWP) refrigerants. Through two design and testing iterations, UTRC advanced the compressor technology from TRL3 to TRL5. The target application was a 5 Tons of Refrigeration (TR) capacity Roof-Top Unit (RTU), although this technology may be applied to other low-capacity systems such as residential. The prototype unit met all design goals at the ARI-A rating condition and requires high efficiency motor to meet high performance targets at the ARI-B condition. This technology may be used in high efficiency units and with seasonal energy efficiency rating (SEER)more » exceeding 20. A preliminary cost analysis estimated that there would be less than $25/kbtuh cost impact to the customer.« less

  5. 40 CFR Appendix I to Part 204 - Appendix I to Part 204

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...

  6. 40 CFR Appendix I to Part 204 - Appendix I to Part 204

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...

  7. 40 CFR Appendix I to Part 204 - Appendix I to Part 204

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som S.

    Based on the laboratory investigation in FY16, for R-22 and R-410A alternative low GWP refrigerants in two baseline rooftop air conditioners (RTU), we used the DOE/ORNL Heat Pump Design Model to model the two RTUs and calibrated the models against the experimental data. Using the calibrated equipment models, we compared the compressor efficiencies, heat exchanger performances. An efficiency-based compressor mapping method was developed, which is able to predict compressor performances of the alternative low GWP refrigerants accurately. Extensive model-based optimizations were conducted to provide a fair comparison between all the low GWP candidates by selecting their preferred configurations at themore » same cooling capacity and compressor efficiencies.« less

  9. Performance estimation of an oil-free linear compressor unit for a new compact 2K Gifford-McMahon cryocooler

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Y.; Bao, Q.; Y Xu, M.

    2017-12-01

    Since 2012, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed and reported by Sumitomo Heavy Industries, Ltd. (SHI). Also, it was reported that National Institute of Information and Communications Technology (NICT) developed a multi-channel, conduction-cooled SSPD system. However, the size and power consumption reduction becomes indispensable to apply such a system to the optical communication of AdHoc for a mobile system installed in a vehicle. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design cooling capacity targets of the first and the second stages 1 W at 60 K and 20 mW at 2.3 K respectively. In 2016, Hiratsuka et al. reported that an oil-free compressor was developed for a 2K GM cryocooler. The cooling performance of a 2K GM expander driven by an experimental unit of the linear compressor was measured. No-load temperature less than 2.1 K and the cooling capacity of 20 mW at 2.3 K were successfully achieved with an electric input power of only 1.1 kW. After that, the compressor capsule and the heat exchanger, etc. were assembled into one enclosure as a compressor unit. The total volume of the compressor unit and electrical box was significantly reduced to about 38 L, which was close to the target of 35 L. Also, the sound noise, vibration characteristics, the effect of the compressor unit inclination and the ambient temperature on the cooling performance, were evaluated. The detailed experimental results are discussed in this paper.

  10. Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2

    NASA Astrophysics Data System (ADS)

    Kusuma, Yuriadi; Permana, Dadang S.

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.

  11. The 400W at 1.8K Test Facility at CEA-Grenoble

    NASA Astrophysics Data System (ADS)

    Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.

    2006-04-01

    A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.

  12. Prediction of active control of subsonic centrifugal compressor rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  13. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  14. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  15. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  16. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  17. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  18. Water injected fuel cell system compressor

    DOEpatents

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  19. A Stability Enhancement Method for Centrifugal Compressors using Active Control Casing Treatment System

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Xiao, Jun; Li, Liansheng; Yang, Qichao; Liu, Guangbin; Wang, Le

    2015-08-01

    The centrifugal compressors are widely used in many fields. When the centrifugal compressors operate at the edge of the surge line, the compressor will be unstable. In addition, if the centrifugal compressor runs at this situation long time, the damage will be occurred on compressor. There are some kinds of method to improve and enlarge the range of the centrifugal compressors, such as inlet guide vane, and casing treatment. For casing treatment method, some structures have been researched, such as holed recirculation, basic slot casing treatment and groove casing treatment. All these researches are the passive methods. This paper present a new stability enhancement method based Active Control Casing Treatment (ACCT). All parts of this new method are introduced in detail. The control strategy of the system is mentioned in the paper. As a research sample, a centrifugal compressor having this system is researched using CFD method. The study focuses on the effect of the active control system on the impeller flow. The vortex in impeller is changed by the active control system. And this leads to the suppression of the extension of vortex blockage in impeller and to contribute to the enhancement of the compressor operating range.

  20. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    EIA Publications

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  1. The development of a performance-enhancing additive for vapor-compression heat pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.

    1997-12-31

    This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less

  2. Active unsteady aerodynamic suppression of rotating stall in an incompressible flow centrifugal compressor with vaned diffuser

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1991-01-01

    A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

  3. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary tomore » relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.« less

  4. Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model. Final Report, Sep. 1981 - Sep. 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keung, C.; Patt, P.J.; Starr, M.

    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial positionmore » of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.« less

  5. Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model

    NASA Technical Reports Server (NTRS)

    Keung, C.; Patt, P. J.; Starr, M.; Sweet, R. C.; Bourdillon, L. A.; Figueroa, R.; Hartmann, M.; Mcfarlane, R.

    1990-01-01

    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.

  6. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE PAGES

    Knudsen, P.; Ganni, V.; Dixon, K.; ...

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  7. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, P.; Ganni, V.; Dixon, K.

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  8. Performance of the active sidewall boundary-layer removal system for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen; Murthy, A. V.

    1989-01-01

    A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope.

  9. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of themore » desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.« less

  10. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    NASA Astrophysics Data System (ADS)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    2014-01-01

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  11. R-189 (C-620) air compressor control logic software documentation. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, K.E.

    1995-06-08

    This relates to FFTF plant air compressors. Purpose of this document is to provide an updated Computer Software Description for the software to be used on R-189 (C-620-C) air compressor programmable controllers. Logic software design changes were required to allow automatic starting of a compressor that had not been previously started.

  12. Pressure oscillations occurring in a centrifugal compressor system with and without passive and active surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungowski, W.M.; Weiss, M.H.; Price, G.R.

    1996-01-01

    A study of pressure oscillations occurring in small centrifugal compressor systems without a plenum is presented. Active and passive surge control were investigated theoretically and experimentally for systems with various inlet and discharge piping configurations. The determination of static and dynamic stability criteria was based on Greitzer`s (1981) lumped parameter model modified to accommodate capacitance of the piping. Experimentally, passive control using globe valves closely coupled to the compressor prevented the occurrence of surge even with the flow reduced to zero. Active control with a sleeve valve located at the compressor was effective but involved a significant component of passivemore » throttling which reduced the compressor efficiency. With an oscillator connected to a short side branch at the compressor, effective active control was achieved without throttling. Both methods of active control reduced the flow rate at surge onset by about 30%. In general, the experiments qualitatively confirmed the derived stability criteria.« less

  13. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  14. Dual capacity reciprocating compressor

    DOEpatents

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  15. Malone-brayton cycle engine/heat pump

    NASA Astrophysics Data System (ADS)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  16. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  17. Field Investigation of an Air-Source Cold Climate Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith

    In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less

  18. Active control of surge in centrifugal compressors using magnetic thrust bearing actuation

    NASA Astrophysics Data System (ADS)

    Sanadgol, Dorsa

    This research presents a new method for active surge control in centrifugal compressors with unshrouded impellers using a magnetic thrust bearing to modulate the impeller tip clearance. Magnetic bearings offer the potential for active control of flow instabilities. This capability is highly dependent on the sensitivity of the compressor characteristics to blade tip clearance. If the position of the shaft can be actuated with sufficient authority and speed, the induced pressure modulation makes control of surge promising. The active nature of the magnetic bearing system makes the real-time static and dynamic positioning of the rotor and therefore modulation of the impeller tip clearance possible. A theoretical model is first established that describes the sensitivity of the centrifugal compressor characteristic curve to tip clearance variations induced by axial motion of the rotor. Results from simulation of the nonlinear model for a single stage high-speed centrifugal compressor show that using the proposed control method, mass flow and pressure oscillations associated with compressor surge are quickly suppressed with acceptable tip clearance excursions, typically less than 20% of the available clearance. It is shown that it is possible to produce adequate axial excursions in the clearance between the impeller blades and the adjacent stationary shroud using a magnetic thrust bearing with practical levels of drive voltage. This surge control method would allow centrifugal compressors to reliably and safely operate with a wider range than is currently done in the field. The principal advantage of the proposed approach over conventional surge control methods lies in that, in machines already equipped with magnetic bearing, the method can potentially be implemented by simply modifying controller software. This dispenses with the need to introduce additional hardware, permitting adaptation of existing machinery at virtually no cost. In addition, since the controller is designed with the objective of keeping the trajectories on the compressor characteristic curve, the compressor performance and efficiency are no longer sacrificed by excessive recycling to achieve stability. In order to explore these conjectures experimentally, a high speed centrifugal compressor test facility with active magnetic bearings is developed. The test facility can be used for implementing the proposed surge control method and also for assessing the impeller and bearing loads at off-design conditions. This data can then be used to verify and refine analytical models used in compressor design. (Abstract shortened by UMI.)

  19. Hermetic compressor and block expansion valve in refrigeration performance

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Susilo, Didik Djoko; Tjahjana, D. D. D. P.

    2016-03-01

    Vehicle cabin in tropical countries requires the cooling during the day for comfort of passengers. Air conditioning machine is commonly driven by an internal combustion engine having a great power, which the conventional compressor is connected to crank shaft. The stage of research done is driving the hermetic compressor with an electric motor, and using block expansion valve. The HFC-134a was used as refrigerant working. The primary parameters observed during the experiment are pressure, temperature, and power consumption for different cooling capacities. The results show that the highest coefficient of performance (COP) and the electric power of system are 6.3 and 638 Watt, respectively.

  20. R&D of high reliable refrigeration system for superconducting generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, T.; Shindo, S.; Yaguchi, H.

    1996-12-31

    Super-GM carries out R&D of 70 MW class superconducting generators (model machines), refrigeration system and superconducting wires to apply superconducting technology to electric power apparatuses. The helium refrigeration system for keeping field windings of superconducting generator (SCG) in cryogenic environment must meet the requirement of high reliability for uninterrupted long term operation of the SCG. In FY 1992, a high reliable conventional refrigeration system for the model machines was integrated by combining components such as compressor unit, higher temperature cold box and lower temperature cold box which were manufactured utilizing various fundamental technologies developed in early stage of the projectmore » since 1988. Since FY 1993, its performance tests have been carried out. It has been confirmed that its performance was fulfilled the development target of liquefaction capacity of 100 L/h and impurity removal in the helium gas to < 0.1 ppm. Furthermore, its operation method and performance were clarified to all different modes as how to control liquefaction rate and how to supply liquid helium from a dewar to the model machine. In addition, the authors have made performance tests and system performance analysis of oil free screw type and turbo type compressors which greatly improve reliability of conventional refrigeration systems. The operation performance and operational control method of the compressors has been clarified through the tests and analysis.« less

  1. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  2. Extended range of the Lockheed Martin Mini cryocooler

    NASA Astrophysics Data System (ADS)

    Frank, D.; Sanders, L.; Nason, I.; Mistry, V.; Guzinski, M.; Roth, E.; Olson, J. R.

    2017-12-01

    This paper describes the expanded performance range of the Lockheed Martin Mini cryocooler thermal mechanical unit (TMU). The design is based on the standard unit originally developed for NASA and a higher capacity developed for ESA. These higher capacity Mini units are in a split configuration with the cold head separated from the compressor. The TMU provides cooling over a wide range of temperatures with a weight of 1.9 kg including the 1.4 kg compressor and the 0.45 kg cold head. The unit provides for 3.5 W cooling at 105 K and approximately 7 W cooling at 150 K for 293 K reject temperature with 60 W of input power.

  3. Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.

    The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6more » kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.« less

  4. Comprehensive investigation into historical pipeline construction costs and engineering economic analysis of Alaska in-state gas pipeline

    NASA Astrophysics Data System (ADS)

    Rui, Zhenhua

    This study analyzes historical cost data of 412 pipelines and 220 compressor stations. On the basis of this analysis, the study also evaluates the feasibility of an Alaska in-state gas pipeline using Monte Carlo simulation techniques. Analysis of pipeline construction costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary by diameter, length, volume, year, and location. Overall average learning rates for pipeline material and labor costs are 6.1% and 12.4%, respectively. Overall average cost shares for pipeline material, labor, miscellaneous, and right of way (ROW) are 31%, 40%, 23%, and 7%, respectively. Regression models are developed to estimate pipeline component costs for different lengths, cross-sectional areas, and locations. An analysis of inaccuracy in pipeline cost estimation demonstrates that the cost estimation of pipeline cost components is biased except for in the case of total costs. Overall overrun rates for pipeline material, labor, miscellaneous, ROW, and total costs are 4.9%, 22.4%, -0.9%, 9.1%, and 6.5%, respectively, and project size, capacity, diameter, location, and year of completion have different degrees of impacts on cost overruns of pipeline cost components. Analysis of compressor station costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary in terms of capacity, year, and location. Average learning rates for compressor station material and labor costs are 12.1% and 7.48%, respectively. Overall average cost shares of material, labor, miscellaneous, and ROW are 50.6%, 27.2%, 21.5%, and 0.8%, respectively. Regression models are developed to estimate compressor station component costs in different capacities and locations. An investigation into inaccuracies in compressor station cost estimation demonstrates that the cost estimation for compressor stations is biased except for in the case of material costs. Overall average overrun rates for compressor station material, labor, miscellaneous, land, and total costs are 3%, 60%, 2%, -14%, and 11%, respectively, and cost overruns for cost components are influenced by location and year of completion to different degrees. Monte Carlo models are developed and simulated to evaluate the feasibility of an Alaska in-state gas pipeline by assigning triangular distribution of the values of economic parameters. Simulated results show that the construction of an Alaska in-state natural gas pipeline is feasible at three scenarios: 500 million cubic feet per day (mmcfd), 750 mmcfd, and 1000 mmcfd.

  5. Water Ingestion into Axial Flow Compressors. Part III. Experimental Results and Discussion

    DTIC Science & Technology

    1981-10-01

    total pressure, static pressure, and temperature at both compressor inlet and outlet. A United Sensor model PDC-12-G-l0-KL pitot-static pressure probe...Test Compressor inlet and outlet temperatures during water injection tests: United Sensor and Control Corp. type TK-8-CiA-36’-F Aspirate...ured utilizing standard aspirated thermocouples, namely an United Sensor and Control Corp. type TK-8-C/A-36-F. The Test Compressor out- let

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Withers; Cummings, J.; Nigusse, B.

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied bymore » adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.« less

  7. Algorithm for Controlling a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Benedict, Scott M.

    2004-01-01

    An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.

  8. Compressor Modeling for Engine Control and Maintenance

    DTIC Science & Technology

    2011-07-01

    four compressor stages, while the high pressure compressor (HPC) consists of a set of variable pitch inlet guide vanes ( IGVs ) and 12 compressor...bleed valves at stages 5, 14 and 17, along with the variable IGVs and stators within the engine, are used to relieve the pressure and prevent

  9. 49 CFR 192.163 - Compressor stations: Design and construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of... building. Except for a compressor building on a platform located offshore or in inland navigable waters, each main compressor building of a compressor station must be located on property under the control of...

  10. Controlling Separation in Turbomachines

    NASA Technical Reports Server (NTRS)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  11. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) For each control device...

  12. Active identification and control of aerodynamic instabilities in axial and centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Krichene, Assad

    In this thesis, it is experimentally shown that dynamic cursors to stall and surge exist in both axial and centrifugal compressors using the experimental axial and centrifugal compressor rigs located in the School of Aerospace Engineering at the Georgia Institute of Technology. Further, it is shown that the dynamic cursors to stall and surge can be identified in real-time and they can be used in a simple control scheme to avoid the occurrence of stall and surge instabilities altogether. For the centrifugal compressor, a previously developed real-time observer is used in order to detect dynamic cursors to surge in real-time. An off-line analysis using the Fast Fourier Transform (FFT) of the open loop experimental data from the centrifugal compressor rig is carried out to establish the influence of compressor speed on the dynamic cursor frequency. The variation of the amplitude of dynamic cursors with compressor operating condition from experimental data is qualitatively compared with simulation results obtained using a generic compression system model subjected to white noise excitation. Using off-line analysis results, a simple control scheme based on fuzzy logic is synthesized for surge avoidance and recovery. The control scheme is implemented in the centrifugal compressor rig using compressor bleed as well as fuel flow to the combustor. Closed loop experimental results are obtained to demonstrate the effectiveness of the controller for both surge avoidance and surge recovery. The existence of stall cursors in an axial compression system is established using the observer scheme from off-line analysis of an existing database of a commercial gas turbine engine. However, the observer scheme is found to be ineffective in detecting stall cursors in the experimental axial compressor rig in the School of Aerospace Engineering at the Georgia Institute of Technology. An alternate scheme based on the amplitude of pressure data content at the blade passage frequency obtained using a pressure sensor located (in the casing) over the blade row is developed and used in the axial compressor rig for stall and surge avoidance and recovery. (Abstract shortened by UMI.)

  13. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  14. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  15. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  16. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    NASA Astrophysics Data System (ADS)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  17. Turbomachinery group for cold energy concept application

    NASA Astrophysics Data System (ADS)

    Alavi, S.; Arpi, A.; Ascani, M.; Cerri, G.; Chennaoui, L.; Manni, A.

    2017-08-01

    The paper discusses a special attempt to improve COP and compressor capacity. Theoretical and experimental results are presented, and they show a very positive trend. Compressor and Expander Group impellers are selected among the Car Engine Turbocharger Units. Modifications are proposed to achieve the best performance, taking the peculiar characteristics of the refrigerant into consideration. Tests have confirmed the positive saving trend, which can reach up to 22%-24% for an optimized bleed vapour generator and turbomachinery-based booster unit.

  18. Turboprop engine and method of operating the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klees, G.W.; Johnson, P.E.

    1986-02-11

    This patent describes a turboprop engine consisting of: 1.) A compressor; 2.) A turbine; 3.) A combustion section; 4.) A variable pitch propeller; 5.) A speed reducing transmission; 6.) An air inlet; 7.) An air inlet bypass; 8.) An air outlet bypass duct; 9.) A flow control operatively positioned to receive air flow from the air inlet bypass and air flow from the low pressure compressor component. To direct the air flow to the air outlet bypass duct, and the air flow to the high pressure compressor component, the flow control has a first position where the air flow ismore » from. The high and low pressure compressor components and is directed to the air outlet bypass duct. The flow control has a second position for the air flow from the air inlet bypass duct to the air outlet bypass duct and air from the low pressure compressor component is directed to the high pressure compressor component. A method of operating a turboprop engine.« less

  19. Centrifugal Compressor Surge Controlled

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.

  20. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    DOEpatents

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  1. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, C.; Cummings, J.; Nigusse, B.

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied bymore » adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.« less

  2. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  3. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  4. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  5. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  6. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  7. Understand Centrifugal Compressor stage curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, E.L.

    1986-08-01

    Multistage Centrifugal Compressor Performance is generally presented in the form of a composite curve showing discharge pressure and bhp plotted as a function of capacity. This composite curve represents the cumulative performance of each stage performance curve. A simple yet quite accurate means of measuring compressor total performance is to test each stage as a single-stage compressor, usually on air with atmospheric inlets. Stage curves are then generated from the test data and three important variables are plotted: head coefficient, work coefficient and adiabatic efficiency. These variables are plotted against a normalized flow coefficient, Q/N, which is inlet volume flowmore » (cfm) divided by impeller speed (rpm). The nomenclature used to define these stage variables changes from manufacturer to manufacturer; however, the parameters presented are the same. An understanding of each parameter's theoretical derivation and determination from test data will help the engineer reviewing test curves to be more cognizant of the interrelationships between these variables; specifically, how they affect overall machine pressure rise and power consumption.« less

  8. Hampson’s type cryocoolers with distributed Joule-Thomson effect for mixed refrigerants closed cycle

    NASA Astrophysics Data System (ADS)

    Maytal, Ben-Zion

    2014-05-01

    Most previous studies on Joule-Thomson cryocoolers of mixed refrigerants in a closed cycle focus on the Linde kind recuperator. The present study focuses on four constructions of Hampson’s kind miniature Joule-Thomson cryocoolers based on finned capillary tubes. The frictional pressure drop along the tubes plays the role of distributed Joule-Thomson expansion so that an additional orifice or any throttle at the cold end is eliminated. The high pressure tube is a throttle and a channel of recuperation at the same time. These coolers are tested within two closed cycle systems of different compressors and different compositions of mixed coolants. All tests were driven by the same level of discharge pressure (2.9 MPa) while the associated suction pressures and the associated reached temperatures are dependent on each particular cryocooler and on the closed cycle system. The mixture of higher specific cooling capacity cannot reach temperatures below 80 K when driven by the smaller compressor. The other mixture of lower specific cooling capacity driven by the larger compressor reaches lower temperatures. The examined parameters are the cooldown period and the reachable temperatures by each cryocooler.

  9. Theoretical and experimental investigations on the optimal match between compressor and cold finger of the Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Dang, Haizheng; Tan, Jun; Zhang, Lei

    2016-06-01

    The match between the pulse tube cold finger (PTCF) and the linear compressor of the Stirling-type pulse tube cryocooler plays a vital role in optimizing the compressor efficiency and in improving the PTCF cooling performance as well. In this paper, the interaction of them has been analyzed in a detailed way to reveal the match mechanism, and systematic investigations on the two-way matching have been conducted. The design method of the PTCF to achieve the optimal matching for the given compressor and the counterpart design method of the compressor to achieve the optimal matching for the given PTCF are put forward. Specific experiments are then carried out to verify the conducted theoretical analyses and modeling. For a given linear compressor, a new in-line PTCF which seeks to achieve the optimal match is simulated, designed and tested. And for a given coaxial PTCF, a new dual-opposed moving-coil linear compressor is also developed to match with it. The simulated and experimental results are compared, and fairly good agreements are found between them in both cases. The matched in-line cooler with the newly-designed PTCF has capacities of 4-11.84 W at 80 K with higher than 17% of Carnot efficiency and the mean motor efficiency of 81.5%, and the matched coaxial cooler with the new-designed compressor can provide 2-5.5 W at 60 K with higher than 9.6% of Carnot efficiency and the mean motor efficiency of 83%, which verify the validity of the theoretical investigations on the optimal match and the proposed design methods.

  10. Experimental Investigation on The Electromagnetic Clutch Water pump and Pneumatic Compressor for Improving the Efficiency of an Engine

    NASA Astrophysics Data System (ADS)

    Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.

    2017-05-01

    Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.

  11. 4. INGERSOLLRAND AMMONIA COMPRESSOR AND CONTROL PANEL INSIDE BUILDING 2; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INGERSOLL-RAND AMMONIA COMPRESSOR AND CONTROL PANEL INSIDE BUILDING 2; LOOKING SOUTHWEST - Rath Packing Company, Engine Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  12. Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to calculate the instantaneous and mean velocity fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. In this work, satisfying characterization of the compressor inlet flow instabilities was obtained at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanisms was achieved.

  13. Design features of fans, blowers, and compressors

    NASA Astrophysics Data System (ADS)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  14. Dynamic simulation solves process control problem in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-16

    A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less

  15. Dimension Determination of Precursive Stall Events in a Single Stage High Speed Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Qammar, Helen K.; Hartley, Tom T.

    1996-01-01

    This paper presents a study of the dynamics for a single-stage, axial-flow, high speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall blading design for this advanced core compressor, each stage has considerable tip loading and higher speed than most compressor designs, thus, the compressor operates closer to the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of axial compressors. Data taken from the compressor during a rotating stall event is analyzed. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined during the bifurcations leading to rotating stall. The intent of this study is to examine the behavior of precursive stall events so as to predict the entrance into rotating stall. This information may provide a better means to identify, avoid or control the undesirable event of rotating stall formation in high speed compressor cores.

  16. Fault detection and diagnosis for refrigerator from compressor sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less

  17. Stator Indexing in Multistage Compressors

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1997-01-01

    The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.

