NASA Astrophysics Data System (ADS)
Chen, X.; Qin, G.; Ai, Z.; Ji, Y.
2017-08-01
As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.
Dimension Determination of Precursive Stall Events in a Single Stage High Speed Compressor
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Qammar, Helen K.; Hartley, Tom T.
1996-01-01
This paper presents a study of the dynamics for a single-stage, axial-flow, high speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall blading design for this advanced core compressor, each stage has considerable tip loading and higher speed than most compressor designs, thus, the compressor operates closer to the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of axial compressors. Data taken from the compressor during a rotating stall event is analyzed. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined during the bifurcations leading to rotating stall. The intent of this study is to examine the behavior of precursive stall events so as to predict the entrance into rotating stall. This information may provide a better means to identify, avoid or control the undesirable event of rotating stall formation in high speed compressor cores.
Study of Convective Flow Effects in Endwall Casing Treatments in Transonic Compressor Rotors
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin W.; Schiffer, Heinz-Peter
2012-01-01
The unsteady convective flow effects in a transonic compressor rotor with a circumferential-groove casing treatment are investigated in this paper. Experimental results show that the circumferential-groove casing treatment increases the compressor stall margin by almost 50% for the current transonic compressor rotor. Steady flow simulation of the current casing treatment, however, yields only a 15% gain in stall margin. The flow field at near-stall operation is highly unsteady due to several self-induced flow phenomena. These include shock oscillation, vortex shedding at the trailing edge, and interaction between the passage shock and the tip clearance vortex. The primary focus of the current investigation is to assess the effects of flow unsteadiness and unsteady flow convection on the circumferential-groove casing treatment. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques were applied in addition to steady Reynolds-averaged Navier-Stokes (RANS) to simulate the flow field at near-stall operation and to determine changes in stall margin. The current investigation reveals that unsteady flow effects are as important as steady flow effects on the performance of the circumferential grooves casing treatment in extending the stall margin of the current transonic compressor rotor. The primary unsteady flow mechanism is unsteady flow injection from the grooves into the main flow near the casing. Flows moving into and out of the grooves are caused due to local pressure difference near the grooves. As the pressure field becomes transient due to self-induced flow oscillation, flow injection from the grooves also becomes unsteady. The unsteady flow simulation shows that this unsteady flow injection from the grooves is substantial and contributes significantly to extending the compressor stall margin. Unsteady flows into and out of the grooves have as large a role as steady flows in the circumferential grooves. While the circumferential-groove casing treatment seems to be a steady flow device, unsteady flow effects should be included to accurately assess its performance as the flow is transient at near-stall operation.
Numerical investigation of a centrifugal compressor with circumferential grooves in vane diffuser
NASA Astrophysics Data System (ADS)
Chen, X. F.; Qin, G. L.; Ai, Z. J.
2015-08-01
Enhancing stall and surge margin has a great importance for the development of turbo compressors. The application of casing treatment is an effective measure to expand the stall margin and stable operation range. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with circumferential groove casing treatment in vane diffuser. Numerical cases with different radial location, radial width and axial depth of a circumferential single groove and different numbers of circumferential grooves were carried out to compare the results. The CFD analyses results show that the centrifugal compressor with circumferential grooves in diffuser can extend stable range by about 9% while the efficiency over the whole operating range decreases by 0.2 to 1.7%. The evaluation based on stall margin improvement showed the optimal position for the groove to be located was indicated to exist near the leading edge of the diffuser, and a combination of position, width, depth and numbers of circumferential grooves that will maximize both surge margin range and efficiency.
Effect of inlet ingestion of a wing tip vortex on compressor face flow and turbojet stall margin
NASA Technical Reports Server (NTRS)
Mitchell, G. A.
1975-01-01
A two-dimensional inlet was alternately mated to a coldpipe plug assembly and a J85-GE-13 turbojet engine, and placed in a Mach 0.4 stream so as to ingest the tip vortex of a forward mounted wing. Vortex properties were measured just forward of the inlet and at the compressor face. Results show that ingestion of a wing tip vortex by a turbojet engine can cause a large reduction in engine stall margin. The loss in stall compressor pressure ratio was primarily dependent on vortex location and rotational direction and not on total-pressure distortion.
NASA Technical Reports Server (NTRS)
Wisler, D. C.; Hilvers, D. E.
1974-01-01
The results of an experimental research program to investigate the potential of improving compressor stall margin by the application of hub treatment are presented. Extensive tuft probing showed that the two-stage, 0.5 radius ratio compressor selected for the test was indeed hub critical. Circumferential groove and baffled wide blade angle slot hub treatments under the stators were tested. Performance measurements were made with total and static pressure probes, wall static pressure taps, flow angle measuring instrumentation and hot film anemometers. Stator hub treatment was not found to be effective in improving compressor stall margin by delaying the point of onset of rotating stall or in modifying compressor performance for any of the configurations tested. Extensive regions of separated flow were observed on the suction surface of the stators near the hub. However, the treatment did not delay the point where flow separation in the stator hub region becomes apparent.
NASA Technical Reports Server (NTRS)
Costakis, W. G.; Wenzel, L. M.
1975-01-01
The relation of the steady-state and dynamic distortions and the stall margin of a J85-13 turbojet engine was investigated. A distortion indicator capable of computing two distortion indices was used. A special purpose signal conditioner was also used as an interface between transducer signals and distortion indicator. A good correlation of steady-state distortion and stall margin was established. The prediction of stall by using the indices as instantaneous distortion indicators was not successful. A sensitivity factor that related the loss of stall margin to the turbulence level was found.
Flow and Performance Calculations of Axial Compressor near Stall Margin
NASA Astrophysics Data System (ADS)
Hwang, Yoojun; Kang, Shin-Hyoung
2010-06-01
Three-dimensional flows through a Low Speed Research Axial Compressor were numerically conducted in order to estimate the performance through unsteady and steady-state simulations. The first stage with the inlet guide vane was investigated at the design point to confirm that the rotor blade induced periodicity exists. Special attention was paid to the flow near the stall condition to inspect the flow behavior in the vicinity of the stall margin. The performance predicted under the steady-state assumption is in good agreement with the measured data. However, the steady-state calculations induce more blockage through the blade passage. Flow separations on the blade surface and end-walls are reduced when unsteady simulation is conducted. The negative jet due to the wake of the rotor blade periodically distorts the boundary layer on the surface of the stator blade and improves the performance of the compressor in terms of the pressure rise. The advantage of the unsteadiness increases as the flow rate reduces. In addition, the rotor tip leakage flow is forced downstream by the unsteadiness. Consequently, the behavior contributes to extending the range of operation by preventing the leakage flow from proceeding upstream near the stall margin.
NASA Technical Reports Server (NTRS)
Wallner, L. E.; Lubick, R. J.; Chelko, L. J.
1955-01-01
During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.
NASA Technical Reports Server (NTRS)
Hager, R. D.; Janetzke, D. C.; Reid, L.
1972-01-01
Aerodynamic design parameters are presented along the overall and blade element performance, of an axial flow compressor rotor designed to study the effects of blade solidity on efficiency and stall margin. At design speed the peak efficiency was 0.844 and occurred at an equivalent weight flow of 63.5 lb/sec with a total pressure ratio of 1.801. Design efficiency, pressure ratio, and weight flow 0.814, 1.65, and 65.3(41.1 lb/sec/sq ft of annulus area), respectively. Stall margin for design speed was 6.4 percent based on the weight flow and pressure ratio values at peak efficiency and just prior to stall.
The CF6 jet engine performance improvement: New front mount
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
The New Front Mount was evaluated in component tests including stress, deflection/distortion and fatigue tests. The test results demonstrated a performance improvement of 0.1% in cruise sfc, 16% in compressor stall margin and 10% in compressor stator angle margin. The New Front Mount hardware successfully completed 35,000 simulated flight cycles endurance testing.
Analysis of internal flow of J85-13 multistage compressor
NASA Technical Reports Server (NTRS)
Hager, R. D.
1977-01-01
Interstage data recorded on a J85-13 engine were used to analyze the internal flow of the compressor. Measured pressures and temperatures were used as input to a streamline analysis program to calculate the velocity diagrams at the inlet and outlet of each blade row. From the velocity diagrams and blade geometry, selected blade-element performance parameters were calculated. From the detailed analysis it is concluded that the compressor is probably hub critical (stall initiates at the hub) in the latter stages for the design speed conditions. As a result, the casing treatment over the blade tips has little or no effect on stall margin at design speed. Radial inlet distortion did not appear to change the flow in the stages that control stall because of the rapid attenuation of the distortion within the compressor.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Hathaway, Michael D.; Skoch, Gary J.; Snyder, Christopher A.
2012-01-01
Technical challenges of compressors for future rotorcraft engines are driven by engine-level and component-level requirements. Cycle analyses are used to highlight the engine-level challenges for 3000, 7500, and 12000 SHP-class engines, which include retention of performance and stability margin at low corrected flows, and matching compressor type, axial-flow or centrifugal, to the low corrected flows and high temperatures in the aft stages. At the component level: power-to-weight and efficiency requirements impel designs with lower inherent aerodynamic stability margin; and, optimum engine overall pressure ratios lead to small blade heights and the associated challenges of scale, particularly increased clearance-to-span ratios. The technical challenges associated with the aerodynamics of low corrected flows and stability management impel the compressor aero research and development efforts reviewed herein. These activities include development of simple models for clearance sensitivities to improve cycle calculations, full-annulus, unsteady Navier-Stokes simulations used to elucidate stall, its inception, and the physics of stall control by discrete tip-injection, development of an actuator-duct-based model for rapid simulation of nonaxisymmetric flow fields (e.g., due inlet circumferential distortion), advanced centrifugal compressor stage development and experimentation, and application of stall control in a T700 engine.
NASA Technical Reports Server (NTRS)
Prince, D. C., Jr.; Wisler, D. C.; Hilvers, D. E.
1974-01-01
The results of a program of experimental and analytical research in casing treatments over axial compressor rotor blade tips are presented. Circumferential groove, axial-skewed slot, and blade angle slot treatments were tested. These yielded, for reduction in stalling flow and loss in peak efficiency, 5.8% and 0 points, 15.3% and 2.0 points, and 15.0% and 1.2 points, respectively. These values are consistent with other experience. The favorable stalling flow situations correlated well with observations of higher-then-normal surface pressures on the rotor blade pressure surfaces in the tip region, and with increased maximum diffusions on the suction surfaces. Annular wall pressure gradients, especially in the 50-75% chord region, are also increased and blade surface pressure loadings are shifted toward the trailing edge for treated configurations. Rotor blade wakes may be somewhat thinner in the presence of good treatments, particularly under operating conditions close to the baseline stall.
Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan
NASA Technical Reports Server (NTRS)
Hah, Chunill; Rabe, Douglas; Scribben, Angie
2015-01-01
In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.
High loading, 1800 ft/sec tip speed, transonic compressor fan stage. 2: Final report
NASA Technical Reports Server (NTRS)
Morris, A. L.; Sulam, D. H.
1972-01-01
Tests were conducted on a 0.5 hub/tip ratio, single-stage fan-compressor designed to produce a pressure ratio of 2.285 an efficiency of 84 percent with a rotor tip speed of 1800 feet per second. A peak efficiency of 82 percent was achieved by the stage at a stall margin of 6.5 percent. Tests showed that stall-limit line was slightly sensitive to tip-radial distortion, but stall-line improvements were noted when the stage was subjected to circumferential and hub-radial flow distortions. Rotor blade passage and trailing edge shock positions were inferred from static pressure contours over the rotor tips.
Loss reduction in axial-flow compressors through low-speed model testing
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1984-01-01
A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.
NASA Astrophysics Data System (ADS)
Cevik, Mert
Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.
Stage effects on stalling and recovery of a high-speed 10-stage axial-flow compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copenhaver, W.W.
1988-01-01
Results of a high-speed 10-stage axial-flow compressor test involving overall compressor and individual stage performance while stalling and operating in quasi-steady rotating stall are described. Test procedures and data-acquisition methods used to obtain the dynamic stalling and quasi-steady in-stall data are explained. Unstalled and in-stall time-averaged data obtained from the compressor operating at five different shaft speeds and one off-schedule variable vane condition are presented. Effects of compressor speed and variable geometry on overall compressor in-stall pressure rise and hysteresis extent are illustrated through the use of quasi-steady-stage temperature rise and pressure-rise characteristics. Results indicate that individual stage performance duringmore » overall compressor rotating stall operation varies considerably throughout the length of the compressor. The measured high-speed 10-stage test compressor individual stage pressure and temperature characteristics were input into a stage-by-stage dynamic compressor performance model. Comparison of the model results and measured pressures provided the additional validation necessary to demonstrate the model's ability to predict high-speed multistage compressor stalling and in-stall performance.« less
Rotating stall simulation for axial and centrifugal compressors
NASA Astrophysics Data System (ADS)
Halawa, Taher; Gadala, Mohamed S.
2017-05-01
This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.
Surge-Inception Study in a Two-Spool Turbojet Engine. Revised
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Lubick, Robert J.; Saari, Martin J.
1957-01-01
A two-spool turbojet engine was operated in the Lewis altitude wind tunnel to study the inception of compressor surge. In addition to the usual steady-state pressure and temperature measurements, the compressors were extensively instrumented with fast-response interstage pressure transducers. Thus it was possible to obtain maps for both compressors, pressure oscillations during rotating stall, effects of stall on efficiency, and stage-loading curves. In addition, with the transient measurements, it was possible to record interstage pressures and then compute stage performance during accelerations to the stall limit. Rotating stall was found to exist at low speeds in the outer spool. Although the stall arose from poor flow conditions at the inlet-stage blade tips, the low-energy air moved through the machine from the tip at the inlet to the outer spool to the hub at the inlet to the inner spool. This tip stall ultimately resulted in compressor surge in the mid-speed region, and necessitated inter-compressor air bleed. Interstage pressure measurements during acceleration to the compressor stall limit indicated that rotating stall was not a necessary condition for compressor surge and that, at the critical stall point, the circumferential interstage pressure distribution was uniform. The exit-stage group of the inner spool was first t o stall; then, the stages upstream stalled in succession until the inlet stage of the outer spool was stalled. With a sufficiently high fuel rate, the process repeated with a cycle time of about 0.1 second. It was possible to construct reproducible stage stall lines as a function of compressor speed from the stage stall points of several such compressor surges. This transient stall line was checked by computing the stall line from a steady-state stage-loading curve. Good agreement between the stage stall lines was obtained by these two methods.
Turbine Engine Diagnostic Development. Phase I Report
1972-11-01
was designed to Increase compressor stall margin at low power. It operates as a function of low pressure compressor discharge pressure (PS3) and...aircraft of the 1980-8? time frame. The IEDDS will be designed to replace conventional cockpit gages and will provide output messages pertaining to...testing, a specifica- tion for a Request For Proposal will be formulated for the IEDDS. (■ sumRY A turbine engine diagnostics system was designed
NASA Astrophysics Data System (ADS)
Lee, Daniel H.
The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.
Effect of Variable Chord Length on Transonic Axial Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2002-01-01
During the life of any gas turbine, blade erosion is present, especially for those units that are exposed to unfiltered air, such as aviation turbofan engines. The effect of this erosion is to reduce the blade chord progressively from the midspan to the tip region and to roughen and distort the blade surface. The effects of roughness on rotor performance have been documented by Suder et al. and Roberts. These papers indicate that the penalty for leading-edge roughness and erosion can be significant. Turbofan operators, therefore, restore chord length at routine maintenance intervals to regain performance before deterioration is too severe to salvage blades. As the rotor blades erode, the leading edge becomes rough - blunt and distorted from the nominal shape - and the aerodynamic performance suffers. Nominal performance can be recovered by recontouring the leading edges. This process, which inherently shortens the blade chord, can be used until the blade chord erodes to the stall limit. Below this chord length, which varies among engine-compressor types, a decrease of stall margin is likely. After compressor blade rework that includes leading edge recontouring, the blades have different chord lengths, ranging from blades that are near nominal chord length down to those near the stall chord limit. Furthermore, as blades erode below the stall limit, they must be replaced with new blades that have the full nominal chord length. Consequently, a set of compressor blades with varying chord lengths will be installed into each turbofan engine that goes through a complete maintenance cycle. The question arises, "Does fan or compressor performance depend on the order in which mixed-chord blades are installed into a fan or compressor disk?"
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.; Lavelle, Thomas M.
1995-01-01
Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.
Compressor Stall Recovery Through Tip Injection Assessed
NASA Technical Reports Server (NTRS)
Suder, Ken L.
2001-01-01
Aerodynamic stability is a fundamental limit in the compressor design process. The development of robust techniques for increasing stability has several benefits: enabling higher loading and fewer blades, increasing safety throughout a mission, increasing tolerance to stage mismatch during part-speed operation and speed transients, and providing an opportunity to match stages at the compressor maximum efficiency point, thus reducing fuel burn. Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing stall in tip-critical rotors if the injection is activated before stall occurs. This approach to stall suppression requires that a reliable stall warning system be available. Tests have recently been performed to assess whether steady injection can also be used to recover from fully developed stall. If mass injection is effective in recovering from stall quickly enough to avoid structural damage or loss of engine power, then a stall warning system may not be required. The stall recovery tests were performed on a transonic compressor rotor at its design tip speed of 1475 ft/sec using four injectors evenly spaced around the compressor case upstream of the rotor. The injectors were connected to an external air source. In an actual engine application, the injected air would be supplied with compressor bleed air. The injectors were isolated from the air source by a fast-acting butterfly valve. With the injectors turned off, the compressor was throttled into stall. Air injection was then activated with no change in throttle setting by opening the butterfly valve. The compressor recovered from stall at a fixed throttle setting with the aid of tip injection. The unsteady operating characteristic of the rotor was measured during these tests using high-response pressure sensors located upstream and downstream of the rotor. The figure shows the results, where the unsteady pressure and mass flow are superimposed on the steady operating characteristic. The total injected mass flow was equal to 1.3 percent of the compressor flow. The solid line with no solid squares on it denotes the operating point during the beginning of throttle closure and the initial drop into stall. The gray traces denote the operating point during an additional throttle closure that occurred over the next 1200 rotor revolutions (4 sec). The dashed line denotes the recovery from stall that occurred during 90 rotor revolutions (0.3 sec) after the injectors were activated with no change in throttle setting. Tip injection not only recovers the compressor from stall, but also restores the compressor to its pre-stall level of pressure rise. In contrast, standard stall recovery schemes such as compressor bleed, stator vane actuation, or engine throttle modulation result in a loss of pressure rise across the compressor, which results in a loss of engine power.
NASA Technical Reports Server (NTRS)
Urasek, D. C.; Kovich, G.; Moore, R. D.
1973-01-01
Performance was obtained for a 50-cm-diameter compressor designed for a high weight flow per unit annulus area of 208 (kg/sec)/sq m. Peak efficiency values of 0.83 and 0.79 were obtained for the rotor and stage, respectively. The stall margin for the stage was 23 percent, based on equivalent weight flow and total-pressure ratio at peak efficiency and stall.
Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)
2001-01-01
This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to describe finite amplitude disturbances in high-speed compressors. Results are presented for the response of a transonic compressor subjected to inlet distortions.
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A simple model for the stability zones of a low speed centrifugal compressor is developed, with the goal of understanding the driving mechanism for the changes in stalling behavior predicted for, and observed in, the Purdue Low Speed Centrifugal Research Compressor Facility. To this end, earlier analyses of rotating stall suppression in centrifugal compressors are presented in a reduced form that preserves the essential parameters of the model that affect the stalling behavior of the compressor. The model is then used to illuminate the relationship between compressor geometry, expected mode shape, and regions of amplification for weak waves which are indicative of the susceptibility of the system to rotating stall. The results demonstrate that increasing the stagger angle of the diffuser vanes, and consequently the diffusion path length, results in the compressor moving towards a condition where higher-order spatial modes are excited during stall initiation. Similarly, flow acceleration in the diffuser section caused by an increase in the number of diffuser vanes also results in the excitation of higher modes.