  18. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  19. 40 CFR 204.57-3 - Test compressor preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.57-3 Test... measurement methodology. (c) In the event of compressor manfunction (i.e., failure to start, misfiring... in a normal manner. (d) No quality control, testing, assembly, or selection procedures shall be used...

  20. Integrated Heat Switch/Oxide Sorption Compressor

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1989-01-01

    Thermally-driven, nonmechanical compressor uses container filled with compressed praseodymium cerium oxide powder (PrCeOx) to provide high-pressure flow of oxygen gas for driving closed-cycle Joule-Thomson-expansion refrigeration unit. Integrated heat switch/oxide sorption compressor has no moving parts except check valves, which control flow of oxygen gas between compressor and closed-cycle Joule-Thomson refrigeration system. Oxygen expelled from sorbent at high pressure by evacuating heat-switch gap and turning on heater.

  1. Variable speed gas engine-driven air compressor system

    NASA Astrophysics Data System (ADS)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  2. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2001-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  3. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  4. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    NASA Astrophysics Data System (ADS)

    Gill, Jatinder; Singh, Jagdev

    2018-05-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  5. Air liquide 1.8 K refrigeration units for CERN LHC project

    NASA Astrophysics Data System (ADS)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  6. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  7. Supercharging an internal combustion engine by aid of a dual-rotor bi-flux axial compressor

    NASA Astrophysics Data System (ADS)

    Grǎdinariu, Andrei Cristian; Mihai, Ioan

    2016-12-01

    Internal combustion engines can be supercharged in order to enhance their performances [1-3]. Engine power is proportional to the quantity of fresh fluid introduced into the cylinder. At present, the general tendency is to try to obtain actual specific powers as high as possible, for as small as possible cylinder capacity, without increasing the generated pollution hazards. The present paper investigates the impact of replacing a centrifugal turbo-compressor with an axial double-rotor bi-flux one [4]. The proposed method allows that for the same number of cylinders, an increase in discharged airflow, accompanied by a decrease in fuel consumption. Using a program developed under the MathCad environment, the present work was aimed at studying the way temperature modifies at the end of isentropic compression under supercharging conditions. Taking into account a variation between extreme limits of the ambient temperature, its influence upon the evolution of thermal load coefficient was analyzed considering the air pressure at the compressor cooling system outlet. This analysis was completed by an exergetical study of the heat evacuated through cylinder walls in supercharged engine conditions. The conducted investigation allows verification of whether significant differences can be observed between an axial, dual-rotor, bi-flux compressor and centrifugal compressors.

  8. Method and apparatus for rapid thrust increases in a turbofan engine

    NASA Technical Reports Server (NTRS)

    Cornett, J. E.; Corley, R. C.; Fraley, T. O.; Saunders, A. A., Jr. (Inventor)

    1980-01-01

    Upon a landing approach, the normal compressor stator schedule of a fan speed controlled turbofan engine is temporarily varied to substantially close the stators to thereby increase the fuel flow and compressor speed in order to maintain fan speed and thrust. This running of the compressor at an off-design speed substantially reduces the time required to subsequently advance the engine speed to the takeoff thrust level by advancing the throttle and opening the compressor stators.

  9. 40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., engine displacement, transmission class and configuration, interior volume, climate control system type... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...

  10. Staged regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  11. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) You must install and...

  12. Magnetic bearing design and control optimization for a four-stage centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinckney, F.D.; Keesee, J.M.

    1992-07-01

    A four-stage centrifugal pipeline compressor with a flexible rotor was equipped with magnetic bearings. Magnetic bearing sizing, shaft rotor dynamics, and controller/bearing design are discussed. Controller changes during shop and field tuning and the resulting rotor dynamic effects are also presented. Results of the field operation of this compressor indicate no vibration-related problems, despite the shaft second and third undamped modes being within the operating speed range. During the first 14 months after field commissioning, 9900 operating hours had been accumulated, indicating a 97 percent unit availability. 6 refs.

  13. Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF.

    PubMed

    Canova, Lorenzo; Chen, Xiaowei; Trisorio, Alexandre; Jullien, Aurélie; Assion, Andreas; Tempea, Gabriel; Forget, Nicolas; Oksenhendler, Thomas; Lopez-Martens, Rodrigo

    2009-05-01

    Carrier-envelope phase (CEP) stabilization of a femtosecond chirped-pulse amplification system featuring a compact transmission grating compressor is demonstrated. The system includes two amplification stages and routinely generates phase-stable (approximately 250 mrad rms) 2 mJ, 25 fs pulses at 1 kHz. Minimizing the optical pathway in the compressor enables phase stabilization without feedback control of the grating separation or beam pointing. We also demonstrate for the first time to the best of our knowledge, out-of-loop control of the CEP using an acousto-optic programmable dispersive filter inside the laser chain.

  14. A pilot study to assess residential noise exposure near natural gas compressor stations.

    PubMed

    Boyle, Meleah D; Soneja, Sutyajeet; Quirós-Alcalá, Lesliam; Dalemarre, Laura; Sapkota, Amy R; Sangaramoorthy, Thurka; Wilson, Sacoby; Milton, Donald; Sapkota, Amir

    2017-01-01

    U.S. natural gas production increased 40% from 2000 to 2015. This growth is largely related to technological advances in horizontal drilling and high-volume hydraulic fracturing. Environmental exposures upon impacted communities are a significant public health concern. Noise associated with natural gas compressor stations has been identified as a major concern for nearby residents, though limited studies exist. We conducted a pilot study to characterize noise levels in 11 homes located in Doddridge County, West Virginia, and determined whether these levels differed based on time of day, indoors vs. outdoors, and proximity of homes to natural gas compressor stations. We also compared noise levels at increasing distances from compressor stations to available noise guidelines, and evaluated low frequency noise presence. We collected indoor and outdoor 24-hour measurements (Leq, 24hr) in eight homes located within 750 meters (m) of the nearest compressor station and three control homes located >1000m. We then evaluated how A-weighted decibel (dBA) exposure levels differed based on factors outlined above. The geometric mean (GM) for 24-hour outdoor noise levels at homes located <300m (Leq,24hr: 60.3 dBA; geometric standard deviation (GSD): 1.0) from the nearest compressor station was nearly 9 dBA higher than control homes (Leq,24hr: 51.6 dBA; GSD: 1.1). GM for 24 hour indoor noise for homes <300m (Leq,24hr: 53.4 dBA; GSD: 1.2) from the nearest compressor station was 11.2 dBA higher than control homes (Leq,24hr: 42.2 dBA; GSD: 1.1). Indoor average daytime noise for homes <300m of the nearest compressor stations were 13.1 dBA higher than control homes, while indoor nighttime readings were 9.4 dBA higher. Findings indicate that living near a natural gas compressor station could potentially result in high environmental noise exposures. Larger studies are needed to confirm these findings and evaluate potential health impacts and protection measures.

  15. A pilot study to assess residential noise exposure near natural gas compressor stations

    PubMed Central

    Boyle, Meleah D.; Quirós-Alcalá, Lesliam; Dalemarre, Laura; Sapkota, Amy R.; Sangaramoorthy, Thurka; Wilson, Sacoby; Milton, Donald; Sapkota, Amir

    2017-01-01

    Background U.S. natural gas production increased 40% from 2000 to 2015. This growth is largely related to technological advances in horizontal drilling and high-volume hydraulic fracturing. Environmental exposures upon impacted communities are a significant public health concern. Noise associated with natural gas compressor stations has been identified as a major concern for nearby residents, though limited studies exist. Objectives We conducted a pilot study to characterize noise levels in 11 homes located in Doddridge County, West Virginia, and determined whether these levels differed based on time of day, indoors vs. outdoors, and proximity of homes to natural gas compressor stations. We also compared noise levels at increasing distances from compressor stations to available noise guidelines, and evaluated low frequency noise presence. Methods We collected indoor and outdoor 24-hour measurements (Leq, 24hr) in eight homes located within 750 meters (m) of the nearest compressor station and three control homes located >1000m. We then evaluated how A-weighted decibel (dBA) exposure levels differed based on factors outlined above. Results The geometric mean (GM) for 24-hour outdoor noise levels at homes located <300m (Leq,24hr: 60.3 dBA; geometric standard deviation (GSD): 1.0) from the nearest compressor station was nearly 9 dBA higher than control homes (Leq,24hr: 51.6 dBA; GSD: 1.1). GM for 24 hour indoor noise for homes <300m (Leq,24hr: 53.4 dBA; GSD: 1.2) from the nearest compressor station was 11.2 dBA higher than control homes (Leq,24hr: 42.2 dBA; GSD: 1.1). Indoor average daytime noise for homes <300m of the nearest compressor stations were 13.1 dBA higher than control homes, while indoor nighttime readings were 9.4 dBA higher. Conclusions Findings indicate that living near a natural gas compressor station could potentially result in high environmental noise exposures. Larger studies are needed to confirm these findings and evaluate potential health impacts and protection measures. PMID:28369113

  16. Structure design and simulation research of active magnetic bearing for helium centrifugal cold compressor

    NASA Astrophysics Data System (ADS)

    Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.

    2017-12-01

    Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.

  17. Development of the virtual experimental bench on the basis of modernized research centrifugal compressor stage test unit with the 3D impeller.

    NASA Astrophysics Data System (ADS)

    Aksenov, A. A.; Danilishin, A. M.; Dubenko, A. M.; Kozhukov, Y. V.

    2017-08-01

    Design modernization of the centrifugal compressor stage test bench with three dimensional impeller blades was carried out for the possibility of holding a series of experimental studies of different 3D impeller models. The studies relates to the problem of joint work of the impeller and the stationary channels of the housing when carrying out works on modernization with the aim of improving the parameters of the volumetric capacity or pressure in the presence of design constraints. The object of study is the experimental single end centrifugal compressor stage with the 3D impeller. Compressor stage consists of the 3D impeller, vaneless diffuser (VLD), outlet collector - folded side scroll and downstream pipe. The drive is a DC motor 75 kW. The increase gear (multiplier) was set between the compressor and DC motor, gear ratio is i = 9.8. To obtain the characteristics of the compressor and the flow area the following values were measured: total pressure, static pressure, direction (angles) of the stream in different cross sections. Additional pneumometric probes on the front wall of the VLD of the test bench have been installed. Total pressure probes and foster holes for the measurement of total and static pressure by the new drainage scheme. This allowed carrying out full experimental studies for two elements of centrifugal compressor stage. After the experimental tests the comprehensive information about the performance of model stage were obtained. Was measured geometric parameters and the constructed virtual model of the experimental bench flow part with the help of Creo Parametric 3.0 and ANSYS v. 16.2. Conducted CFD calculations and verification with experimental data. Identifies the steps for further experimental and virtual works.

  18. Reciprocating and Screw Compressor semi-empirical models for establishing minimum energy performance standards

    NASA Astrophysics Data System (ADS)

    Javed, Hassan; Armstrong, Peter

    2015-08-01

    The efficiency bar for a Minimum Equipment Performance Standard (MEPS) generally aims to minimize energy consumption and life cycle cost of a given chiller type and size category serving a typical load profile. Compressor type has a significant chiller performance impact. Performance of screw and reciprocating compressors is expressed in terms of pressure ratio and speed for a given refrigerant and suction density. Isentropic efficiency for a screw compressor is strongly affected by under- and over-compression (UOC) processes. The theoretical simple physical UOC model involves a compressor-specific (but sometimes unknown) volume index parameter and the real gas properties of the refrigerant used. Isentropic efficiency is estimated by the UOC model and a bi-cubic, used to account for flow, friction and electrical losses. The unknown volume index, a smoothing parameter (to flatten the UOC model peak) and bi-cubic coefficients are identified by curve fitting to minimize an appropriate residual norm. Chiller performance maps are produced for each compressor type by selecting optimized sub-cooling and condenser fan speed options in a generic component-based chiller model. SEER is the sum of hourly load (from a typical building in the climate of interest) and specific power for the same hourly conditions. An empirical UAE cooling load model, scalable to any equipment capacity, is used to establish proposed UAE MEPS. Annual electricity use and cost, determined from SEER and annual cooling load, and chiller component cost data are used to find optimal chiller designs and perform life-cycle cost comparison between screw and reciprocating compressor-based chillers. This process may be applied to any climate/load model in order to establish optimized MEPS for any country and/or region.

  19. Heat extraction and refrigeration (HEAR) system. Phase I final progress report. [Restaurant kitchens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venable, B.M.

    1983-01-01

    Testing indicates that heat energy available to be recaptured grossly exceeds the capacity of the 1.5 ton medium temperature Freon 12 compressor being utilized. The unit produced 50 pounds of suction pressure with the damper (Figure 4) open and exceeded compressor operational limits with the damper closed. This indicates that the current compressor could be replaced by one of 5 ton capacity since current estimates indicate that 60,000 Btu's are available for recovery. This could be divided between space heating and water heating as required by using separate condensers. There were no real surprises in the feasibility model construction andmore » test phase, and the validity of the assumptions made in the original project description have been established. That is, it has been demonstrated that it is feasible to extract heat from the kitchen exhaust duct in a restaurant and keep the heat pump evaporator clean. It is concluded that work done under this $10,000 grant demonstrated the technical feasibility of the HEAR System. However, additional funding (our original proposal called for a $47,000 grant) would be required to economically evaluate the benefit realized and to advance the HEAR System design to a workable prototype stage.« less

  20. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizingmore » and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.« less

  1. Development of High Capacity Split Stirling Cryocooler for HTS

    NASA Astrophysics Data System (ADS)

    Yumoto, Kenta; Nakano, Kyosuke; Hiratsuka, Yoshikatsu

    Sumitomo Heavy Industries, Ltd. (SHI) developed a high-power Stirling-type pulse tube cryocooler for cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES), and fault current limiters. The experimental results of a prototype pulse tube cryocooler were reported in September 2013. For a U-type expander, the cooling capacity was 151 W at 70 K with a compressor input power of 4 kW. Correspondingly, the coefficient of performance (COP) was about 0.038. However, the efficiency of the cryocooler is required to be COP > 0.1 and it was found that, theoretically, it is difficult to further improve the efficiency of a pulse tube cryocooler because the workflow generated at the hot end of the pulse tube cannot be recovered. Therefore, it was decided to change the expander to a free-piston type from a pulse tube type. A prototype was developed and preliminary experiments were conducted. A cooling capacity of 120 W at 70 K with a compressor input power of 2.15 kW with corresponding COP of 0.056, was obtained. The detailed results are reported in this paper.

  2. Select Components and Finish System Design of a Window Air Conditioner with Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar

    This report describes the technical targets for developing a high efficiency window air conditioner (WAC) using propane (R-290). The baseline unit selected for this activity is a GE R-410A WAC. We established collaboration with a Chinese rotary compressor manufacturer, to select an R-290 compressor. We first modelled and calibrated the WAC system model using R-410A. Next, we applied the calibrated system model to design the R-290 WAC, and decided the strategies to reduce the system charge below 260 grams and achieve the capacity and efficiency targets.

  3. The problem of the turbo-compressor

    NASA Technical Reports Server (NTRS)

    Devillers, Rene

    1920-01-01

    In terminating the study of the adaptation of the engine to the airplane, we will examine the problem of the turbo-compressor,the first realization of which dates from the war; this will form an addition to the indications already given on supercharging at various altitudes. This subject is of great importance for the application of the turbo-compressor worked by the exhaust gases. As a matter of fact, a compressor increasing the pressure in the admission manifold may be controlled by the engine shaft by means of multiplication gear or by a turbine operated by the exhaust gas. Assuming that the increase of pressure in the admission manifold is the same in both cases, the pressure in the exhaust manifold would be greater in the case in which the compressor is worked by the exhaust gas and there would result a certain reduction of engine power which we must be able to calculate. On the other hand , if the compressor is controlled by the engine shaft, a certain fraction of the excess power supplied is utilized for the rotation of the compressor. In order to compare the two systems, it is there-fore necessary to determine the value of the reduction of power due to back pressure when the turbine is employed.

  4. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, Craig S.

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less

  5. Electrolytic Installation in Order to Obtain Deuterium and to Fill the Pressure Deposits; INSTALACION ELECTROLITICA PARA LA OBTENCION DE DEUTERIO Y LLENADO DE DEPOSITOS A PRESION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, F.C.; Sanz, A.T.

    1959-01-01

    In order to obtain deuterium for the feed of accelerator ion sources, a sample and automatic electrolytic installation was constructed. The installation, used with a small compressor, can fill pressure vessels of 1 to 2 liter capacity with deuterium up to a pressure of 4 atmospheres in a few hours of operation. The electrolytic cell has a "V" shape and can operate with only 3 cc of heavy water. The electrodes are platinum and NaOH solution in the proportion of 15 wt.% is the electrolyte. The operation is automatic. The compressor is small, and the charge is low so thatmore » an auxiliary motor is not needed. The compressor piston is the only moving part. Deuterium losses are practically zero. (auth)« less

  6. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetrical Flow Control-Part II: Nonaxisymmetrical Self-Recirculation Casing Treatment.

    PubMed

    Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki

    2013-03-01

    This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.

  7. Flow Range of Centrifugal Compressor Being Extended

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  8. A numerical and experimental investigation of the thermal control performance of a spaceborne compressor assembly

    NASA Astrophysics Data System (ADS)

    Oh, Hyun-Ung; Lee, Min-Kyu; Shin, Somin; Hong, Joo-Sung

    2011-09-01

    Spaceborne pulse tube type cryocoolers are widely used for providing cryogenic temperatures for sensitive infrared, gamma-ray and X-ray detectors. Thermal control for the compressor of the cryocooler is one of the important technologies for the cooling performance, mission life time, and jitter stability of the cooler. The thermal design of the compressor assembly proposed in this study is basically composed of a heat pipe, a radiator, and a heater. In the present work, a method for heat pipe implementation is proposed and investigated to ensure the jitter stability of the compressor under the condition that one heat pipe is not working. An optimal design of the radiator that uses ribs for effective use by minimizing the temperature gradient on the radiator and reducing its weight is introduced. The effectiveness of the thermal design of the compressor assembly is demonstrated by on-orbit thermal analysis using the correlated thermal model obtained from the thermal balance test that is performed under a space simulating environment.

  9. Compressor Stability and Control: Review and Practical Implications

    DTIC Science & Technology

    2001-06-01

    and control technology is being built. 1. INTRODUCTION The concept of a ’smart engine ’, which utilizes augmented sensing, actuation, and computational...research mix. Concentration has been primarily on combustion control, and on stability and control of compressors and compression systems. The latter...at least a functional description of the processes at work during stall inception can effective control Paper presented at the RTO A VT Symposium on

  10. Impact of inlet coherent motions on compressor performance

    NASA Astrophysics Data System (ADS)

    Forlese, Jacopo; Spoleti, Giovanni

    2017-08-01

    Automotive engine induction systems may be characterized by significant flow angularity and total pressure distortion at the compressor inlet. The impact of the swirl on compressor performance should be quantified to guide the design of the induction systems. In diesel engines, the presence of a valve for flow reduction and control of low pressure EGR recirculation could generate coherent motion and influence the performance of the compressor. Starting from experimental map, the compressor speed-lines have been simulated using a 3D CFD commercial code imposing different concept motion at the inlet. The swirl intensity, the direction and the number of vortices have been imposed in order to taking into account some combinations. Finally, a merit function has been defined to evaluate the performance of the compressor with the defined swirl concepts. The aim of the current work is to obtain an indication on the effect of a swirling motion at the compressor inlet on the engine performance and provide a guideline to the induction system design.

  11. Simulation modelling for new gas turbine fuel controller creation.

    NASA Astrophysics Data System (ADS)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  12. Off-design Performance Analysis of Multi-Stage Transonic Axial Compressors

    NASA Astrophysics Data System (ADS)

    Du, W. H.; Wu, H.; Zhang, L.

    Because of the complex flow fields and component interaction in modern gas turbine engines, they require extensive experiment to validate performance and stability. The experiment process can become expensive and complex. Modeling and simulation of gas turbine engines are way to reduce experiment costs, provide fidelity and enhance the quality of essential experiment. The flow field of a transonic compressor contains all the flow aspects, which are difficult to present-boundary layer transition and separation, shock-boundary layer interactions, and large flow unsteadiness. Accurate transonic axial compressor off-design performance prediction is especially difficult, due in large part to three-dimensional blade design and the resulting flow field. Although recent advancements in computer capacity have brought computational fluid dynamics to forefront of turbomachinery design and analysis, the grid and turbulence model still limit Reynolds-average Navier-Stokes (RANS) approximations in the multi-stage transonic axial compressor flow field. Streamline curvature methods are still the dominant numerical approach as an important tool for turbomachinery to analyze and design, and it is generally accepted that streamline curvature solution techniques will provide satisfactory flow prediction as long as the losses, deviation and blockage are accurately predicted.

  13. Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Silva, Odlanier

    2004-01-01

    The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric study of the injector slot geometries to get the best aerodynamic performance of it. This includes some data reduction, redesign and fast prototyping of the injector nozzle.

  14. Miniature Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Tward, E.; Nguyen, T.; Godden, J.; Toma, G.

    2004-06-01

    A high capacity miniature pulse tube cooler for space that is scaled from the High Efficiency Cryocooler (HEC) is being developed. The low mass (1.5 kg) integral pulse tube cryocooler can provide large cooling power over a wide temperature range (e.g., 5 W at 95 K). The cooler is designed to be compatible with the existing HEC flight electronics. A small back-to-back flexure compressor drives a pulse tube cold head which is integrated with the compressor. The cooler has been tested with both linear and coaxial cold heads. A description of the cooler and its performance in both linear and coaxial cold head versions is presented.

  15. CO2 compressor vibration and cause analysis

    NASA Technical Reports Server (NTRS)

    Ying, Y. L.

    1985-01-01

    The operational experience of a large turbine drive carbon dioxide compressor train in a urea plant with capacity of 1620 tons/day is considered. After the initial start-up in 1976, the vibration in the HP cylinder was comparatively serious. The radial vibration reached 4.2 to 4.5 mils and fluctuated around this value. It was attributed to the rotating stall based on the spectrum analysis. Additional return line from the 4th to 4th and higher temperature of the 4th inlet has cured the vibration. Problems are described which were encountered in the operation along with their solutions, and/or improvements.

  16. Maisotsenko cycle applications for multistage compressors cooling

    NASA Astrophysics Data System (ADS)

    Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.

    2017-08-01

    The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.

  17. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  18. Standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  19. Computational analysis of stall and separation control in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Stein, Alexander

    2000-10-01

    A numerical technique for simulating unsteady viscous fluid flow in turbomachinery components has been developed. In this technique, the three-dimensional form of the Reynolds averaged Navier-Stokes equations is solved in a time-accurate manner. The flow solver is used to study fluid dynamic phenomena that lead to instabilities in centrifugal compressors. The results indicate that large flow incidence angles, at reduced flow rates, can cause boundary layer separation near the blade leading edge. This mechanism is identified as the primary factor in the stall inception process. High-pressure jets upstream of the compressor face are studied as a means of controlling compressor instabilities. Steady jets are found to alter the leading edge flow pattern and effectively suppress compressor instabilities. Yawed jets are more effective than parallel jets and an optimum yaw angle exists for each compression system. Numerical simulations utilizing pulsed jets have also been done. Pulsed jets are found to yield additional performance enhancements and lead to a reduction in external air requirements for operating the jets. Jets pulsed at higher frequencies perform better than low-frequency jets. These findings suggest that air injection is a viable means of alleviating compressor instabilities and could impact gas turbine technology. Results concerning the optimization of practical air injection systems and implications for future research are discussed. The flow solver developed in this work, along with the postprocessing tools developed to interpret the results, provide a rational framework for analyzing and controlling current and next generation compression systems.

  20. 6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. COMPRESSOR CONTROL PANELS: AT LEFT, 6,000 P.S.I. PANEL, CIRCA 1957; AT RIGHT, FACING CAMERA, 10,000 P.S.I. PANEL. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  1. Development of a Gravity-Insensitive Heat Pump for Lunar Applications

    NASA Technical Reports Server (NTRS)

    Cole, Gregory S.; Scaringe, Robert P.; Grzyll, Lawrence R.; Ewert, Michael K.

    2006-01-01

    Mainstream Engineering Corporation is developing a gravity-insensitive system that will allow a vapor-compression-cycle heat pump to be used in both microgravity (10(exp -6)g) and lunar (10(exp -6)g) environments. System capacity is 5 kW to 15 kW at design refrigerant operating conditions of 4.44 C and 60 C evaporating and condensing temperatures, respectively. The current program, performed for NASA Johnson Space Center (JSC) and presented in this paper, includes compressor performance analysis, detailed system design, and thermal analysis. Future efforts, including prototype fabrication, integration of a solar power source and controls, ground-testing, and flight-testing support, are also discussed.

  2. Gas compressor with side branch absorber for pulsation control

    DOEpatents

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  3. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOEpatents

    Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  4. Study of active noise control system for a commercial HVAC unit

    NASA Astrophysics Data System (ADS)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  5. Active Control of Surge in Compressors Which Exhibit Abrupt Stall

    DTIC Science & Technology

    2001-06-01

    sensor (of pressure, flow rate, etc.) is fed to a controller which applies a proper control law to drive the actuator (valve, The present paper reports...1993), who analyzed the influence of sensor and numerical simulation shows that: t) the predictions of control acutrsltin o th mxmm sabizd opesr...a sensor of compressor face total pressure), a The present paper considers the active suppression of surge in a butterfly throttle/actuation valve

  6. Investigation on the electromagnetic centring technique in compressor with labyrinth seal structure

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Feng, C.; Cheng, J.; Feng, Q.; Wu, W.

    2017-08-01

    At present, the piston of compressors with labyrinth seal structure generally runs eccentrically, which causes uneven radial clearance, serious leakages and lower volumetric efficiency. This has become an urgent problem in the development of labyrinth compressors. In this study, electromagnetic levitation technology was introduced to achieve concentric centering between the piston and cylinder, and the conventional cantilever structure for the piston centering was replaced by a simple support structure using the through-piston rod. Furthermore, the simulation model of the electromagnetic centering system was established and the experimental prototype was built. The mathematical simulation model was verified by comparing simulated and tested results. Then, the centering effect of the system was assessed and the variation of the leakage in the compressor was studied by models using dynamic mesh technology. The results showed that the radial clearance between piston and cylinder can be maintained in the range of -0.3 mm to 0.3 mm through the electromagnetic centering control. In addition, the inner leakage of the compressor was quite appreciable without the electromagnetic control. However, it was reduced by 1.8 times with the introduction of the electromagnetic control. Thus, it can be concluded that the precise centering between the piston and the cylinder can be achieved by the introduction of the electromagnetic centering technique.

  7. Comparative study of bearing loads for different twin screw compressor rotor configurations

    NASA Astrophysics Data System (ADS)

    Buckney, D.; Anderson, C.

    2017-08-01

    Designing rotor geometry is a critical stage in the design of a twin screw compressor which has a significant impact on: capacity; leakage characteristics; thermodynamics; rotor stiffness; dynamics; and loading on the bearings. The focus of this paper is on bearing loads. In order to design screw compressors that can operate at higher pressures the bearings quickly become a limiting factor. With the need to house the bearings adjacent to one another on each of the parallel rotor shafts at a given centre distance there is an inherent limit to the bearing geometry envelope. In this investigation the ‘rotor configuration’ refers to the rotor lobe combination, length to diameter ratio (L/D), and wrap angle. The geometry of the transverse rotor profiles is kept constant, as far as possible, allowing conclusions to be drawn based on a manageable number of variables. A procedure to calculate bearing specific loads based on results from a thermodynamic chamber model is presented and results for a range of rotor configurations are discussed.

  8. A Study on Application of Fuzzy Adaptive Unscented Kalman Filter to Nonlinear Turbojet Engine Control

    NASA Astrophysics Data System (ADS)

    Han, Dongju

    2018-05-01

    Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.

  9. Metal Hydride Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry A.; Bowman, Robert; Smith, Barton

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methodsmore » of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H 2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H 2) gas compressor with a feed pressure of >50 bar and a delivery pressure ≥ 875 bar of high purity H 2 gas using the scheme shown in Figure 1. Progress to date includes the selection of two candidate metal hydrides for each compressor stage, supplier engagement and synthesis of small samples, and the beginning of in-depth characterization of their thermodynamics, kinetics, and hydrogen capacities for optimal performance with respect to energy requirements and efficiency. Additionally, bed design trade studies are underway and will be finalized in FY18. Subsequently, the prototype two-stage compressor will be fabricated, assembled and experimentally evaluated in FY19.« less

  10. 16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  11. 18. View north of Tropic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  12. 46. Communication equipment room, shock isolator air compressor at right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Communication equipment room, shock isolator air compressor at right, looking northeast - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  13. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal

    2015-11-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.

  14. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  15. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  16. F100(3) parallel compressor computer code and user's manual

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Fulkerson, D. A.; Haddad, D. E.; Clark, T. A.

    1978-01-01

    The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model.

  17. Compressor stability management

    NASA Astrophysics Data System (ADS)

    Dhingra, Manuj

    Dynamic compressors are susceptible to aerodynamic instabilities while operating at low mass flow rates. These instabilities, rotating stall and surge, are detrimental to engine life and operational safety, and are thus undesirable. In order to prevent stability problems, a passive technique, involving fuel flow scheduling, is currently employed on gas turbines. The passive nature of this technique necessitates conservative stability margins, compromising performance and/or efficiency. In the past, model based active control has been proposed to enable reduction of margin requirements. However, available compressor stability models do not predict the different stall inception patterns, making model based control techniques practically infeasible. This research presents active stability management as a viable alternative. In particular, a limit detection and avoidance approach has been used to maintain the system free of instabilities. Simulations show significant improvements in the dynamic response of a gas turbine engine with this approach. A novel technique has been developed to enable real-time detection of stability limits in axial compressors. It employs a correlation measure to quantify the chaos in the rotor tip region. Analysis of data from four axial compressors shows that the value of the correlation measure decreases as compressor loading is increased. Moreover, sharp drops in this measure have been found to be relevant for stability limit detection. The significance of these drops can be captured by tracking events generated by the downward crossing of a selected threshold level. It has been observed that the average number of events increases as the stability limit is approached in all the compressors studied. These events appear to be randomly distributed in time. A stochastic model for the time between consecutive events has been developed and incorporated in an engine simulation. The simulation has been used to highlight the importance of the threshold level to successful stability management. The compressor stability management concepts have also been experimentally demonstrated on a laboratory axial compressor rig. The fundamental nature of correlation measure has opened avenues for its application besides limit detection. The applications presented include stage load matching in a multi-stage compressor and monitoring the aerodynamic health of rotor blades.

  18. Numerical Investigation of Flow in a Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Grishin, Yu. A.; Bakulin, V. N.

    2015-09-01

    With the use of the domestic software suite of computational hydrodynamics Flow Vision based on application of the method of control volumes, numerical simulation of air composition and delivery by a centrifugal compressor employed for supercharging a piston engine has been carried out. The head-flow characteristics of the compressor, as well as the 3D fields of flow velocity and pressure distributions in the elements of the compressor flow passage, including the interblade channels of the impeller, have been obtained for various regimes. In the regimes of diminished air flow rate, surging phenomena are identified, characterized by a return flow. The application of the technique of numerical experiment will make it possible from here on to carry out design optimization of the compressor flow passage profile and thus to improve its basic characteristics — the degree of pressure increase, compressed air flow rate, and the efficiency — as well as to reduce the costs of the development and production of compressors.

  19. Active stabilization to prevent surge in centrifugal compression systems

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Greitzer, Edward M.; Simon, Jon S.; Valavani, Lena

    1993-01-01

    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range. This has important implications for implementation in gas turbine engines since the Helmholtz frequencies can be over 100 Hz, making actuator design extremely challenging.

  20. Numerical simulation of rotating stall and surge alleviation in axial compressors

    NASA Astrophysics Data System (ADS)

    Niazi, Saeid

    Axial compression systems are widely used in many aerodynamic applications. However, the operability of such systems is limited at low-mass flow rates by fluid dynamic instabilities. These instabilities lead the compressor to rotating stall or surge. In some instances, a combination of rotating stall and surge, called modified surge, has also been observed. Experimental and computational methods are two approaches for investigating these adverse aerodynamic phenomena. In this study, numerical investigations have been performed to study these phenomena, and to develop control strategies for alleviation of rotating stall and surge. A three-dimensional unsteady Navier-Stokes analysis capable of modeling multistage turbomachinery components has been developed. This method uses a finite volume approach that is third order accurate in space, and first or second order in time. The scheme is implicit in time, permitting the use of large time steps. A one-equation Spalart-Allmaras model is used to model the effects of turbulence. The analysis is cast in a very general form so that a variety of configurations---centrifugal compressors and multistage compressors---may be analyzed with minor modifications to the analysis. Calculations have been done both at design and off-design conditions for an axial compressor tested at NASA Glenn Research Center. At off-design conditions the calculations show that the tip leakage flow becomes strong, and its interaction with the tip shock leads to compressor rotating stall and modified surge. Both global variations to the mass flow rate, associated with surge, and azimuthal variations in flow conditions indicative of rotating stall, were observed. It is demonstrated that these adverse phenomena may be eliminated, and stable operation restored, by the use of bleed valves located on the diffuser walls. Two types of controls were examined: open-loop and closed-loop. In the open-loop case mass is removed at a fixed, preset rate from the diffuser. In the closed-loop case, the rate of bleed is linked to pressure fluctuations upstream of the compressor face. The bleed valve is activated when the amplitude of pressure fluctuations sensed by the probes exceeds a certain range. Calculations show that both types of bleeding eliminate both rotating stall and modified surge, and suppress the precursor disturbances upstream of the compressor face. It is observed that smaller amounts of compressed air need to be removed with the closed-loop control, as compared to open-loop control.

  1. Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application

    NASA Astrophysics Data System (ADS)

    Bhojwani, Virendra; Inamdar, Asif; Lele, Mandar; Tendolkar, Mandar; Atrey, Milind; Bapat, Shridhar; Narayankhedkar, Kisan

    2017-04-01

    A two-stage Stirling Cryocooler has been developed and tested for cooling IR sensors in space application. The concept uses an opposed piston linear compressor to drive the two-stage Stirling expander. The configuration used a moving coil linear motor for the compressor as well as for the expander unit. Electrical phase difference of 80 degrees was maintained between the voltage waveforms supplied to the compressor motor and expander motor. The piston and displacer surface were coated with Rulon an anti-friction material to ensure oil less operation of the unit. The present article discusses analysis results, features of the cryocooler and experimental tests conducted on the developed unit. The two-stages of Cryo-cylinder and the expander units were manufactured from a single piece to ensure precise alignment between the two-stages. Flexure bearings were used to suspend the piston and displacer about its mean position. The objective of the work was to develop a two-stage Stirling cryocooler with 2 W at 120 K and 0.5 W at 60 K cooling capacity for the two-stages and input power of less than 120 W. The Cryocooler achieved a minimum temperature of 40.7 K at stage 2.

  2. Centrifugal compressor surge detecting method based on wavelet analysis of unsteady pressure fluctuations in typical stages

    NASA Astrophysics Data System (ADS)

    Izmaylov, R.; Lebedev, A.

    2015-08-01

    Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.

  3. Towards Large Eddy Simulation of gas turbine compressors

    NASA Astrophysics Data System (ADS)

    McMullan, W. A.; Page, G. J.

    2012-07-01

    With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.

  4. Modification of a compressor performance test bench for liquid slugging observation in refrigeration compressors

    NASA Astrophysics Data System (ADS)

    Ola, Max; Thomas, Christiane; Hesse, Ullrich

    2017-08-01

    Compressor performance test procedures are defined by the standard DIN EN 13771, wherein a variety of possible calorimeter and flow rate measurement methods are suggested. One option is the selection of two independent measurement methods. The accuracies of both selected measurement methods are essential. The second option requires only one method. However the measurement accuracy of the used device has to be verified and recalibrated on a regular basis. The compressor performance test facility at the Technische Universitaet Dresden uses a calibrated flow measurement sensor, a hot gas bypass and a mixed flow heat exchanger. The test bench can easily be modified for tests of various compressor types at different operating ranges and with various refrigerants. In addition, the modified test setup enables the investigation of long term liquid slug and its effects on the compressor. The modification comprises observational components, adjustments of the control system, safety measures and a customized oil recirculation system for compressors which do not contain an integrated oil sump or oil level regulation system. This paper describes the setup of the test bench, its functional principle, the key modifications, first test results and an evaluation of the energy balance.

  5. Parallel operation of NH3 screw compressors - the optimum way

    NASA Astrophysics Data System (ADS)

    Pijnenburg, B.; Ritmann, J.

    2015-08-01

    The use of more smaller industrial NH3 screw compressors operating in parallel seems to offer the optimum way when it comes to fulfilling maximum part load efficiency, increased redundancy and other highly requested features in the industrial refrigeration industry today. Parallel operation in an optimum way can be selected to secure continuous operation and can in most applications be configured to ensure lower overall operating economy. New compressors are developed to meet requirements for flexibility in operation and are controlled in an intelligent way. The intelligent control system keeps focus on all external demands, but yet striving to offer always the lowest possible absorbed power, including in future scenarios with connection to smart grid.

  6. Model Predictive Control Based on System Re-Identification (MPC-SRI) to Control Bio-H2 Production from Biomass

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Taqwallah, H. M. H.

    2018-03-01

    Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.

  7. Compressed Air System Overhaul Improves Production at a Powdered Metal Manufacturing Plant (GKN Sinter Metals in Salem, IN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, GKN Sinter Metals completed a successful compressed air system improvement project at its Salem, Indiana manufacturing facility. The project was performed after GKN undertook a survey of its system in order to solve air quality problems and to evaluate whether the capacity of their compressed air system would meet their anticipated plant expansion. Once the project was implemented, the plant was able to increase production by 31% without having to add any additional compressor capacity.

  8. Commissioning and Operational Experience with 1 kW Class Helium Refrigerator/Liquefier for SST-1

    NASA Astrophysics Data System (ADS)

    Dhard, C. P.; Sarkar, B.; Misra, Ruchi; Sahu, A. K.; Tanna, V. L.; Tank, J.; Panchal, P.; Patel, J. C.; Phadke, G. D.; Saxena, Y. C.

    2004-06-01

    The helium refrigerator/liquefier (R/L) for the Steady State Super conducting Tokamak (SST-1) has been developed with very stringent specifications for the different operational modes. The total refrigeration capacity is 650 W at 4.5 K and liquefaction capacity of 200 l/h. A cold circulation pump is used for the forced flow cooling of 300 g/s supercritical helium (SHe) for the magnet system (SCMS). The R/L has been designed also to absorb a 200 W transient heat load of the SCMS. The plant consists of a compressor station, oil removal system, on-line purifier, Main Control Dewar (MCD) with associated heat exchangers, cold circulation pump and warm gas management system. An Integrated Flow Control and Distribution System (IFDCS) has been designed, fabricated and installed for distribution of SHe in the toroidal and poloidal field coils as well as liquid helium for cooling of 10 pairs of current leads. A SCADA based control system has been designed using PLC for R/L as well as IFDCS. The R/L has been commissioned and required parameters were achieved confirming to the process. All the test results and commissioning experiences are discussed in this paper.

  9. Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.

    2005-01-01

    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.

  10. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  11. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems

    PubMed Central

    Du, Zhimin; Domanski, Piotr A.; Payne, W. Vance

    2016-01-01

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms. PMID:26929732

  12. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.

    PubMed

    Du, Zhimin; Domanski, Piotr A; Payne, W Vance

    2016-04-05

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.

  13. Compressor-fan unitary structure for air conditioning system

    NASA Astrophysics Data System (ADS)

    Dreiman, N.

    2015-08-01

    An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.

  14. Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design.

    NASA Astrophysics Data System (ADS)

    Wu, Jie-Zhi; Yang, Yan-Tao; Wu, Hong; Li, Qiu-Shi; Mao, Feng; Zhou, Sheng

    2007-11-01

    It is well recognized that vorticity and vortical structures appear inevitably in viscous compressor flows and have strong influence on the compressor performance. But conventional analysis and design procedure cannot pinpoint the quantitative contribution of each individual vortical structure to the integrated performance of a compressor, such as the stagnation-pressure ratio and efficiency. We fill this gap by using the so-called derivative-moment transformation which has been successfully applied to external aerodynamics. We show that the compressor performance is mainly controlled by the radial distribution of azimuthal vorticity, of which an optimization in the through-flow design stage leads to a simple Abel equation of the second kind. Solving the equation yields desired circulation distribution that optimizes the blade geometry. The advantage of this new procedure is demonstrated by numerical examples, including the posterior performance check by 3-D Navier-Stokes simulation.

  15. The experimental study of matching between centrifugal compressor impeller and diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamaki, H.; Nakao, H.; Saito, M.

    1999-01-01

    the centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio. The flow rate, Q{sub P}, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by themore » critical flow rate. In order to operate the compressor at a rate lower than Q{sub P}, the diffusing system, whose pressure recovery factor was steep negative slope near Q{sub P}, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40% of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.« less

  16. Unsteady behavior and control of vortices in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Ohta, Yutaka; Fujisawa, Nobumichi

    2014-10-01

    Two examples of the use of vortex control to reduce noise and enhance the stable operating range of a centrifugal compressor are presented in this paper. In the case of high-flow operation of a centrifugal compressor with a vaned diffuser, a discrete frequency noise induced by interaction between the impeller-discharge flow and the diffuser vane, which appears most notably in the power spectra of the radiated noise, can be reduced using a tapered diffuser vane (TDV) without affecting the performance of the compressor. Twin longitudinal vortices produced by leakage flow passing through the tapered portion of the diffuser vane induce secondary flow in the direction of the blade surface and prevent flow separation from the leading edge of the diffuser. The use of a TDV can effectively reduce both the discrete frequency noise generated by the interaction between the impeller-discharge flow and the diffuser surface and the broadband turbulent noise component. In the case of low-flow operation, a leading-edge vortex (LEV) that forms on the shroud side of the suction surface near the leading edge of the diffuser increases significantly in size and blocks flow in the diffuser passage. The formation of an LEV may adversely affect the performance of the compressor and may cause the diffuser to stall. Using a one-side tapered diffuser vane to suppress the evolution of an LEV, the stable operating range of the compressor can be increased by more than 12 percent, and the pressure-rise characteristics of the compressor can be improved. The results of a supplementary examination of the structure and unsteady behavior of LEVs, conducted by means of detailed numerical simulations, are also presented.

  17. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  18. Development of a valved non-lubricated linear compressor for compact 2K Gifford-McMahon cryocoolers

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Y.; Bao, Q.; Xu, M.

    2017-02-01

    Recently, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed and reported by Sumitomo Heavy Industries, Ltd. (SHI) [1]. It was reported that National Institute of Information and Communications Technology (NICT) developed a multi-channel SSPD system in which two or more channels were mounted on a GM cryocooler, and achieved a world-top-class performance [2]. However, the applications of such SSPD system were restricted due to its relatively large size and power consumption compared with a semiconductor system. Owing to the development of an SSPD system with a portable cryocooler system which can be installed in a vehicle, it is possible to apply such system to the optical communication of AdHoc [3], and to flexibly construct a large capacity optical line in a time of disaster. For such system, the size and power consumption reduction becomes indispensable. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design temperature targets of the first and the second stages to 1 W and 20 mW of heat load at 60 K and 2.3 K, respectively. In 2015, Hiratsuka reported that a new valved non-lubricated compressor was developed for a 2K GM cryocooler [4]. The cooling performance of a 2K GM expander operated by an experimental unit of the linear compressor was measured, and preliminary experiments were conducted. No-load temperature was 2.19 K, with 1 W and 14 mW heat load, the temperature was 48 K at the first stage and 2.3 K at the second stage, with an input power of about 1.2 kW. After that, the compressor efficiency has been improved by reducing losses, and the compressor input power has been reduced by 25%. The detailed experimental results are discussed in this paper.

  19. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  20. Controlled shutdown of a fuel cell

    DOEpatents

    Clingerman, Bruce J.; Keskula, Donald H.

    2002-01-01

    A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.

  1. Segway CMBalance Robot Soccer Player

    DTIC Science & Technology

    2004-05-01

    Electrical pressure switch • (1) Onboard air compressor Figure .13 Pressure vs. Force Plot of a ¾ inch Bore Pneumatic Cylinder Two cylinders were used...mechanical pressure switch that opens at 150 psi. When the controller detects that the switch has closed, the compressor is turned off. As a

  2. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor.

    PubMed

    Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang

    2013-03-01

    This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

  3. Smart actuation of inlet guide vanes for small turbine engine

    NASA Astrophysics Data System (ADS)

    Rusovici, Razvan; Kwok Choon, Stephen T.; Sepri, Paavo; Feys, Joshuo

    2011-04-01

    Unmanned Aerial Vehicles (UAVs) have gained popularity over the past few years to become an indispensable part of aerial missions that include reconnaissance, surveillance, and communication [1]. As a result, advancements in small jet-engine performance are needed to increase the performance (range, payload and efficiency) of the UAV. These jet engines designed especially for UAV's are characterized by thrust force on the order of 100N and due to their size and weight limitations, may lack advanced flow control devices such as IGV [2]. The goal of the current study was to present a conceptual design of an IGV smart-material based actuation mechanism that would be simple, compact and lightweight. The compressor section of an engine increases the pressure and conditions the flow before the air enters the combustion chamber [3]. The airflow entering the compressor is often turbulent due to the high angle of incidence between engine inlet and free-stream velocity, or existing atmospheric turbulence. Actuated IGV are used to help control the relative angle of incidence of the flow that enters the engine compressor, thereby preventing flow separation, compressor stall and thus extending the compressor's operating envelope [4]. Turbine jet- engines which employ variable IGV were developed by Rolls Royce (Trent DR-900) and General Electric (J79).

  4. Rotary-Wing Relevant Compressor Aero Research and Technology Development Activities at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Hathaway, Michael D.; Skoch, Gary J.; Snyder, Christopher A.

    2012-01-01

    Technical challenges of compressors for future rotorcraft engines are driven by engine-level and component-level requirements. Cycle analyses are used to highlight the engine-level challenges for 3000, 7500, and 12000 SHP-class engines, which include retention of performance and stability margin at low corrected flows, and matching compressor type, axial-flow or centrifugal, to the low corrected flows and high temperatures in the aft stages. At the component level: power-to-weight and efficiency requirements impel designs with lower inherent aerodynamic stability margin; and, optimum engine overall pressure ratios lead to small blade heights and the associated challenges of scale, particularly increased clearance-to-span ratios. The technical challenges associated with the aerodynamics of low corrected flows and stability management impel the compressor aero research and development efforts reviewed herein. These activities include development of simple models for clearance sensitivities to improve cycle calculations, full-annulus, unsteady Navier-Stokes simulations used to elucidate stall, its inception, and the physics of stall control by discrete tip-injection, development of an actuator-duct-based model for rapid simulation of nonaxisymmetric flow fields (e.g., due inlet circumferential distortion), advanced centrifugal compressor stage development and experimentation, and application of stall control in a T700 engine.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Qu, Ming; Sun, Xiao-Guang

    Separate sensible and latent cooling systems offer superior energy efficiency performance compared to conventional vapor compression air conditioning systems. In this paper we describe an innovative non-vapor compression system that uses electrochemical compressor (ECC) to pump hydrogen between 2-metal hydride reservoirs to provide the sensible cooling effect. The heat rejected during this process is used to regenerate the ionic liquid (IL) used for desiccant dehumidification. The overall system design is illustrated. The Xergy version 4C electrochemical compressor, while not designed as a high pressure system, develops in excess of 2 MPa (300 psia) and pressure ratios > 30. The projectedmore » base efficiency improvement of the electrochemical compressor is expected to be ~ 20% with higher efficiency when in low capacity mode due to being throttleable to lower capacity with improved efficiency. The IL was tailored to maximize the absorption/desorption rate of water vapor at moderate regeneration temperature. This IL, namely, [EMIm].OAc, is a hydrophilic IL with a working concentration range of 28.98% when operating between 25 75 C. The ECC metal hydride system is expected to show superior performance to typical vapor compression systems. As such, the combined efficiency gains from the use of ECC and separate and sensible cooling would offer significant potential savings to existing vapor compression cooling technology. A high efficiency Window Air Conditioner system is described based on this novel configuration. The system s schematic is provided. Models compared well with actual operating data obtained by running the prototype system. Finally, a model of an LiCl desiccant system in conjunction with the ECC-based metal hydride heat exchangers is provided.« less

  6. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A andmore » ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.« less

  7. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    NASA Astrophysics Data System (ADS)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are derived and expressed in terms of implementation-oriented variables such as number of injectors. For the third case, bifurcation criticality conditions are not obtained due to complexity, though linear stability property is derived. A theoretical comparison between the three algorithms is made, via the use of low-order models, to investigate pros and cons of the algorithms in the context of operability. The effects of static distortion on the compressor facility at Caltech is characterized experimentally. Results consistent with literature are obtained. Simulations via a high fidelity model (34 states) are also performed and show good qualitative as well as quantitative agreement to experiments. A non-axisymmetric pulsed air injection controller for stall is shown to be robust to static distortion.