Aerodynamic Inner Workings of Circumferential Grooves in a Transonic Axial Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin; Schiffer, Heinz-Peter
2007-01-01
The current paper reports on investigations of the fundamental flow mechanisms of circumferential grooves applied to a transonic axial compressor. Experimental results show that the compressor stall margin is significantly improved with the current set of circumferential grooves. The primary focus of the current investigation is to advance understanding of basic flow mechanics behind the observed improvement of stall margin. Experimental data and numerical simulations of a circumferential groove were analyzed in detail to unlock the inner workings of the circumferential grooves in the current transonic compressor rotor. A short length scale stall inception occurs when a large flow blockage is built on the pressure side of the blade near the leading edge and incoming flow spills over to the adjacent blade passage due to this blockage. The current study reveals that a large portion of this blockage is created by the tip clearance flow originating from 20% to 50% chord of the blade from the leading edge. Tip clearance flows originating from the leading edge up to 20% chord form a tip clearance core vortex and this tip clearance core vortex travels radially inward. The tip clearance flows originating from 20% to 50% chord travels over this tip clearance core vortex and reaches to the pressure side. This part of tip clearance flow is of low momentum as it is coming from the casing boundary layer and the blade suction surface boundary layer. The circumferential grooves disturb this part of the tip clearance flow close to the casing. Consequently the buildup of the induced vortex and the blockage near the pressure side of the passage is reduced. This is the main mechanism of the circumferential grooves that delays the formation of blockage near the pressure side of the passage and delays the onset of short length scale stall inception. The primary effect of the circumferential grooves is preventing local blockage near the pressure side of the blade leading edge that directly determines flow spillage around the leading edge. The circumferential grooves do not necessarily reduce the over all blockage built up at the rotor tip section.
Prediction of active control of subsonic centrifugal compressor rotating stall
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.
NASA Technical Reports Server (NTRS)
1997-01-01
A new technique for rotating stall precursor identification in high-speed compressors has been developed at the NASA Lewis Research Center. This pseudo correlation integral method uses a mathematical algorithm based on chaos theory to identify nonlinear dynamic changes in the compressor. Through a study of four various configurations of a high-speed compressor stage, a multistage compressor rig, and an axi-centrifugal engine test, this algorithm, using only a single pressure sensor, has consistently predicted the onset of rotating stall.
Compressor stability management
NASA Astrophysics Data System (ADS)
Dhingra, Manuj
Dynamic compressors are susceptible to aerodynamic instabilities while operating at low mass flow rates. These instabilities, rotating stall and surge, are detrimental to engine life and operational safety, and are thus undesirable. In order to prevent stability problems, a passive technique, involving fuel flow scheduling, is currently employed on gas turbines. The passive nature of this technique necessitates conservative stability margins, compromising performance and/or efficiency. In the past, model based active control has been proposed to enable reduction of margin requirements. However, available compressor stability models do not predict the different stall inception patterns, making model based control techniques practically infeasible. This research presents active stability management as a viable alternative. In particular, a limit detection and avoidance approach has been used to maintain the system free of instabilities. Simulations show significant improvements in the dynamic response of a gas turbine engine with this approach. A novel technique has been developed to enable real-time detection of stability limits in axial compressors. It employs a correlation measure to quantify the chaos in the rotor tip region. Analysis of data from four axial compressors shows that the value of the correlation measure decreases as compressor loading is increased. Moreover, sharp drops in this measure have been found to be relevant for stability limit detection. The significance of these drops can be captured by tracking events generated by the downward crossing of a selected threshold level. It has been observed that the average number of events increases as the stability limit is approached in all the compressors studied. These events appear to be randomly distributed in time. A stochastic model for the time between consecutive events has been developed and incorporated in an engine simulation. The simulation has been used to highlight the importance of the threshold level to successful stability management. The compressor stability management concepts have also been experimentally demonstrated on a laboratory axial compressor rig. The fundamental nature of correlation measure has opened avenues for its application besides limit detection. The applications presented include stage load matching in a multi-stage compressor and monitoring the aerodynamic health of rotor blades.
ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ROTATING STALL PHENOMENA IN TURBINE ENGINE COMPRESSORS.
AXIAL FLOW COMPRESSORS, STALLING), TURBOJET ENGINES , AXIAL FLOW COMPRESSOR BLADES , LIFT, HYSTERESIS, TURBULENCE, INLET GUIDE VANES , RINGS, STABILITY, THREE DIMENSIONAL FLOW, VISCOSITY, VORTICES, FLUIDICS.
Rotating stall investigation of 0.72 hub-tip ratio single-stage compressor
NASA Technical Reports Server (NTRS)
Graham, Robert W; Prian, Vasily D
1954-01-01
The rotating stall characteristics of a 0.72 hub-tip ratio, single-stage compressor were investigated. The stage was a 14-inch-diameter replica of the fourth stage of an experimental multistage compressor. No similarity existed between the frequency and propagation rate of the stall patterns observed in the single-stage replica and those observed in the multistage compressor after the fourth stage. A fatigue failure of the rotor blades occurred during the testing which was attributed to a resonance between the stall frequency and the natural bending frequency of the blades.
NASA Technical Reports Server (NTRS)
Moore, R. D.; Reid, L.
1980-01-01
The overall and blade-element performances of a low-aspect-ratio transonic compressor stage are presented over the stable operating flow range for speeds from 50 to 100 percent of design. At design speed the rotor and stage achieved peak efficiencies of 0.876 and 0.840 at pressure ratios of 2.056 and 2.000, respectively. The stage stall margin at design speed was 10 percent.
NASA Astrophysics Data System (ADS)
Azizi, Mohammad Ali; Brouwer, Jacob
2017-10-01
A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
A computational model is presented for simulating axial compressor stall inception and development via disturbances with length scales on the order of several (typically about three) blade pitches. The model was designed for multi-stage compressors in which stall is initiated by these short wavelength disturbances, also referred to as spikes. The inception process described is fundamentally nonlinear, in contrast to the essentially linear behavior seen in so-called modal stall inception . The model was able to capture the following experimentally observed phenomena: (1) development of rotating stall via short wavelength disturbances, (2) formation and evolution of localized short wavelength stall cells in the first stage of a mismatched compressor, (3) the switch from long to short wavelength stall inception resulting from the re-staggering of the inlet guide vane, (4) the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic. Parametric investigations indicated that (1) short wavelength disturbances were supported by the rotor blade row, (2) the disturbance strength was attenuated within the stators, and (3) the reduction of inter-blade row gaps can suppress the growth of short wavelength disturbances. It is argued that each local component group (rotor plus neighboring stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group.
Stage Effects on Stalling and Recovery of a High-Speed 10-Stage Axial- Flow Compressor
1990-06-01
facility C Specific heat of air at constant pressureP Cx Axial velocity DC Direct current DAC Data acquisition computer DCS Design corrected compressor ...was designed to inve3tigate the component performance of an axial -flow compressor while stalling and operating in rotating stall. No attempt was made...Temperatures were measured from a probe configuration similar to the to - pressure design . 68 Table 4.2 Compressor instrumentation RADIAL PROPERTY AXIAL
Turbofan compressor dynamics during afterburner transients
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1975-01-01
The effects of afterburner light-off and shut-down transients on compressor stability were investigated. Experimental results are based on detailed high-response pressure and temperature measurements on the Tf30-p-3 turbofan engine. The tests were performed in an altitude test chamber simulating high-altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan-bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient, the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, I.J.; Breuer, T.; Escuret, J.
As part of a European collaborative project, four high-speed compressors were tested to investigate the generic features of stall inception in aero-engine type compressors. Tests were run over the full speed range to identify the design and operating parameters that influence the stalling process. A study of data analysis techniques was also conducted in the hope of establishing early warning of stall. The work presented here is intended to relate the physical happenings in the compressor to the signals that would be received by an active stall control system. The measurements show a surprising range of stall-related disturbances and suggestmore » that spike-type stall inception is a feature of low-speed operation while modal activity is clearest in the midspeed range. High-frequency disturbances were detected at both ends of the speed range and nonrotating stall, a new phenomenon, was detected in three out of the four compressors. The variety of the stalling patterns, and the ineffectiveness of the stall warning procedures, suggests that the ultimate goal of a flightworthy active control system remains some way off.« less
Forward Swept Compressor Testing
NASA Technical Reports Server (NTRS)
Miller, David P.
1997-01-01
A new forward-swept rotor designed by Allison Engine Company was tested in NASA Lewis Research Center's CE-18 facility. This testing was a follow-on project sponsored by NASA Lewis to study range enhancements in small turbomachinery. The test was conducted against a baseline rotor design that was also tested in CE-18. The design point for the rotor was a rotor pressure ratio of 2.69, a mass flow of 10.52 lbm/sec, and an adiabatic efficiency of 89.1 percent. Test data indicate that the rotor met the pressure ratio of 2.69 with a 10.77 lbm/sec flow rate, a 87.5-percent adiabatic efficiency, and a 19.5-percent stall margin. The baseline rotor achieved a pressure ratio of 2.69 at a 10.77 lbm/sec flow rate with a stall margin of only 9.2 percent and an adiabatic efficiency of 87.0 percent. The major differences are the significant stall margin increase and the substantially higher off-design peak efficiencies of the forward-swept rotor. The substantially higher performance over the baseline rotor design makes the new design a viable technology candidate for future products.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.
1972-01-01
A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.
NASA Astrophysics Data System (ADS)
Zhang, Yanfeng; Lu, Xingen; Chu, Wuli; Zhu, Junqiang
2010-08-01
It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception. Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor. For steady analysis, the predicted results agree well with the experimental data for the estimation of compressor rotor global performance. For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage. On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale — spike type rotating stall inception at blade tip region. It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased, the rotating stall cell was further developed in the blade passage.
Experimental Investigation of Rotating Stall in a Research Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.; Welch, Gerard E.
2007-01-01
A collection of experimental data acquired in the NASA low-speed multistage axial compressor while operated in rotating stall is presented in this paper. The compressor was instrumented with high-response wall pressure modules and a static pressure disc probe for in-flow measurement, and a split-fiber probe for simultaneous measurements of velocity magnitude and flow direction. The data acquired to-date have indicated that a single fully developed stall cell rotates about the flow annulus at 50.6% of the rotor speed. The stall phenomenon is substantially periodic at a fixed frequency of 8.29 Hz. It was determined that the rotating stall cell extends throughout the entire compressor, primarily in the axial direction. Spanwise distributions of the instantaneous absolute flow angle, axial and tangential velocity components, and static pressure acquired behind the first rotor are presented in the form of contour plots to visualize different patterns in the outer (midspan to casing) and inner (hub to mid-span) flow annuli during rotating stall. In most of the cases observed, the rotating stall started with a single cell. On occasion, rotating stall started with two emerging stall cells. The root cause of the variable stall cell count is unknown, but is not attributed to operating procedures.
2015-06-01
A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE...THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA THESIS Presented to the Faculty Department of Systems Engineering and...036 A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA Shuxiang ‘Albert’ Li, BS
A numerical strategy for modelling rotating stall in core compressors
NASA Astrophysics Data System (ADS)
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary conditions downstream. Such an approach is representative of modelling an engine.Using a 3D viscous time-accurate flow representation, the front bladerows of a core compressor were modelled in a whole-annulus fashion whereas the rest of bladerows are modelled in a single-passage fashion. The rotating stall behaviour at two different compressor operating points was studied by considering two different variable-vane scheduling conditions for which experimental data were available. Using a model with nine whole-assembly models, the unsteady-flow calculations were conducted on 32-CPUs of a parallel cluster, typical run times being around 3-4 weeks for a grid with about 60 million points. The simulations were conducted over several engine rotations. As observed on the actual development engine, there was no rotating stall for the first scheduling condition while mal-scheduling of the stator vanes created a 12-band rotating stall which excited the 1st flap mode.
A theory of post-stall transients in axial compression systems. I - Development of equations
NASA Technical Reports Server (NTRS)
Moore, F. K.; Greitzer, E. M.
1985-01-01
An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.
A theory of rotating stall of multistage axial compressors
NASA Technical Reports Server (NTRS)
Moore, F. K.
1983-01-01
A theoretical analysis was made of rotating stall in axial compressors of many stages, finding conditions for a permanent, straight-through traveling disturbance, with the steady compressor characteristic assumed known, and with simple lag processes ascribed to the flows in the inlet, blade passages, and exit regions. For weak disturbances, predicted stall propagation speeds agree well with experimental results. For a locally-parabolic compressor characteristic, an exact nonlinear solution is found and discussed. For deep stall, the stall-zone boundary is most abrupt at the trailing edge, as expected. When a complete characteristic having unstalling and reverse-flow features is adopted, limit cycles governed by a Lienard's equation are found. Analysis of these cycles yields predictions of recovery from rotating stall; a relaxation oscillation is found at some limiting flow coefficient, above which no solution exists. Recovery is apparently independent of lag processes in the blade passages, but instead depends on the lags originating in the inlet and exit flows, and also on the shape of the given characteristic diagram. Small external lags and tall diagrams favor early recovery. Implications for future research are discussed.
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.
2001-01-01
Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.
2002-01-01
Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.
NASA Technical Reports Server (NTRS)
Lewis, G. W., Jr.; Urasek, D. C.
1972-01-01
The experimental performance of a 20-inch-diameter axial-flow transonic compressor rotor with small dampers is presented. The compressor rotor was tested earlier with large dampers which were twice in size, and comparisons of overall performance and radial distributions of selected flow and performance parameters are made. The rotor with small dampers experienced lower losses in the damper region which resulted in locally higher values of temperature rise efficiency and total pressure ratio. However, there was no appreciable effect on overall efficiency and pressure ratio. A greater stall margin was measured for the rotor with small dampers at design speed, but at 70 and 90 percent of design speed the rotor with large dampers had somewhat greater flow range.
Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec
NASA Technical Reports Server (NTRS)
Owen, A. K.
1994-01-01
Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.
A theory of post-stall transients in multistage axial compression systems
NASA Technical Reports Server (NTRS)
Moore, F. K.; Greitzer, E. M.
1985-01-01
A theory is presented for post stall transients in multistage axial compressors. The theory leads to a set of coupled first-order ordinary differential equations capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. These changing flow features are shown to have a significant effect on the instantaneous compressor pumping characteristic during unsteady operation, and henace on the overall system behavior. It is also found from the theory that the ultimate mode of system response, stable rotating stall or surge, depends not only on the B parameter but also on other parameters, such as the compressor length-to-diameter ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. A limited parametric study is carried out to show the impact of the different system features on transient behavior. Based on analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
Active identification and control of aerodynamic instabilities in axial and centrifugal compressors
NASA Astrophysics Data System (ADS)
Krichene, Assad
In this thesis, it is experimentally shown that dynamic cursors to stall and surge exist in both axial and centrifugal compressors using the experimental axial and centrifugal compressor rigs located in the School of Aerospace Engineering at the Georgia Institute of Technology. Further, it is shown that the dynamic cursors to stall and surge can be identified in real-time and they can be used in a simple control scheme to avoid the occurrence of stall and surge instabilities altogether. For the centrifugal compressor, a previously developed real-time observer is used in order to detect dynamic cursors to surge in real-time. An off-line analysis using the Fast Fourier Transform (FFT) of the open loop experimental data from the centrifugal compressor rig is carried out to establish the influence of compressor speed on the dynamic cursor frequency. The variation of the amplitude of dynamic cursors with compressor operating condition from experimental data is qualitatively compared with simulation results obtained using a generic compression system model subjected to white noise excitation. Using off-line analysis results, a simple control scheme based on fuzzy logic is synthesized for surge avoidance and recovery. The control scheme is implemented in the centrifugal compressor rig using compressor bleed as well as fuel flow to the combustor. Closed loop experimental results are obtained to demonstrate the effectiveness of the controller for both surge avoidance and surge recovery. The existence of stall cursors in an axial compression system is established using the observer scheme from off-line analysis of an existing database of a commercial gas turbine engine. However, the observer scheme is found to be ineffective in detecting stall cursors in the experimental axial compressor rig in the School of Aerospace Engineering at the Georgia Institute of Technology. An alternate scheme based on the amplitude of pressure data content at the blade passage frequency obtained using a pressure sensor located (in the casing) over the blade row is developed and used in the axial compressor rig for stall and surge avoidance and recovery. (Abstract shortened by UMI.)
An experimental description of the flow in a centrifugal compressor from alternate stall to surge
NASA Astrophysics Data System (ADS)
Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.
2017-08-01
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
NASA Technical Reports Server (NTRS)
Braithwaite, W. M.
1973-01-01
The effects of circumferential distortion of the total temperature entering 25, 50, and 75 percent of the inlet circumferential annulus of a turbofan engine were determined. Complete compressor stall resulted from distortions of from 14 to 20 percent of the face averaged temperature. Increasing the temperature level in one sector resulted in that sector moving toward stall by decreasing the equivalent rotor speeds while the pressure ratio remained approximately constant. Stall originated as a rotating zone in the low-pressure compressor which resulted as a terminal stall in the high-pressure compressor. Decreasing the Reynolds number index to 0.25 from 0.5 reduced the required distortion for stall by 50 percent for the conditions investigated.
An examination of gas compressor stability and rotating stall
NASA Technical Reports Server (NTRS)
Fozi, Aziz A.
1987-01-01
The principal sources of vibration related reliability problems in high pressure centrifugal gas compressors are the re-excitation of the first critical speed or Resonant Subsynchronous Vibration (RSSV), and the forced vibration due to rotating stall in the vaneless diffusers downstream of the impellers. An example of such field problems is given elsewhere. This paper describes the results of a test program at the author's company, initiated in 1983 and completed during 1985, which studied the RSSV threshold and the rotating stall phenomenon in a high pressure gas compressor.
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.; Urasek, D. C.
1973-01-01
The overall and blade-element performance are presented for an air compressor stage designed to study the effect of weight flow per unit annulus area on efficiency and flow range. At the design speed of 424.8 m/sec the peak efficiency of 0.81 occurred at the design weight flow and a total pressure ratio of 1.56. Design pressure ratio and weight flow were 1.57 and 29.5 kg/sec (65.0 lb/sec), respectively. Stall margin at design speed was 19 percent based on the weight flow and pressure ratio at peak efficiency and at stall.
Aerodynamic Design of Axial-flow Compressors. Volume III
NASA Technical Reports Server (NTRS)
Johnson, Irving A; Bullock, Robert O; Graham, Robert W; Costilow, Eleanor L; Huppert, Merle C; Benser, William A; Herzig, Howard Z; Hansen, Arthur G; Jackson, Robert J; Yohner, Peggy L;
1956-01-01
Chapters XI to XIII concern the unsteady compressor operation arising when compressor blade elements stall. The fields of compressor stall and surge are reviewed in Chapters XI and XII, respectively. The part-speed operating problem in high-pressure-ratio multistage axial-flow compressors is analyzed in Chapter XIII. Chapter XIV summarizes design methods and theories that extend beyond the simplified two-dimensional approach used previously in the report. Chapter XV extends this three-dimensional treatment by summarizing the literature on secondary flows and boundary layer effects. Charts for determining the effects of errors in design parameters and experimental measurements on compressor performance are given in Chapters XVI. Chapter XVII reviews existing literature on compressor and turbine matching techniques.
A theory of rotating stall of multistage axial compressors. III - Limit cycles
NASA Technical Reports Server (NTRS)
Moore, F. K.
1983-01-01
A theory of rotating stall, based on single parameters for blade-passage lag and external-flow lag and a given compressor characteristic yields limit cycles in velocity space. These limit cycles are governed by Lienard's equation with the characteristic playing the role of nonlinear damping function. Cyclic integrals of the solution determine stall propagation speed and the effect of rotating stall on average performance. Solution with various line-segment characteristics and various throttle settings are found and discussed. There is generally a limiting flow coefficient beyond which no solution is possible; this probably represents stall recovery. This recovery point is independent of internal compressor lag, but does depend on external lags and on the height-to-width ratio of the diagram. Tall diagrams and small external lags (inlet and diffusor) favor recovery. Suggestions for future theoretical and experimental research are discussed.
Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.
2006-01-01
Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.
NASA Astrophysics Data System (ADS)
Yeung, Chung-Hei (Simon)
The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are derived and expressed in terms of implementation-oriented variables such as number of injectors. For the third case, bifurcation criticality conditions are not obtained due to complexity, though linear stability property is derived. A theoretical comparison between the three algorithms is made, via the use of low-order models, to investigate pros and cons of the algorithms in the context of operability. The effects of static distortion on the compressor facility at Caltech is characterized experimentally. Results consistent with literature are obtained. Simulations via a high fidelity model (34 states) are also performed and show good qualitative as well as quantitative agreement to experiments. A non-axisymmetric pulsed air injection controller for stall is shown to be robust to static distortion.