  8. Deformation analysis of tilted primary mirror for an off-axis beam compressor

    NASA Astrophysics Data System (ADS)

    Clark, James H., III; Penado, F. Ernesto; Dugdale, Joel

    2011-09-01

    The Navy Prototype Optical Interferometer (NPOI), located near Flagstaff, Arizona, is a ground-based interferometer that collects and transports stellar radiation from six primary flat collectors, known as siderostats, through a common vacuum relay system to a beam combiner where the beams are combined, fringes are obtained and modulated, and data are recorded for further analysis. The current number of observable stellar objects can increase from 6,000 to approximately 47,000 with the addition of down-tilting beam compressors in the optical train. The increase in photon collection area from the beam compressors opens the sky to many additional and fainter stars. The siderostats are capable of redirecting 35 cm stellar beams into the vacuum relay system. Sans beam compressors, any portion of the beam greater than the capacity of the vacuum transport system, 12.5 cm, is wasted. Engineering analysis of previously procured as-built beam compressor optics show the maximum allowable primary mirror surface sag, resulting in λ/10 peak-to-valley wavefront aberration, occurs at 2.8° down-tilt angle. At the NPOI operational down-tilt angle of 20° the wavefront aberration reduces to an unacceptable λ/4. A design modification concept that reduces tilt-induced sag was investigated. Four outwardly applied 4-lb forces on the rear surface of the mirror reduce the sag from 155 nm to 32 nm at 20° down-tilt and reduce peak-to-valley wavefront deviation to λ/8.6. This preliminary effort indicates that this solution path is a viable and economic way to repair an expensive set of optical components. However, it requires further work to optimize the locations, magnitudes, and quantity of the forces within this system and their influence on the mirror surface.

  9. Adopted Methodology for Cool-Down of SST-1 Superconducting Magnet System: Operational Experience with the Helium Refrigerator

    NASA Astrophysics Data System (ADS)

    Sahu, A. K.; Sarkar, B.; Panchal, P.; Tank, J.; Bhattacharya, R.; Panchal, R.; Tanna, V. L.; Patel, R.; Shukla, P.; Patel, J. C.; Singh, M.; Sonara, D.; Sharma, R.; Duggar, R.; Saxena, Y. C.

    2008-03-01

    The 1.3 kW at 4.5 K helium refrigerator / liquefier (HRL) was commissioned during the year 2003. The HRL was operated with its different modes as per the functional requirements of the experiments. The superconducting magnets system (SCMS) of SST-1 was successfully cooled down to 4.5 K. The actual loads were different from the originally predicted boundary conditions and an adjustment in the thermodynamic balance of the refrigerator was necessary. This led to enhanced capacity, which was achieved without any additional hardware. The required control system for the HRL was tuned to achieve the stable thermodynamic balance, while keeping the turbines' operating parameters at optimized conditions. An extra mass flow rate requirement was met by exploiting the margin available with the compressor station. The methodology adopted to modify the capacity of the HRL, the safety precautions and experience of SCMS cool down to 4.5 K, are discussed.

  10. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  11. Load leveling on industrial refrigeration systems

    NASA Astrophysics Data System (ADS)

    Bierenbaum, H. S.; Kraus, A. D.

    1982-01-01

    A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.

  12. 77 FR 49702 - Airworthiness Directives; Embraer S.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... replacing the AMS controller processor module with one containing new software, and a new AFM revision. This... protection system. We are issuing this AD to prevent the possibility of a right-hand (RH) engine compressor... down. Also there is the possibility of right hand (RH) engine compressor to stall after the Auxiliary...

  13. ENVIRONMENTAL TECHNOLOGY REPORT, MIRATECH CORPORATION, GECO(TM) 3001 AIR/FUEL RATIO CONTROLLER (MANUFACTURED BY WOODWARD GOVERNOR COMPANY) PHASE II REPORT

    EPA Science Inventory

    In the natural gas industry, transmission pipeline operators use internal combustion (IC) gas-fired engines to provide the mechanical energy needed to drive pipeline gas compressors. As such, owners and operators of compressor stations are interested in the performance of these e...

  14. Self-latching eccentric cam for dual stroke compressor or pump

    DOEpatents

    Sisk, Francis J.

    1985-01-01

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270.degree. around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass 74 of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions.

  15. Self-latching eccentric cam for dual stroke compressor or pump

    DOEpatents

    Sisk, F.J.

    1985-01-22

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270[degree] around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions. 7 figs.

  16. AGT100 turbomachinery. [for automobiles

    NASA Technical Reports Server (NTRS)

    Tipton, D. L.; Mckain, T. F.

    1982-01-01

    High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.

  17. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, I.J.; Breuer, T.; Escuret, J.

    As part of a European collaborative project, four high-speed compressors were tested to investigate the generic features of stall inception in aero-engine type compressors. Tests were run over the full speed range to identify the design and operating parameters that influence the stalling process. A study of data analysis techniques was also conducted in the hope of establishing early warning of stall. The work presented here is intended to relate the physical happenings in the compressor to the signals that would be received by an active stall control system. The measurements show a surprising range of stall-related disturbances and suggestmore » that spike-type stall inception is a feature of low-speed operation while modal activity is clearest in the midspeed range. High-frequency disturbances were detected at both ends of the speed range and nonrotating stall, a new phenomenon, was detected in three out of the four compressors. The variety of the stalling patterns, and the ineffectiveness of the stall warning procedures, suggests that the ultimate goal of a flightworthy active control system remains some way off.« less

  19. Precision control of carrier-envelope phase in grating based chirped pulse amplifiers.

    PubMed

    Li, Chengquan; Moon, Eric; Mashiko, Hiroki; Nakamura, Christopher M; Ranitovic, Predrag; Maharjan, Chakra M; Cocke, C Lewis; Chang, Zenghu; Paulus, Gerhard G

    2006-11-13

    It is demonstrated that the carrier-envelope (CE) phase of pulses from a high power ultrafast laser system with a grating-based stretcher and compressor can be stabilized to a root mean square (rms) value of 180 mrad over almost 2 hours, excluding a brief re-locking period. The stabilization was accomplished via feedback control of the grating separation in the stretcher. It shows that the long term CE phase stability of a grating based chirped pulse amplification system can be as good as that of lasers using a glass-block stretcher and a prism pair compressor. Moreover, by adjusting the grating separation to preset values, the relative CE phase could be locked to an arbitrary value in the range of 2pi. This method is better than using a pair of wedge plates to adjust the phase after the hollow-core fiber compressor. The CE phase stabilization after a hollow-core fiber compressor was confirmed by a CE-phase meter based on the measurement of the left-to-right asymmetry of electrons produced by above-threshold ionization.

  20. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOEpatents

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  1. Simulation of IST Turbomachinery Power-Neutral Tests with the ANL Plant Dynamics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    The validation of the Plant Dynamics Code (PDC) developed at Argonne National Laboratory (ANL) for the steady-state and transient analysis of supercritical carbon dioxide (sCO2) systems has been continued with new test data from the Naval Nuclear Laboratory (operated by Bechtel Marine Propulsion Corporation) Integrated System Test (IST). Although data from three runs were provided to ANL, only two of the data sets were analyzed and described in this report. The common feature of these tests is the power-neutral operation of the turbine-compressor shaft, where no external power through the alternator was provided during the tests. Instead, the shaft speedmore » was allowed to change dictated by the power balance between the turbine, the compressor, and the power losses in the shaft. The new test data turned out to be important for code validation for several reasons. First, the power-neutral operation of the shaft allows validation of the shaft dynamics equations in asynchronous mode, when the shaft is disconnected from the grid. Second, the shaft speed control with the compressor recirculation (CR) valve not only allows for testing the code control logic itself, but it also serves as a good test for validation of both the compressor surge control and the turbine bypass control actions, since the effect of the CR action on the loop conditions is similar for both of these controls. Third, the varying compressor-inlet temperature change test allows validation of the transient response of the precooler, a shell-and-tube heat exchanger. The first transient simulation of the compressor-inlet temperature variation Test 64661 showed a much slower calculated response of the precooler in the calculations than the test data. Further investigation revealed an error in calculating the heat exchanger tube mass for the PDC dynamic equations that resulted in a slower change in the tube wall temperature than measured. The transient calculations for both tests were done in two steps. The first step was done in the same fashion as the FY15 IST analysis, where the CR valve position and the turbine-compressor shaft speed were specified through the PDC input based on the test values. On the second step, the turbine-compressor shaft dynamics equations were invoked by specifying that the shaft is disconnected from the grid. In addition, the CR valve control was used to control the shaft speed, based on the turbine bypass control logic already implemented in the PDC. For the shaft power balance, the friction (windage) loss is calculated based on the shaft balance at the steady-state conditions and is assumed to be scaled to the third power of shaft speed in the transient. Both the steady-state and transient simulations of both tests showed good agreement with the test data. The only significant difference was the turbine performance, which was not predicted as well as it was in the previous IST simulation, resulting in the prediction of a somewhat different flow split between the two turbines. This flow split difference is believed to be the result of not addressing the recent turbine modifications in the model. In addition, the full simulation of the turbine-compressor speed variation Test 65261-P with shaft speed control showed greater a difference with the test data later in the transient than the other test. Further analysis of the results revealed that this difference is most likely due to scaling the shaft windage losses only with the shaft speed and ignoring its dependency on the fluid density in the shaft cavity. Based on the results of steady state and transient calculations of the Tests 64661 and 65216-P, several areas of future improvements for the PDC simulation of the IST are identified.« less

  2. Developments in a centrifugal compressor surge control -- a technology assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Henderson, J.F.

    1994-04-01

    There are a number of surge control schemes in current use for centrifugal compressors employed in natural gas transmission systems. Basically, these schemes consist of a set of detection devices that either anticipate surge or detect it at its inception, and a set of control devices that act to prevent surge from occurring. A patent search was conducted in an attempt to assess the level and direction of technology development over the last 20 years and to define the focus for future R D activities. In addition, the paper presents the current state of technology in three areas: surge control,more » surge detection, and surge suppression. Patent data obtained from on-line databases showed that most of the emphasis has been on surge control rather than on detection and control and that the current trend in surge control will likely continue toward incremental improvement of a basic or conventional surge control strategy. Various surge suppression techniques can be grouped in two categories: (1) those that are focused on better compressor interior design, and (2) others that attempt to suppress surge by external and operational means.« less

  3. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  4. Mixed-refrigerant Joule-Thomson (MR JT) mini-cryocoolers

    NASA Astrophysics Data System (ADS)

    Tzabar, Nir

    2014-01-01

    This paper presents the progress in our ongoing research on Mixed-Refrigerant (MR) Joule-Thomson (JT) cryocoolers. The research begun by exploring different MRs and testing various compressors: oil-lubricated and oil-free, reciprocating and linear, custom-made and commercial. Closed-cycle JT cryocoolers benefit from the fact that the compressor might be located far from the cold-end and thus there are no moving parts, no vibrations, and no heat emission near the cold-end. As a consequence, the compressor may be located where there are no severe size limitations, its heat can be conveniently removed, and it can be easily maintained. However, in some applications there is still a demand for a small compressor to drive a JT cryocooler although it is located far from the cooled device. Recently, we have developed a miniature oil-free compressor for MR JT cryocoolers that weighs about 700 g and its volume equals about 300 cc. The cryocooler operates with a MR that contains Ne, N2, and Hydrocarbons. This MR has been widely investigated with different compressors and varying operating conditions and proved to be stable. The current research investigates the performances of MR JT mini-cryocooler operating with the MR mentioned above, driven with our miniature compressor, and a cold-finger prototype. A Dewar with heat load of about 230 mW is cooled to about 80 K at ambient temperatures between 0°C and 40°C. The experimental results obtained are stable and demonstrate the ability to control the cooling temperature by changing the rotation speed of the compressor.

  5. Shape memory alloy adaptive control of gas turbine engine compressor blade tip clearance

    NASA Astrophysics Data System (ADS)

    Schetky, Lawrence M.; Steinetz, Bruce M.

    1998-06-01

    The ambient air ingested through the inlet of a gas turbine is first compressed by an axial compressor followed by further compression in a centrifugal compressor and then fed into the combustion chamber where ignition and expansion take place to produce the engine thrust. The axial compressor typically has five or more stages which consist of revolving blades and stators and the overall performance of the turbine is strongly affected by the compressor efficiency. When the turbine is turned on, to accommodate the rapid initial increase in the compressor blade length due to centrifugal force, the cold turbine has a built in clearance between the turbine blade tip and the casing. As the turbine reached its operating temperature there is a further increase in the blade length due to thermal expansion and, at the same time, the diameter of the casing increases. The net result is that when these various components have reached their equilibrium temperatures, the initial cold build clearance is reduced, but there remains a residual clearance. The magnitude of this clearance has a direct effect on the compressor efficiency and can be stated as: Δη/Δ CLR equals 0.5 where η is efficiency and CLR is the tip clearance. The concept of adaptive tip clearance control is based on the ability of a shape memory alloy ring to shrink to a predetermined diameter when heated to the temperature of a particular stage, and thus reducing the tip clearance. The ring is fabricated from a CuAlNi shape memory alloy and is mounted in the casing so as to be coaxial with the rotating blades of the particular stage. When cold, the ring dimensions are such as to provide the required cold build clearance, but when at operating temperature the reduced diameter creates a very small tip clearance. The clearance provided by this concept is much smaller than the clearance normally obtained for a turbine of the size being studied.

  6. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-tonmore » R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.« less

  7. Analysis of internal flow of J85-13 multistage compressor

    NASA Technical Reports Server (NTRS)

    Hager, R. D.

    1977-01-01

    Interstage data recorded on a J85-13 engine were used to analyze the internal flow of the compressor. Measured pressures and temperatures were used as input to a streamline analysis program to calculate the velocity diagrams at the inlet and outlet of each blade row. From the velocity diagrams and blade geometry, selected blade-element performance parameters were calculated. From the detailed analysis it is concluded that the compressor is probably hub critical (stall initiates at the hub) in the latter stages for the design speed conditions. As a result, the casing treatment over the blade tips has little or no effect on stall margin at design speed. Radial inlet distortion did not appear to change the flow in the stages that control stall because of the rapid attenuation of the distortion within the compressor.

  8. Improved design method of a rotating spool compressor using a comprehensive model and comparison to experimental results

    NASA Astrophysics Data System (ADS)

    Bradshaw, Craig R.; Kemp, Greg; Orosz, Joe; Groll, Eckhard A.

    2017-08-01

    An improvement to the design process of the rotating spool compressor is presented. This improvement utilizes a comprehensive model to explore two working uids (R410A and R134a), various displaced volumes, at a variety of geometric parameters. The geometric parameters explored consists of eccentricity ratio and length-to-diameter ratio. The eccentricity ratio is varied between 0.81 and 0.92 and the length-to-diameter ratio is varied between 0.4 and 3. The key tradeoffs are evaluated and the results show that there is an optimum eccentricity and length-to-diameter ratio, which will maximize the model predicted performance, that is unique to a particular uid and displaced volume. For R410A, the modeling tool predicts that the overall isentropic efficiency will optimize at a length-to-diameter ratio that is lower than for R134a. Additionally, the tool predicts that as the displaced volume increases the overall isentropic efficiency will increase and the ideal length-to-diameter ratio will shift. The result from this study are utilized to develop a basic design for a 141 kW (40 tonsR) capacity prototype spool compressor for light-commercial air-conditioning applications. Results from a prototype compressor constructed based on these efforts is presented. The volumetric efficiency predictions are found to be very accurate with the overall isentropic efficiency predictions shown to be slightly over-predicted.

  9. 76 FR 76707 - El Paso Natural Gas Company: Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... long, 16-inch diameter lateral pipeline to connect the Douglas Meter Station to EPNG's existing Line No. 2164; The replacement of compressor modules and station yard piping at the existing Willcox Compressor Station; Expansion of the existing Douglas Meter Station by installing updated flow control and pressure...

  10. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  11. Regulating Effect of Asymmetrical Impeller on the Flow Distributions of Double-sided Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang

    2017-11-01

    To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.

  12. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase,more » and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.« less

  13. Improving Control in a Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Borders, James; Pearson, David; Prina, Mauro

    2005-01-01

    A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.

  14. Central Control Room in the Engine Research Building

    NASA Image and Video Library

    1968-11-21

    Operators in the Engine Research Building’s Central Control Room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. The panels on the wall contain schematics with indicator lights and instrumentation for the atmospheric exhaust, altitude exhaust, refrigerated air, and process air systems. The process air equipment included twelve exhausters, four compressors, refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  15. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  16. Alignment of chirped-pulse compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, I V

    2012-11-30

    An original method of alignment of grating compressors for ultrahigh-power CPA laser systems is proposed. The use of this method for adjustment of the grating compressor of a PEARL subpetawatt laser complex made it possible to align the diffraction gratings with a second accuracy in all three angular degrees of freedom, including alignment of the grooves, and to adjust the angles of beam incidence on the grating with a high accuracy. A simple method for measuring the difference in the groove densities of gratings with accuracy better than 0.005 lines mm{sup -1} is proposed and tested. (control of laser radiationmore » parameters)« less

  17. Active clearance control system for a turbomachine

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Knapp, M. H.; Coulson, C. E. (Inventor)

    1982-01-01

    An axial compressor is provided with a cooling air manifold surrounding a portion of the shroud, and means for bleeding air from the compressor to the manifold for selectively flowing it in a modulating manner axially along the outer side of the stator/shroud to cool and shrink it during steady state operating conditions so as to obtain minimum shroud/rotor clearance conditions. Provision is also made to selectively divert the flow of cooling air from the manifold during transient periods of operation so as to alter the thermal growth or shrink rate of the stator/shroud and result in adequate clearance with the compressor rotor.

  18. Small, high pressure ratio compressor: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.

    1973-01-01

    The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.

  19. Analysis of a combined refrigerator-generator space power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1973-01-01

    Description of a single-shaft and a two-shaft rotating machinery arrangements using neon for application in a combined refrigerator-generator power system for space missions. The arrangements consist of combined assemblies of a power turbine, alternator, compressor, and cry-turbine with a single-stage radial-flow design. A computer program was prepared to study the thermodynamics of the dual system in the evaluation of its cryocooling/electric capacity and appropriate weight. A preliminary analysis showed that a two-shaft arrangement of the power- and refrigeration-loop rotating machinery provided better output capacities than a single-shaft arrangement, without prohibitive operating compromises.

  20. Better Gas-Gap Thermal Switches For Sorption Compressors

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Rodriguez, Jose

    1995-01-01

    Gas-gap thermal switches associated with sorption compressors of some heat pumps and cryogenic systems designed for higher performance, according to proposal, by introducing controlled turbulent flows into gas gaps. Utilizes convection in turbulent flow to transfer heat at greater rate. Design takes advantage of flow of working fluid. Working fluid also serve as heat transfer medium in gas gap.

  1. Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler

    NASA Technical Reports Server (NTRS)

    Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.

    1992-01-01

    A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.

  2. Heat recovery, ice storage to cut user's energy costs 40%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponczak, G.

    1985-12-02

    A new recovery system which uses waste heat generated by an Illinois ice rink's compressors for space heating and domestic hot water will benefit from low off-peak electricity rates at a time when demand rates for the rink will be increasing 30%. The thermal storage system uses the same compressors to build ice. The Wilmette Centennial Park Recreation Complex expects to reduce gas and electricity costs by 40%, or about $100,000 per year. Part of the project involved installing new, high-efficiency compressor motors. A preliminary energy audit revealed that the old compressors were throwing off 2.25 million Btu of heatmore » per hour. An air-to-water heat exchanger now provides space heating as needed. Two double-vented heat exchangers generate hot water for swimming pools and the ice-making machine. The ice storage tank is used for cooling. An energy management system controls these and other building systems.« less

  3. Energy Efficient Engine: High-pressure compressor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Marchant, R. D.

    1988-01-01

    The objective of the NASA Energy Efficient Engine program is to identify and verify the technology required to achieve significant reductions in fuel consumption and operating cost for future commercial gas turbine engines. The design and analysis is documented of the high pressure compressor which was tested as part of the Pratt and Whitney effort under the Energy Efficient Engine program. This compressor was designed to produce a 14:1 pressure ratio in ten stages with an adiabatic efficiency of 88.2 percent in the flight propulsion system. The corresponding expected efficiency for the compressor component test rig is 86.5 percent. Other performance goals are a surge margin of 20 percent, a corrected flow rate of 35.2 kg/sec (77.5 lb/sec), and a life of 20,000 missions and 30,000 hours. Low loss, highly loaded airfoils are used to increase efficiency while reducing the parts count. Active clearance control and case trenches in abradable strips over the blade tips are included in the compressor component design to further increase the efficiency potential. The test rig incorporates variable geometry stator vanes in all stages to permit maximum flexibility in developing stage-to-stage matching. This provision precluded active clearance control on the rear case of the test rig. Both the component and rig designs meet or exceed design requirements with the exception of life goals, which will be achievable with planned advances in materials technology.

  4. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko -Jen

    2015-09-15

    According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.

  5. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  6. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  7. Application of microturbines to control emissions from associated gas

    DOEpatents

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  8. Engine Research Building’s Central Control Room

    NASA Image and Video Library

    1948-07-21

    Operators in the Engine Research Building’s Central Control Room at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful collection of compressors and exhausters located in the central portion of the basement provided process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. This photograph was taken just after a major upgrade to the control room in 1948. The panels on the wall contain rudimentary floor plans of the different Engine Research Building sections with indicator lights and instrumentation for each test cell. The process air equipment included 12 exhausters, four compressors, a refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  9. NAVFAC Ocean Thermal Energy Conversion (OTEC) Project; OTEC System Design Report

    DTIC Science & Technology

    2010-11-16

    191 Figure 3-129. Web illustration of a magnetically coupled pump ...............................................192 Figure 3-130...utility air at a suitable water dew point. Two 100% capacity rotary screw compressors, dryer and receiver shall be installed to serve process and...remora centerline, with positive TCG out of the paper and negative TCG into the paper . The CG of the remora in its vertical orientation is

  10. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  11. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.

    2003-01-01

    Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.

  12. Capacity enhancement of indigenous expansion engine based helium liquefier

    NASA Astrophysics Data System (ADS)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  13. TOKAMAK-15 modernization and an analysis of cryogenic system operation for the period from 1988 to 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duzhev, V.E.; Zhulkin, V.F.; Ugrovatov, A.E.