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1991-01-01
A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.
Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors
1999-01-01
modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero
Numerical simulation of rotating stall and surge alleviation in axial compressors
NASA Astrophysics Data System (ADS)
Niazi, Saeid
Axial compression systems are widely used in many aerodynamic applications. However, the operability of such systems is limited at low-mass flow rates by fluid dynamic instabilities. These instabilities lead the compressor to rotating stall or surge. In some instances, a combination of rotating stall and surge, called modified surge, has also been observed. Experimental and computational methods are two approaches for investigating these adverse aerodynamic phenomena. In this study, numerical investigations have been performed to study these phenomena, and to develop control strategies for alleviation of rotating stall and surge. A three-dimensional unsteady Navier-Stokes analysis capable of modeling multistage turbomachinery components has been developed. This method uses a finite volume approach that is third order accurate in space, and first or second order in time. The scheme is implicit in time, permitting the use of large time steps. A one-equation Spalart-Allmaras model is used to model the effects of turbulence. The analysis is cast in a very general form so that a variety of configurations---centrifugal compressors and multistage compressors---may be analyzed with minor modifications to the analysis. Calculations have been done both at design and off-design conditions for an axial compressor tested at NASA Glenn Research Center. At off-design conditions the calculations show that the tip leakage flow becomes strong, and its interaction with the tip shock leads to compressor rotating stall and modified surge. Both global variations to the mass flow rate, associated with surge, and azimuthal variations in flow conditions indicative of rotating stall, were observed. It is demonstrated that these adverse phenomena may be eliminated, and stable operation restored, by the use of bleed valves located on the diffuser walls. Two types of controls were examined: open-loop and closed-loop. In the open-loop case mass is removed at a fixed, preset rate from the diffuser. In the closed-loop case, the rate of bleed is linked to pressure fluctuations upstream of the compressor face. The bleed valve is activated when the amplitude of pressure fluctuations sensed by the probes exceeds a certain range. Calculations show that both types of bleeding eliminate both rotating stall and modified surge, and suppress the precursor disturbances upstream of the compressor face. It is observed that smaller amounts of compressed air need to be removed with the closed-loop control, as compared to open-loop control.
Corner separation and the onset of stall in an axial compressor
NASA Astrophysics Data System (ADS)
Thiam, Aicha; Whittlesey, Robert; Wark, Candace; Williams, David
2007-11-01
Axial compressor performance is limited by the onset of stall between the diffusing passageways of the rotors and stators. The flow physics responsible for the stall depends on the blade geometry of the machine, and in this experiment stall develops from a blade-hub corner separation. The 1.5 stage axial compressor consists of inlet guide vanes, a rotor and stator section. Separate motors drive the downstream fan and rotor, which makes it possible to change the compressor pressure ratio and flow coefficient by changing either the wheel speed or the bulk flow rate through the machine. Detailed maps of the flow behind the stators and in front of the rotors were obtained using a Kulite stagnation pressure probe. Mean pressure measurements show the growth of the corner flow separation and divergence of the ``through flow'' toward the outer casing. Spectra show a sensitivity of the separated region to small amplitude external disturbances, in this case originating from the downstream fan. The onset of rotating stall appears as the first subharmonic of the rotor frequency, 0.5 fr, then shifts to a slightly lower frequency 0.45 fr as the flow coefficient is decreased.
NASA Astrophysics Data System (ADS)
Izmaylov, R.; Lebedev, A.
2015-08-01
Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.
Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation
NASA Technical Reports Server (NTRS)
Chen, Jen-Ping; Hathaway, Michael D.; Herrick, Gregory P.
2008-01-01
CFD calculations using high-performance parallel computing were conducted to simulate the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure-rise performance and pressure traces are compared with published experimental data before the study of flow evolution prior to the rotating stall. Spatial FFT analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes perpendicular to the axial direction. When approaching stall, the passage shock changes from a single oblique shock to a dual-shock, which distorts the perpendicular trajectory of the tip clearance vortex but shows no evidence of flow separation that may contribute to stall.
Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
2002-01-01
A state-of-the-art CFD code (APNASA) was employed in a computationally based investigation of the impact of casing bleed and injection on the stability and performance of a moderate speed fan rotor wherein the stalling mass flow is controlled by tip flow field breakdown. The investigation was guided by observed trends in endwall flow characteristics (e.g., increasing endwall aerodynamic blockage) as stall is approached and based on the hypothesis that application of bleed or injection can mitigate these trends. The "best" bleed and injection configurations were then combined to yield a self-recirculating casing treatment concept. The results of this investigation yielded: 1) identification of the fluid mechanisms which precipitate stall of tip critical blade rows, and 2) an approach to recirculated casing treatment which results in increased compressor stall range with minimal or no loss in efficiency. Subsequent application of this approach to a high speed transonic rotor successfully yielded significant improvements in stall range with no loss in compressor efficiency.
Aerodynamic Design of Axial Flow Compressors
NASA Technical Reports Server (NTRS)
Bullock, R. O. (Editor); Johnsen, I. A.
1965-01-01
An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.
High Efficiency Centrifugal Compressor for Rotorcraft Applications
NASA Technical Reports Server (NTRS)
Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.
2017-01-01
The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.
High Efficiency Centrifugal Compressor for Rotorcraft Applications
NASA Technical Reports Server (NTRS)
Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.
2014-01-01
The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.
The Onset of Aerodynamic Instability in a 3-Stage Transonic Compressor
2001-06-01
frequency corresponds to nearly half of the shaft speed. The stall cell spreads at once over all three stages of the compressor and, after an oscillation...interacting wakes, (intermittent classic surge and deep surge, pressure waves or stall cells can be traced in phase space bottom). with their...circumferential positions tp. on the casing wall showing the 200 axial distribution under the influence of a stall 0 cell . A S2 computation by ZORBA2 (Novak, -200
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
NASA Astrophysics Data System (ADS)
Lattime, Scott B.; Steinetz, Bruce M.
2002-09-01
Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed 1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
NASA Technical Reports Server (NTRS)
Lattime, Scott B.; Steinetz, Bruce M.
2002-01-01
Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.
Numerical investigation of rotating stall in centrifugal compressor with vaned and vaneless diffuser
NASA Astrophysics Data System (ADS)
Halawa, Taher; Alqaradawi, Mohamed; Gadala, Mohamed S.; Shahin, Ibrahim; Badr, Osama
2015-06-01
This study presents a numerical simulation of the stall and surge in a centrifugal compressor and presents a descriptionof the stall development in two different cases. The first case is for a compressor with vaneless diffuser and the second is for a compressor with vaned diffuser of the vane island shape. The main aim of this study is to compare the flow characteristics and behavior for the two compressors near the surge operating condition and provide further understanding of the diffuser role when back flow occurs at surge. Results showed that for a locationnear the diffuser entrance, the amplitude of the static pressure fluctuations for the vaneless diffuser case is higher than that for the vaned diffuser case near surge condition. These pressure fluctuations in the case of the vaneless diffuser appear with a gradual decrease of the mean pressure value as a part of the surge cycle. While for the case of the vaned diffuser, the pressure drop during surge occurs faster than the case of the vaneless diffuser. Also, results indicated that during surge in the case of vaneless diffuser, there is a region with low velocity and back flow that appears as a layer connecting all impeller passages near shroud surface and this layer develops in size with time. On the other hand, for the case of vaned diffuser during surge, the low velocity regions appear in random locations in some passages and these regions expand with time towards the shroud surface. Results showed that during stall, the impeller passages are exposed to identical impact from stall cells in the case of vaneless diffuser while the stall effect varies from passage to another in the case of the vaned diffuser.
Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl
1996-01-01
A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.
Plasma-based Compressor Stall Control
NASA Astrophysics Data System (ADS)
McGowan, Ryan; Corke, Thomas
2017-11-01
The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.
Modeling and analysis of the TF30-P-3 compressor system with inlet pressure distortion
NASA Technical Reports Server (NTRS)
Mazzawy, R. S.; Banks, G. A.
1976-01-01
Circumferential inlet distortion testing of a TF30-P-3 afterburning turbofan engine was conducted at NASA-Lewis Research Center. Pratt and Whitney Aircraft analyzed the data using its multiple segment parallel compressor model and classical compressor theory. Distortion attenuation analysis resulted in a detailed flow field calculation with good agreement between multiple segment model predictions and the test data. Sensitivity of the engine stall line to circumferential inlet distortion was calculated on the basis of parallel compressor theory to be more severe than indicated by the data. However, the calculated stall site location was in agreement with high response instrumentation measurements.
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2018-05-01
The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.
A theory of post-stall transients in axial compression systems. II - Application
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Moore, F. K.
1985-01-01
Using the theory developed in Part I, calculations have been carried out to show the evolution of the mass flow, pressure rise, and rotating-stall cell amplitude during compression system post-stall transients. In particular, it is shown that the unsteady growth or decay of the stall cell can have a significant effect on the instantaneous compressor pumping characteristic and hence on the overall system behavior. A limited parametric study is carried out to illustrate the impact of different system features on transient behavior. It is shown, for example, that the ultimate mode of system response, surge or stable rotating stall, depends not only on the B parameter, but also on the compressor length-to-radius ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. Based on the analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
NASA Astrophysics Data System (ADS)
Berdanier, Reid Adam
The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of measurements collected at these part-speed and off-design conditions provides a unique data set for calibrating computational models and predictive algorithms. Further investigations with detailed steady total pressure traverses provide additional insight to tip leakage flow effects on stator performance. A series of data on the 100% corrected speedline further characterize the tip leakage flow using time-resolved measurements from a combination of instrumentation techniques. An array of high-frequency-response piezoresistive pressure transducers installed over the rotors allows quantification of tip leakage flow trajectories. These data, along with measurements from a fast-response total pressure probe downstream of the rotors, evaluate the development of tip leakage flows and assess the corresponding effects of upstream stator wakes. Finally, thermal anemometry measurements collected using the single slanted hot-wire technique evaluate three-dimensional velocity components throughout the compressor. These data facilitate calculations of several flow metrics, including a blockage parameter and phase-locked streamwise vorticity.
Subsynchronous vibrations in a high pressure centrifugal compressor: A case history
NASA Technical Reports Server (NTRS)
Evans, B. F.; Smalley, A. J.
1984-01-01
Two distinct aerodynamically excited vibrations in a high pressure low flow centrifugal compressor are documented. A measured vibration near 21% of running speed was identified as a nonresonant forced vibration which results from rotating stall in the diffuser; a measured vibration near 50% of running speed was identified as a self excited vibration sustained by cross coupling forces acting at the compressor wheels. The dependence of these characteristics on speed, discharge pressure, and changes in bearing design are shown. The exciting mechanisms of diffuser stall and aerodynamic cross coupling are evidenced. It is shown how the rotor characteristics are expected to change as a result of modifications. The operation of the compressor after the modifications is described.
Numerical results for axial flow compressor instability
NASA Technical Reports Server (NTRS)
Mccaughan, F. E.
1988-01-01
Using Cornell's supercomputing facilities, an extensive study of the Moore-Greitzer model was carried out, which gives accurate and reliable information about compressor instability. The bifurcation analysis in the companion paper shows the dependence of the mode of compressor response on the shape of the rotating stall characteristic. The numerical results verify and extend this with a more accurate representation of the characteristic. The effect of the parameters on the shape of the rotating stall characteristic is investigated, and it is found that the parameters with the strongest effects are the inlet length, and the shape of the compressor pressure rise vs. mass flow diagram (i.e. tall diagrams vs. shallow diagrams). The effects of inlet guide vane loss on the characteristic are discussed.
Centrifugal Compressor Aeroelastic Analysis Code
NASA Astrophysics Data System (ADS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Physics based modeling of axial compressor stall
NASA Astrophysics Data System (ADS)
Zaki, Mina Adel
2009-12-01
Axial compressors are used in a wide variety of aerodynamic applications and are one of the most important components in aero-engines. However, the operability of compressors is limited at low-mass flow rates by fluid dynamic instabilities such as stall and surge. These instabilities can lead to engine failure and loss of engine power which can compromise the aircraft safety and reliability. Thus, a better understanding of how stall occurs and the causes behind its inception is extremely important. In the vicinity of the stall line, the flow field is inherently unsteady due to the interactions between adjacent rows of blades, formation of separation cells, and the viscous effects including shock-boundary layer interactions. Accurate modeling of these phenomena requires a proper set of stable and accurate boundary conditions at the rotor-stator interface that conserve mass, momentum, and energy, while eliminating false reflections. As a part of this research effort, an existing 3-D Navier-Stokes analysis for modeling single stage compressors has been modified to model multi-stage axial compressors and turbines. Several rotor-stator interface boundary conditions have been implemented. These conditions have been evaluated for the first stage (a stator and a rotor) of the two-stage fuel turbine on the space shuttle main engine (SSME). Their effectiveness in conserving global properties such as mass, momentum, and energy across the interface while yielding good performance predictions has been evaluated. While all the methods gave satisfactory results, a characteristic based approach and an unsteady sliding mesh approach are found to work best. Accurate modeling of the formation of stall cells requires the use of advanced turbulence models. As a part of this effort, a new advanced turbulence model called the Hybrid RANS/KES (HRKES) model has been developed and implemented. This model solves the Menter's k-o-SST model near walls and switches to the Kinetic Eddy Simulation (KES) model away from walls. The KES model solves directly for local turbulent kinetic energy and local turbulent length scales, alleviating the grid spacing dependency of the length scales found in other Detached Eddy Simulation (DES) and Hybrid RANS/LES (HRLES) models. Within the HRKES model, combinations of two different blending functions have been evaluated for integrating the near wall model with the KES model. The use of realizability constraints to bound the KES model parameters has also been studied for several internal and external flows. The current methodology is used in the prediction of the performance map for the NASA Stage 35 compressor configuration as a representative of a modern compressor stage. The present approach is found to effectively predict the onset of stall. It is found that the rotor blade tip leakage vortex and its interaction with the shock wave is mainly the reason behind the stall inception in this compressor stage.
Effect of spatial inlet temperature and pressure distortion on turbofan engine stability
NASA Technical Reports Server (NTRS)
Mehalic, Charles M.
1988-01-01
The effects of circumferential and radial inlet temperature distortion, circumferential pressure distortion, and combined temperature and pressure distortion on the stability of an advanced turbofan engine were investigated experimentally at simulated altitude conditions. With circumferential and radial inlet temperature distortion, a flow instability generated by the fan operating near stall caused the high-pressure compressor to surge at, or near, the same time as the fan. The effect of combined distortion was dependent on the relative location of the high-temperature and low-pressure regions; high-pressure compressor stalls occurred when the regions coincided, and fan stalls occurred with the regions separated.
NASA Astrophysics Data System (ADS)
Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka
2016-02-01
The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.
Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements
NASA Technical Reports Server (NTRS)
Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter
2009-01-01
In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.
Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.
2004-01-01
Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing replaces the ball bearing in front of the compressor, and the second replaces the roller bearing behind the burner. The rig was made operational to 10,000 rpm under Smart Efficient Components funding, and both position and current adaptive vibration control have been demonstrated. Upon program completion, recommendations will be made as to the efficacy of the conical magnetic bearing for active stall control.
Subsychronous vibration of multistage centrifugal compressors forced by rotating stall
NASA Technical Reports Server (NTRS)
Fulton, J. W.
1987-01-01
A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.
Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors
NASA Astrophysics Data System (ADS)
Matveev, V.; Goriachkin, E.; Volkov, A.
2018-01-01
The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.
NASA Technical Reports Server (NTRS)
Hah, Chunill; Hathaway, Michael; Katz, Joseph
2014-01-01
The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.
1976-06-01
rotating stall control system which was tested both on a low speed rig and a J-85-S engine. The second objective was to perform fundamental studies of the...Stator Stage 89 6 Annular Cascade Configuration Used for Rotating Stall Studies on Rotoi-Stator Stage ..... .............. ... 90 7 Static Pressure Rise...ground tests on a J-8S-S turbojet engine. The work i3 reported in three separate volumes. Volume I entitled, "Basic Studies of Rotating Stall", covers
Three-dimensional Aerodynamic Instability in Multi-stage Axial Compressors
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
Four separate tasks are reported. The first task: A Computational Model for Short Wavelength Stall Inception and Development In Multi-Stage Compressors; the second task: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors; the third task:Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37; and the fourth task:Development of Circumferential Inlet Distortion through a Representative Eleven Stage High-speed axial compressor. The common theme that threaded throughout these four tasks is the conceptual framework that consists of quantifying flow processes at the fadcompressor blade passage level to define the compressor performance characteristics needed for addressing physical phenomena such compressor aerodynamic instability and compressor response to flow distoriton with length scales larger than compressor blade-to-blade spacing at the system level. The results from these two levels can be synthesized to: (1) simulate compressor aerodynamic instability inception local to a blade rotor tip and its development from a local flow event into the nonlinear limit cycle instability that involves the entire compressor as was demonstrated in the first task; (2) determine the conditions under which compressor stability assessment based on two-dimensional model may not be adequate and the effects of self-induced flow distortion on compressor stability limit as in the second task; (3) quantify multistage compressor response to inlet distortion in stagnation pressure as illustrated in the fourth task; and (4) elucidate its potential applicability for compressor map generation under uniform as well as non-uniform inlet flow given three-dimensional Navier-Stokes solution for each individual blade row as was demonstrated in the third task.
NASA Astrophysics Data System (ADS)
Herrick, Gregory Paul
The quest to accurately capture flow phenomena with length-scales both short and long and to accurately represent complex flow phenomena within disparately sized geometry inspires a need for an efficient, high-fidelity, multi-block structured computational fluid dynamics (CFD) parallel computational scheme. This research presents and demonstrates a more efficient computational method by which to perform multi-block structured CFD parallel computational simulations, thus facilitating higher-fidelity solutions of complicated geometries (due to the inclusion of grids for "small'' flow areas which are often merely modeled) and their associated flows. This computational framework offers greater flexibility and user-control in allocating the resource balance between process count and wall-clock computation time. The principal modifications implemented in this revision consist of a "multiple grid block per processing core'' software infrastructure and an analytic computation of viscous flux Jacobians. The development of this scheme is largely motivated by the desire to simulate axial compressor stall inception with more complete gridding of the flow passages (including rotor tip clearance regions) than has been previously done while maintaining high computational efficiency (i.e., minimal consumption of computational resources), and thus this paradigm shall be demonstrated with an examination of instability in a transonic axial compressor. However, the paradigm presented herein facilitates CFD simulation of myriad previously impractical geometries and flows and is not limited to detailed analyses of axial compressor flows. While the simulations presented herein were technically possible under the previous structure of the subject software, they were much less computationally efficient and thus not pragmatically feasible; the previous research using this software to perform three-dimensional, full-annulus, time-accurate, unsteady, full-stage (with sliding-interface) simulations of rotating stall inception in axial compressors utilized tip clearance periodic models, while the scheme here is demonstrated by a simulation of axial compressor stall inception utilizing gridded rotor tip clearance regions. As will be discussed, much previous research---experimental, theoretical, and computational---has suggested that understanding clearance flow behavior is critical to understanding stall inception, and previous computational research efforts which have used tip clearance models have begged the question, "What about the clearance flows?''. This research begins to address that question.
Inlet Distortion Generation for a Transonic Compressor
2004-09-01
9 Figure 6. Compressor pumping characteristic measured at 90% design speed and degradation assumed for distortion design ...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION Engines for military fighter aircraft must be designed to operate stably over a required flight envelope. An...adequate “stall margin” is usually an engine design requirement. Since distortion of the flow into the fan or compressor is known to reduce the
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.
2014-01-01
The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating compressor stall is substantiated by the video images of the IGV taken during the PSL test, which showed water on the surface of the IGV flowing upstream out of the engine, indicating flow reversal, which is characteristic of a stalled compressor.
Reverse-Tangent Injection in a Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2007-01-01
Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.
NASA Technical Reports Server (NTRS)
Schmidt, J. F.; Ruggeri, R. S.
1978-01-01
A transonic compressor stage designed for a reduced loading in the tip region of the rotor blades was tested with and without inlet radial distortion. The rotor was 50 cm in diameter and designed for an operating tip speed of 420 m/sec. Although the rotor blade loading in the tip region was reduced to provide additional operating range, analysis of the data indicates that the flow around the damper appears to be critical and limited the stable operating range of this stage. For all levels of tip and hub radial distortion, there was a large reduction in the rotor stall margin.