    1996-12-31

    The T-15 cryogenics system has been designed for cooling down, cryostatting, warming up of superconducting, cryoresistive and cryogenics T-15 objects. Maintenance of the cryogenics system has been on going since 1988. For the mentioned period, in the cryogenics T-15 system. The capacity of screw compressor was increased from 0.181 kg/s to 0.236 kg/s (third stage compressors with increased capacity were developed and manufactured), their reliability was also enhanced. The capacity of liquefiers was increased from 0.0833 - 0.0972 L/s (300-350 L/h) to 0.222 L/s (800 L/h) due to replacement of turboexpanders by more effective ones and due to introduction ofmore » an end-stage turboexpander into maintenance. The heat influxes to the cryogenics pipelines were reduced by 50%. For the same period some technological regimes of cryogenics system have been developed to produce the maximal output of cold. The cooling down from 110 K to 15 K is done, when one or two liquefiers are in operation under refrigerating conditions with the reverse flow splitting. The further cooling is performed under joint operation of two liquefiers; one of them operates in the liquefying mode, another, in the refrigerating one with excess reverse flow. A change in the operating conditions was necessary because of the impossibility of regulating the distribution of the reverse helium flow between two liquefiers at the temperature below 15K. The main regime at the level of 4.5 K is a two-loop operating diagram, when one liquefier and a passive refrigerator with excessive reverse flow are in operation, the refrigerating capacity is about 3 kW.« less

  14. Turbomachinery for Low-to-High Mach Number Flight

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Shah, Parthiv N.

    2004-01-01

    The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed. The approach is based upon CFD computations and mean line analysis. Figures of merit that characterize the bulk performance of blade passage flows with and without cooling are extracted from CFD solutions. Such performance characterization is then applied to a preliminary compressor design framework (mean line). The generic nature of this approach makes it suitable for assessing the effect of different types of compressor cooling schemes, such as heat exchange or evaporative cooling (mass injection). Future work will focus on answering system level questions regarding the feasibility of compressor cooling. Specifically, we wish to determine the operational parametric space in which compressor cooling would be advantageous over other high flight Mach number propulsion concepts. In addition, we will explore the design requirements of cooled compressor turbomachinery, as well as the flow phenomena that limit and control its operation, and the technology barriers that must be crossed for its implementation.

  15. Compressor blade clearance measurement using capacitance and phase lock techniques

    NASA Astrophysics Data System (ADS)

    Demers, Rosario N.

    1986-11-01

    The clearance measurement system has several unique features which mimimize problems plaguing earlier systems. These include tuning stability and sensitivity drift. Both these problems are intensified by the environmental factors present in compressors i.e., wide temperature fluctuations, vibrations, and conductive contamination of probe tips. The circuitry in this new system provides phase lock feedback to control tuning and shut calibration to measure sensitivity. The use of high frequency excitation lowers the probe tip impedance, thus miminizing the effects of contamination. A prototype has been built and tested. The ability to calibrate has been demonstrated. An eight channel system is now being constructed for use in the Compressor Research Facility at Wright-Patterson AFB. The efficiency of a turbine engine is to a large extent dependent upon the mechanical tolerances maintained between its moving parts. On critical tolerance is the blade span. Although this tolerance may not appear severe, the impact on compressor efficiency is dramatic. The penalty in percent efficiency has been shown to be three times the percent clearance to blade span ratio. In addition, each percent loss in compressor efficiency represents one half percent loss in specific fuel consumption. Factors which affect blade tip clearance are identified.

  16. Toward a Real-Time Measurement-Based System for Estimation of Helicopter Engine Degradation Due to Compressor Erosion

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Simo, Donald L.

    2007-01-01

    This paper presents a preliminary demonstration of an automated health assessment tool, capable of real-time on-board operation using existing engine control hardware. The tool allows operators to discern how rapidly individual turboshaft engines are degrading. As the compressor erodes, performance is lost, and with it the ability to generate power. Thus, such a tool would provide an instant assessment of the engine s fitness to perform a mission, and would help to pinpoint any abnormal wear or performance anomalies before they became serious, thereby decreasing uncertainty and enabling improved maintenance scheduling. The research described in the paper utilized test stand data from a T700-GE-401 turboshaft engine that underwent sand-ingestion testing to scale a model-based compressor efficiency degradation estimation algorithm. This algorithm was then applied to real-time Health Usage and Monitoring System (HUMS) data from a T700-GE-701C to track compressor efficiency on-line. The approach uses an optimal estimator called a Kalman filter. The filter is designed to estimate the compressor efficiency using only data from the engine s sensors as input.

  17. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  18. Recent advances in lossy compression of scientific floating-point data

    NASA Astrophysics Data System (ADS)

    Lindstrom, P.

    2017-12-01

    With a continuing exponential trend in supercomputer performance, ever larger data sets are being generated through numerical simulation. Bandwidth and storage capacity are, however, not keeping pace with this increase in data size, causing significant data movement bottlenecks in simulation codes and substantial monetary costs associated with archiving vast volumes of data. Worse yet, ever smaller fractions of data generated can be stored for further analysis, where scientists frequently rely on decimating or averaging large data sets in time and/or space. One way to mitigate these problems is to employ data compression to reduce data volumes. However, lossless compression of floating-point data can achieve only very modest size reductions on the order of 10-50%. We present ZFP and FPZIP, two state-of-the-art lossy compressors for structured floating-point data that routinely achieve one to two orders of magnitude reduction with little to no impact on the accuracy of visualization and quantitative data analysis. We provide examples of the use of such lossy compressors in climate and seismic modeling applications to effectively accelerate I/O and reduce storage requirements. We further discuss how the design decisions behind these and other compressors impact error distributions and other statistical and differential properties, including derived quantities of interest relevant to each science application.

  19. Experimental study on the inlet fogging system using two-fluid nozzles

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong

    2010-04-01

    Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.

  20. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  1. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    NASA Astrophysics Data System (ADS)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  2. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    NASA Astrophysics Data System (ADS)

    Lou, Fangyuan

    The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication systems, secondary air systems, a throttle system, and different inlet configurations) were built. Additionally, three Labview programs were developed for acquiring the compressor health monitoring, steady and unsteady pressure and strain data. The baseline, steady aerodynamic performance map was established. Additionally, the unsteady pressure field in the compressor was investigated. Steady performance data have been acquired from choke to near surge at three different corrected speeds from 90% to 100% corrected speed in 5% increments. The performance of the compressor stage was characterized using total pressure ratio (TPR), total temperature ratio (TTR), and isentropic efficiency. The impeller alone and diffuser along performance were also investigated, and the high loss regions in the compressor were identified. At last, the compressor unsteady shroud pressure was investigated at 100% corrected speed in both the time domain and frequency domain. Results show strong pressure components in relation to the shaft frequency (SF). The impeller has 17 main blades and 17 splitter blades, and introduces pressure fluctuations at 17SF and its harmonics. Additionally, the diffuser has a vane count of 25 and results in pressure spectra of 59SF (17+17+25) due to the interactions between the impeller and diffuser.

  3. PIV measurements of the flow at the inlet of a turbocharger centrifugal compressor with recirculation casing treatment near the inducer

    NASA Astrophysics Data System (ADS)

    Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann

    2016-02-01

    Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the instantaneous MFR is near 0 or negative. The flow motion at the inlet is highly three dimensional as flow enters in the center of the inducer at all times, even when the instantaneous flow rate is negative, compared to the reversed flow observed in the entire inlet for surging axial compressors.

  4. Optimal control of CPR procedure using hemodynamic circulation model

    DOEpatents

    Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok

    2007-12-25

    A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.

  5. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  6. Nonconvex model predictive control for commercial refrigeration

    NASA Astrophysics Data System (ADS)

    Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John

    2013-08-01

    We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.

  7. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  8. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  9. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  10. A microprocessor-based automation test system for the experiment of the multi-stage compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Lin, Chongping

    1991-08-01

    An automation test system that is controlled by the microprocessor and used in the multistage compressor experiment is described. Based on the analysis of the compressor experiment performances, a complete hardware system structure is set up. It is composed of a IBM PC/XT computer, a large scale sampled data system, the moving machine with three directions, the scanners, the digital instrumentation and some output devices. A program structure of real-time software system is described. The testing results show that this test system can take the measure of many parameter magnitudes in the blade row places and on a boundary layer in different states. The automatic extent and the accuracy of experiment is increased and the experimental cost is reduced.

  11. Noise Reduction Design of the Volute for a Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Wen, Huabing; Hong, Liangxing; Jin, Yudong

    2017-08-01

    In order to effectively control the aerodynamic noise of a compressor, this paper takes into consideration a marine exhaust turbocharger compressor as a research object. According to the different design concept of volute section, tongue and exit cone, six different volute models were established. The finite volume method is used to calculate the flow field, whiles the finite element method is used for the acoustic calculation. Comparison and analysis of different structure designs from three aspects: noise level, isentropic efficiency and Static pressure recovery coefficient. The results showed that under the concept of volute section model 1 yielded the best result, under the concept of tongue analysis model 3 yielded the best result and finally under exit cone analysis model 6 yielded the best results.

  12. Oil-free centrifugal hydrogen compression technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technologymore » is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale performance testing of a single stage with helium similitude gas at full speed in accordance with ASME PTC-10. The experimental results indicated that aerodynamic performance, with respect to compressor discharge pressure, flow, power and efficiency exceeded theoretical prediction. Dynamic testing of a simulated multistage centrifugal compressor was also completed under a parallel program to validate the integrity and viability of the system concept. The results give strong confidence in the feasibility of the multi-stage design for use in hydrogen gas transportation and delivery from production locations to point of use.« less

  13. Flow Control Application on a Submerged Inlet Characterized by Three-Component LDV

    DTIC Science & Technology

    2010-12-01

    boundary layer deficit accounted for less variation in stresses experienced by the compressor blades . These studies demonstrate the effect of geometry on... deficit region provided the best results. The airspeed and inlet velocity simulated takeoff and landing conditions; velocities ranged from Mach 0.1-0.3...uniformity of the total pressure profile at the compressor face prevents fatigue loading of the blades as they rotate.(5) Pressure recovery directly

  14. Smart Energy Cryo-refrigerator Technology for the next generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Spagna, Stefano

    2018-01-01

    We describe a “smart energy” cryocooler technology architecture for the next generation Very Large Array that makes use of multiple variable frequency cold heads driven from a single variable speed air cooled compressor. Preliminary experiments indicate that the compressor variable flow control, advanced diagnostics, and the cryo-refrigerator low vibration, provide a unique energy efficient capability for the very large number of antennas that will be employed in this array.

  15. Counterrotatable booster compressor assembly for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)

    2004-01-01

    A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.

  16. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  17. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  18. Helium compressors for closed-cycle, 4.5-Kelvin refrigerators

    NASA Technical Reports Server (NTRS)

    Hanson, T. R.

    1992-01-01

    An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor.

  19. The use of optimization techniques to design controlled diffusion compressor blading

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1982-01-01

    A method for automating compressor blade design using numerical optimization, and applied to the design of a controlled diffusion stator blade row is presented. A general purpose optimization procedure is employed, based on conjugate directions for locally unconstrained problems and on feasible directions for locally constrained problems. Coupled to the optimizer is an analysis package consisting of three analysis programs which calculate blade geometry, inviscid flow, and blade surface boundary layers. The optimizing concepts and selection of design objective and constraints are described. The procedure for automating the design of a two dimensional blade section is discussed, and design results are presented.

  20. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    PubMed

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  1. CF6 High Pressure Compressor and Turbine Clearance Evaluations

    NASA Technical Reports Server (NTRS)

    Radomski, M. A.; Cline, L. D.

    1981-01-01

    In the CF6 Jet Engine Diagnostics Program the causes of performance degradation were determined for each component of revenue service engines. It was found that a significant contribution to performance degradation was caused by increased airfoil tip radial clearances in the high pressure compressor and turbine areas. Since the influence of these clearances on engine performance and fuel consumption is significant, it is important to accurately establish these relatonships. It is equally important to understand the causes of clearance deterioration so that they can be reduced or eliminated. The results of factory engine tests run to enhance the understanding of the high pressure compressor and turbine clearance effects on performance are described. The causes of clearance deterioration are indicated and potential improvements in clearance control are discussed.

  2. Turbo-alternator-compressor design for supercritical high density working fluids

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2013-03-19

    Techniques for generating power are provided. Such techniques involve a thermodynamic system including a housing, a turbine positioned in a turbine cavity of the housing, a compressor positioned in a compressor cavity of the housing, and an alternator positioned in a rotor cavity between the turbine and compressor cavities. The compressor has a high-pressure face facing an inlet of the compressor cavity and a low-pressure face on an opposite side thereof. The alternator has a rotor shaft operatively connected to the turbine and compressor, and is supported in the housing by bearings. Ridges extending from the low-pressure face of the compressor may be provided for balancing thrust across the compressor. Seals may be positioned about the alternator for selectively leaking fluid into the rotor cavity to reduce the temperature therein.

  3. Experimental Study for Reduction of Noises and Vibrations in Hermetic Type Compressor

    NASA Astrophysics Data System (ADS)

    Sano, Kiyoshi; Kawahara, Sadao; Akazawa, Teruyuki; Ishii, Noriaki

    A brushless DC motor with a permanent magnet rotor has been adopted for a scroll compressor for domestic-use air-conditioners because of a demand for compressor high efficiency. A waveform of the driving voltage in the inverter power supply unit is chopped by the PWM signal. Its duty ratio is increased/decreased to control the DC voltage in order to provide a wide range of rotation frequencies for the compressor. The driving voltage includes the carrier frequency and its harmonic components, which produce an electro-magnetic force in the moter, resulting in high electro-magnetic noise. In the present report, the author clarifies the relationships between the noise and the waveform of driving voltage and frequency response function of the motor. A method to improve the frequency response function by changing the stator shape in order to reduce electro-magnetic noise is presented. Subsequently, the influence on electro-magnetic noise from the waveform of driving voltage is examined. Furthermore, the electro-magnetic noises during inverter driving of an induction motor are presented.

  4. Aerodynamic Design of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    Bullock, R. O. (Editor); Johnsen, I. A.

    1965-01-01

    An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.

  5. Next Generation Hydrogen Station Composite Data Products: All Stations |

    Science.gov Websites

    /11/17 Fuel Temperature at Receptacle 30 s After Start of Fill CDP INFR 77, 10/11/17 Cost Compressor Operation Cost CDP INFR 39, 10/11/17 Station Cost by Daily Capacity CDP INFR 40, 10/11/17 Average Station Cost by Category CDP INFR 41, 10/11/17 Station Cost CDP INFR 42, 10/11/17 Station Cost by Type CDP INFR

  6. Measured Performance of a Low Temperature Air Source Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  7. A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle

    NASA Astrophysics Data System (ADS)

    Tan, Hongbo; Shan, Siyu; Nie, Yang; Zhao, Qingxuan

    2018-06-01

    A new boil-off gas (BOG) re-liquefaction system for LNG carriers has been proposed to improve the system energy efficiency. Two cascade mixed refrigerant cycles (or dual mixed refrigerant cycle, DMR) are used to provide the cooling capacity for the re-liquefaction of BOG. The performance of the new system is analysed on the basis of the thermodynamic data obtained in the process simulation in Aspen HYSYS software. The results show that the power consumed in the BOG compressor and the high-temperature mixed refrigerant compressor could be saved greatly due to the reduced mass flow rates of the processed fluids. Assuming the re-liquefaction capacity of the investigated system is 4557.6 kg/h, it is found that the total power consumption can be reduced by 25%, from 3444 kW in the existing system to 2585.8 kW in the proposed system. The coefficient of performance (COP) of 0.25, exergy efficiency of 41.3% and the specific energy consumption (SEC) of 0.589 kWh/kg(LNG) could be achieved in the new system. It exhibits 33% of improvement in the COP and exergy efficiency in comparison with the corresponding values of the existing system. It indicates that employing the DMR based BOG re-liquefaction system could improve the system energy efficiency of LNG carriers substantially.

  8. ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO TOP: MTR, MTR SERVICE BUILDING, ETR CRITICAL FACILITY, ETR CONTROL BUILDING (ATTACHED TO ETR), ETR BUILDING (HIGH-BAY), COMPRESSOR BUILDING (ATTACHED AT LEFT OF ETR), HEAT EXCHANGER BUILDING (JUST BEYOND COMPRESSOR BUILDING), COOLING TOWER PUMP HOUSE, COOLING TOWER. OTHER BUILDINGS ARE CONTRACTORS' CONSTRUCTION BUILDINGS. INL NEGATIVE NO. 56-4105. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. System Measures Pressures Aboard A Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.

    1994-01-01

    Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.

  10. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  11. Blow-out protector and fire control system for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caraway, M.F.; Caraway, B.L.

    1987-10-06

    A blow-out protector is described for an oil well comprising a housing having a vertical passageway therethrough for a Kelly. The housing has a lower end adapter flange to be connected to a well casing, an elastomeric body having an opening for the Kelly and carried on the Kelly for providing sealing contact with the Kelly and housing passageway, a catch ring secured to the Kelly and having a surface defined by a given diameter, a compressor ring plate positioned below the elastomeric body on the Kelly, means on an interior of the housing having a given diameter and preventingmore » the compressor ring plate from falling down and yet providing engagement with the surface of the catch ring, the compressor ring plate having a hole for passage of the Kelly drive-mechanism for the drill pipe, the catch ring on the Kelly positioned below the compressor plate. The diameter of the catch ring is smaller than the diameter of the interior means on the housing so that when the Kelly is pulled up the catch ring will contact and force the compressor ring plate against the elastomeric body and force the elastomeric body into tight contact with both the Kelly and the housing thus sealing the space between the Kelly and the housing against a blow-out.« less

  12. Development of a rotary union for Gifford-McMahon cryocoolers utilized in a 10 MW offshore superconducting wind turbine

    NASA Astrophysics Data System (ADS)

    Sun, Jiuce; Sanz, Santiago; León, Andrés; Fraser, Jim; Neumann, Holger

    2017-12-01

    Superconducting generators (SCG) show the potential to reduce the head mass of large offshore wind turbines. By evaluating the availability and required cooling capacity in the temperatures range around 20 K, a Gifford-McMahon (GM) cryocooler among all the candidates was selected. The cold head of GM cryocooler is supposed to rotate together with the rotating superconducting coil. However, the scroll compressor of the GM cryocooler must stay stationary due to lubricating oil. As a consequence, a rotary helium union (RHU) utilizing Ferrofluidic® sealing technology was successfully developed to transfer helium gas between the rotating cold head and stationary helium compressor at ambient temperatures. It contains a high-pressure and low-pressure helium path with multiple ports, respectively. Besides the helium line, slip rings with optical fiber channels are also integrated into this RHU to transfer current and measurement signals. With promising preliminary test results, the RHU will be installed in a demonstrator of SCG and further performance investigation will be performed.

  13. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Bhandari, Mahabir S

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heatmore » exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.« less

  14. A Generalized Method for the Comparable and Rigorous Calculation of the Polytropic Efficiencies of Turbocompressors

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Panagiotis

    2018-03-01

    The calculation of polytropic efficiencies is a very important task, especially during the development of new compression units, like compressor impellers, stages and stage groups. Such calculations are also crucial for the determination of the performance of a whole compressor. As processors and computational capacities have substantially been improved in the last years, the need for a new, rigorous, robust, accurate and at the same time standardized method merged, regarding the computation of the polytropic efficiencies, especially based on thermodynamics of real gases. The proposed method is based on the rigorous definition of the polytropic efficiency. The input consists of pressure and temperature values at the end points of the compression path (suction and discharge), for a given working fluid. The average relative error for the studied cases was 0.536 %. Thus, this high-accuracy method is proposed for efficiency calculations related with turbocompressors and their compression units, especially when they are operating at high power levels, for example in jet engines and high-power plants.

  15. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  16. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  17. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... motors for cargo handling equipment. (2) Each gas-safe cargo control station in the cargo area. (3) Each...

  18. Non-contact control of the working condition of mechanical units of the steam compressor for desalination plant

    NASA Astrophysics Data System (ADS)

    Danilin, A. I.; Chernyavsky, A. Zh.; Danilin, S. A.; Neverov, V. V.; Voroh, D. A.; Blagin, E. V.

    2018-03-01

    New methods and means for monitoring working condition of the rotating elements of steam compressor unit such as blade ring of the impeller and gears of multiplier are considered. Blade control is carried out by the signalling device of pre-emergency deformation of impeller blades. Control of the gears condition is carried out by apparatus system which allows to analyse change of the signal form caused by the gears wear. Influence of the wear types on the typical information parameters of the analysed signals is described. Technical characteristics of the devices and experimental research results are presented. Described control systems allow to detect deviations equal to 1-2% from initial condition. Application of such systems gives the opportunity to improve fault diagnosis and maintenance in 2-3 times.

  19. Experiments with linear compressors for phase shifting in pulse tube crycoolers

    NASA Astrophysics Data System (ADS)

    Lewis, Michael; Bradley, Peter; Radebaugh, Ray

    2012-06-01

    For the past year NIST has been investigating the use of mechanical phase shifters as warm expanders for pulse tube cryocoolers. Unlike inertance tubes, which have a limited phase shifting ability at low acoustic powers, mechanical phase shifters have the ability to provide nearly any phase angle between the mass flow and the pressure. We discuss our results with experiments and modeling on a commercially available miniature linear compressor operating as an expander on the warm-end of a 4 K pulse tube, whose temperature is nominally about 35 K. We also present results on experiments with a linear compressor operating at room temperature but coupled to the 4 K stage through secondary regenerators and secondary pulse tubes. Experiments on a small pulse tube test apparatus with both 4He and 3He showed improved efficiency when using the mechanical expander over that of inertance tubes. Phase locking techniques using function generators and power amplifiers for control of phase angle are detailed. The use of expanders demonstrates flexible control in optimizing phase angles for improved cryocooler performance.

  20. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    NASA Astrophysics Data System (ADS)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  1. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  2. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors rated...

  3. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors rated...

  4. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...

  5. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...

  6. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...

  7. 49 CFR 192.736 - Compressor stations: Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...

  8. 33 CFR 154.826 - Vapor compressors and blowers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor in... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...

  9. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  10. Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors

    NASA Astrophysics Data System (ADS)

    Matveev, V.; Goriachkin, E.; Volkov, A.

    2018-01-01

    The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  11. 23. Station Compressor Room 1 with Air Compressors and Accumulator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Station Compressor Room 1 with Air Compressors and Accumulator Tanks, view to the south. One of the two large station air compressor units used for depressing the draft tube water level is visible atop a concrete pedestal on the left side of photograph (the second identical compressor is located in an adjacent room). Two of the six station air accumulator tanks are visible in the background. The smaller station service air compressor is visible in right foreground of the photograph was installed in the early 1980s, and replaced the original station service air compressor. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  12. Stage effects on stalling and recovery of a high-speed 10-stage axial-flow compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copenhaver, W.W.

    1988-01-01

    Results of a high-speed 10-stage axial-flow compressor test involving overall compressor and individual stage performance while stalling and operating in quasi-steady rotating stall are described. Test procedures and data-acquisition methods used to obtain the dynamic stalling and quasi-steady in-stall data are explained. Unstalled and in-stall time-averaged data obtained from the compressor operating at five different shaft speeds and one off-schedule variable vane condition are presented. Effects of compressor speed and variable geometry on overall compressor in-stall pressure rise and hysteresis extent are illustrated through the use of quasi-steady-stage temperature rise and pressure-rise characteristics. Results indicate that individual stage performance duringmore » overall compressor rotating stall operation varies considerably throughout the length of the compressor. The measured high-speed 10-stage test compressor individual stage pressure and temperature characteristics were input into a stage-by-stage dynamic compressor performance model. Comparison of the model results and measured pressures provided the additional validation necessary to demonstrate the model's ability to predict high-speed multistage compressor stalling and in-stall performance.« less

  13. Investigation of Performance of Axial-Flow Compressor of XT-46 Turbine-Propeller Engine. II - Performance of Revised Compressor at Design Equivalent Speed. II; Performance of Revised Compressor at Design Equivalent Speed

    NASA Technical Reports Server (NTRS)

    Creagh, John W. R.

    1950-01-01

    The compressor from the XT-46 turbine-propeller engine was revised by removing the last two rows of stator blades and by eliminating the interstage leakage paths described in a previous report. With the revised compressor, the flow choking point shifted upstream into the last rotor-blade row but the maximum weight flow was not increased over that of the original compressor. The flow range of the revised compressor was reduced to about two-thirds that obtained with the original compressor. The later stages of the compressor did not produce the design static-pressure increase probably because of excessive boundary-layer build-up in this region. Measurements obtained in the ninth-stage stator showed that the performance up to this station was promising but that the last three stages of the compressor were limiting the useful operating range of the preceding stages. Some modifications in flow-passage geometry and blade settings are believed to be necessary, however, before any major improvements in over-all compressor performance can be obtained.