A Three-Dimensional Unsteady CFD Model of Compressor Stability
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
2006-01-01
A three-dimensional unsteady CFD code called CSTALL has been developed and used to investigate compressor stability. The code solved the Euler equations through the entire annulus and all blade rows. Blade row turning, losses, and deviation were modeled using body force terms which required input data at stations between blade rows. The input data was calculated using a separate Navier-Stokes turbomachinery analysis code run at one operating point near stall, and was scaled to other operating points using overall characteristic maps. No information about the stalled characteristic was used. CSTALL was run in a 2-D throughflow mode for very fast calculations of operating maps and estimation of stall points. Calculated pressure ratio characteristics for NASA stage 35 agreed well with experimental data, and results with inlet radial distortion showed the expected loss of range. CSTALL was also run in a 3-D mode to investigate inlet circumferential distortion. Calculated operating maps for stage 35 with 120 degree distortion screens showed a loss in range and pressure rise. Unsteady calculations showed rotating stall with two part-span stall cells. The paper describes the body force formulation in detail, examines the computed results, and concludes with observations about the code.
A laser-optical sensor system for blade vibration detection of high-speed compressors
NASA Astrophysics Data System (ADS)
Neumann, Mathias; Dreier, Florian; Günther, Philipp; Wilke, Ulrich; Fischer, Andreas; Büttner, Lars; Holzinger, Felix; Schiffer, Heinz-Peter; Czarske, Jürgen
2015-12-01
Improved efficiency as well as increased lifetime of turbines and compressors are important goals in turbomachinery development. A significant enhancement to accomplish these aims can be seen in online monitoring of the operating parameters of the machines. During the operation of compressors it is of high interest to predict critical events like flutter or stall which can be achieved by observing blade deformations and vibrations. We have developed a laser Doppler distance sensor (LDDS), which is capable of simultaneously measuring the radial blade expansions, the circumferential blade deflections as well as the circumferential velocities of the rotor blade tips. As a result, an increase of blade vibrations is measured before stall at characteristic frequencies. While the detected vibration frequencies and the vibration increase are in agreement with the measurement results of a commercial capacitive blade tip timing system, the measured values of the vibration amplitudes differ by a factor of three. This difference can be mainly attributed to the different measurement locations and to the different measurement approaches. Since the LDDS is applicable to metal as well as ceramic, carbon-fiber and glass-fiber reinforced composite blades, a universally applicable sensor system for stall prediction and status monitoring is presented.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.
NASA Technical Reports Server (NTRS)
Messenger, H. E.; Keenan, M. J.
1974-01-01
A two-stage fan with a first rotor tip speed of 1450 ft/sec (441.96 m/sec) and no inlet guide vanes was tested with uniform and distorted inlet flows, with a redesigned second rotor having a part span shroud to prevent flutter, with variable-stagger stators set in nominal positions, and without rotor casing treatment. The fan achieved a pressure ratio 2.8 at a corrected flow of 185.4 lbm/sec (84.0 kg/sec), an adiabatic efficiency of 85.0 percent, and a stall margin of 12 percent. The redesigned second rotor did not flutter. Tip radial distortion reduced the stall margin at intermediate speed, but had little effect on stall margin at high or low speeds. Hub radial distortion reduced the stall margin at design speed but increased stall margin at low speed. Circumferential distortion reduced stall pressure ratio and flow to give approximately the same stall lines with uniform inlet flow. Distortions were attenuated by the fan. For Vol. 1, see N74-11421.
77 FR 49702 - Airworthiness Directives; Embraer S.A. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... replacing the AMS controller processor module with one containing new software, and a new AFM revision. This... protection system. We are issuing this AD to prevent the possibility of a right-hand (RH) engine compressor... down. Also there is the possibility of right hand (RH) engine compressor to stall after the Auxiliary...
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; To, Wai-Ming; Chen, Jen-Ping
2003-01-01
Blade row interaction effects on loss generation in compressors have received increased attention as compressor work-per-stage and blade loading have increased. Two dimensional Laser Doppler Velocimeter measurements of the velocity field in a NASA transonic compressor stage show the magnitude of interactions in the velocity field at the peak efficiency and near stall operating conditions. The experimental data are presented along with an assessment of the velocity field interactions. In the present study the experimental data are used to confirm the fidelity of a three-dimensional, time-accurate, Navier Stokes calculation of the stage using the MSU-TURBO code at the peak efficiency and near stall operating conditions. The simulations are used to quantify the loss generation associated with interaction phenomena. At the design point the stator pressure field has minimal effect on the rotor performance. The rotor wakes do have an impact on loss production in the stator passage at both operating conditions. A method for determining the potential importance of blade row interactions on performance is presented.
An approach for aerodynamic optimization of transonic fan blades
NASA Astrophysics Data System (ADS)
Khelghatibana, Maryam
Aerodynamic design optimization of transonic fan blades is a highly challenging problem due to the complexity of flow field inside the fan, the conflicting design requirements and the high-dimensional design space. In order to address all these challenges, an aerodynamic design optimization method is developed in this study. This method automates the design process by integrating a geometrical parameterization method, a CFD solver and numerical optimization methods that can be applied to both single and multi-point optimization design problems. A multi-level blade parameterization is employed to modify the blade geometry. Numerical analyses are performed by solving 3D RANS equations combined with SST turbulence model. Genetic algorithms and hybrid optimization methods are applied to solve the optimization problem. In order to verify the effectiveness and feasibility of the optimization method, a singlepoint optimization problem aiming to maximize design efficiency is formulated and applied to redesign a test case. However, transonic fan blade design is inherently a multi-faceted problem that deals with several objectives such as efficiency, stall margin, and choke margin. The proposed multi-point optimization method in the current study is formulated as a bi-objective problem to maximize design and near-stall efficiencies while maintaining the required design pressure ratio. Enhancing these objectives significantly deteriorate the choke margin, specifically at high rotational speeds. Therefore, another constraint is embedded in the optimization problem in order to prevent the reduction of choke margin at high speeds. Since capturing stall inception is numerically very expensive, stall margin has not been considered as an objective in the problem statement. However, improving near-stall efficiency results in a better performance at stall condition, which could enhance the stall margin. An investigation is therefore performed on the Pareto-optimal solutions to demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.
The process of gas-dynamic design of pneumatic braking system using the baseline compressor
NASA Astrophysics Data System (ADS)
Novikova, Y.; Popov, G.; Goriachkin, E.; Baturin, O.; Zubanov, V.
2017-08-01
The article presents the results of work on the design of the air brake for testing of industrial gas turbine engines with free turbine. Designing of the air brake was performed on the basis of existing units using the program CFD - simulation Numeca FineTurbo. During the design the air brake arrangement was determined, which allows to utilize the required power to the shaft of the free turbine, increases stall margin of the air brake by waisting of the meridional flow channel. It was also made designing of the outlet guide vane to remove the residual twist. Unified nozzle also was designed to provide the air brake work at necessary points on the characteristic.
NASA Astrophysics Data System (ADS)
Guillou, Erwann
Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to calculate the instantaneous and mean velocity fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. In this work, satisfying characterization of the compressor inlet flow instabilities was obtained at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanisms was achieved.
Experimental study of low aspect ratio compressor blading
NASA Technical Reports Server (NTRS)
Reid, L.; Moore, R. D.
1979-01-01
The effects of low aspect ratio blading on aerodynamic performance were examined. Four individual transonic compressor stages, representative of the inlet stage of an advanced high pressure ratio core compressor, are discussed. The flow phenomena for the four stages are investigated. Comparisons of blade element parameters are presented for the two different aspect ratio configurations. Blade loading levels are compared for the near stall conditions and comparisons are made of loss and diffusion factors over the operating range of incidence angles.
Identification of quasi-steady compressor characteristics from transient data
NASA Technical Reports Server (NTRS)
Nunes, K. B.; Rock, S. M.
1984-01-01
The principal goal was to demonstrate that nonlinear compressor map parameters, which govern an in-stall response, can be identified from test data using parameter identification techniques. The tasks included developing and then applying an identification procedure to data generated by NASA LeRC on a hybrid computer. Two levels of model detail were employed. First was a lumped compressor rig model; second was a simplified turbofan model. The main outputs are the tools and procedures generated to accomplish the identification.
Devices and methods of operation thereof for providing stable flow for centrifugal compressors
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Stevens, Mark A. (Inventor); Jett, Thomas A. (Inventor)
2008-01-01
Centrifugal compressor flow stabilizing devices and methods of operation thereof are disclosed that act upon the flow field discharging from the impeller of a centrifugal compressor and modify the flow field ahead of the diffuser vanes such that flow conditions contributing to rotating stall and surge are reduced or even eliminated. In some embodiments, shaped rods and methods of operation thereof are disclosed, whereas in other embodiments reverse-tangent air injection devices and methods are disclosed.
Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Thurman, Douglas R.
2010-01-01
This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the inlet guide vane and variable stators that would result in the transonic stages being aerodynamically matched with high efficiency and acceptable stall margins based on user specified maximum levels of rotor diffusion factor and relative velocity ratio.
Investigation of acceleration characteristics of a single-spool turbojet engine
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L; Pack, George J
1953-01-01
Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.
Axial Compressor Reversed Flow Performance.
1985-05-01
5.3.2. Axial Tempature Profils TIme-verage axial temperature profiles were acquired through the use of exposed...on the above questions, or any additional details concerning the current application, future potential, or other value of this research. Please use the...were heavily dependent upon the model used for defining compressor post-stall performance, both steady state end transient, especially In the reve a
Computational analysis of stall and separation control in centrifugal compressors
NASA Astrophysics Data System (ADS)
Stein, Alexander
2000-10-01
A numerical technique for simulating unsteady viscous fluid flow in turbomachinery components has been developed. In this technique, the three-dimensional form of the Reynolds averaged Navier-Stokes equations is solved in a time-accurate manner. The flow solver is used to study fluid dynamic phenomena that lead to instabilities in centrifugal compressors. The results indicate that large flow incidence angles, at reduced flow rates, can cause boundary layer separation near the blade leading edge. This mechanism is identified as the primary factor in the stall inception process. High-pressure jets upstream of the compressor face are studied as a means of controlling compressor instabilities. Steady jets are found to alter the leading edge flow pattern and effectively suppress compressor instabilities. Yawed jets are more effective than parallel jets and an optimum yaw angle exists for each compression system. Numerical simulations utilizing pulsed jets have also been done. Pulsed jets are found to yield additional performance enhancements and lead to a reduction in external air requirements for operating the jets. Jets pulsed at higher frequencies perform better than low-frequency jets. These findings suggest that air injection is a viable means of alleviating compressor instabilities and could impact gas turbine technology. Results concerning the optimization of practical air injection systems and implications for future research are discussed. The flow solver developed in this work, along with the postprocessing tools developed to interpret the results, provide a rational framework for analyzing and controlling current and next generation compression systems.
NASA Astrophysics Data System (ADS)
Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.
2017-08-01
The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.
Circumferential distortion modeling of the TF30-P-3 compression system
NASA Technical Reports Server (NTRS)
Mazzawy, R. S.; Banks, G. A.
1977-01-01
Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
NASA Astrophysics Data System (ADS)
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
COMPRESSORS, *AIR FLOW, TURBOFAN ENGINES , TRANSIENTS, SURGES, STABILITY, COMPUTERIZED SIMULATION, EXPERIMENTAL DATA, VALIDATION, DIGITAL SIMULATION, INLET GUIDE VANES , ROTATION, STALLING, RECOVERY, HYSTERESIS
Development of the Larzac Engine Rig for Compressor Stall Testing
2011-12-01
due to high vibration levels. Most pressure and all temperature sensors were of conventional type, providing analogue output signals, but of...Must have enough thermal stability to withstand the flow temperature at the particular location. 4. Must be stable in relation to engine vibration ...Instabilities in an Aeroengine ”, ICIASF ’97 Record, IEEE Publications 1997. 7. Hoess, B., Leinhos, D., Fottner, L., 2000, “Stall Inception in the
Two-stage fan. 4: Performance data for stator setting angle optimization
NASA Technical Reports Server (NTRS)
Burger, G. D.; Keenan, M. J.
1975-01-01
Stator setting angle optimization tests were conducted on a two-stage fan to improve efficiency at overspeed, stall margin at design speed, and both efficiency and stall margin at partspeed. The fan has a design pressure ratio of 2.8, a flow rate of 184.2 lb/sec (83.55 kg/sec) and a 1st-stage rotor tip speed of 1450 ft/sec (441.96 in/sec). Performance was obtained at 70,100, and 105 percent of design speed with different combinations of 1st-stage and 2nd-stage stator settings. One combination of settings, other than design, was common to all three speeds. At design speed, a 2.0 percentage point increase in stall margin was obtained at the expense of a 1.3 percentage point efficiency decrease. At 105 percent speed, efficiency was improved by 1.8 percentage points but stall margin decreased 4.7 percentage points. At 70 percent speed, no change in stall margin or operating line efficiency was obtained with stator resets although considerable speed-flow requlation occurred.
Analysis of inlet flow distortion and turbulence effects on compressor stability
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.
1973-01-01
The effect of steady state circumferential total pressure distortion on the loss in compressor stall pressure ratio has been established by analytical techniques. Full scale engine and compressor/fan component test data were used to provide direct evaluation of the analysis. Specifically, since a circumferential total pressure distortion in an inlet system will result in unsteady flow in the coordinate system of the rotor blades, analysis of this type distortion must be performed from an unsteady aerodynamic point of view. By application of the fundamental aerothermodynamic laws to the inlet/compressor system, parameters important in the design of such a system for compatible operation have been identified. A time constant, directly related to the compressor rotor chord, was found to be significant, indicating compressor sensitivity to circumferential distortion is directly dependent on the rotor chord.
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.
NASA Technical Reports Server (NTRS)
Orme, John S.; Schkolnik, Gerard S.
1995-01-01
Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.
Compressor Stability and Control: Review and Practical Implications
2001-06-01
and control technology is being built. 1. INTRODUCTION The concept of a ’smart engine ’, which utilizes augmented sensing, actuation, and computational...research mix. Concentration has been primarily on combustion control, and on stability and control of compressors and compression systems. The latter...at least a functional description of the processes at work during stall inception can effective control Paper presented at the RTO A VT Symposium on
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.
NASA Astrophysics Data System (ADS)
Heberling, Brian
Computational fluid dynamics (CFD) simulations can offer a detailed view of the complex flow fields within an axial compressor and greatly aid the design process. However, the desire for quick turnaround times raises the question of how exact the model must be. At design conditions, steady CFD simulating an isolated blade row can accurately predict the performance of a rotor. However, as a compressor is throttled and mass flow rate decreased, axial flow becomes weaker making the capturing of unsteadiness, wakes, or other flow features more important. The unsteadiness of the tip clearance flow and upstream blade wake can have a significant impact on a rotor. At off-design conditions, time-accurate simulations or modeling multiple blade rows can become necessary in order to receive accurate performance predictions. Unsteady and multi- bladerow simulations are computationally expensive, especially when used in conjunction. It is important to understand which features are important to model in order to accurately capture a compressor's performance. CFD simulations of a transonic axial compressor throttling from the design point to stall are presented. The importance of capturing the unsteadiness of the rotor tip clearance flow versus capturing upstream blade-row interactions is examined through steady and unsteady, single- and multi-bladerow computations. It is shown that there are significant differences at near stall conditions between the different types of simulations.
Utilizing Non-Contact Stress Measurement System (NSMS) as a Health Monitor
NASA Technical Reports Server (NTRS)
Hayes, Terry; Hayes, Bryan; Bynum, Ken
2011-01-01
Continuously monitor all 156 blades throughout the entire operating envelope without adversely affecting tunnel conditions or compromise compressor shell integrity, Calculate dynamic response and identify the frequency/mode to determine individual blade deflection amplitudes, natural frequencies, phase, and damping (Q), Log static deflection to build a database of deflection values at certain compressor conditions to use as basis for real-time online Blade Stack monitor, Monitor for stall, surge, flutter, and blade damage, Operate with limited user input, low maintenance cost, safe illumination of probes, easy probe replacement, and require little or no access to compressor.
NASA Technical Reports Server (NTRS)
Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred
1950-01-01
A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.
NASA Technical Reports Server (NTRS)
Sanders, B. W.
1980-01-01
The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with large, porous bleed areas to provide a stability bypass system that would allow a large, stable airflow range. Exhaust-nozzle, secondary-airflow pumping was used as the exit control for the stability bypass airflow. Propulsion system response and stability bypass performance were obtained for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area, as well as compressor stall. Nozzle secondary pumping as a stability bypass exit control can provide the inlet with a large stability margin with no adverse effects on propulsion system performance.
Active Control of Surge in Compressors Which Exhibit Abrupt Stall
2001-06-01
sensor (of pressure, flow rate, etc.) is fed to a controller which applies a proper control law to drive the actuator (valve, The present paper reports...1993), who analyzed the influence of sensor and numerical simulation shows that: t) the predictions of control acutrsltin o th mxmm sabizd opesr...a sensor of compressor face total pressure), a The present paper considers the active suppression of surge in a butterfly throttle/actuation valve
NASA Astrophysics Data System (ADS)
Curnock, Barry
Different starter systems for jet engines are discussed: electric, cartridge, iso-propyl-nitrate, air, gas turbine, and hydraulic. The fuel system, ignition system, air flow control system, and actual starting mechanism of an air starter motor system are considered. The variation of engine parameters throughout a typical starting sequence are described, with reference to examples for an RB211-535 engine. Physical constraints on engine starting are considered: rotating stall, light up, the window between hang and stall, hang, compressor stall, and the effects of ambient conditions. The following are also discussed: contractual and airworthiness requirements; windmilling; inflight relighting; afterburning light up; combustion stability; and broken shafts. Graphics illustrating the above are presented.
Effect of double air injection on performance characteristics of centrifugal compressor
NASA Astrophysics Data System (ADS)
Hirano, Toshiyuki; Ogawa, Tatsuya; Yasui, Ryutaro; Tsujita, Hoshio
2017-02-01
In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, the compressed air at the exit of centrifugal compressor was re-circulated and injected to the impeller inlet by using two injection nozzles in order to suppress the surge phenomenon. The most effective circumferential position was examined to reduce the flow rate at the surge inception. Moreover, the influences of the injection on the fluctuating property of the flow field before and after the surge inception were investigated by examining the frequency of static pressure fluctuation on the wall surface and visualizing the compressor wall surface by oil-film visualization technique.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2016-01-01
Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.
Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2002-01-01
Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the design speed, and similar results were obtained. In most cases, the greatest improvement in surge margin occurred at fairly low levels of injected flow rate. Externally supplied injection air was used in these experiments. However, the injected flow rates that provided the greatest benefit could be produced using injection air that is recirculating between the diffuser discharge and nozzles located in the diffuser vaneless region. Future experiments will evaluate the effectiveness of recirculating air injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paroubek, J.; Cyrus, V.; Kyncl, J.
1995-10-01
Some results of a research and development program for centrifugal compressors are presented. Six-stage configurations with low flow coefficient were tested. The stages had channel width parameter b{sub 2}/D{sub 2} = 0.01 and 0.03. For each value of the width parameter, three different impellers with inlet hub to outlet diameter ratio d{sub 0}/D{sub 2} = 0.3, 0.4, and 0.5 were designed. Test rig, instrumentation, and data analysis are described. Special attention was devoted to probe calibrations and to evaluation of the leakage, bearing, and disk friction losses. Aerodynamic performance of all tested stages is presented. Slip factors of impellers obtainedmore » experimentally and theoretically are compared. Losses in both vaneless diffuser and return channel with deswirl vanes are discussed. Rotating stall was also investigated. Criteria for stall limit were tested.« less
In Situ Distribution Guided Analysis and Visualization of Transonic Jet Engine Simulations.
Dutta, Soumya; Chen, Chun-Ming; Heinlein, Gregory; Shen, Han-Wei; Chen, Jen-Ping
2017-01-01
Study of flow instability in turbine engine compressors is crucial to understand the inception and evolution of engine stall. Aerodynamics experts have been working on detecting the early signs of stall in order to devise novel stall suppression technologies. A state-of-the-art Navier-Stokes based, time-accurate computational fluid dynamics simulator, TURBO, has been developed in NASA to enhance the understanding of flow phenomena undergoing rotating stall. Despite the proven high modeling accuracy of TURBO, the excessive simulation data prohibits post-hoc analysis in both storage and I/O time. To address these issues and allow the expert to perform scalable stall analysis, we have designed an in situ distribution guided stall analysis technique. Our method summarizes statistics of important properties of the simulation data in situ using a probabilistic data modeling scheme. This data summarization enables statistical anomaly detection for flow instability in post analysis, which reveals the spatiotemporal trends of rotating stall for the expert to conceive new hypotheses. Furthermore, the verification of the hypotheses and exploratory visualization using the summarized data are realized using probabilistic visualization techniques such as uncertain isocontouring. Positive feedback from the domain scientist has indicated the efficacy of our system in exploratory stall analysis.
Effect of double air injection on performance characteristics of centrifugal compressor
NASA Astrophysics Data System (ADS)
Hirano, Toshiyuki; Takano, Mizuki; Tsujita, Hoshio
2015-02-01
In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, for the suppression of surge phenomenon resulting in the extension of the stable operating range of centrifugal compressor to lower flow rate, the compressed air at the compressor exit was re-circulated and injected into the impeller inlet by using the double injection nozzle system. The experiments were performed to find out the optimum circumferential position of the second nozzle relative to the fixed first one and the optimum inner diameter of the injection nozzles, which are able to most effectively reduce the flow rate of surge inception. Moreover, in order to examine the universality of these optimum values, the experiments were carried out for two types of compressors.
NASA Technical Reports Server (NTRS)
Berdanier, Reid A.; Key, Nicole L.
2015-01-01
The focus of this work was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearance heights were studied with nominal tip clearance heights of 1.5%, 3.0%, and 4.0% based on a constant annulus height. Overall compressor performance was investigated at four corrected speedlines (100%, 90%, 80%, and 68%) for each of the three tip clearance configurations using total pressure and total temperature rakes distributed throughout the compressor. The results have confirmed results from previous authors showing a decrease of total pressure rise, isentropic efficiency, and stall margin which is approximately linear with increasing tip clearance height. The stall inception mechanisms have also been evaluated at the same corrected speeds for each of the tip clearance configurations. Detailed flow field measurements have been collected at two loading conditions, nominal loading (NL) and high loading (HL), on the 100% corrected speedline for the smallest and largest tip clearance heights (1.5% and 4.0%). Steady detailed radial traverses of total pressure at the exit of each stator row have been supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data have helped to quantify the size of the leakage flow at the exit of each rotor. Thermal anemometry has also been implemented to evaluate the time-resolved three-dimensional components of velocity throughout the compressor and calculate blockage due to the rotor tip leakage flow throughout the compressor. These measurements have also been used to calculate streamwise vorticity. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100% corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements, as well as the time-resolved total pressures and velocities have helped to reveal a profound influence of the upstream stator vane on the size and shape of the rotor tip leakage flow. Finally, a novel particle image velocimetry (PIV) technique has been developed as a proof-of- concept. In contrast to PIV methods that have been typically been utilized for turbomachinery applications in the past, the method used for this study introduced the laser light through the same access window that was also used to image the flow. This new method addresses potential concerns related to the intrusive laser-introducing techniques that have typically been utilized by other authors in the past. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.
Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2004-01-01
The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.
Investigation of turbocharger compressor surge inception by means of an acoustic two-port model
NASA Astrophysics Data System (ADS)
Kabral, R.; Åbom, M.
2018-01-01
The use of centrifugal compressors have increased tremendously in the last decade being implemented in the modern IC engine design as a key component. However, an efficient implementation is restricted by the compression system surge phenomenon. The focus in the investigation of surge inception have mainly been on the aerodynamic field while neglecting the acoustic field. In the present work a new method based on the full acoustic 2-port model is proposed for investigation of centrifugal compressor stall and surge inception. Essentially, the compressor is acoustically decoupled from the compression system, hence enabling the determination of sound generation and the quantification of internal aero-acoustic coupling effects, both independently of the connected pipe system. These frequency dependent quantities are indicating if the compressor is prone to self-sustained oscillations in case of positive feedback when installed in a system. The method is demonstrated on experimentally determined 2-port data of an automotive turbocharger centrifugal compressor under a variety of realistic operating conditions.
NASA Technical Reports Server (NTRS)
Burger, G. D.; Hodges, T. R.; Keenan, M. J.
1975-01-01
A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion.
NASA Astrophysics Data System (ADS)
Liu, Jianyong; Lu, Yajun; Li, Zhiping
2010-05-01
Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.
Two-stage, low noise advanced technology fan. 4: Aerodynamic final report
NASA Technical Reports Server (NTRS)
Harley, K. G.; Keenan, M. J.
1975-01-01
A two-stage research fan was tested to provide technology for designing a turbofan engine for an advanced, long range commercial transport having a cruise Mach number of 0.85 -0.9 and a noise level 20 EPNdB below current requirements. The fan design tip speed was 365.8m/sec (1200ft/sec);the hub/tip ratio was 0.4; the design pressure ratio was 1.9; and the design specific flow was 209.2 kg/sec/sq m(42.85lbm/sec/sq ft). Two fan-versions were tested: a baseline configuration, and an acoustically treated configuration with a sonic inlet device. The baseline version was tested with uniform inlet flow and with tip-radial and hub-radial inlet flow distortions. The baseline fan with uniform inlet flow attained an efficiency of 86.4% at design speed, but the stall margin was low. Tip-radial distortion increased stall margin 4 percentage points at design speed and reduced peak efficiency one percentage point. Hub-radial distortion decreased stall margin 4 percentage points at all speeds and reduced peak efficiency at design speed 8 percentage points. At design speed, the sonic inlet in the cruise position reduced stall margin one percentage point and efficiency 1.5 to 4.5 percentage points. The sonic inlet in the approach position reduced stall margin 2 percentage points.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
...-directional stability, speed increase and recovery characteristics, and the stall warning margin for the... which the onset of natural or artificial stall warning occurs. VSR reference stall speed. VSR1 reference.... Lastly, this rule adds a requirement that the non-icing stall warning requirements prescribing the speed...
Prediction of unsteady airfoil flows at large angles of incidence
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Jang, H. M.; Chen, H. H.
1992-01-01
The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.
Nonlinear Dynamic Analysis of Disordered Bladed-Disk Assemblies
NASA Technical Reports Server (NTRS)
McGee, Oliver G., III
1997-01-01
In a effort to address current needs for efficient, air propulsion systems, we have developed some new analytical predictive tools for understanding and alleviating aircraft engine instabilities which have led to accelerated high cycle fatigue and catastrophic failures of these machines during flight. A frequent cause of failure in Jets engines is excessive resonant vibrations and stall flutter instabilities. The likelihood of these phenomena is reduced when designers employ the analytical models we have developed. These prediction models will ultimately increase the nation's competitiveness in producing high performance Jets engines with enhanced operability, energy economy, and safety. The objectives of our current threads of research in the final year are directed along two lines. First, we want to improve the current state of blade stress and aeromechanical reduced-ordered modeling of high bypass engine fans, Specifically, a new reduced-order iterative redesign tool for passively controlling the mechanical authority of shroudless, wide chord, laminated composite transonic bypass engine fans has been developed. Second, we aim to advance current understanding of aeromechanical feedback control of dynamic flow instabilities in axial flow compressors. A systematic theoretical evaluation of several approaches to aeromechanical feedback control of rotating stall in axial compressors has been conducted. Attached are abstracts of two .papers under preparation for the 1998 ASME Turbo Expo in Stockholm, Sweden sponsored under Grant No. NAG3-1571. Our goals during the final year under Grant No. NAG3-1571 is to enhance NASA's capabilities of forced response of turbomachines (such as NASA FREPS). We with continue our development of the reduced-ordered, three-dimensional component synthesis models for aeromechanical evaluation of integrated bladeddisk assemblies (i.e., the disk, non-identical bladeing etc.). We will complete our development of component systems design optimization strategies for specified vibratory stresses and increased fatigue life prediction of assembly components, and for specified frequency margins on the Campbell diagrams of turbomachines. Finally, we will integrate the developed codes with NASA's turbomachinery aeromechanics prediction capability (such as NASA FREPS).
Study on casing treatment and stator matching on multistage fan
NASA Astrophysics Data System (ADS)
Wu, Chuangliang; Yuan, Wei; Deng, Zhe
2017-10-01
Casing treatments are required for expanding the stall margin of multi-stage high-load turbofans designed with high blade-tip Mach numbers and high leakage flow. In the case of a low mass flow, the casing treatment effectively reduces the blockages caused by the leakage flow and enlarges the stall margin. However, in the case of a high mass flow, the casing treatment affects the overall flow capacity of the fan, the thrust when operating at the high speeds usually required by design-point specifications. Herein, we study a two-stage high-load fan with three-dimensional numerical simulations. We use the simulation results to propose a scheme that enlarges the stall margin of multistage high-load fans without sacrificing the flow capacity when operating with a large mass flow. Furthermore, a circumferential groove casing treatment is used and adjustments are made to the upstream stator angle to match the casing treatment. The stall margin is thus increased to 16.3%, with no reduction in the maximum mass flow rate or the design thrust performance.
Coupled Aerodynamic-Thermal-Structural (CATS) Analysis
NASA Technical Reports Server (NTRS)
1995-01-01
Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric Aircraft Engines and Pratt & Whitney for evaluation, (3) a collaborative effort has been initiated with the National Institute of Standards and Testing to develop a Standard Data Access Interface, and (4) a blade tip clearance capability has been implemented into the Structural Airfoil Blade Engineering Routine (SABER) program. We plan to continue to develop the data mappers and data management tools. As progress is made, additional efforts will be made to apply these tools to propulsion system applications.
Adaptive Engine Technologies for Aviation CO2 Emissions Reduction
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.
2006-01-01
Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.
Effect of casing treatment on overall and blade element performance of a compressor rotor
NASA Technical Reports Server (NTRS)
Moore, R. D.; Kovich, G.; Blade, R. J.
1971-01-01
An axial flow compressor rotor was tested at design speed with six different casing treatments across the rotor tip. Radial surveys of pressure, temperature, and flow angle were taken at the rotor inlet and outlet. Surveys were taken at several weight flows for each treatment. All the casings treatments decreased the weight flow at stall over that for the solid casing. Radial surveys indicate that the performance over the entire radial span of the blade is affected by the treatment across the rotor tip.
Numerical Study of Unsteady Flow in Centrifugal Cold Compressor
NASA Astrophysics Data System (ADS)
Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing
In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.
Test and evaluation of the HIDEC engine uptrim algorithm
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Dynamic Control of Aerodynamic Instabilities in Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Epstein, A. H.; Guenette, G. R.; Gysling, D. L.; Haynes, J.; Hendricks, G. J.; Paduano, J.; Simon, J. S.; Valavani, L.
1992-01-01
This lecture discusses the use of closed loop control at the component level to enhance the performance of gas turbine engines. The general theme is the suppression of flow instabilities (rotating stall and surge) through use of feedback, either actively or by means of the aeromechanical coupling provided by tailored structures. The basic concepts that underlie active control of turbomachinery instability, and their experimental demonstration, are first described for a centrifugal compressor. It is shown that the mechanism for stabilization is associated with damping of unsteady perturbations in the compression system, and the steady-state performance can thus remain virtually unaltered. Control of instability using a tailored structure is then discussed, along with experimental results illustrating the flow range extension achievable using this technique. A considerably more complex problem is presented by active control or rotating stall where the multi-dimensional features mean that distributed sensing and actuation are required. In addition, there are basic questions concerning unsteady fluid mechanics; these imply the need to resolve issues connected with identification of suitable signals as well as with definition of appropriate wave launchers for implementing the feedback. These issues are discussed and the results of initial successful demonstrations of active control of rotating stall in a single-stage and a three-stage axial compressor are presented. The lecture concludes with suggestions for future research on dynamic control of gas turbine engines.
Task 7: Endwall treatment inlet flow distortion analysis
NASA Technical Reports Server (NTRS)
Hall, E. J.; Topp, D. A.; Heidegger, N. J.; McNulty, G. S.; Weber, K. F.; Delaney, R. A.
1996-01-01
The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields, and to perform a series of detailed numerical predictions to assess the effectiveness of various endwall treatments for enhancing the efficiency and stall margin of modern high speed fan rotors. Particular attention was given to examining the effectiveness of endwall treatments to counter the undesirable effects of inflow distortion. Calculations were performed using three different gridding techniques based on the type of casing treatment being tested and the level of complexity desired in the analysis. In each case, the casing treatment itself is modeled as a discrete object in the overall analysis, and the flow through the casing treatment is determined as part of the solution. A series of calculations were performed for both treated and untreated modern fan rotors both with and without inflow distortion. The effectiveness of the various treatments were quantified, and several physical mechanisms by which the effectiveness of endwall treatments is achieved are discussed.
Core compressor exit stage study, 2
NASA Technical Reports Server (NTRS)
Behlke, R. F.; Burdsall, E. A.; Canal, E., Jr.; Korn, N. D.
1979-01-01
A total of two three-stage compressors were designed and tested to determine the effects of aspect ratio on compressor performance. The first compressor was designed with an aspect ratio of 0.81; the other, with an aspect ratio of 1.22. Both compressors had a hub-tip ratio of 0.915, representative of the rear stages of a core compressor, and both were designed to achieve a 15.0% surge margin at design pressure ratios of 1.357 and 1.324, respectively, at a mean wheel speed of 167 m/sec. At design speed the 0.81 aspect ratio compressor achieved a pressure ratio of 1.346 at a corrected flow of 4.28 kg/sec and an adiabatic efficiency of 86.1%. The 1.22 aspect ratio design achieved a pressure ratio of 1.314 at 4.35 kg/sec flow and 87.0% adiabatic efficiency. Surge margin to peak efficiency was 24.0% with the lower aspect ratio blading, compared with 12.4% with the higher aspect ratio blading.
Centrifugal Compressors, Flow Phenomena and Performance.
1980-11-01
of the diffuser indicate that rotating nonuniformities (rotating stall) may be observed at certain operating conditions. The last paper in this...utilis6 en 6tage isol6, sans canal de retour, ce compresseur peut fournir un taux de compression TT = 5,3 au r~frig~rant 12 (clest-A-dire T = 5,6 A lair
Performance of two-stage fan having low-aspect-ratio first-stage rotor blading
NASA Technical Reports Server (NTRS)
Urasek, D. C.; Gorrell, W. T.; Cunnan, W. S.
1979-01-01
The NASA two stage fan was tested with a low aspect ratio first stage rotor having no midspan dampers. At design speed the fan achieved an adiabatic design efficiency of 0.846, and peak efficiencies for the first stage and rotor of 0.870 and 0.906, respectively. Peak efficiency occurred very close to the stall line. In an attempt to improve stall margin, the fan was retested with circumferentially grooved casing treatment and with a series of stator blade resets. Results showed no improvement in stall margin with casing treatment but increased to 8 percent with stator blade reset.
NASA Technical Reports Server (NTRS)
Harley, K. G.; Odegard, P. A.; Burdsall, E. A.
1972-01-01
A single stage fan with a rotor tip speed of 1000 ft/sec(304.8 m/sec) and a hub-to-tip ratio of 0.392 was retested with a redesigned stator. Tests were conducted with uniform inlet, tip-radial, hub-radial, and circumferential inlet distortions. With uniform inlet flow, stall margin was improved 12 percentage points above that with the original stator. The fan demonstrated an efficiency of 0.883 and a stall margin of 15 percent at a pressure ratio of 1.488 and a specific flow of 41.17 lb/sec/sq ft. Tests were also made with a redesigned casing treatment consisting of skewed slots over the rotor blade tips. This casing treatment gave a 7 percentage point improvement in stall margin when tested with tip radial distortion (when the rotor tip initiated stall). Noise measurements at the fan inlet and exit indicate no effect from closing the stator 10 degrees, nor were there measurable effects from adding skewed slots over the blade tips.
The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller
NASA Technical Reports Server (NTRS)
May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2010-01-01
A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2003-01-01
Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.
NASA Technical Reports Server (NTRS)
Owen, A. Karl; Mattern, Duane L.; Le, Dzu K.
1996-01-01
Steady state and dynamic data were acquired in a T55-L-712 compressor rig. In addition, a T55-L-12 engine was instrumented and similar data were acquired. Rig and engine stall/surge data were analyzed using modal techniques. This paper compares rig and engine preliminary results for the ground idle (approximately 60% of design speed) point. The results of these analyses indicate both rig and engine dynamic event are preceded by indications of traveling wave energy in front of the compressor face. For both rig and engine, the traveling wave energy contains broad band energy with some prominent narrow peaks and, while the events are similar in many ways, some noticeable differences exist between the results of the analyses of rig data and engine data.
Impact of Wake Dispersion on Axial Compressor Performance
NASA Technical Reports Server (NTRS)
Hah, Chunill
2017-01-01
Detailed development of wakes and their impact on the performance of a low-speed one and half stage axial compressor are investigated with a large eddy simulation (LES). To investigate effects of wake mixing recovery and wake interaction with the boundary layer of the downstream blade, spacing between the rotor blade and the stator is varied. The calculated LES flow fields based on a fine computational grid are compared with related measurements and analyzed in detail at several radial locations. The current LES calculates the effects of wake recovery very well. The effects of wake recovery vary significantly in the radial direction. Loss generation is higher on the pressure side at the stator exit at both near design and near stall condition. The current investigation indicates that better management of wake development can be achieved for improved compressor performance.
CO2 compressor vibration and cause analysis
NASA Technical Reports Server (NTRS)
Ying, Y. L.
1985-01-01
The operational experience of a large turbine drive carbon dioxide compressor train in a urea plant with capacity of 1620 tons/day is considered. After the initial start-up in 1976, the vibration in the HP cylinder was comparatively serious. The radial vibration reached 4.2 to 4.5 mils and fluctuated around this value. It was attributed to the rotating stall based on the spectrum analysis. Additional return line from the 4th to 4th and higher temperature of the 4th inlet has cured the vibration. Problems are described which were encountered in the operation along with their solutions, and/or improvements.
Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping
2009-01-01
Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.
Design and development of an advanced two-stage centrifugal compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, D.L.; Waterman, W.F.
1995-04-01
Small turboshaft engines require high-pressure-ratio, high-efficiency compressors to provide low engine fuel consumption. This paper describes the aeromechanical design and development of a 3.3 kg/s (7.3 lb/sec), 14:1 pressure ratio two-stage centrifugal compressor, which is used in the T800-LHT-800 helicopter engine. The design employs highly nonradial, splitter bladed impellers with swept leading edges and compact vaned diffusers to achieve high performance in a small and robust configuration. The development effort quantified the effects of impeller diffusion and passive inducer shroud bleed on surge margin as well as the effects of impeller loading on tip clearance sensitivity and the impact ofmore » sand erosion and shroud roughness on performance. The developed compressor exceeded its performance objectives with a minimum of 23% surge margin without variable geometry. The compressor provides a high-performance, rugged, low-cost configuration ideally suited for helicopter applications.« less
Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts
NASA Technical Reports Server (NTRS)
Lattime, Scott B.; Steinetz, Bruce M.; Robbie, Malcolm G.
2003-01-01
Improved blade tip sealing in the high pressure compressor and high pressure turbine can provide dramatic improvements in specific fuel consumption, time-on-wing, compressor stall margin and engine efficiency as well as increased payload and mission range capabilities of both military and commercial gas turbine engines. The preliminary design of a mechanically actuated active clearance control (ACC) system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated. The ACC system utilizes mechanically actuated seal carrier segments and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. The purpose of this active clearance control system is to improve upon current case cooling methods. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, re-burst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). The active turbine blade tip clearance control system design presented herein will be evaluated to ensure that proper response and positional accuracy is achievable under simulated high-pressure turbine conditions. The test rig will simulate proper seal carrier pressure and temperature loading as well as the magnitudes and rates of blade tip clearance changes of an actual gas turbine engine. The results of these evaluations will be presented in future works.
Transonic Fan/Compressor Rotor Design Study. Volume 4
1982-02-01
amd Identify by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20...COMPRESSOR ROTOR DESIGN STUDY Volume IV D.E. Parker and M.R. Simonson General Electric Company Aircraft Engine Business Group Advanced Technology...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUS Director, Turbine Engine Division If your address has changed, if you
Flow Range of Centrifugal Compressor Being Extended
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2001-01-01
General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
...) engine compressor stall after the Auxiliary Power Unit (APU) becomes the active bleed source for the left side. The most critical condition identified is: --Both engines close to idle (e.g.: descent phase); and --APU running; and --APU bleed button pushed in. In this condition, if the left hand (LH) engine...