  14. Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard

    2017-08-01

    Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.

  15. Three-dimensional Aerodynamic Instability in Multi-stage Axial Compressors

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi

    2003-01-01

    Four separate tasks are reported. The first task: A Computational Model for Short Wavelength Stall Inception and Development In Multi-Stage Compressors; the second task: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors; the third task:Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37; and the fourth task:Development of Circumferential Inlet Distortion through a Representative Eleven Stage High-speed axial compressor. The common theme that threaded throughout these four tasks is the conceptual framework that consists of quantifying flow processes at the fadcompressor blade passage level to define the compressor performance characteristics needed for addressing physical phenomena such compressor aerodynamic instability and compressor response to flow distoriton with length scales larger than compressor blade-to-blade spacing at the system level. The results from these two levels can be synthesized to: (1) simulate compressor aerodynamic instability inception local to a blade rotor tip and its development from a local flow event into the nonlinear limit cycle instability that involves the entire compressor as was demonstrated in the first task; (2) determine the conditions under which compressor stability assessment based on two-dimensional model may not be adequate and the effects of self-induced flow distortion on compressor stability limit as in the second task; (3) quantify multistage compressor response to inlet distortion in stagnation pressure as illustrated in the fourth task; and (4) elucidate its potential applicability for compressor map generation under uniform as well as non-uniform inlet flow given three-dimensional Navier-Stokes solution for each individual blade row as was demonstrated in the third task.

  16. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  17. A design study of a reaction control system for a V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1983-01-01

    Attention is given to a short takeoff vertical landing (STOVL) aircraft reaction control system (RCS) design study. The STOVL fighter/attack aircraft employs an existing turbofan engine, and its hover requirement places a premium on weight reduction, which eliminates prospective nonairbreathing RCSs. A simple engine compressor bleed RCS degrades overall performance to an unacceptable degree, and the supersonic requirement precludes the large volume alternatives of thermal or ejector thrust augmentation systems as well as the ducting of engine exhaust gases and the use of a dedicated turbojet. The only system which addressed performance criteria without requiring major engine modifications was a dedicated load compressor driven by an auxilliary power unit.

  18. Preliminary compressor design study for an advanced multistage axial flow compressor

    NASA Technical Reports Server (NTRS)

    Marman, H. V.; Marchant, R. D.

    1976-01-01

    An optimum, axial flow, high pressure ratio compressor for a turbofan engine was defined for commercial subsonic transport service starting in the late 1980's. Projected 1985 technologies were used and applied to compressors with an 18:1 pressure ratio having 6 to 12 stages. A matrix of 49 compressors was developed by statistical techniques. The compressors were evaluated by means of computer programs in terms of various airline economic figures of merit such as return on investment and direct-operating cost. The optimum configuration was determined to be a high speed, 8-stage compressor with an average blading aspect ratio of 1.15.

  19. The design of a small linear-resonant, split Stirling cryogenic refrigerator compressor

    NASA Technical Reports Server (NTRS)

    Ackermann, R. A.

    1985-01-01

    The development of a small linear-resonant compressor for use in a 1/4-watt, 78K, split Stirling cryogenic refrigerator is discussed. The compressor contains the following special features: (1) a permanent-magnet linear motor; (2) resonant dynamics; (3) dynamic balancing; and (4) a close-clearance seal between the compressor piston and cylinder. This paper describes the design of the compressor, and presents component test data and system test data for the compressor driving a 1/4-watt expander.

  20. Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motriuk, R.W.; Harvey, D.P.

    1998-08-01

    High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This papermore » considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.« less

  1. 78 FR 55072 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... Project Transco proposes to add a new compressor unit to its existing Compressor Station 85 in Choctaw County, Alabama and up-rate an existing compressor unit at its existing Compressor Station 83 in Mobile... 225,000 dekatherms per day (dth/d) from Compressor Station 85 Receipt Points southward to the...

  2. Next Generation Hydrogen Station Composite Data Products: Retail Stations |

    Science.gov Websites

    -Cool of -40°C CDP RETAIL INFR 57, 9/25/17 Cost Compressor Operation Cost CDP RETAIL INFR 39, 9/25/17 Station Cost by Daily Capacity CDP RETAIL INFR 40, 9/25/17 Average Station Cost by Category CDP RETAIL INFR 41, 9/25/17 Station Cost CDP RETAIL INFR 42, 9/25/17 Station Cost by Type CDP RETAIL INFR 43, 9/25

  3. Using a shock control bump to improve the performance of an axial compressor blade section

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2017-03-01

    Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks-Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

  4. Experimental Studies on a Single Stage Stirling Type Pulse Tube Cryocooler Driven by Oil-Lubricated Compressor

    NASA Astrophysics Data System (ADS)

    Jia, Ren; Jianying, Hu; Ercang, Luo; Xiaotao, Wang

    2010-04-01

    Because lubricating oil for moving parts is not allowed to go into the pulse tube cryocooler, Stirling type pulse tube cryocoolers are generally driven by oil-free compressors although oil-lubricated compressors are much cheaper and facile. Recently, it was proposed that an acoustic transparent and oil blocking diaphragm could be employed to separate the compressor and the cryocooler. Thus, the cryocooler can be driven by oil-lubricated compressors. In this paper, a pulse tube cryocooler is designed to match a crankcase compressor. Although the efficiency of the crankcase compressor is lower compared with the oil-free linear compressor, the crankcase compressor can easily work at lower frequency which results in higher efficiency for the cryocooler. So the relative high performance of the whole system can be maintained. In this system, the cryocooler delivers 28.5 W of cooling at 80 K with 680 W of electrical input power and operates at 15 Hz. The corresponding Carnot efficiency is 11.52%.

  5. Consideration of Sludge Formation in HFC-134a / Polyol Ester oil Refrigeration System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsutomu; Yamamoto, Tethuya; Simizu, Yasuhiko; Nakayama, Yoshinori; Takizawa, Kikuo

    A refrigeration test employing HFC-134a and polyol ester oil was carried out in order to make clear the causes of the sludge formation in the capillary tube. Compressors used were two types: a hermetic reciprocating compressor and a rotary compressor. Installed dryer contained desiccant of the compound zeolite type. The results showed that the amount of capillary sludge increased as the compressor temperature rose. The capillary sludge was determined to consist of desiccant and metal dust for the reciprocating compressor, and of tar-like substance for the rotary compressor. Thermal stability test which was used to check the degree of deterioration of the ester oil, suggested that the presence of desiccant and high compressor temperature might produce tar-like substance by the break down and polymerization of the ester oil. In addition, it was confirmed that factors affecting the sludge formation were the dirtiness of the refrigeration circuit for the reciprocating compressor, and the presence of desiccant, for the rotary compressor.

  6. Comprehensive model of a hermetic reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Yang, B.; Ziviani, D.; Groll, E. A.

    2017-08-01

    A comprehensive simulation model is presented to predict the performance of a hermetic reciprocating compressor and to reveal the underlying mechanisms when the compressor is running. The presented model is composed of sub-models simulating the in-cylinder compression process, piston ring/journal bearing frictional power loss, single phase induction motor and the overall compressor energy balance among different compressor components. The valve model, leakage through piston ring model and in-cylinder heat transfer model are also incorporated into the in-cylinder compression process model. A numerical algorithm solving the model is introduced. The predicted results of the compressor mass flow rate and input power consumption are compared to the published compressor map values. Future work will focus on detailed experimental validation of the model and parametric studies investigating the effects of structural parameters, including the stroke-to-bore ratio, on the compressor performance.

  7. Effect of a curved duct upstream on performance of small centrifugal compressors for automobile turbochargers

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shigeta; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2013-02-01

    Since the automobile turbochargers are installed in an engine compartment with limited space, the ducts upstream of the turbocharger compressor may be curved in a complex manner. In the present paper, the effect of a curved duct upstream on performance of small centrifugal compressors for automobile turbochargers is discussed. The computational fluid dynamics (CFD) analysis of a turbocharger compressor validated for the compressor model with the straight pipe applied to the compressor with the curved pipe are executed, and the deterioration of the performance for the curved pipe is confirmed. It is also found that the deterioration of compressor performance is caused by the interaction of the secondary flow and the impeller.

  8. Aerodynamic Design of Axial-flow Compressors. Volume III

    NASA Technical Reports Server (NTRS)

    Johnson, Irving A; Bullock, Robert O; Graham, Robert W; Costilow, Eleanor L; Huppert, Merle C; Benser, William A; Herzig, Howard Z; Hansen, Arthur G; Jackson, Robert J; Yohner, Peggy L; hide

    1956-01-01

    Chapters XI to XIII concern the unsteady compressor operation arising when compressor blade elements stall. The fields of compressor stall and surge are reviewed in Chapters XI and XII, respectively. The part-speed operating problem in high-pressure-ratio multistage axial-flow compressors is analyzed in Chapter XIII. Chapter XIV summarizes design methods and theories that extend beyond the simplified two-dimensional approach used previously in the report. Chapter XV extends this three-dimensional treatment by summarizing the literature on secondary flows and boundary layer effects. Charts for determining the effects of errors in design parameters and experimental measurements on compressor performance are given in Chapters XVI. Chapter XVII reviews existing literature on compressor and turbine matching techniques.

  9. Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Jones, Jack A. (Inventor)

    1992-01-01

    A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power.

  10. Temperature Swing Adsorption Compressor Development

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Mulloth, Lila M.; Affleck, Dave L.

    2001-01-01

    Closing the oxygen loop in an air revitalization system based on four-bed molecular sieve and Sabatier reactor technology requires a vacuum pump-compressor that can take the low-pressure CO, from the 4BMS and compress and store for use by a Sabatier reactor. NASA Ames Research Center proposed a solid-state temperature-swing adsorption (TSA) compressor that appears to meet performance requirements, be quiet and reliable, and consume less power than a comparable mechanical compressor/accumulator combination. Under this task, TSA compressor technology is being advanced through development of a complete prototype system. A liquid-cooled TSA compressor has been partially tested, and the rest of the system is being fabricated. An air-cooled TSA compressor is also being designed.

  11. The analysis of the flow with water injection in a centrifugal compressor stage using CFD simulation

    NASA Astrophysics Data System (ADS)

    Michal, Tomášek; Richard, Matas; Tomáš, Syka

    2017-09-01

    This text deals with the principle of direct cooling of the pressure gas in a centrifugal compressor based on evaporation of the additional fluid phase in a control domain. A decrease of the gas temperature is reached by taking the heat, which is required for evaporation of the fluid phase. The influence of additional fluid phase on the parameters of the multiphase flow is compared with the ideal gas simulation in the defined domain and with the same boundary conditions.

  12. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Benton, Nathanael; Burns, Patrick

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressormore » replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.« less

  13. The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, R.G.; Finney, D.; Davidson, D.F.

    1988-07-01

    The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor is presented. A power electronic converter is applied to control the speed of a 5-kV motor. The motor is directly coupled to a 6500 r/min compressor and replaced a steam turbine. Dual converters are used in a twelve-pulse arrangement at both the utility and the motor. The motor is of solid rotor construction, with dual 30/sup 0/ displaced stator windings. Finite-element analysis is used to optimize the motor designs for use with a variable-frequency static converter. Full-power tests are completed whichmore » confirm theoretical predictions on losses, performance, and operation. The electrical drive takes up considerably less space and is much more efficient than the steam turbine it replaced.« less

  14. Kinetics of a gas adsorption compressor

    NASA Technical Reports Server (NTRS)

    Chan, C. K.; Tward, E.; Elleman, D. D.

    1984-01-01

    Chan (1981) has suggested that a process based on gas adsorption could be used as a means to drive a Joule-Thomson (J-T) device. The resulting system has several advantages. It is heat powered, it has no sealing, there are no mechanical moving parts, and no active control is required. In the present investigation, a two-phase model is used to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on a consideration of complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The experimental arrangement for two sets of kinetic tests is discussed, and data regarding the experimental results are presented in graphs. For a theoretical study, a two-phase model was developed to predict the transient behavior of the compressor. A computer code was written to solve the governing equations with the aid of a standard forward marching predictor-corrector method.

  15. Miniature Long-life Space Cryocoolers

    NASA Technical Reports Server (NTRS)

    Tward, E.

    1993-01-01

    TRW has designed, built, and tested a miniature integral Stirling cooler and a miniature pulse tube cooler intended for long-life space application. Both efficient, low-vibration coolers were developed for cooling IR sensors to temperatures as low as 50 K on lightsats. The vibrationally balanced nonwearing design Stirling cooler incorporates clearance seals maintained by flexure springs for both the compressor and the drive displacer. The design achieved its performance goal of 0.25 W at 65 K for an input power to the compressor of 12 W. The cooler recently passed launch vibration tests prior to its entry into an extended life test and its first scheduled flight in 1995. The vibrationally balanced, miniature pulse tube cooler intended for a 10-year long-life space application incorporates a flexure bearing compressor vibrationally balanced by a motor-controlled balancer and a completely passive pulse tube cold head.

  16. Simplified Model and Response Analysis for Crankshaft of Air Compressor

    NASA Astrophysics Data System (ADS)

    Chao-bo, Li; Jing-jun, Lou; Zhen-hai, Zhang

    2017-11-01

    The original model of crankshaft is simplified to the appropriateness to balance the calculation precision and calculation speed, and then the finite element method is used to analyse the vibration response of the structure. In order to study the simplification and stress concentration for crankshaft of air compressor, this paper compares calculative mode frequency and experimental mode frequency of the air compressor crankshaft before and after the simplification, the vibration response of reference point constraint conditions is calculated by using the simplified model, and the stress distribution of the original model is calculated. The results show that the error between calculative mode frequency and experimental mode frequency is controlled in less than 7%, the constraint will change the model density of the system, the position between the crank arm and the shaft appeared stress concentration, so the part of the crankshaft should be treated in the process of manufacture.

  17. Performance monitoring can boost turboexpander efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, R.

    1982-07-05

    This paper discusses ways of improving the productivity of the turboexpander/refrigeration system's radial expander and radial compressor through systematic review of component performance. It reviews several techniques to determine the performance of an expander and compressor. It suggests that any performance improvement program requires quantifying the performance of separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. The model is used to quantify the economic benefits of any change in the system, eithermore » a change in operating procedures or a hardware modification. Topics include proper ways of using antisurge control valves and modifying flow rate/shaft speed (Q/N). It is noted that compressor efficiency depends on the incidence angle of blade at the rotor leading edge and the angle of the incoming gas stream.« less

  18. A modeling study of a centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, P.; Shapiro, H.N.

    1998-12-31

    A centrifugal compressor, which is part of a chlorofluorocarbon R-114 chiller installation, was investigated, operating with a new refrigerant, hydrofluorocarbon R-236ea, a proposed alternative to R-114. A large set of R-236ea operating data, as well as a limited amount of R-114 data, were available for this study. A relatively simple analytical compressor model was developed to describe compressor performance. The model was built upon a thorough literature search, experimental data, and some compressor design parameters. Two original empirical relations were developed, providing a new approach to the compressor modeling. The model was developed in a format that would permit itmore » to be easily incorporated into a complete chiller simulation. The model was found to improve somewhat on the quantitative and physical aspects of a compressor model of the same format found in the literature. It was found that the compressor model is specific to the particular refrigerant.« less

  19. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  20. Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1955-02-21

    The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.

  1. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method.

    PubMed

    Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng

    2017-08-09

    Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  2. Preliminary design study of advanced multistage axial flow core compressors

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.

    1977-01-01

    A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.

  3. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  4. Field testing energy-saving hermetic compressors in residential refrigerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber, R.S.; Middleton, M.G.

    The design of an energy-saving compressor for low back pressure applications is reviewed. Calorimeter performance results are stated for two sizes of the efficient design and compared with performance test results for a standard compressor. Power consumption of a refrigerator-freezer is given with a standard compressor and with the energy-saving compressor. The preparation of the refrigerators used in the field test is discussed, along with the criteria used in selecting the instrumentation for the project. Results of the energy-saving compressor in the field test, along with a comparison to a standard production compressor, are presented. Some conclusions are drawn, basedmore » on the data, in relation to important factors in residential refrigerator power consumption.« less

  5. Field testing energy-saving hermetic compressors in residential refrigerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber, R.S.; Middleton, M.G.

    The design of an energy saving compressor for low back pressure applications is reviewed. Calorimeter performance results are stated for two sizes of the efficient design and compared with performance test results for a standard compressor. Power consumption of a refrigerator-freezer is given with a standard compressor and with the energy saving compressor. The preparation of the refrigerators used in the field test are discussed along with the criteria used in selecting the instrumentation for the project. Results of the energy saving compressor in the field test along with a comparison to a standard production compressor are presented. Some conclusionsmore » are drawn, based on the data, in relation to important factors in residential refrigerator power consumption.« less

  6. Trends in high performance compressors for petrochemical and natural gas industry in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  7. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...

  8. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...

  9. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...

  10. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...

  11. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...

  12. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  13. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  14. Supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

  15. Investigation of TESCOM Driveshaft Assembly Failure

    DTIC Science & Technology

    1998-10-01

    ratio, two-stage axial -flow compressor with a corrected tip speed of 1250 ft/sec at design . The flowpath casing diameter downstream of the inlet... Design of a 1250 ft/sec. Low-Aspect-Ratio, Single-Stage Axial -Flow Compressor , AFAPL-TR-79-2096, Air Force Aero Propulsion Laboratory, Wright...The TESCOM compressor described in this report is a 2.5-stage, low aspect ratio, axial -flow compressor . The performance objectives of this compressor

  16. Development of a J-T Micro Compressor

    NASA Astrophysics Data System (ADS)

    Champagne, P.; Olson, J. R.; Nast, T.; Roth, E.; Collaco, A.; Kaldas, G.; Saito, E.; Loung, V.

    2015-12-01

    Lockheed Martin has developed and tested a space-quality compressor capable of delivering closed-loop gas flow with a high pressure ratio, suitable for driving a Joule- Thomson cold head. The compressor is based on a traditional “Oxford style” dual-opposed piston compressor with linear drive motors and flexure-bearing clearance-seal technology for high reliability and long life. This J-T compressor retains the approximate size, weight, and cost of the ultra-compact, 200 gram Lockheed Martin Pulse Tube Micro Compressor, despite the addition of a flow-rectifying system to convert the AC pressure wave into a steady flow.

  17. Extended range heat pump system and centrifugal compressor for use therewith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, J.F.

    1988-04-26

    Improvements in heat pump systems having indoor and outdoor heat exchangers and at least two compressors for supplying a refrigerant medium under pressure thereto, and means for circulating the medium through the heat exchangers, the improvement is described comprising a selector valve associated with each of the compressors. The selector valves provide that any combination and any one or more of the compressors can be selected for operation, each of the selector valves having a first operating condition placing the associated compressor in series with the heat exchangers and a second operating condition whereby the associated compressor is bypassed, whenmore » the selector valves for at least two of the compressors are simultaneously in their first positions a flow path is established through the associated compressors and through the heat exchangers all in series, a two position changeover valve and associated conduit means. The changeover valve has a first position wherein at least one of the compressors is connected in series with the first and second heat exchangers to produce flow of the medium in one direction therethrough and a second position whereby at least one compressor is connected to produce flow of the medium in the opposite direction through the heat exchangers.« less

  18. Vapor cycle cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midolo, L.

    1980-07-08

    A description is given of a rotary vane cooling system including a two phase coolant, comprising: a vaporizable liquid working medium within said cooling system; an evaporator having an inlet and an outlet; a condenser having an inlet and an outlet; a two stage rotary vane compressor, including means for connecting the outlet of a first compressor stage to the inlet of a second compressor stage; said two stage rotary vane compressor being connected between the outlet of said evaporator and the inlet at said condenser; an expansion device connected between the outlet of said condenser and the inlet ofmore » said evaporator; said two stage compressor including a housing having a chamber therein, a rotor on a rotatable shaft; said rotor being positioned within said chamber; said rotor having a plurality of slidable vanes which form a plurality of cells, within said chamber, which change in volume as the rotor rotates; said plurality of cells including a pluraity of cells on one side of said rotor which corresponds to said first compressor stage and a plurality of cells on the other side of said rotor which corresponds to said second compressor stage; said cells corresponding to said first compressor stage having a greater maximum volume than the cells corresponding to said second compressor stage; and means for supplying at least a portion of the vapor resulting from the expansion in said expansion device to the inlet of the second compressor stage for providing cooling in the inlet of said second compressor stage.« less

  19. Novel Long Stroke Reciprocating Compressor for Energy Efficient Jaggery Making

    NASA Astrophysics Data System (ADS)

    Rane, M. V.; Uphade, D. B.

    2017-08-01

    Novel Long Stroke Reciprocating Compressor is analysed for jaggery making while avoiding burning of bagasse for concentrating juice. Heat of evaporated water vapour along with small compressor work is recycled to enable boiling of juice. Condensate formed during heating of juice is pure water, as oil-less compressor is used. Superheat of compressor is suppressed by flow of superheated vapours through condensate. It limits heating surface temperature and avoids caramelization of sugar. Thereby improves quality of jaggery and eliminates need to use chemicals for colour improvement. Stroke to bore ratio is 0.6 to 1.2 in conventional reciprocating drives. Long stroke in reciprocating compressors enhances heat dissipation to surrounding by providing large surface area and increases isentropic efficiency by reducing compressor outlet temperature. Longer stroke increases inlet and exit valve operation timings, which reduces inertial effects substantially. Thereby allowing use of sturdier valves. This enables handling liquid along with vapour in compressors. Thereby supressing the superheat and reducing compressor power input. Longer stroke increases stroke to clearance ratios which increases volumetric efficiency and ability of compressor to compress through higher pressure ratios efficiently. Stress-strain simulation is performed in SolidWorks for gear drive. Long Stroke Reciprocating Compressor is developed at Heat Pump Laboratory, stroke/bore 292 mm/32 mm. It is operated and tested successfully at different speeds for operational stability of components. Theoretical volumetric efficiency is 93.9% at pressure ratio 2.0. Specific energy consumption is 108.3 kWhe/m3 separated water, considering free run power.

  20. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.

  1. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.55-3... the following parameters: (1) The compressor type (screw, sliding vane, etc.). (2) Number of compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters...

  2. ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  4. New concept single screw compressors and their manufacture technology

    NASA Astrophysics Data System (ADS)

    Feng, Q.; Liu, F.; Chang, L.; Feng, C.; Peng, C.; Xie, J.; van den Broek, M.

    2017-08-01

    Single screw compressors were generally acknowledged as one of the nearly perfect machines by compressor researchers and manufacturers. However the rapid wear of the star-wheel in a single screw compressor during operation is a key reason why it hasn’t previously joined the main current compressors’ market. After more than ten years of effective work, the authors of this paper have proposed a new concept single screw compressor whose mesh-couple profile is enveloped with multi-column. Also a new design method and manufacture equipment for this kind of compressor have been developed and are described in this paper. A lot of prototype tests and a long period of industrial operations under full loading conditions have shown that the mesh-couple profiles of the new concept single compressors have excellent anti-wearness.

  5. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  6. Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)

    2001-01-01

    This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to describe finite amplitude disturbances in high-speed compressors. Results are presented for the response of a transonic compressor subjected to inlet distortions.

  7. 49 CFR 192.167 - Compressor stations: Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...

  8. 49 CFR 192.167 - Compressor stations: Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...

  9. Oil flow at the scroll compressor discharge: visualization and CFD simulation

    NASA Astrophysics Data System (ADS)

    Xu, Jiu; Hrnjak, Pega

    2017-08-01

    Oil is important to the compressor but has other side effect on the refrigeration system performance. Discharge valves located in the compressor plenum are the gateway for the oil when leaving the compressor and circulate in the system. The space in between: the compressor discharge plenum has the potential to separate the oil mist and reduce the oil circulation ratio (OCR) in the system. In order to provide information for building incorporated separation feature for the oil flow near the compressor discharge, video processing method is used to quantify the oil droplets movement and distribution. Also, CFD discrete phase model gives the numerical approach to study the oil flow inside compressor plenum. Oil droplet size distributions are given by visualization and simulation and the results show a good agreement. The mass balance and spatial distribution are also discussed and compared with experimental results. The verification shows that discrete phase model has the potential to simulate the oil droplet flow inside the compressor.