Preliminary flight test results of the F100 EMD engine in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor.
NASA Technical Reports Server (NTRS)
Chima, R. V.; Strazisar, A. J.
1982-01-01
Two and three dimensional inviscid solutions for the flow in a transonic axial compressor rotor at design speed are compared with probe and laser anemometers measurements at near-stall and maximum-flow operating points. Experimental details of the laser anemometer system and computational details of the two dimensional axisymmetric code and three dimensional Euler code are described. Comparisons are made between relative Mach number and flow angle contours, shock location, and shock strength. A procedure for using an efficient axisymmetric code to generate downstream pressure input for computationally expensive Euler codes is discussed. A film supplement shows the calculations of the two operating points with the time-marching Euler code.
High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor
NASA Astrophysics Data System (ADS)
Im, Hong-Sik
The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The calculated results agree excellently with the experiment. (4) NASA Stage 35 speed line and radial profiles to validate the steady state mixing plane BC for multistage computation. Excellent agreement is obtained between the computation and experiment. (5) NASA Rotor 67 full annulus and single passage FSI simulation at near peak condition to validate phase lag BC. The time shifted phase lag BC accurately predicts blade vibration responses that agrees better with the full annulus FSI simulation. The DDES methodology is used to investigate the stall inception of NASA Rotor 67. The stall process begins with spike inception and develops to full stall. The whole process is simulated with full annulus of the rotor. The fully coupled FSI is then used to simulate the stall flutter of NASA Rotor 67. The multistage simulations of a GE aircraft engine high pressure compressor (HPC) reveal for the first time that the travelling tornado vortex formed on the rotor blade tip region is the root cause for the NSV of the compressor. The rotor blades under NSV have large torsional vibration due to the tornado vortex propagation in the opposite to the rotor rotation. The tornado vortex frequency passing the suction surface of each blade in the tip region agrees with the NSV frequency. The predicted NSV frequency based on URANS model with rigid blades agrees very well with the experimental measurement with only 3.3% under-predicted. The NSV prediction using FSI with vibrating blades also obtain the same frequency as the rigid blades. This is because that the NSV is primarily caused by the flow vortex instability and the no resonance occurs. The blade structures respond passively and the small amplitudes of the blade vibration do not have significant effect on the flow. The predicted frequency using DDES with rigid blades is more deviated from the experiment and is 14.7% lower. The reason is that the DDES tends to predict the rotor stall earlier than the URANS and the NSV can be achieved only at higher mass flow rate, which generates a lower frequency. The possible reason for the DDES to predict the rotor stall early may be because DDES is more sensitive to wave reflection and a non-reflective boundary condition may be necessary. Overall, the high fidelity FSI methodology developed in this thesis for aircraft engine fan/compressor aeromechanics simulation is demonstrated to be very successful and has advanced the forefront of the state of the art. Future work to continue to improve the accuracy and efficiency is discussed at the end of the thesis.
Journal of Engineering Thermophysics (Selected Articles),
1983-05-13
compressor, prediction of unsteady vibration , and prevention of unsteady vibration . This test was undergone on a turbojet engine. The paper stresses the...induce unsteady engine vibration . While studying the effect of inlet anomaly and variation of the first stage nozzle area of the turbine, the engine...constant revolution speed curve until unsteady vibration or stall appeared. In studying the influence of the starting sequence, starting was
Smart actuation of inlet guide vanes for small turbine engine
NASA Astrophysics Data System (ADS)
Rusovici, Razvan; Kwok Choon, Stephen T.; Sepri, Paavo; Feys, Joshuo
2011-04-01
Unmanned Aerial Vehicles (UAVs) have gained popularity over the past few years to become an indispensable part of aerial missions that include reconnaissance, surveillance, and communication [1]. As a result, advancements in small jet-engine performance are needed to increase the performance (range, payload and efficiency) of the UAV. These jet engines designed especially for UAV's are characterized by thrust force on the order of 100N and due to their size and weight limitations, may lack advanced flow control devices such as IGV [2]. The goal of the current study was to present a conceptual design of an IGV smart-material based actuation mechanism that would be simple, compact and lightweight. The compressor section of an engine increases the pressure and conditions the flow before the air enters the combustion chamber [3]. The airflow entering the compressor is often turbulent due to the high angle of incidence between engine inlet and free-stream velocity, or existing atmospheric turbulence. Actuated IGV are used to help control the relative angle of incidence of the flow that enters the engine compressor, thereby preventing flow separation, compressor stall and thus extending the compressor's operating envelope [4]. Turbine jet- engines which employ variable IGV were developed by Rolls Royce (Trent DR-900) and General Electric (J79).
NASA Technical Reports Server (NTRS)
Hansen, Jeff L.; Delaney, Robert A.
1997-01-01
This contact had two main objectives involving both numerical and experimental investigations of a small highly loaded two-stage axial compressor designated Advanced Small Turboshaft Compressor (ASTC) winch had a design pressure ratio goal of 5:1 at a flowrate of 10.53 lbm/s. The first objective was to conduct 3-D Navier Stokes multistage analyses of the ASTC using several different flow modelling schemes. The second main objective was to complete a numerical/experimental investigation into stall range enhancement of the ASTC. This compressor was designed wider a cooperative Space Act Agreement and all testing was completed at NASA Lewis Research Center. For the multistage analyses, four different flow model schemes were used, namely: (1) steady-state ADPAC analysis, (2) unsteady ADPAC analysis, (3) steady-state APNASA analysis, and (4) steady state OCOM3D analysis. The results of all the predictions were compared to the experimental data. The steady-state ADPAC and APNASA codes predicted similar overall performance and produced good agreement with data, however the blade row performance and flowfield details were quite different. In general, it can be concluded that the APNASA average-passage code does a better job of predicting the performance and flowfield details of the highly loaded ASTC compressor.
An investigation of rotor tip leakage flows in the rear-block of a multistage compressor
NASA Astrophysics Data System (ADS)
Brossman, John Richard
An effective method to improve gas turbine propulsive efficiency is to increase the bypass ratio. With fan diameter reaching a practical limit, increases in bypass ratio can be obtained from reduced core engine size. Decreasing the engine core, results in small, high pressure compressor blading, and large relative tip clearances. At general rule of 1% reduction in compressor efficiency with a 1% increase in tip clearance, a 0.66% change in SFC indicates the entire engine is sensitive to high pressure compressor tip leakage flows. Therefore, further investigations and understanding of the rotor tip leakage flows can help to improve gas turbine engine efficiency. The objectives of this research were to investigate tip leakage flows through computational modeling, examine the baseline experimental steady-stage performance, and acquire unsteady static pressure, over-the rotor to observe the tip leakage flow structure. While tip leakage flows have been investigated in the past, there have been no facilities capable of matching engine representative Reynolds number and Mach number while maintaining blade row interactions, presenting a unique and original flow field to investigate at the Purdue 3-stage axial compressor facility. To aid the design of experimental hardware and determine the influence of clearance geometry on compressor performance, a computational model of the Purdue 3-stage compressor was investigated using a steady RANS CFD analysis. A cropped rotor and casing recess design was investigated to increase the rotor tip clearance. While there were small performance differences between the geometries, the tip leakage flow field was found independent of the design therefore designing future experimental hardware around a casing recess is valid. The largest clearance with flow margin past the design point was 4% tip clearance based on the computational model. The Purdue 3-stage axial compressor facility was rebuilt and setup for high quality, detailed flow measurements during this investigation. A detailed investigation and sensitivity analysis of the inlet flow field found the influence by the inlet total temperature profile was important to performance calculations. This finding was significant and original as previous investigations have been conducted on low-speed machines where there is minimal temperature rise. The steady state performance of the baseline 1.5% tip clearance case was outlined at design speed and three off-design speeds. The leakage flow from the rear seal, the inlet flow field and a thermal boundary condition over the casing was recorded at each operating point. Stage 1 was found to be the limiting stage independent of speed. Few datasets exist on multistage compressor performance with full boundary condition definitions, especially with off-design operating points presenting this as a unique dataset for CFD comparison. The detailed unsteady pressure measurements were conducted over Rotor 1 at design and a near-stall operating condition to characterize the leakage trajectory and position. The leakage flow initial point closer to the leading edge and trajectory angle increased at the higher loading condition. The over-the-rotor static pressure field on Rotor 1 indicated similar trends between the computational model and the leakage trajectory.
High Stability Engine Control (HISTEC): Flight Demonstration Results
NASA Technical Reports Server (NTRS)
Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.
1998-01-01
Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
1999-01-01
The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is synchronized to the laser pulse rate; this allows it to capture images of seed particle position that are separated by a small increment in time. A crosscorrelation of a particle's position in two consecutive images provides an estimate of flow velocity and direction. Multiple image pairs obtained in rapid succession at a particular flow condition provide enough measurements for statistical significance. PIV provides simultaneous velocity measurements over the entire plane that is illuminated by the light sheet instead of at a single point, as is the case when LDV is used. PIV has a further advantage in that the laser light pulse can be triggered by an external source such as a high-response pressure transducer. This feature will allow PIV to synchronize flow imaging to physical phenomena such as rotating stall or stall precursor waves. We hope that this technique can be used to obtain images of the flow field during and just prior to stall.
Transonic Fan/Compressor Rotor Design Study. Volume 2
1982-02-01
Identity by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20. 1ABSRACT...COMPRESSOR ROTOR DESIGN STUDY Volume II D.E. Parker and M.R. Simonson General Electric Company / Aircraft Engine Business Group Advanced Technology...Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUSH Director, Turbine Engine Division . If your address has changed, if you wish to be
NASA Technical Reports Server (NTRS)
Kulkarni, Sameer; Beach, Timothy A.; Jorgenson, Philip C.; Veres, Joseph P.
2017-01-01
A 24 foot diameter 3-stage axial compressor powered by variable-speed induction motors provides the airflow in the closed-return 11- by 11-Foot Transonic Wind Tunnel (11-Foot TWT) Facility at NASA Ames Research Center at Moffett Field, California. The facility is part of the Unitary Plan Wind Tunnel, which was completed in 1955. Since then, upgrades made to the 11-Foot TWT such as flow conditioning devices and instrumentation have increased blockage and pressure loss in the tunnel, somewhat reducing the peak Mach number capability of the test section. Due to erosion effects on the existing aluminum alloy rotor blades, fabrication of new steel rotor blades is planned. This presents an opportunity to increase the Mach number capability of the tunnel by redesigning the compressor for increased pressure ratio. Challenging design constraints exist for any proposed design, demanding the use of the existing driveline, rotor disks, stator vanes, and hub and casing flow paths, so as to minimize cost and installation time. The current effort was undertaken to characterize the performance of the existing compressor design using available design tools and computational fluid dynamics (CFD) codes and subsequently recommend a new compressor design to achieve higher pressure ratio, which directly correlates with increased test section Mach number. The constant cross-sectional area of the compressor leads to highly diffusion factors, which presents a challenge in simulating the existing design. The CFD code APNASA was used to simulate the aerodynamic performance of the existing compressor. The simulations were compared to performance predictions from the HT0300 turbomachinery design and analysis code, and to compressor performance data taken during a 1997 facility test. It was found that the CFD simulations were sensitive to endwall leakages associated with stator buttons, and to a lesser degree, under-stator-platform flow recirculation at the hub. When stator button leakages were modeled, pumping capability increased by over 20 of pressure rise at design point due to a large reduction in aerodynamic blockage at the hub. Incorporating the stator button leakages was crucial to matching test data. Under-stator-platform flow recirculation was thought to be large due to a lack of seals. The effect of this recirculation was assessed with APNASA simulations recirculating 0.5, 1, and 2 of inlet flow about stators 1 and 2, modeled as axisymmetric mass flux boundary conditions on the hub before and after the vanes. The injection of flow ahead of the stators tended to re-energize the boundary layer and reduce hub separations, resulting in about 3 increased stall margin per 1 of inlet flow recirculated. In order to assess the value of the flow recirculation, a mixing plane simulation of the compressor which gridded the under-stator cavities was generated using the ADPAC CFD code. This simulation indicated that about 0.65 of the inlet flow is recirculated around each shrouded stator. This collective information was applied during the redesign of the compressor. A potential design was identified using HT0300 which improved overall pressure ratio by removing pre-swirl into rotor 1, replacing existing NASA 65 series rotors with double circular arc sections, and re-staggering rotors and the existing stators. The performance of the new design predicted by APNASA and HT0300 is compared to the existing design.
Rotor whirl forces induced by the tip clearance effect in axial flow compressors
NASA Astrophysics Data System (ADS)
Ehrich, F.
1993-10-01
It is now widely recognized that destabilizing forces, tending to generate forward rotor whirl, are generated in axial flow turbines as a result of the nonuniform torque induced by the nonuniform tip-clearance in a deflected rotor-the so called Thomas/Alford force (Thomas, 1958, and Alford, 1965). It is also recognized that there will be a similar effect in axial flow compressors, but qualitative considerations cannot definitively establish the magnitude or even the direction of the induced whirling forces-that is, if they will tend to forward or backward whirl. Applying a 'parallel compressor' model to simulate the operation of a compressor rotor deflected radially in its clearance, it is possible to derive a quantitative estimate of the proportionality factor which relates the Thomas/Alford force in axial flow compressors (i.e., the tangential force generated by a radial deflection of the rotor) to the torque level in the compressor. The analysis makes use of experimental data from the GE Aircraft Engines Low Speed Research Compressor facility comparing the performance of three different axial flow compressors, each with four stages (typical of a mid-block of an aircraft gas turbine compressor) at two different clearances (expressed as a percent of blade length) - CL/L = 1.4 percent and CL/L = 2.8 percent. It is found that the value of Beta is in the range of + 0.27 to - 0.71 in the vicinity of the stages' nominal operating line and + 0.08 to - 1.25 in the vicinity of the stages' operation at peak efficiency. The value of Beta reaches a level of between - 1.16 and - 3.36 as the compressor is operated near its stalled condition. The final result bears a very strong resemblance to the correlation obtained by improvising a normalization of the experimental data of Vance and Laudadio (1984) and a generic relationship to the analytic results of Colding-Jorgensen (1990).
Near-Stall Modal Disturbances Within a Transonic Compressor Rotor
2011-12-01
kpi to kulite.position.interp %to loc creation.... what is interesting is why the other runs for 70,80, %85 pc were not affected? kpi ...kulite.position.interp; kulite.position.smooth = smooth(( kpi (loc_loc)... -(round( kpi (loc_loc(1)))): ... round( kpi (loc_loc(end))))’,0.05, ’rloess...8217); % Step 4: Correct Position Vector kulite.position.correct = kpi *blade.number; % total number of blade passings 90 % Trigger Plot with Error
Experiences with nonsynchronous forced vibration in centrifugal compressors
NASA Technical Reports Server (NTRS)
Smith, D. R.; Wachel, J. C.
1984-01-01
The high subsynchronous vibrations which are often forced vibrations caused by flow instabilities, such as stage stall were examined. Modifications to improve the rotor stability by changing the bearings or seals have little effects on the subsynchronous vibrations. Understanding of the differences between forced vibrations and self excited vibrations to properly diagnose the problem and to correct it, is recommended. A list of characteristics of the two types of subsynchronous vibration is presented.
Inner workings of aerodynamic sweep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadia, A.R.; Szucs, P.N.; Crall, D.W.
1998-10-01
The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfymore » identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.« less
Scaled centrifugal compressor, collector and running gear program
NASA Technical Reports Server (NTRS)
Kenehan, J. G.
1983-01-01
The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.
Unsteady behavior and control of vortices in centrifugal compressor
NASA Astrophysics Data System (ADS)
Ohta, Yutaka; Fujisawa, Nobumichi
2014-10-01
Two examples of the use of vortex control to reduce noise and enhance the stable operating range of a centrifugal compressor are presented in this paper. In the case of high-flow operation of a centrifugal compressor with a vaned diffuser, a discrete frequency noise induced by interaction between the impeller-discharge flow and the diffuser vane, which appears most notably in the power spectra of the radiated noise, can be reduced using a tapered diffuser vane (TDV) without affecting the performance of the compressor. Twin longitudinal vortices produced by leakage flow passing through the tapered portion of the diffuser vane induce secondary flow in the direction of the blade surface and prevent flow separation from the leading edge of the diffuser. The use of a TDV can effectively reduce both the discrete frequency noise generated by the interaction between the impeller-discharge flow and the diffuser surface and the broadband turbulent noise component. In the case of low-flow operation, a leading-edge vortex (LEV) that forms on the shroud side of the suction surface near the leading edge of the diffuser increases significantly in size and blocks flow in the diffuser passage. The formation of an LEV may adversely affect the performance of the compressor and may cause the diffuser to stall. Using a one-side tapered diffuser vane to suppress the evolution of an LEV, the stable operating range of the compressor can be increased by more than 12 percent, and the pressure-rise characteristics of the compressor can be improved. The results of a supplementary examination of the structure and unsteady behavior of LEVs, conducted by means of detailed numerical simulations, are also presented.
Temperature distortion generator for turboshaft engine testing
NASA Technical Reports Server (NTRS)
Klann, G. A.; Barth, R. L.; Biesiadny, T. J.
1984-01-01
The procedures and unique hardware used to conduct an experimental investigation into the response of a small-turboshaft-engine compression system to various hot gas ingestion patterns are presented. The temperature distortion generator described herein uses gaseous hydrogen to create both steady-state and time-variant, or transient, temperature distortion at the engine inlet. The range of transient temperature ramps produced by the distortion generator during the engine tests was from less than 111 deg K/sec (200 deg R/sec) to above 611 deg K/sec (1100 deg R/sec); instantaneous temperatures to 422 deg K (760 deg R) above ambient were generated. The distortion generator was used to document the maximum inlet temperatures and temperature rise rates that the compression system could tolerate before the onset of stall for various circumferential distortions as well as the compressor system response during stall.
Numerical simulation of compressor endwall and casing treatment flow phenomena
NASA Technical Reports Server (NTRS)
Crook, A. J.; Greitzer, E. M.; Tan, C. S.; Adamczyk, J. J.
1992-01-01
A numerical study is presented of the flow in the endwall region of a compressor blade row, in conditions of operation with both smooth and grooved endwalls. The computations are first compared to velocity field measurements in a cantilevered stator/rotating hub configuration to confirm that the salient features are captured. Computations are then interrogated to examine the tip leakage flow structure since this is a dominant feature of the endwall region. In particular, the high blockage that can exist near the endwalls at the rear of a compressor blade passage appears to be directly linked to low total pressure fluid associated with the leakage flow. The fluid dynamic action of the grooved endwall, representative of the casing treatments that have been most successful in suppressing stall, is then simulated computationally and two principal effects are identified. One is suction of the low total pressure, high blockage fluid at the rear of the passage. The second is energizing of the tip leakage flow, most notably in the core of the leakage vortex, thereby suppressing the blockage at its source.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang
2013-03-01
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
Energy efficient engine low-pressure compressor component test hardware detailed design report
NASA Technical Reports Server (NTRS)
Michael, C. J.; Halle, J. E.
1981-01-01
The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.
Study of blade aspect ratio on a compressor front stage
NASA Technical Reports Server (NTRS)
Behlke, R. F.; Brooky, J. D.; Canal, E., Jr.
1980-01-01
A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.
Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control
NASA Technical Reports Server (NTRS)
1995-01-01
Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.
Method for pressure modulation of turbine sidewall cavities
Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.
2002-01-01
A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.
System for pressure modulation of turbine sidewall cavities
Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.
2002-01-01
A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.
Lift hysteresis at stall as an unsteady boundary-layer phenomenon
NASA Technical Reports Server (NTRS)
Moore, Franklin K
1956-01-01
Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.
NASA Astrophysics Data System (ADS)
Jaatinen, Ahti; Grönman, Aki; Turunen-Saaresti, Teemu; Backman, Jari
2011-06-01
Three vaned diffusers, designed to have high negative incidence (-8°) at the design operating point, are studied experimentally. The overall performance (efficiency and pressure ratio) are measured at three rotational speeds, and flow angles before and after the diffuser are measured at the design rotational speed and with three mass flow rates. The results are compared to corresponding results of the original vaneless diffuser design. Attention is paid to the performance at lower mass flows than the design mass flow. The results show that it is possible to improve the performance at mass flows lower than the design mass flow with a vaned diffuser designed with high negative incidence. However, with the vaned diffusers, the compressor still stalls at higher mass flow rates than with the vaneless one. The flow angle distributions after the diffuser are more uniform with the vaned diffusers.
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
NASA Technical Reports Server (NTRS)
Pepper, Edward; Foster, Gerald V.
1946-01-01
The XF-12 airplane is a high performance, photo-reconnaissance aircraft designed by the Republic Aviation Corporation for Army Air Forces. A series of tests of a 1/8.33-scale powered model was conducted in the Langley 9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. This report presents the results of tests to determine the static longitudinal stability and stalling characteristics of the model. From this investigation it was indicated that the airplane will possess a positive static margin for all probable flight conditions. The stalling characteristics are considered satisfactory in that the stall initiates near the root section and progresses toward the tips. Early root section stalling occurs, with the flaps retracted and may cause undesirable tail buffeting and erratic elevator control in the normal flight range. From considerations of sinking speed landing flap deflections of 40 degrees may be preferable to 55 degrees of 65 degrees.
Digital implementation of the TF30-P-3 turbofan engine control
NASA Technical Reports Server (NTRS)
Cwynar, D. S.; Batterton, P. G.
1975-01-01
The standard hydromechanical control modes for TF30-P-3 engine were implemented on a digital process control computer. Programming methods are described, and a method is presented to solve stability problems associated with fast response dynamic loops contained within the exhaust nozzle control. A modification of the exhaust nozzle control to provide for either velocity or position servoactuation systems is discussed. Transient response of the digital control was evaluated by tests on a real time hybrid simulation of the TF30-P-3 engine. It is shown that the deadtime produced by the calculation time delay between sampling and final output is more significant to transient response than the effects associated with sampling rate alone. For the main fuel control, extended update and calculation times resulted in a lengthened transient response to throttle bursts from idle to intermediate with an increase in high pressure compressor stall margin. Extremely long update intervals of 250 msec could be achieved without instability. Update extension for the exhaust nozzle control resulted in a delayed response of the afterburner light-off detector and exhaust nozzle overshoot with resulting fan oversuppression. Long update times of 150 msec caused failure of the control due to a false indication by the blowout detector.
Computer modeling of fan-exit-splitter spacing effects on F100 response to distortion
NASA Technical Reports Server (NTRS)
Shaw, M.; Murdoch, R. W.
1982-01-01
The distortion response of the F100(3) engine was effected by the fan exit splitter configuration. The sensitivity for a proximate splitter fan is calculated to be slightly greater than a remote splitter configuration with identical airfoils. Predicted response was based upon a multiple segment parallel compressor Model modified to include a bypass ratio representation that effects the performance characteristics of the last rotor and intermediate case struts. The predicted distortion response required an accurate definition of row pre- and post-stall undistorted operation.
Post Stall Behavior in Axial-Flow Compressors.
1987-08-20
form in Fig. 6. Preceding and following the inception of 14 L EV~. .115 9 II I High T.E. a 30* BI$’Se a* 22.50 Bldc 4 T.E. * ~~~~~~ ~ L.E...to represent the exchange of energy between the rotor and the flow where field, the time-dependent energy equation for a 2 control volume is...the H.los term is the dynamic value of the as previously discussed. Equation (17) then gives rotor row losses. The control volume considered the time
Preliminary Transient Performance Data on the J73 Turbojet Engine. 3; Altitude, 45,000 Feet
NASA Technical Reports Server (NTRS)
McAulay, John E.; Wallner, Lewis E.
1953-01-01
A program was undertaken to determine the J73 turbojet engine compressor stall and surge characteristics and combustor blow-out limits enc ountered during transient engine operation. Data were obtained in the form of oscillograph traces showing the time history of several engi ne parameters with changes in engine fuel flow. The data presented in this report are for step and ramp changes in fuel flow at an altitude of 45,000 feet and flight Mach numbers of 0 and 0.8.
Rotor design of high tip speed low loading transonic fan.
NASA Technical Reports Server (NTRS)
Erwin, J. R.; Vitale, N. G.
1972-01-01
This paper describes the design concepts, principles and details of a high tip speed transonic rotor having low aerodynamic loading. The purpose of the NASA sponsored investigation was to determine whether good efficiency and large stall margin could be obtained by designing a rotor to avoid flow separation associated with strong normal shocks. Fully supersonic flow through the outboard region of the rotor with compression accomplished by weak oblique shocks were major design concepts employed. Computer programs were written and used to derive blade sections consistent from the all-supersonic tip region to the all-subsonic hub region. Preliminary test results indicate attainment of design pressure ratio and design flow at design speed with about a 1.6 point decrement in efficiency and large stall margin.
Small axial compressor technology, volume 1
NASA Technical Reports Server (NTRS)
Holman, F. F.; Kidwell, J. R.; Ware, T. C.
1976-01-01
A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%.
Transonic Fan/Compressor Rotor Design Study. Volume 5
1982-02-01
Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20. ABStTRACT (Continue n reverse...Technology Branch FOR THE COMNANDER H. IV N BUS Director, Turbine Engine Division A If your address has changed, if you wish to be removed from our...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK General Electric Ctmpany AREA & WORK UNIT NUMBERS Aircraft Engine Business Group Project 2307
NASA Technical Reports Server (NTRS)
1983-01-01
Grumman OV-1C in flight. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.
Study of a Wake Recovery Mechanism in a High-Speed Axial Compressor Stage
NASA Technical Reports Server (NTRS)
VanZante, Dale E.
1998-01-01
This work addresses the significant differences in compressor rotor wake mixing loss which exist in a stage environment relative to a rotor in isolation. The wake decay for a rotor in isolation is due solely to viscous dissipation which is an irreversible process and thus leads to a loss in both total pressure and efficiency. Rotor wake decay in the stage environment is due to both viscous mixing and the inviscid strain imposed on the wake fluid particles by the stator velocity field. This straining process, referred to by Smith (1993) as recovery, is reversible and for a 2D rotor wake leads to an inviscid reduction of the velocity deficit of the wake. A model for the rotor wake decay process is developed and used to quantify the viscous dissipation effects relative to those of inviscid wake stretching. The model is verified using laser anemometer measurements acquired in the wake of a transonic rotor operated in isolation and in a stage configuration at near peak efficiency and near stall operating conditions. Additional insight is provided by a time-accurate 3D Navier-Stokes simulation of the compressor stator flow field at the corresponding stage loading levels. Results from the wake decay model exhibit good agreement with the experimental data. Data from the model, laser anemometer measurements, and numerical simulations indicate that for the rotor/stator spacing used in this work, which is typical of core compressors, rotor wake straining (stretching) is the primary decay process in the stator passage with viscous mixing playing only a minor role. The implications of these results on compressor stage design are discussed.
NASA Technical Reports Server (NTRS)
Sandercock, D. M.; Sanger, N. L.
1974-01-01
A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed.
Investigation of non-axisymmetric endwall contouring in a compressor cascade
NASA Astrophysics Data System (ADS)
Liu, Xiwu; Jin, Donghai; Gui, Xingmin
2017-12-01
The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwall was designed by an endwall design optimization platform at 0o incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller corner stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7o incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).
A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan
NASA Astrophysics Data System (ADS)
Nemnem, Ahmed Mohamed Farid
The blade geometry design process is integral to the development and advancement of compressors and turbines in gas generators or aeroengines. A new airfoil section design capability has been added to an open source parametric 3D blade design tool. Curvature of the meanline is controlled using B-splines to create the airfoils. The curvature is analytically integrated to derive the angles and the meanline is obtained by integrating the angles. A smooth thickness distribution is then added to the airfoil to guarantee a smooth shape while maintaining a prescribed thickness distribution. A leading edge B-spline definition has also been implemented to achieve customized airfoil leading edges which guarantees smoothness with parametric eccentricity and droop. An automated turbomachinery design and optimization system has been created. An existing splittered transonic fan is used as a test and reference case. This design was more general than a conventional design to have access to the other design methodology. The whole mechanical and aerodynamic design loops are automated for the optimization process. The flow path and the geometrical properties of the rotor are initially created using the axi-symmetric design and analysis code (T-AXI). The main and splitter blades are parametrically designed with the created geometry builder (3DBGB) using the new added features (curvature technique). The solid model creation of the rotor sector with a periodic boundaries combining the main blade and splitter is done using MATLAB code directly connected to SolidWorks including the hub, fillets and tip clearance. A mechanical optimization is performed with DAKOTA (developed by DOE) to reduce the mass of the blades while keeping maximum stress as a constraint with a safety factor. A Genetic algorithm followed by Numerical Gradient optimization strategies are used in the mechanical optimization. The splittered transonic fan blades mass is reduced by 2.6% while constraining the maximum stress below 50% material yield strength using 2D sections thickness and chord multipliers. Once the initial design was mechanically optimized, a CFD optimization was performed to maximize efficiency and/or stall margin. The CFD grid generator (AUTOGRID) reads 3DBGB output and accounts for hub fillets and tip gaps. Single and Multi-objective Genetic Algorithm (SOGA, MOGA) optimization have been used with the CFD analysis system. In SOGA optimization, efficiency was increased by 3.525% from 78.364% to 81.889% while only changing 4 design parameters. For MOGA optimization with higher weighting efficiency than stall margin, the efficiency was increased by 2.651% from 78.364% to 81.015% while the static pressure recovery factor was increased from 0.37407 to 0.4812286 that consequently increases the stall margin. The design process starts with a hot shape design, and then a hot to cold transformation process is explained once the optimization process ends which smoothly subtracts the mechanical deflections from the hot shape. This transformation ensures an accurate tip clearance. The optimization modules can be customized by the user as one full optimization or multiple small ones. This allows the designer not to be eliminated from the design loop which helps in taking the right choice of parameters for the optimization and the final feasible design.
NASA Technical Reports Server (NTRS)
Fleming, William A.
1948-01-01
An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.
2007-10-25
as this airborne research did. In this particular case, the WP- 3D flight track took it through the dry slot of an occluding storm system which had...just completed a period of explosive cyclogenesis. This particular sector of a storm sometimes experiences very high wind speeds and seas but little...takeoff time of 22:00 Z on February 8 (henceforth referred to as the F8 flight). The incident of February 9 (henceforth F9) was a storm that was part of
Influence of stationary components on unsteady flow in industrial centrifugal compressors
NASA Technical Reports Server (NTRS)
Bonciani, L.; Terrinoni, L.
1984-01-01
An experimental investigation was performed to determine the characteristics of the onset and the growth of rotating nonuniform flow in a standard low specific speed stage, normally utilized in high pressure applications, in relation to change of stationary component geometry. Four configurations, differing only in the return channel and crossover geometry were tested on an atmospheric pressure open loop test rig. Experimental results make conspicious the effect of return channel geometry and give the possibility of shifting the unstable zone onset varying such geometry. An attempt was made to interpret the experimental results in the Emmons - Stenning's rotating stall theory.
NASA Technical Reports Server (NTRS)
1983-01-01
Grumman OV-1C in the hangar used at the time by the Army at Edwards Air Force Base. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and electronic reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.
Passive Endwall Treatments for Enhancing Stability
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
2007-01-01
These lecture notes were presented at the von Karman Institutes lecture series on Advances in Axial Compressor Aerodynamics, May 2006. They provide a fairly extensive overview of what's been learned from numerous investigations of various passive casing endwall technologies that have been proposed for alleviating the stall limiting physics associated with the compressor endwall flow field. The lecture notes are organized to give an appreciation for the inventiveness and understanding of the earliest compressor technologists and to provide a coherent thread of understanding that has arisen out of the early investigations. As such the lecture notes begin with a historical overview of casing treatments from their infancy through the earliest proposed concepts involving blowing, suction and flow recirculation. A summary of lessons learned from these early investigations is provided at the end of this section. The lecture notes then provide a somewhat more in-depth overview of recent advancements in the development of passive casing treatments from the late 1990's through 2006, including advancements in understanding the flow mechanism of circumferential groove casing treatments, and the development of discrete tip injection and self-recirculating casing treatments. At the conclusion of the lecture notes a final summary of lessons learned throughout the history of the development of passive casing treatments is provided. Finally, a list of future needs is given. It is hoped that these lecture notes will be a useful reference for future research endeavors to improve our understanding of the fluid physics of passive casing treatments and how they act to enhance compressor stability, and that they will perhaps provide a springboard for future research activities in this area of interest
NASA Astrophysics Data System (ADS)
Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro
2017-04-01
For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.
JT8D high pressure compressor performance improvement
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1981-01-01
An improved performance high pressure compressor with potential application to all models of the JT8D engine was designed. The concept consisted of a trenched abradable rubstrip which mates with the blade tips for each of the even rotor stages. This feature allows tip clearances to be set so blade tips run at or near the optimum radius relative to the flowpath wall, without the danger of damaging the blades during transients and maneuvers. The improved compressor demonstrated thrust specific fuel consumption and exhaust gas temperature improvements of 1.0 percent and at least 10 C over the takeoff and climb power range at sea level static conditions, compared to a bill-of-material high pressure compressor. Surge margin also improved 4 percentage points over the high power operating range. A thrust specific fuel consumption improvement of 0.7 percent at typical cruise conditions was calculated based on the sea level test results.
Consideration of Unsteady Aerodynamics and Boundary-Layer Transition in Rotorcraft Airfoil Design
NASA Astrophysics Data System (ADS)
Oliveira Vieira, Bernardo Augusto de
Traditional rotorcraft airfoil design is based on steady-flow aerodynamic requirements. The approach assumes a strong correlation between steady and unsteady aerodynamic characteristics, which is often not observed in practice. This is particularly relevant at high speed and high thrust conditions, when the rotor is susceptible to dynamic stall and its many negative consequences. Given the abrupt nature of the phenomena, large margins are typically established to prevent fatigue loads on the blades and pitch links; thus, limiting operation under high altitudes, high payloads, high temperatures, as well as during maneuvers. This work addresses the problem from the perspective of passive airfoil design. Typical design requirements are revisited to include metrics for improved dynamic stall and new ways to qualifying rotorcraft airfoils are proposed. A number of design studies are conducted to better understand the relation between airfoil shape and dynamic stall behavior. The design manipulations are handled by an inversedesign, conformal mapping method, and unsteady Reynolds-averaged Navier-Stokes equations are used to predict the aerodynamic performance under pitch motion. In unsteady flow, the occurrence of aerodynamic lags in the development of pressures, boundary-layer separation, and viscous-inviscid interactions suggest more strict requirements than in steady flow. In order to postpone the onset of dynamic stall, the design needs to handle competing leading- and trailing-edge separation mechanisms, which are heavily influenced by local supersonic flow, strong shock waves, and laminar-turbulent transition effects. It is found that a particular tailoring of the trailing-edge separation development can provide adequate dynamic stall characteristics and minimize penalties in drag and nose-down pitching moment. At the same time, a proper design of the nose shape is required to avoid strong shock waves and prevent premature leading-edge stall. A proof-of-concept airfoil is developed to improve dynamic stall behavior, while meeting stringent requirements on flight conditions away from stall. Trade-offs to the achievement of typical rotor design requirements are discussed. Performance calculations using information obtained from comprehensive analysis (RCAS) based on a UH-60A helicopter are conducted to estimate gains in the rotor stall boundaries. Results are compared to the baseline UH-60A rotor, as well as a blade that uses a VR-12 airfoil inboard. It is found that the new airfoil can provide expansion of the operational envelope compared to the other two configurations, while still reducing hover drag and maintaining very low pitching moments. Some compromises in the drag rise at high Mach numbers are found in comparison to the VR-12 airfoil. By placing the new airfoil up to r/R = 0.80 on the rotor, the baseline UH-60A maximum speed (mu = 0.37) can be achieved with considerable margins to drag rise. Finally, pitching wing calculations are conducted to demonstrate the proposed concepts in three-dimensional flow. Differences in the development of stall between wings using a VR-12 airfoil and the new airfoil are discussed. Despite the complex evolution of 3-D flow structures, the stall onset mechanisms seem to follow the trends obtained with 2-D simulations. The new wing experiences a more favorable dynamic stall inception and considerable decreases in the integrated (3-D) peak pitching moments. The results are promising and give confidence in the design approach. The applied methodology can aid with the design of airfoils that are more suited for operation at high loading conditions.
Performance of a low-pressure-ratio centrifugal compressor with four diffuser designs
NASA Technical Reports Server (NTRS)
Klassen, H. A.
1973-01-01
A low-pressure-ratio centrifugal compressor was tested with four different diffuser configurations. One diffuser had airfoil vanes. Two were pipe diffusers. One pipe diffuser had 7.5 deg cone diffusing passages. The other had trumpet-shaped passages designed for linear static-pressure rise from throat to exit. The fourth configuration had flat vanes with elliptical leading edges similar to those of pipe diffusers. The side walls were contoured to produce a linear pressure rise. Peak compressor efficiencies were 0.82 with the airfoil vane and conical pipe diffusers, 0.80 with the trumpet, and 0.74 with the flat-vane design. Surge margin and useful range were greater for the airfoil-vane diffuser than for the other three.
High stability design for new centrifugal compressor
NASA Technical Reports Server (NTRS)
Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.
1989-01-01
It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.
2003-01-01
Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.
NASA Technical Reports Server (NTRS)
Chrisenberry, H. E.; Doss, P. G.; Kressly, A. E.; Prichard, R. D.; Thorndike, C. S.
1973-01-01
A low speed wind tunnel test was conducted to assess the effects of the larger JT8D refan nacelles on the stability and control characteristics of the DC-9-30, with emphasis on the deep stall regime. Deep stall pitching moment and elevator hinge moment data, and low angle of attack tail-on and tail-off pitching moment data are presented. The refan nacelle was tested in conjunction with various pylons of reduced span relative to the production DC-9-30 pylon. Also, a horizontal tail that was larger than the production tail was tested. The data show that the refan installation has a small detrimental effect on the DC-9-30 deep stall recovery capability, that recovery characteristics are essentially independent of pylon span, and that the larger horizontal tail significantly increases recovery margins. The deep stall characteristics with the refan installation, within the range of pylon spans tested, are acceptable with no additional design changes anticipated.
NASA Astrophysics Data System (ADS)
Suder, Kenneth L.; Celestina, Mark L.
1995-06-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Celestina, Mark L.
1995-01-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
NASA Astrophysics Data System (ADS)
Gancedo, Matthieu
Increase in emission regulations in the transport industry brings the need to have more efficient engines. A path followed by the automobile industry is to downsize the size of the internal combustion engine and increase the air density at the intake to keep the engine power when needed. Typically a centrifugal compressor is used to force the air into the engine, it can be powered from the engine shaft (superchargers) or extracting energy contained into the hot exhaust gases with a turbine (turbochargers). The flow range of the compressor needs to match the one of the engine. However compressors mass flow operating range is limited by choke on the high end and surge on the low end. In order to extend the operation at low mass flow rates, the use of passive devices for turbocharger centrifugal compressors was explored since the late 80's. Hence, casing treatments including flow recirculation from the inducer part of the compressor have been shown to move the surge limit to lower flows. Yet, the working mechanisms are still not well understood and thus, to optimize the design of this by-pass system, it is necessary to determine the nature of the changes induced by the device both on the dynamic stability of the pressure delivery and on the flow at the inlet. The compressor studied here features a self-recirculating casing treatment at the inlet. The recirculation passage could be blocked to carry a direct comparison between the cases with and without the flow feature. To grasp the effect on compressor stability, pressure measurements were taken in the different constituting elements of the compressor. The study of the mean pressure variations across the operating map showed that the tongue region is a limiting element. Dynamic pressure measurements revealed that the instabilities generated near the inducer when the recirculation is blocked increase the overall instability levels at the compressor outlet and propagating pressure waves starting at the tongue occurred, different in nature from rotating stall. The flow velocity was also measured at the inlet of the compressor by means of planar PIV measurements. The case without recirculation showed strong back flow occurrence at low MFR on the shroud of the inlet passage due to tip recirculation. With recirculation, this back flow was significantly reduced improving the overall stability. However, with the current recirculation channels design, there is an efficiency penalty and the recirculated flow introduces non-homogeneities in the mixing region. Finally, to explore experimentally the effect of variations of the casing treatment, several different designs were tested. It was seen that modifications of the supporting rib shape impacted the efficiency. Also, improvements on the surge line were obtained with flow reinjection near the inducer in the direction of the main flow at low speeds and with induced counter swirl for all speeds.