  10. Technology’s present situation and the development prospects of energy efficiency monitoring as well as performance testing & analysis for process flow compressors

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhao, Y.; Wang, L.; Yang, Q.; Liu, G.; Tang, B.; Xiao, J.

    2017-08-01

    In this paper, the background of performance testing of in-service process flow compressors set in user field are introduced, the main technique barriers faced in the field test are summarized, and the factors that result in real efficiencies of most process flow compressors being lower than the guaranteed by manufacturer are analysed. The authors investigated the present operational situation of process flow compressors in China and found that low efficiency operation of flow compressors is because the compressed gas is generally forced to flow back into the inlet pipe for adapting to the process parameters variety. For example, the anti-surge valve is always opened for centrifugal compressor. To improve the operation efficiency of process compressors the energy efficiency monitoring technology was overviewed and some suggestions are proposed in the paper, which is the basis of research on energy efficiency evaluation and/or labelling of process compressors.

  11. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan

    2015-12-01

    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  12. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  13. 10 CFR 54.21 - Contents of application-technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...), motors, diesel generators, air compressors, snubbers, the control rod drive, ventilation dampers..., the reactor vessel, the reactor coolant system pressure boundary, steam generators, the pressurizer...

  14. 10 CFR 54.21 - Contents of application-technical information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...), motors, diesel generators, air compressors, snubbers, the control rod drive, ventilation dampers..., the reactor vessel, the reactor coolant system pressure boundary, steam generators, the pressurizer...

  15. Layout of bunch compressor for Beijing XFEL test facility

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongwei; Du, Yingchao; He, Xiaozhong; Yang, Yufeng

    2006-10-01

    In this paper, we describe the layout of the bunch compressor for the Beijing XFEL test facility (BTF). Our bunch compressor setup is different from the usual one due to the space limit. The compensation X-BAND cavity and the first bunch compressor are separate in distance. The electron bunch is decelerated first and then accelerated to enter the first bunch compressor. The simulation result shows that our setup works well, and the nonlinear term is well compensated. Also, we present the result about the CSR emittance dilution study. Finally, we develop a program to study microbunch instability in the second BTF bunch compressor.

  16. Three-wheel air turbocompressor for PEM fuel cell systems

    DOEpatents

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  17. Performance of J-33-A-21 and J-33-A-23 Compressors with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Beede, William L.

    1948-01-01

    In an investigation of the J-33-A-21 and the J-33-A-23 compressors with and without water injection, it was discovered that the compressors reacted differently to water injection although they were physically similar. An analysis of the effect of water injection on compressor performance and the consequent effect on matching of the compressor and turbine components in the turbojet engine was made. The analysis of component matching is based on a turbine flow function defined as the product of the equivalent weight flow and the reciprocal of the compressor pressure ratio.

  18. CF6 Jet Engine Diagnostics Program: High pressure compressor clearance investigation

    NASA Technical Reports Server (NTRS)

    Radomski, M. A.

    1982-01-01

    The effects of high pressure compressor clearance changes on engine performance were experimentally determined on a CF6 core engine. The results indicate that a one percent reduction in normalized average clearance, expressed as a fraction of airfoil length, improves compressor efficiency by one percent. Compressor clearances are reduced by the application of rotor bore cooling, insulation of the stator casing, and use of a low coefficient of expansion material in the aft stages. This improvement amounts to a reduction of normalized average clearance of 0.78 percent, relative to CF6-60 compressor, which is equivalent to an improvement in compressor efficiency of 0.78 percent.

  19. 49 CFR 192.171 - Compressor stations: Additional safety equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Additional safety equipment... Pipeline Components § 192.171 Compressor stations: Additional safety equipment. (a) Each compressor station must have adequate fire protection facilities. If fire pumps are a part of these facilities, their...

  20. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  1. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  2. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  3. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 56.13010...

  4. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 57.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...

  5. Performance of Compressor of XJ-41-V Turbojet Engine. 1 - Preliminary Investigation at Equivalent Compressor Speed of 8000 rpm

    DTIC Science & Technology

    1949-01-01

    Aircraft Engine Research Laboratory Cleveland, Ohio Restriction Cancelled ^mmmmmmmm ^Md’^| 5;-;» <^~ k NATIONAL ADVISORY COMMTTErUf0...AEEONAUTICS RESEARCH MEMORANDUM for the Air Materiel Command’, Army Air Forces PERFORMANCE OF COMPRESSOR OF XJ-41-V TURBOJET ENGINE I - PRELIMINARY...of the XJ-41-V turbojet - engine compressor. . .’ The complete compressor was amounted on a collecting chamber having an annular air-flow

  6. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  7. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2012-05-10

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of amore » separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft configuration shall be retained as the reference arrangement for S-CO{sub 2} cycle power converter preconceptual designs. Improvements to the ANL Plant Dynamics Code have been carried out. The major code improvement is the introduction of a restart capability which simplifies investigation of control strategies for very long transients. Another code modification is transfer of the entire code to a new Intel Fortran complier; the execution of the code using the new compiler was verified by demonstrating that the same results are obtained as when the previous Compaq Visual Fortran compiler was used.« less

  8. Improving of the working process of axial compressors of gas turbine engines by using an optimization method

    NASA Astrophysics Data System (ADS)

    Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.

    2017-08-01

    The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  9. Application of Risk-Based Inspection method for gas compressor station

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liang, Wei; Qiu, Zeyang; Lin, Yang

    2017-05-01

    According to the complex process and lots of equipment, there are risks in gas compressor station. At present, research on integrity management of gas compressor station is insufficient. In this paper, the basic principle of Risk Based Inspection (RBI) and the RBI methodology are studied; the process of RBI in the gas compressor station is developed. The corrosion loop and logistics loop of the gas compressor station are determined through the study of corrosion mechanism and process of the gas compressor station. The probability of failure is calculated by using the modified coefficient, and the consequence of failure is calculated by the quantitative method. In particular, we addressed the application of a RBI methodology in a gas compressor station. The risk ranking is helpful to find the best preventive plan for inspection in the case study.

  10. Mobile refrigeration system for precool and warm up of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  11. Performance analysis of the electric vehicle air conditioner by replacing hydrocarbon refrigerant

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Tjahjana, D. D. D. P.

    2017-01-01

    The thermal comfort in passenger cabins needs an automotive air-conditioning system. The electric vehicle air conditioner system is driven by an electric compressor which includes a compressor and an electric motor. Almost air-conditioning system uses CFC-12, CFC-22 and HFC-134a as refrigerant. However, CFC-12 and CFC-22 will damage the ozone layer. The extreme huge global warming potentials (GWP) values of CFC-12, CFC-22, and HFC-134a represent the serious greenhouse effect of Earth. This article shows new experimental measurements and analysis by using a mixture of HC-134 to replace HFC-134a. The result is a refrigerating effect, the coefficient of performance and energy factor increase along with cooling capacity, both for HFC-134a and HC-134. The refrigerating effect of HC-134 is almost twice higher than HFC-134a. The coefficient of performance value of HC-134 is also 36.42% greater than HFC-134a. Then, the energy factor value of HC-134 is 3.78% greater than HFC-134a.

  12. 77 FR 71585 - Eastern Shore Natural Gas Company; Notice of Intent To Prepare an Environmental Assessment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... Compressor Station Upgrade Project and Request for Comments on Environmental Issues The staff of the Federal... discuss the environmental impacts of the Daleville Compressor Station Upgrade Project (Project) involving... compressor engines at its existing Daleville Compressor Station in Chester County, Pennsylvania. One...

  13. 78 FR 42062 - Columbia Gas Transmission, LLC; Notice of Intent to Prepare an Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... facilities: New compressor station (Redd Farm Compressor Station) on Columbia's existing Line 1570 in... setting; Modifications to the Smithfield Compressor Station consisting of upgrades to the existing... coolers; Modifications to the Glenville Compressor Station by installing two gas-fired turbines, each...

  14. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  15. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...

  16. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure...

  17. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...

  18. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure...

  19. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, FRANCE COMPRESSOR PRODUCTS EMISSIONS PACKING, PHASE I REPORT

    EPA Science Inventory

    The report presents results of a Phase I test of emissions packing technology offered by France Compressor Products which is designed to reduce methane leaks from compressor rod packing when a compressor is in a standby and pressurized state. This Phase I test was executed betwee...

  1. 30 CFR 56.13012 - Compressor air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressor air intakes. 56.13012 Section 56...

  2. 30 CFR 57.13012 - Compressor air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressor air intakes. 57.13012 Section 57...

  3. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  4. 21 CFR 868.6250 - Portable air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...

  5. Miniature Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  6. The measurement of energy consumption by exercise bikes

    NASA Astrophysics Data System (ADS)

    Jwo, Ching-Song; Chien, Chao-Chun; Jeng, Lung-Yue

    2006-11-01

    This paper is intended as an investigation is that to measure the amount of energy consumption can be consumed by riding bikes and also could recycle the consuming energy during exercising. Exercisers ride the bicycle inputting the driving force through a compressor of refrigeration system, which can circulate the refrigerant in the system and calculate the calorific capacity from the spread of the condenser. In addition, we can make up chiller water in the evaporator. Experiments were performed to prove the hypotheses. Therefore, this experiment has designed the sports goods which reach the purpose of doing exercise, measuring accurately the consuming calorific capacity and having the function of making chiller water. After exercising, you can drink the water producing during exercise and apply on the system of air conditioner, which attains two objectives.

  7. Integrated Evaluation of Closed Loop Air Revitalization System Components

    NASA Technical Reports Server (NTRS)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  8. Inlet Unstart Propulsion Integration Wind Tunnel Test Program Completed for High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.

  9. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuelmore » economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.« less

  10. Chaotic Time Series Analysis Method Developed for Stall Precursor Identification in High-Speed Compressors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A new technique for rotating stall precursor identification in high-speed compressors has been developed at the NASA Lewis Research Center. This pseudo correlation integral method uses a mathematical algorithm based on chaos theory to identify nonlinear dynamic changes in the compressor. Through a study of four various configurations of a high-speed compressor stage, a multistage compressor rig, and an axi-centrifugal engine test, this algorithm, using only a single pressure sensor, has consistently predicted the onset of rotating stall.

  11. Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft.

    PubMed

    Nathan, Brian J; Golston, Levi M; O'Brien, Anthony S; Ross, Kevin; Harrison, William A; Tao, Lei; Lary, David J; Johnson, Derek R; Covington, April N; Clark, Nigel N; Zondlo, Mark A

    2015-07-07

    A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH4 s(-1) (7.4 ± 4.2 g CH4 s(-1) median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3-73 g CH4 s(-1) range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere.

  12. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  13. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  14. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  15. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  16. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  17. Analyses of the Integration of Carbon Dioxide Removal Assembly, Compressor, Accumulator and Sabatier Carbon Dioxide Reduction Assembly

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Lafuse, Sharon; Smith, Frederick D.; Lu, Sao-Dung; Knox, James C.; Campbell, Mellssa L.; Scull, Timothy D.; Green Steve

    2010-01-01

    A tool has been developed by the Sabatier Team for analyzing/optimizing CO2 removal assembly, CO2 compressor size, its operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and Hz from oxygen generation assembly. Tests had been conducted using CDRA/Simulation compressor set-up at MSFC in 2003. Analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in CDRA desorption. Optimizing the compressor size and compressor operation logic for an integrated closed air revitalization system Is being conducted by the Sabatier Team.

  18. Thermal modelling of a dry revolving vane compressor

    NASA Astrophysics Data System (ADS)

    Ooi, K. T.; Aw, K. T.

    2017-08-01

    The lubricant used in compressors serves to lubricate, to seal the gaps to reduce internal leakage and to a certain extent, to cool. However, a lubricant free compressor is attractive if lubricants become a source of contaminant, or in areas where the compressor needs be placed under any orientation, such as those in military or portable computing. In this paper, a thermal model for a dry revolving vane compressor is presented. This thermal model sets out to predict the steady-state operating temperatures of the compressor components. The lumped thermal conductance method was employed. The results of the components temperature will be presented and discussed. A high potential for overheating is observed at the shaft bearings.

  19. Practical experience with unstable compressors

    NASA Technical Reports Server (NTRS)

    Malanoski, S. B.

    1980-01-01

    Using analytical mathematical modeling techniques for the system components, an attempt is made to gauge the destabilizing effects in a number of compressor designs. In particular the overhung (or cantilevered) compressor designs and the straddle-mounted (or simply supported) compressor designs are examined. Recommendations are made, based on experiences with stable and unstable compressors, which can be used as guides in future designs. High and low pressure compressors which operate well above their fundamental rotor-bearing lateral natural frequencies can suffer from destructive subsynchronous vibration. Usually the elements in the system design which contribute to this vibration, other than the shafting and the bearings, are the seals (both gas labyrinth and oil breakdown bushings) and the aerodynamic components.

  20. Geometric optimization of thermal systems

    NASA Astrophysics Data System (ADS)

    Alebrahim, Asad Mansour

    2000-10-01

    The work in chapter 1 extends to three dimensions and to convective heat transfer the constructal method of minimizing the thermal resistance between a volume and one point. In the first part, the heat flow mechanism is conduction, and the heat generating volume is occupied by low conductivity material (k 0) and high conductivity inserts (kp) that are shaped as constant-thickness disks mounted on a common stem of kp material. In the second part the interstitial spaces once occupied by k0 material are bathed by forced convection. The internal and external geometric aspect ratios of the elemental volume and the first assembly are optimized numerically subject to volume constraints. Chapter 2 presents the constrained thermodynamic optimization of a cross-flow heat exchanger with ram air on the cold side, which is used in the environmental control systems of aircraft. Optimized geometric features such as the ratio of channel spacings and flow lengths are reported. It is found that the optimized features are relatively insensitive to changes in other physical parameters of the installation and relatively insensitive to the additional irreversibility due to discharging the ram-air stream into the atmosphere, emphasizing the robustness of the thermodynamic optimum. In chapter 3 the problem of maximizing exergy extraction from a hot stream by distributing streams over a heat transfer surface is studied. In the first part, the cold stream is compressed in an isothermal compressor, expanded in an adiabatic turbine, and discharged into the ambient. In the second part, the cold stream is compressed in an adiabatic compressor. Both designs are optimized with respect to the capacity-rate imbalance of the counter-flow and the pressure ratio maintained by the compressor. This study shows the tradeoff between simplicity and increased performance, and outlines the path for further conceptual work on the extraction of exergy from a hot stream that is being cooled gradually. The aim of chapter 4 was to optimize the performance of a boot-strap air cycle of an environmental control system (ECS) for aircraft. New in the present study was that the optimization refers to the performance of the entire ECS system, not to the performance of an individual component. Also, there were two heat exchangers, not one, and their relative positions and sizes were not specified in advance. This study showed that geometric optimization can be identified when the optimization procedure refers to the performance of the entire ECS system, not to the performance of an individual component. This optimized features were robust relative to some physical parameters. This robustness may be used to simplify future optimization of similar systems.

  1. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  2. Preliminary Results of Altitude-Wind-Tunnel Investigation of X24C-4B Turbojet Engine. IV - Performance of Modified Compressor. Part 4; Performance of Modified Compressor

    NASA Technical Reports Server (NTRS)

    Thorman, H. Carl; Dupree, David T.

    1947-01-01

    The performance of the 11-stage axial-flow compressor, modified to improve the compressor-outlet velocity, in a revised X24C-4B turbojet engine is presented and compared with the performance of the compressor in the original engine. Performance data were obtained from an investigation of the revised engine in the MACA Cleveland altitude wind tunnel. Compressor performance data were obtained for engine operation with four exhaust nozzles of different outlet area at simulated altitudes from 15,OOO to 45,000 feet, simulated flight Mach numbers from 0.24 to 1.07, and engine speeds from 4000 to 12,500 rpm. The data cover a range of corrected engine speeds from 4100 to 13,500 rpm, which correspond to compressor Mach numbers from 0.30 to 1.00.

  3. Effect of Rotor- and Stator-Blade Modifications on Surge Performance of an 11-Stage Axial-Flow Compressor. I - Original Production Compressor of XJ40-WE-6 Engine

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Essig, Robert H.; Conrad, E. William

    1952-01-01

    An investigation to increase the compressor surge-limit pressure ratio of the XJ40-WE-6 turbojet engine at high equivalent speeds was conducted at the NACA Lewis altitude wind tunnel. This report evaluates the compressor modifications which were restricted to (1) twisting rotor blades (in place) to change blade section angles and (2) inserting new stator diaphragms with different blade angles. Such configuration changes could be incorporated quickly and easily in existing engines at overhaul depots. It was found that slight improvements in the compressor surge limit were possible by compressor blade adjustment. However, some of the modifications also reduced the engine air flow and hence penalized the thrust. The use of a mixer assembly at the compressor outlet improved the surge limit with no appreciable thrust penalty.

  4. Development of a turbine-compressor for 10 kW class neon turbo-Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, Masaki; Yoshida, Shigeru; Sano, Tomonobu; Ozaki, Shinsuke

    2014-01-01

    We are developing 10 kW class turbo-Brayton refrigerator whose working fluid is neon gas. Its high pressure value is 1 MPa and its low pressure value is 0.5 MPa. The refrigerator consists of two turbine-compressors and a heat exchanger. The turbine-compressor has a turbo-expander on one side of its shaft and a turbo-compressor on the other side of the shaft. Two turbo-compressors are connected in series and two turbo-expanders are set in parallel. So, all amount of neon gas is compressed by two stages and each half a mount of neon gas is expanded by one stage. Two turbinecompressors are the same machines and development cost and time are minimized. In this stage, we made one prototype turbine-compressor and installed it in a performance test facility. This paper shows details of the turbine-compressor and refrigerator cooling power simulation results.

  5. An evaluation of 1D loss model collections for the off-design performance prediction of automotive turbocharger compressors

    NASA Astrophysics Data System (ADS)

    Harley, P.; Spence, S.; Early, J.; Filsinger, D.; Dietrich, M.

    2013-12-01

    Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.

  6. Performance characteristics of the Cooper PC-9 centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, R.E.; Neely, R.F.

    1988-06-30

    Mathematical performance modeling of the PC-9 centrifugal compressor has been completed. Performance characteristics curves have never been obtained for them in test loops with the same degree of accuracy as for the uprated axial compressors and, consequently, computer modeling of the top cascade and purge cascades has been very difficult and of limited value. This compressor modeling work has been carried out in an attempt to generate data which would more accurately define the compressor's performance and would permit more accurate cascade modeling. A computer code, COMPAL, was used to mathematically model the PC-9 performance with variations in gas composition,more » flow ratios, pressure ratios, speed and temperature. The results of this effort, in the form of graphs, with information about the compressor and the code, are the subject of this report. Compressor characteristic curves are featured. 13 figs.« less

  7. Comprehensive 3D-elastohydrodynamic simulation of hermetic compressor crank drive

    NASA Astrophysics Data System (ADS)

    Posch, S.; Hopfgartner, J.; Berger, E.; Zuber, B.; Almbauer, R.; Schöllauf, P.

    2017-08-01

    Mechanical, electrical and thermodynamic losses form the major loss mechanisms of hermetic compressors for refrigeration application. The present work deals with the investigation of the mechanical losses of a hermetic compressor crank drive. Focus is on 3d-elastohydrodynamic (EHD) modelling of the journal bearings, piston-liner contact and piston secondary motion in combination with multi-body and structural dynamics of the crank drive elements. A detailed description of the model development within the commercial software AVL EXCITE Power Unit is given in the work. The model is used to create a comprehensive analysis of the mechanical losses of a hermetic compressor. Further on, a parametric study concerning oil viscosity and compressor speed is carried out which shows the possibilities of the usage of the model in the development process of hermetic compressors for refrigeration application. Additionally, the usage of the results in an overall thermal network for the determination of the thermal compressor behaviour is discussed.

  8. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    NASA Astrophysics Data System (ADS)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  9. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  10. 76 FR 69717 - Natural Gas Pipeline Company of America, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... proposed Project would consist of the following: Compressor Station 205--Washington County, Iowa Construct and operate a new 3,550 hp gas-fired compressor unit at Natural's Compressor Station 205 located near... Natural's Compressor Station 205. Install new 10-inch-diameter meter. [[Page 69718

  11. 75 FR 51455 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... loops,\\1\\ construct one new compressor station, add compression at two existing compressor stations, and perform other modifications to five compressor stations. The MSEP would provide about 451 million standard... Mobile Bay Lateral, down to existing Compressor Station 85. According to Transco, its project would...

  12. 75 FR 64303 - Tennessee Gas Pipeline Company; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... compressor stations: Compressor Station 319--An inlet gas filter-separator, a blowdown silencer, and a relief valve would be installed and unit piping would be modified at the existing compressor station in Wyalusing Township, Bradford County, Pennsylvania. Compressor Station 321--Approximately 10,310 horsepower...

  13. 78 FR 35627 - Columbia Gas Transmission, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... plans to modify one interconnect in New York, three compressor stations in Pennsylvania and one compressor station in Maryland. The Commission will use this EA in its decision-making process to determine... Compressor Station (Milford, Pennsylvania): Abandon the existing compressors and replace them with two Solar...

  14. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  15. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  16. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  17. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  18. VIEW OF COMPRESSOR ROOM AT GROUND LEVEL SHOWING COMPRESSOR EQUIPMENT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF COMPRESSOR ROOM AT GROUND LEVEL SHOWING COMPRESSOR EQUIPMENT. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  19. 75 FR 61461 - Central New York Oil and Gas Company, LLC; Notice of Availability of the Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... electric-driven 13,400-horsepower (hp) centrifugal compressor; One new compressor station in Bradford County, Pennsylvania (the NS2 Compressor Station) with an electric-driven 15,300-hp centrifugal... construct, operate, and maintain two new compressor stations in Tioga County, New York and Bradford County...

  20. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  1. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  2. Methodology for the determination of criticality codes and recertification intervals for Tank Mounted Air Compressors (TMAC) and Base Mounted Air Compressors (BMAC)

    NASA Technical Reports Server (NTRS)

    Hargrove, William T.

    1991-01-01

    This methodology is used to determine inspection procedures and intervals for components contained within tank mounted air compressor systems (TMAC) and base mounted air compressor systems (BMAC). These systems are included in the Pressure Vessel and System Recertification inventory at GSFC.

  3. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  4. Sound reduction of air compressors using a systematic approach

    NASA Astrophysics Data System (ADS)

    Moylan, Justin Tharp

    The noise emitted by portable electric air compressors can often be a nuisance or potentially hazardous to the operator or others nearby. Therefore, reducing the noise of these air compressors is desired. This research focuses on compressors with a reciprocating piston design as this is the most common type of pump design for portable compressors. An experimental setup was developed to measure the sound and vibration of the air compressors, including testing inside a semi-anechoic chamber. The design of a quiet air compressor was performed in four stages: 1) Teardown and benchmarking of air compressors, 2) Identification and isolation of noise sources, 3) Development of individual means to quiet noise sources, 4) Selection and testing of integrated solutions. The systematic approach and results for each of these stages will be discussed. Two redesigned solutions were developed and measured to be approximately 65% quieter than the previous unmodified compressor. An additional analysis was performed on the solutions selected by the participants involved in the selection process. This analysis involved determining which of the design criteria each participant considered most important when selecting solutions. The results from each participant were then compared to their educational background and experience and correlations were identified. The correlations discovered suggest that educational background and experience may be key determinants for the preference models developed.

  5. Available pressure amplitude of linear compressor based on phasor triangle model

    NASA Astrophysics Data System (ADS)

    Duan, C. X.; Jiang, X.; Zhi, X. Q.; You, X. K.; Qiu, L. M.

    2017-12-01

    The linear compressor for cryocoolers possess the advantages of long-life operation, high efficiency, low vibration and compact structure. It is significant to study the match mechanisms between the compressor and the cold finger, which determines the working efficiency of the cryocooler. However, the output characteristics of linear compressor are complicated since it is affected by many interacting parameters. The existing matching methods are simplified and mainly focus on the compressor efficiency and output acoustic power, while neglecting the important output parameter of pressure amplitude. In this study, a phasor triangle model basing on analyzing the forces of the piston is proposed. It can be used to predict not only the output acoustic power, the efficiency, but also the pressure amplitude of the linear compressor. Calculated results agree well with the measurement results of the experiment. By this phasor triangle model, the theoretical maximum output pressure amplitude of the linear compressor can be calculated simply based on a known charging pressure and operating frequency. Compared with the mechanical and electrical model of the linear compressor, the new model can provide an intuitionistic understanding on the match mechanism with faster computational process. The model can also explain the experimental phenomenon of the proportional relationship between the output pressure amplitude and the piston displacement in experiments. By further model analysis, such phenomenon is confirmed as an expression of the unmatched design of the compressor. The phasor triangle model may provide an alternative method for the compressor design and matching with the cold finger.

  6. Method for evaluating the reliability of compressor impeller of turbocharger for vehicle application in plateau area

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Wang, Zengquan; Wang, A.-na; Zhuang, Li; Wang, Jinwei

    2016-10-01

    As turbocharging diesel engines for vehicle application are applied in plateau area, the environmental adaptability of engines has drawn more attention. For the environmental adaptability problem of turbocharging diesel engines for vehicle application, the present studies almost focus on the optimization of performance match between turbocharger and engine, and the reliability problem of turbocharger is almost ignored. The reliability problem of compressor impeller of turbocharger for vehicle application when diesel engines operate in plateau area is studied. Firstly, the rule that the rotational speed of turbocharger changes with the altitude height is presented, and the potential failure modes of compressor impeller are analyzed. Then, the failure behavior models of compressor impeller are built, and the reliability models of compressor impeller operating in plateau area are developed. Finally, the rule that the reliability of compressor impeller changes with the altitude height is studied, the measurements for improving the reliability of the compressor impellers of turbocharger operating in plateau area are given. The results indicate that when the operating speed of diesel engine is certain, the rotational speed of turbocharger increases with the increase of altitude height, and the failure risk of compressor impeller with the failure modes of hub fatigue and blade resonance increases. The reliability of compressor impeller decreases with the increase of altitude height, and it also decreases as the increase of number of the mission profile cycle of engine. The method proposed can not only be used to evaluating the reliability of compressor impeller when diesel engines operate in plateau area but also be applied to direct the structural optimization of compressor impeller.

  7. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  8. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.

  9. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.

  10. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing replaces the ball bearing in front of the compressor, and the second replaces the roller bearing behind the burner. The rig was made operational to 10,000 rpm under Smart Efficient Components funding, and both position and current adaptive vibration control have been demonstrated. Upon program completion, recommendations will be made as to the efficacy of the conical magnetic bearing for active stall control.

  11. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  12. 76 FR 52654 - Millennium Pipeline Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... proposes to construct and operate one new compressor station in Minisink, New York. The Minisink Compressor... at the new Minisink Compressor Station; Approximately 1,090 feet of 36-inch-diameter pipeline for... would be maintained permanently for operation of the Minisink Compressor Station. The EA Process The...

  13. Development of a High Efficiency Compressor/Expander for an Air Cycle Air Conditioning System.

    DTIC Science & Technology

    1982-11-15

    bearing, lb PHUB - Hub pressure (initial guess), psia RLG - Rotor length 1 ’B-2 RPM - Rotational speed, RPM R - Gas constant, lb -ft/lb - R CP - Specific...Compressor discharge port pressure ratio (PCD/PC2).:- CDP - Compressor pressure change, PCD-PCl PHUB - Pressure in compressor hub (acting on base of vanes

  14. Fast 4-2 Compressor of Booth Multiplier Circuits for High-Speed RISC Processor

    NASA Astrophysics Data System (ADS)

    Yuan, S. C.

    2008-11-01

    We use different XOR circuits to optimize the XOR structure 4-2 compressor, and design the transmission gates(TG) 4-2 compressor use single to dual rail circuit configurations. The maximum propagation delay, the power consumption and the layout area of the designed 4-2 compressors are simulated with 0.35μm and 0.25μm CMOS process parameters and compared with results of the synthesized 4-2 circuits, and show that the designed 4-2 compressors are faster and area smaller than the synthesized one.

  15. Determination of Pressure Fluctuations in Rotor Bundle of Centrifugal Compressor at Critical Conditions of Operation

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.; Lyubchenko, K. Yu

    2017-08-01

    This article describes the physical processes that occur in the stage flow part of the compressor while it is operating and can create conditions for the occurrence of forced vibrations, which in turn can lead to the destruction of the impellers. Critical conditions of compressor operation are determined. To understand that critical condition of operation is cause of the destruction of the impellers, transient CFD analysis was carried for test stage of compressor. The obtained pressure fluctuation amplitudes allow to evaluate the critical conditions of compressor operation.

  16. Possibility of Thermomechanical Compressor Application in Desalination Plants

    NASA Astrophysics Data System (ADS)

    Blagin, E. V.; Shimanov, A. A.; Uglanov, D. A.; Korneev, S. S.

    2018-01-01

    This article deals with estimation of thermocompressor operating possibility in desalination plant with mechanical vapour compressor. In this plant thermocompressor is used instead of commonly used centrifugal compressor. Preliminary analysis shows that such plant is able to operate, however, power consumption is 3.5-6.5 higher in comparison with traditional MVC plant. In turn, utilization of thermocompressor allows avoiding usual high-frequency drive of centrifugal compressor. Drives with frequency of 50 Hz are enough for thermocompressor when centrifugal compressor requires drives with frequency up to 500 Hz and higher. Approximate thermocompressor dimensions are estimated.

  17. NASA Environmentally Responsible Aviation High Overall Pressure Ratio Compressor Research Pre-Test CFD

    NASA Technical Reports Server (NTRS)

    Celestina, Mark L.; Fabian, John C.; Kulkarni, Sameer

    2012-01-01

    This paper describes a collaborative and cost-shared approach to reducing fuel burn under the NASA Environmentally Responsible Aviation project. NASA and General Electric (GE) Aviation are working together aa an integrated team to obtain compressor aerodynamic data that is mutually beneficial to both NASA and GE Aviation. The objective of the High OPR Compressor Task is to test a single stage then two stages of an advanced GE core compressor using state-of-the-art research instrumentation to investigate the loss mechanisms and interaction effects of embedded transonic highly-loaded compressor stages. This paper presents preliminary results from NASA's in-house multistage computational code, APNASA, in preparation for this advanced transonic compressor rig test.

  18. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  19. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method

    PubMed Central

    Sun, Weifang; Yao, Bin; He, Yuchao; Zeng, Nianyin; He, Wangpeng

    2017-01-01

    Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages. PMID:28792453

  20. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2002-01-01

    A state-of-the-art CFD code (APNASA) was employed in a computationally based investigation of the impact of casing bleed and injection on the stability and performance of a moderate speed fan rotor wherein the stalling mass flow is controlled by tip flow field breakdown. The investigation was guided by observed trends in endwall flow characteristics (e.g., increasing endwall aerodynamic blockage) as stall is approached and based on the hypothesis that application of bleed or injection can mitigate these trends. The "best" bleed and injection configurations were then combined to yield a self-recirculating casing treatment concept. The results of this investigation yielded: 1) identification of the fluid mechanisms which precipitate stall of tip critical blade rows, and 2) an approach to recirculated casing treatment which results in increased compressor stall range with minimal or no loss in efficiency. Subsequent application of this approach to a high speed transonic rotor successfully yielded significant improvements in stall range with no loss in compressor efficiency.

  1. The effect of compressor-administered defibrillation on peri-shock pauses in a simulated cardiac arrest scenario.

    PubMed

    Glick, Joshua; Lehman, Erik; Terndrup, Thomas

    2014-03-01

    Coordination of the tasks of performing chest compressions and defibrillation can lead to communication challenges that may prolong time spent off the chest. The purpose of this study was to determine whether defibrillation provided by the provider performing chest compressions led to a decrease in peri-shock pauses as compared to defibrillation administered by a second provider, in a simulated cardiac arrest scenario. This was a randomized, controlled study measuring pauses in chest compressions for defibrillation in a simulated cardiac arrest model. We approached hospital providers with current CPR certification for participation between July, 2011 and October, 2011. Volunteers were randomized to control (facilitator-administered defibrillation) or experimental (compressor-administered defibrillation) groups. All participants completed one minute of chest compressions on a mannequin in a shockable rhythm prior to administration of defibrillation. We measured and compared pauses for defibrillation in both groups. Out of 200 total participants, we analyzed data from 197 defibrillations. Compressor-initiated defibrillation resulted in a significantly lower pre-shock hands-off time (0.57 s; 95% CI: 0.47-0.67) compared to facilitator-initiated defibrillation (1.49 s; 95% CI: 1.35-1.64). Furthermore, compressor-initiated defibrillation resulted in a significantly lower peri-shock hands-off time (2.77 s; 95% CI: 2.58-2.95) compared to facilitator-initiated defibrillation (4.25 s; 95% CI: 4.08-4.43). Assigning the responsibility for shock delivery to the provider performing compressions encourages continuous compressions throughout the charging period and decreases total time spent off the chest. However, as this was a simulation-based study, clinical implementation is necessary to further evaluate these potential benefits.

  2. Advanced Gas Turbine (AGT) powertrain system development for automotive applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Compressor development, turbine, combustion, regenerator system, gearbox/transmission, ceramic material and component development, foil gas bearings, bearings and seals, rotor dynamics development, and controls and accessories are discussed.

  3. 33 CFR 154.826 - Vapor compressors and blowers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154... chamber or cylinder; (2) Excessive cooling water temperature; (3) Excessive vibration; (4) Low lube oil...

  4. 33 CFR 154.826 - Vapor compressors and blowers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154... chamber or cylinder; (2) Excessive cooling water temperature; (3) Excessive vibration; (4) Low lube oil...

  5. 33 CFR 154.826 - Vapor compressors and blowers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154... chamber or cylinder; (2) Excessive cooling water temperature; (3) Excessive vibration; (4) Low lube oil...

  6. The study on a gas-coupled two-stage stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.

  7. Study on Fuel Cell Network System Considering Reduction in Fuel Cell Capacity Using Load Leveling and Heat Release Loss

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Kudo, Kazuhiko

    Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.

  8. Noisy anthropogenic infrastructure interferes with alarm responses in Savannah sparrows (Passerculus sandwichensis)

    PubMed Central

    Koper, Nicola

    2018-01-01

    Many birds rely on anti-predator communication to protect their nests; however, anthropogenic noise from industrial activities such as oil and gas development may disrupt acoustic communication. Here, we conducted acoustic playback experiments to determine whether Savannah sparrows (Passerculus sandwichensis) responded to conspecific alarm calls by delaying feeding visits, and whether this response was impaired by noise-producing natural gas compressor stations, generator- or grid-powered screw pump oil wells, and noise amplitude. We played alarm calls, and, as a control, western meadowlark songs, to Savannah sparrows as they approached their nests to feed their nestlings, and measured feeding latency. The greatest impacts on behaviour were detected at the noisiest treatment, compressor stations; feeding latency was shortened here compared with control sites, which may expose nests to greater predation risk. As noise amplitudes increased, Savannah sparrows took longer to feed following meadowlark playbacks, perhaps because noise interfered with interpretation of acoustic cues. The effects of compressor stations on anti-predator behaviour may be best explained by the distracting effects of anthropogenic noise, while increases in feeding latency following meadowlark playbacks may be explained by a heightened response threshold caused by acoustic masking. Industrial infrastructure can influence the reproductive success of wildlife through its impact on perception and interpretation of conspecific signals, but these effects are complex. PMID:29892404

  9. Investigation of H2 Diaphragm Compressors to Enable Low-Cost Long-Life Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Aashish; Johnson, Kenneth I.

    2013-12-01

    This is a “short” annual report to DOE Fuel Cell Technology Office describing the research on modeling and materials analysis of diaphragms in a diaphragm-type hydrogen compressor. The compressor design details and diaphragm materials were provided by PDC Machines, Inc., a commercial manufacturer of diaphragm-type hydrogen compressors that PNNL is partnering with in this project

  10. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  11. The results of pre-design studies on the development of a new design of gas turbine compressor package of GPA-C-16 type

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Chobenko, V. M.; Shcherbakov, O. M.; Ushakov, S. M.; Parafiynyk, V. P.; Sereda, R. M.

    2017-08-01

    The article summarizes the results of analysis of data concerning the operation of turbocompressor packages at compressor stations for the natural gas transmission system of Ukraine. The basic requirements for gas turbine compressor packages used for modernization and reconstruction of compressor stations are considered. Using a 16 MW gas turbine package GPA-C-16S/76-1,44M1 as an example, the results of pre-design studies and some technical solutions that improve the energy efficiency of gas turbine compressor packages and their reliability, as well as its environmental performance are given. In particular, the article deals with the matching of performance characteristics of a centrifugal compressor (hereinafter compressor) and gas turbine drive to reduce fuel gas consumption; as well as application of energy efficient technologies, in particular, exhaust gas heat recovery units and gas-oil heat exchangers in turbocompressor packages oil system; as well as reducing emissions of carbon monoxide into the atmosphere using a catalytic exhaust system. Described technical solutions can be used for development of other types of gas turbine compressor packages.

  12. Axial inlet conversion to a centrifugal compressor with magnetic bearings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novecosky, T.

    1994-01-01

    NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings havemore » been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).« less

  13. Core compressor exit stage study, 2

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Burdsall, E. A.; Canal, E., Jr.; Korn, N. D.

    1979-01-01

    A total of two three-stage compressors were designed and tested to determine the effects of aspect ratio on compressor performance. The first compressor was designed with an aspect ratio of 0.81; the other, with an aspect ratio of 1.22. Both compressors had a hub-tip ratio of 0.915, representative of the rear stages of a core compressor, and both were designed to achieve a 15.0% surge margin at design pressure ratios of 1.357 and 1.324, respectively, at a mean wheel speed of 167 m/sec. At design speed the 0.81 aspect ratio compressor achieved a pressure ratio of 1.346 at a corrected flow of 4.28 kg/sec and an adiabatic efficiency of 86.1%. The 1.22 aspect ratio design achieved a pressure ratio of 1.314 at 4.35 kg/sec flow and 87.0% adiabatic efficiency. Surge margin to peak efficiency was 24.0% with the lower aspect ratio blading, compared with 12.4% with the higher aspect ratio blading.

  14. The Supersonic Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1950-01-01

    An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.

  15. Aerodynamic Design of a Four-Stage Low-Speed Axial Compressor for Cantilevered Stator Research

    NASA Astrophysics Data System (ADS)

    Wallace, James N.

    This research is focused on the baseline aerodynamic design of a four-stage low-speed axial compressor with the intent to achieve similarity of cantilevered stator hub leakage flows with those in the rear stages of Siemens large gas turbine compressors. The baseline airfoil design is to act as a comparison for all future research completed in the low speed compressor and, therefore, will not include possible future research topics such as 3-D airfoil geometry or end-wall contouring. Following the design of the airfoils is the aerodynamic design of the facility including the inlet and exhaust. These components were designed to eliminate interactions of the compressor with the facility and to accommodate instrumentation. A baseline set of aerodynamic instrumentation is then suggested to characterize compressor performance. Fully 3-D steady CFD was used extensively during the design of both the facility and the compressor, as well as determining the locations and types of instrumentation.

  16. Development of Carbon Dioxide Hermitic Compressor

    NASA Astrophysics Data System (ADS)

    Imai, Satoshi; Oda, Atsushi; Ebara, Toshiyuki

    Because of global environmental problems, the existing refrigerants are to be replaced with natural refrigerants. CO2 is one of the natural refrigerants and environmentally safe, inflammable and non-toxic refrigerant. Therefore high efficiency compressor that can operate with natural refrigerants, especially CO2, needs to be developed. We developed a prototype CO2 hermetic compressor, which is able to use in carbon dioxide refrigerating systems for practical use. The compressor has two rolling pistons, and it leads to low vibrations, low noise. In additions, two-stage compression with two cylinders is adopted, because pressure difference is too large to compress in one stage. And inner pressure of the shell case is intermediate pressure to minimize gas leakage between compressing rooms and inner space of shell case. Intermediate pressure design enabled to make the compressor smaller in size and lighter in weight. As a result, the compressor achieved high efficiency and high reliability by these technology. We plan to study heat pump water heater, cup vending machine and various applications with CO2 compressor.

  17. Electropneumatic transducer automatically limits motor current

    NASA Technical Reports Server (NTRS)

    Lovitt, T. F.

    1966-01-01

    Pneumatic controller regulates the load on a centrifugal freon compressor in a water cooling system, thus limiting the current input to an electric motor driving it. An electromechanical transducer monitoring the motor input current sends out air signals which indicate changes in the current to the pneumatic controller.

  18. ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ROTATING STALL PHENOMENA IN TURBINE ENGINE COMPRESSORS.

    DTIC Science & Technology

    AXIAL FLOW COMPRESSORS, STALLING), TURBOJET ENGINES , AXIAL FLOW COMPRESSOR BLADES , LIFT, HYSTERESIS, TURBULENCE, INLET GUIDE VANES , RINGS, STABILITY, THREE DIMENSIONAL FLOW, VISCOSITY, VORTICES, FLUIDICS.

  19. 49 CFR 192.173 - Compressor stations: Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.173 Compressor stations: Ventilation. Each compressor station building must be ventilated to ensure...

  20. Development of a test rig for a helium twin-screw compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B. M.; Hu, Z. J.; Zhang, P.

    2014-01-29

    A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the testmore » performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved.« less

  1. Unsteady Loss in the Stator Due to the Incoming Rotor Wake in a Highly-Loaded Transonic Compressor

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2015-01-01

    The present paper reports an investigation of unsteady loss generation in the stator due to the incoming rotor wake in an advanced GE transonic compressor design with a high-fidelity numerical method. This advanced compressor with high reaction and high stage loading has been investigated both experimentally and analytically in the past. The measured efficiency in this advanced compressor is significantly lower than the design intention goal. The general understanding is that the current generation of compressor design analysis tools miss some important flow physics in this modern compressor design. To pinpoint the source of the efficiency miss, an advanced test with a detailed flow traverse was performed for the front one and a half stage at the NASA Glenn Research Center.

  2. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  3. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar [Niskayuna, NY; Berrahou, Philip Fadhel [Latham, NY; Jandrisevits, Michael [Clifton Park, NY

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  4. Heat shield manifold system for a midframe case of a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  5. Experimental on-stream elimination of resonant whirl in a large centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bhat, G. I.; Eierman, R. G.

    1984-01-01

    Resonant whirl condition during operation of a multi-stage centrifugal compressor at higher than anticipated speeds and loads was reported. The condition was diagnosed by a large scale computerized Machinery Condition Monitoring System (MACMOS). This computerized system verified that the predominant subsynchronous whirl frequency locked in on the first resonant frequency of the compressor rotor and did not vary with compressor speed. Compressor stability calculations showed the rotor system had excessive hearing stiffness and inadequate effective damping. An optimum bearing design which was developed to minimize the unbalance response and to maximize the stability threshold is presented.

  6. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    NASA Technical Reports Server (NTRS)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  7. Rotating stall simulation for axial and centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  8. Advanced two-stage compressor program design of inlet stage

    NASA Technical Reports Server (NTRS)

    Bryce, C. A.; Paine, C. J.; Mccutcheon, A. R. S.; Tu, R. K.; Perrone, G. L.

    1973-01-01

    The aerodynamic design of an inlet stage for a two-stage, 10/1 pressure ratio, 2 lb/sec flow rate compressor is discussed. Initially a performance comparison was conducted for an axial, mixed flow and centrifugal second stage. A modified mixed flow configuration with tandem rotors and tandem stators was selected for the inlet stage. The term conical flow compressor was coined to describe a particular type of mixed flow compressor configuration which utilizes axial flow type blading and an increase in radius to increase the work input potential. Design details of the conical flow compressor are described.

  9. Harmonic engine

    DOEpatents

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  10. Lubrication free centrifugal compressor. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottschlich, J.M.; Scaringe, R.P.; Gui, F.

    1994-04-22

    This paper describes an effort to demonstrate the benefits of an innovative, lightweight, lubrication free centrifugal compressor that allows the use of environmentally sale alternate refrigerants with improved system efficiencies over current state-of-the-art technology. This effort couples the recently developed 3-D high efficiency centrifugal compressor and fabrication technologies with magnetic bearing technology and will then prove the performance, life and reliability of the compressor.

  11. Transonic Fan/Compressor Rotor Design Study. Volume 4

    DTIC Science & Technology

    1982-02-01

    amd Identify by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20...COMPRESSOR ROTOR DESIGN STUDY Volume IV D.E. Parker and M.R. Simonson General Electric Company Aircraft Engine Business Group Advanced Technology...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUS Director, Turbine Engine Division If your address has changed, if you

  12. Development of a Self-contained Heat Rejection Module (SHRM), phase 1

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1976-01-01

    The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.

  13. Fundamentals of the Control of Gas-Turbine Power Plants for Aircraft. Part 1; Standardization of the Computations Relating to the Control of Gas-Turbine Power Plants for Aircraft by the Employment of the Laws of Similarity

    NASA Technical Reports Server (NTRS)

    Luehl, H.

    1947-01-01

    It will be shown that by the use of the concept of similarity a simple representation of the characteristic curves of a compressor operating in combination with a turbine may be obtained with correct allowance for the effect of temperature. Furthermore, it becmes possible to simplify considerably the rather tedious investigations of the behavior of gas-turbine power plants under different operating conditions. Characteristic values will be derived for the most important elements of operating behavior of the power plant, which will be independent of the absolute valu:s of pressure and temperature. At the same time, the investigations provide the basis for scale-model tests on compressors and turbines.

  14. Engineering report: Oxygen boost compressor study

    NASA Technical Reports Server (NTRS)

    Tera, L. S.

    1974-01-01

    An oxygen boost compressor is described which supports a self-contained life support system. A preliminary analysis of the compressor is presented along with performance test results, and recommendations for follow-on efforts.

  15. ARC-1961-A-28387

    NASA Image and Video Library

    1961-10-31

    Lockheed NC-130B STOL turboprop-powered aircraft with ailerons drooped 30 degrees. Note trailing-edge flaps deflected 90 degrees for increased lift. Two T-56 turboshaft engines, which drove wing-mounted load compressors for boundary-layer control, are mounted on outboard wing pods. Landing approach speed was reduced 30 knots with boundary-layer control

  16. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  17. Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Braunscheidel, Edward P.

    2006-01-01

    Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.

  18. Quartz Crystal Fabrication Facility.

    DTIC Science & Technology

    1980-05-01

    controllers, cryopump compressors , and mass spectrometer indicator/controller were placed in cabinets. The frequency plating control equipment was designed ...contributions of J. F. Howell , GEND Manufacturing Engineering Operation, for his design of the electrical and electronics system and for his tireless...report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing

  19. Analysis of inlet flow distortion and turbulence effects on compressor stability

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.

    1973-01-01

    The effect of steady state circumferential total pressure distortion on the loss in compressor stall pressure ratio has been established by analytical techniques. Full scale engine and compressor/fan component test data were used to provide direct evaluation of the analysis. Specifically, since a circumferential total pressure distortion in an inlet system will result in unsteady flow in the coordinate system of the rotor blades, analysis of this type distortion must be performed from an unsteady aerodynamic point of view. By application of the fundamental aerothermodynamic laws to the inlet/compressor system, parameters important in the design of such a system for compatible operation have been identified. A time constant, directly related to the compressor rotor chord, was found to be significant, indicating compressor sensitivity to circumferential distortion is directly dependent on the rotor chord.

  20. Double throat pressure pulsation dampener for oil-free screw compressors

    NASA Astrophysics Data System (ADS)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

Top