Volatilization Rates from Water to Indoor Air Phase II
Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attemp...
Corner flow control in high through-flow axial commercial fan/booster using blade 3-D optimization
NASA Astrophysics Data System (ADS)
Zhu, Fang; Jin, Donghai; Gui, Xingmin
2012-02-01
This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.
Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Chen, Jen-Ping
2012-01-01
This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.
Iced Aircraft Flight Data for Flight Simulator Validation
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.
2003-01-01
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.
Re-Educating Jet-Engine-Researchers to Stay Relevant
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2016-06-01
To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.
Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki
2013-03-01
This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.
NASA Technical Reports Server (NTRS)
Elliott, David
2007-01-01
In order to increase stall margin in a high-bypass ratio turbofan engine, an advanced casing treatment was developed that extracted a small amount of flow from the casing behind the fan and injected it back in front of the fan. Several different configurations of this casing treatment were designed by varying the distance of the extraction and injection points, as well as varying the amount of flow. These casing treatments were tested on a 55.9 cm (22 in.) scale model of the Pratt & Whitney Advanced Ducted Propulsor in the NASA Glenn 9 by 15 Low Speed Wind Tunnel. While all of the casing treatment configurations showed the expected increase in stall margin, a few of the designs showed a potential noise benefit for certain engine speeds. This paper will show the casing treatments and the results of the testing as well as propose further research in this area. With better prediction and design techniques, future casing treatment configurations could be developed that may result in an optimized casing treatment that could conceivably reduce the noise further.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob
2013-01-01
This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.
Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system
NASA Astrophysics Data System (ADS)
Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham
2013-10-01
According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.
NASA Technical Reports Server (NTRS)
Walsh, K. R.; Burcham, F. W.
1984-01-01
The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur.
NASA Technical Reports Server (NTRS)
Moore, R. D.; Urasek, D. C.; Kovich, G.
1973-01-01
The overall and blade-element performances are presented over the stable flow operating range from 50 to 100 percent of design speed. Stage peak efficiency of 0.834 was obtained at a weight flow of 26.4 kg/sec (58.3 lb/sec) and a pressure ratio of 1.581. The stall margin for the stage was 7.5 percent based on weight flow and pressure ratio at stall and peak efficiency conditions. The rotor minimum losses were approximately equal to design except in the blade vibration damper region. Stator minimum losses were less than design except in the tip and damper regions.
Aerodynamic performance of a 1.25-pressure-ratio axial-flow fan stage
NASA Technical Reports Server (NTRS)
Moore, R. D.; Steinke, R. J.
1974-01-01
Aerodynamic design parameters and overall and blade-element performances of a 1.25-pressure-ratio fan stage are reported. Detailed radial surveys were made over the stable operating flow range at rotative speeds from 70 to 120 percent of design speed. At design speed, the measured stage peak efficiency of 0.872 occurred at a weight flow of 34.92 kilograms per second and a pressure ratio of 1.242. Stage stall margin is about 20 percent based on the peak efficiency and stall conditions. The overall peak efficiency for the rotor was 0.911. The overall stage performance showed no significant change when the stators were positioned at 1, 2, or 4 chords downstream of the rotor.
NASA Technical Reports Server (NTRS)
Crider, Dennis; Foster, John V.
2012-01-01
In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins. This paper addresses simulation modeling requirements that are unique to turboprop transport aircraft and highlights the growing need for aerodynamic models suitable for stall training for these configurations. A review of prominent accidents that involved aerodynamic stall is used to illustrate various modeling features unique to turboprop configurations and the impact of stall behavior on susceptibility to loss of control that has led to new training requirements. This is followed by an overview of stability and control behavior of straight-wing turboprops, the related aerodynamic characteristics, and a summary of recent experimental studies on icing effects. In addition, differences in flight dynamics behavior between swept-wing jets and straight-wing turboprop configurations are discussed to compare and contrast modeling requirements. Specific recommendations for aerodynamic models along with further research needs and data measurements are also provided. 1
78 FR 7259 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... wing leading edge. This AD requires a detailed inspection of the end caps on the anti-icing piccolo... on the wing leading edge or run-back ice, which could lead to a reduction in the stall margin on... the loss of the wing leading edge anti- icing piccolo tube end caps on two aircraft. This was...
PIV investigation of the flow induced by a passive surge control method in a radial compressor
NASA Astrophysics Data System (ADS)
Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf
2012-09-01
Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.
Dynamic response of Hovercraft lift fans
NASA Astrophysics Data System (ADS)
Moran, D. D.
1981-08-01
Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.
Evaluation of a low aspect ratio small axial compressor stage, volume 1
NASA Technical Reports Server (NTRS)
Sawyer, C. W., III
1977-01-01
A program was conducted to evaluate the effects of scaling, tip clearance, and IGV reset on the performance of a low aspect ratio compressor stage. Stage design was obtained by scaling an existing single stage compressor by a linear factor of 0.304. The design objective was to maintain the meanline velocity field of the base machine in the smaller size. Adjustments were made to account for predicted blockage differences and to chord lengths and airfoil edge radii to obtain reasonable blade geometries. Meanline velocity diagrams of the base stage were not maintained at the scaled size. At design speed and flowrate the scaled stage achieved a pressure ratio of 1.423, adiabatic efficiency of 0.822, and surge margin of 18.5%. The corresponding performance parameters for the base stage were 1.480, 0.872, and 25.2%, respectively. The base stage demonstrated a peak efficiency at design speed of 0.872; the scaled stage achieved a level of 0.838. When the scaled stage rotor and stator tip clearances were doubled, the stage achieved a pressure ratio of 1.413, efficiency of 0.799, and surge margin of 16.0% at the design flowrate. The peak stage efficiency at design speed was 0.825 with the increased clearance. Increased prewhirl lowered the stage pressure ratio as expected. Stage efficiency was maintained with ten degrees of increased prewhirl and then decreased substantially with ten additional degrees of reset.
A Sensitivity Study of Commercial Aircraft Engine Response for Emergency Situations
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2011-01-01
This paper contains the details of a sensitivity study in which the variation in a commercial aircraft engine's outputs is observed for perturbations in its operating condition inputs or control parameters. This study seeks to determine the extent to which various controller limits can be modified to improve engine performance, while capturing the increased risk that results from the changes. In an emergency, the engine may be required to produce additional thrust, respond faster, or both, to improve the survivability of the aircraft. The objective of this paper is to propose changes to the engine controller and determine the costs and benefits of the additional capabilities produced by the engine. This study indicates that the aircraft engine is capable of producing additional thrust, but at the cost of an increased risk of an engine failure due to higher turbine temperatures and rotor speeds. The engine can also respond more quickly to transient commands, but this action reduces the remaining stall margin to possibly dangerous levels. To improve transient response in landing scenarios, a control mode known as High Speed Idle is proposed that increases the responsiveness of the engine and conserves stall margin
Mathematical models for optimization of the centrifugal stage of a refrigerating compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzhdin, A.S.
1987-09-01
The authors describe a general approach to the creating of mathematical models of energy and head losses in the flow part of the centrifugal compressor. The mathematical model of the pressure head and efficiency of a two-section stage proposed in this paper is meant for determining its characteristics for the assigned geometric dimensions and for optimizing by variance calculations. Characteristic points on the plot of velocity distribution over the margin of the vanes of the impeller and the diffuser of the centrifugal stage with a combined diffuser are presented. To assess the reliability of the mathematical model the authors comparedmore » some calculated data with the experimental ones.« less
NASA Astrophysics Data System (ADS)
Marsan, A.; Trébinjac, I.; Coste, S.; Leroy, G.
2013-12-01
The temporal behaviour of a flow separation in the hub-suction side corner of a transonic diffuser is studied thanks to unsteady numerical simulations based on the phase-lagged approach. The validity of the numerical results is confirmed by comparison with experimental unsteady pressure measurements. An analysis of the instantaneous skin-friction pattern and particles trajectories is presented. It highlights the topology of the separation and its temporal behaviour. The major result is that, despite of a highly time-dependent core flow, the separation is found to be a "fixed unsteady separation" characterized by a fixed location of the main saddle of the separation but an extent of the stall region modulated by the pressure waves induced by the impeller-diffuser interaction.
NASA Technical Reports Server (NTRS)
Sanders, B. W.
1980-01-01
The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with a poppet-valve-controlled stability bypass system that was designed to provide a large, stable airflow range. Propulsion system response and stability bypass performance were determined for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area as well as compressor stall. For reference, data are also included for a conventional, fixed-exit bleed system. The poppet valves greatly increased inlet stability and had no adverse effects on propulsion system performance. Limited unstarted-inlet bleed performance data are presented.
NASA Astrophysics Data System (ADS)
Gan, Jiaye
The purpose of this research is to develop high fidelity numerical methods to investigate the complex aeroelasticity fluid-structural problems of aircraft and aircraft engine turbomachinery. Unsteady 3D compressible Navier-Stokes equations in generalized coordinates are solved to simulate the complex fluid dynamic problems in aeroelasticity. An efficient and low diffusion E-CUSP (LDE) scheme designed to minimize numerical dissipation is used as a Riemann solver to capture shock waves in transonic and supersonic flows. An improved hybrid turbulence modeling, delayed detached eddy simulation (DDES), is implemented to simulate shock induced separation and rotating stall flows. High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. To resolve the nonlinear interaction between flow and vibrating blade structures, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. A rotor/stator sliding interpolation technique is developed to accurately capture the blade rows interaction at the interface with general grid distribution. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are applied to consider the effect of phase difference for a sector of annulus simulation. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI methodology. The accuracy and robustness of RANS, URANS and DDES turbulence models with high order schemes for predicting the lift and drag of the DLR-F6 configuration are verified. The DDES predicts the drag very well whereas the URANS model significantly over predicts the drag. DDES of a finned projectile base flows is conducted to further validate the high fidelity methods with vortical flow. The DDES is demonstrated to be superior to the URANS for the projectile flow prediction. DDES of a 3D transonic wing flutter is validated with AGARD Wing 445.6 aeroelasticity experiment at free stream Mach number varied from subsonic to supersonic. The predicted flutter boundary at different free stream Mach number including the sonic dip achieves very good agreement with the experiment. In particular, the predicted flutter boundaries at the supersonic conditions match the experiment accurately. The mechanism of sonic dip is investigated. Simulation of supersonic fluid-structural interaction of a flat panel is performed by using DDES with high order shock capturing scheme. The panel vibration induced by the shock boundary layer interaction is well resolved by the high fidelity method. The dominant panel response agrees well with the experiment in terms of the mean panel displacement and frequency. The DDES methodology is used to investigate the stall inception of NASA Stage 35 compressor. The process of rotating stall is compared between the results using both URANS and DDES with full annulus. The stall process begins with spike inception and develops to full stall. The numbers of stall cell, and the size and propagating speed of the stall cells are well captured by both URANS and DDES. Two stall cells with 42% rotor rotating speed are resolved by DDES and one stall cell with 90% rotor rotating speed by URANS. It is not conclusive which method is more accurate since there is no experimental data, but the DDES does show more realistic vortical turbulence with more small scale structures. The non-synchronous vibration (NSV) of a high speed 1-1/2 stage axial compressor is investigated by using rigid blade and vibrating blade with fluid-structural interaction. An interpolation sliding boundary condition is used for the rotor-stator interaction. The URANS simulation with rigid blades shows that the leading edge(LE) circumferentially traveling vortices, roughly above 80% rotor span, travel backwards relative to the rotor rotation and cause an excitation with the frequency agreeing with the measured NSV frequency. The predicted excitation frequency of the traveling vortices in the rigid blade simulation is a non-engine order frequency of 2603 Hz, which agrees very well with the rig measured frequency of 2600 Hz. For the FSI simulation, the results show that there exist two dominant frequencies in the spectrum of the blade vibration. The lower dominant frequency is close to the first bending mode. The higher dominant frequency close to the first torsional mode agrees very well with the measured NSV frequency. To investigate whether the NSV is caused by flow excitation or by flow-structure locked-in phenomenon, the rotating speed is varied within a small RPM range, in which the rig test detected the NSV. The unsteady flows with rigid blades are simulated first at several RPMs. A dominant excitation NSV frequency caused by the circumferentially traveling tip vortices are captured. The simulation then switches to fluid structure interaction that allows the blades to vibrate freely. (Abstract shortened by ProQuest.).
Energy Efficient Engine: High-pressure compressor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Howe, David C.; Marchant, R. D.
1988-01-01
The objective of the NASA Energy Efficient Engine program is to identify and verify the technology required to achieve significant reductions in fuel consumption and operating cost for future commercial gas turbine engines. The design and analysis is documented of the high pressure compressor which was tested as part of the Pratt and Whitney effort under the Energy Efficient Engine program. This compressor was designed to produce a 14:1 pressure ratio in ten stages with an adiabatic efficiency of 88.2 percent in the flight propulsion system. The corresponding expected efficiency for the compressor component test rig is 86.5 percent. Other performance goals are a surge margin of 20 percent, a corrected flow rate of 35.2 kg/sec (77.5 lb/sec), and a life of 20,000 missions and 30,000 hours. Low loss, highly loaded airfoils are used to increase efficiency while reducing the parts count. Active clearance control and case trenches in abradable strips over the blade tips are included in the compressor component design to further increase the efficiency potential. The test rig incorporates variable geometry stator vanes in all stages to permit maximum flexibility in developing stage-to-stage matching. This provision precluded active clearance control on the rear case of the test rig. Both the component and rig designs meet or exceed design requirements with the exception of life goals, which will be achievable with planned advances in materials technology.
Simulating Effects of High Angle of Attack on Turbofan Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.
NASA Technical Reports Server (NTRS)
Schmied, J.; Pradetto, J. C.
1994-01-01
The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.
AGT100 turbomachinery. [for automobiles
NASA Technical Reports Server (NTRS)
Tipton, D. L.; Mckain, T. F.
1982-01-01
High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.
An experimental and analytical investigation of isolated rotor flap-lag stability in forward flight
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Mcnulty, Michael J.
1985-01-01
For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasi-steady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. Accordingly, a soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 deg. The 1.62-m model rotor is untrimmed with an essentially unrestricted tilt of the tip path plane. By computerized symbolic manipulation, an analytical model is developed in substall to predict stability margins with mode indentification. It also predicts substall and stall regions to help explain the correlation between theory and data. The correlation shows both the strengths and weaknesses of the data and theory, and promotes further insights into areas in which further study is needed in substall and stall.
Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.
2013-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. The PSL test has helped to calibrate the engine icing computational tool to assess the risk of ice accretion. The results from the computer simulation identified prevalent trends in wet bulb temperature, ice particle melt ratio, and engine inlet temperature as a function of altitude for predicting engine icing risk due to ice crystal ingestion.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2010-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
NASA Astrophysics Data System (ADS)
Erler, Engin
Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this region, this approach would entail a nominal performance penalty. Therefore, the chosen rotor design philosophy aims to keep the spanwise loading constant to avoid trading performance for desensitization. The rotor designs that resulted from this exercise are simulated in ANSYS CFX at different tip clearance sizes. The change in their performance with respect to tip clearance size (sensitivity) is compared both on an integral level in terms of pressure ratio and adiabatic efficiency, as well as on a detailed level in terms of aerodynamic losses and blockage associated with tip clearance flow. The sensitivity of aerodynamic stability is evaluated either directly through the simulations of the rotor characteristics up to the stall point (expensive in time and resources) for a few designs or indirectly through the position of the interface between the incoming and tip clearance flow with respect to the rotor leading edge plane. The latter approach is based on a generally observed stall criteria in modern axial compressors. The rotor designs are then assessed according to their sensitivity in comparison to that of the reference rotor design to detect features that can explain the trend in sensitivity to tip clearance size. These features can then be validated and the associated flow mechanisms explained through numerical simulations and modelling. Analysis of the database from the rotor parametric study shows that the observed trend in sensitivity cannot be explained by the shifting of the aerodynamic loading along the blade chord, as initially hypothesized based on the literature review. Instead, two flow features are found to reduce sensitivity of performance and stability to tip clearance, namely an increase in incoming meridional momentum in the tip region and a reduction/elimination of double leakage flow. Double leakage flow is the flow that exits the tip clearance of one blade and proceeds into the clearance of the adjacent blade rather than convecting downstream out of the local blade passage. These flow features are isolated and validated based on the reference rotor design through changes in the inlet total pressure condition to alter incoming flow momentum and blade number count to change double leakage rate. In terms of flow mechanism, double leakage is shown to be detrimental to performance and stability, and its proportional increase with tip clearance size explains the sensitivity increase in the presence of double leakage and, conversely, the desensitization effect of reducing or eliminating double leakage. The increase in incoming meridional momentum in the tip region reduces sensitivity to tip clearance through its reduction of double leakage as well as through improved mixing with tip clearance flow, as demonstrated by an analytical model without double leakage flow. The above results imply that any blade design strategy that exploits the two desensitizing flow features would reduce the performance and stability sensitivity to tip clearance size. The increase of the incoming meridional momentum can be achieved through forward chordwise sweep of the blade. The reduction of double leakage without changing blade pitch can be obtained by decreasing the blade stagger angle in the tip region. Examples of blade designs associated with these strategies are shown through CFX simulations to be successful in reducing sensitivity to tip clearance size.
NASA Astrophysics Data System (ADS)
Smith, Natalie Rochelle
While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with vane clocking is known, the driving flow physics have yet to be identified. This research examines the effects of blade row interactions on embedded stator total pressure loss and boundary layer transition in the Purdue 3-stage axial compressor. The inlet guide vane, Stator 1, and Stator 2 all have 44 vanes which enable vane clocking of the embedded stage, while the rotors have different blade counts producing amplitude modulation of the unsteady interactions. A detailed investigation of corrected conditions is presented to establish repeatable, compressor performance year-round in a facility utilizing ambient inlet conditions. Without proper humidity accounting of compressor corrected conditions and an understanding of the potential for inlet temperature changes to affect clearances due to thermal growth, measurements of small performance changes in detailed research studies could be indiscernible. The methodology and implementation of a powder-paint flow visualization technique along with the illuminated flow physics are presented in detail. This method assists in understanding the loss development in the compressor by highlighting stator corner separations and endwall flow patterns. Effects of loading condition, rotor tip clearance height, and stator wake and rotor tip leakage interactions are shown with this technique. Vane clocking effects on compressor performance were quantified for nine loading conditions and six clocking configurations - the largest vane clocking dataset in the open literature. These data show that vane clocking effects are small at low loading conditions, including peak efficiency operation, but become stronger as loading increases, and then eventually lessen at near stall operation. Additionally, stator wake profiles and flow visualization reveal that total pressure loss changes are due to a corner separation modulation between clocking configurations. To further address these clocking trends, high-frequency response data were acquired at the Stator 2 inlet and along the Stator 2 surface. The unsteadiness at the Stator 2 inlet was quantified with detailed radial traverses for the different clocking configurations. These data show the effects of interactions between the Stator 1 wake and Rotor 2 tip leakage flow, which result in significantly different inlet flow conditions for Stator 2. The high unsteadiness and blockage region formed by the rotor tip leakage flow changes in size and shape between clocking configurations. Finally, measurements of the Stator 2 surface flows were acquired to investigate the vane clocking effects on unsteady surface pressures and boundary layer transition. These data reveal that Stator 2 performance is influenced by blade row interactions including rotor-rotor interactions, stator wake-rotor tip leakage flow interactions, and vane clocking.
Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow
NASA Astrophysics Data System (ADS)
Giuliani, James Edward
Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion. Total pressure profiles at various axial locations are computed to identify the overall distortion pattern, how the distortion evolves through the blade passages and mixes out downstream of the blades, and where any critical performance concerns might be. Stall cells are identified that are stationary in the absolute frame and are fixed to the inlet distortion. Flow paths around the blades are examined to study the stall mechanism. Rather than a static airfoil stall, it is observed that the non-uniform pressure loading promotes a three-dimensional dynamic stall. The stall occurs at a point of rapid incidence angle oscillation, observed when a blade passes through the distortion, and re-attaches when the blade leaves the distortion.
1961-09-12
Lockheed NC-130B (AF58-712) Aircraft. A Study of STOL Operational Techniques; landing approach. Nose-low pitch attitude of the aircraft was required in wave-off (or go-around) at 85 knots with flaps 70 degrees. An increase in stall-speed margin could be required to produce a more positive climb angle. (Nov 1962) Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 104; 60yrs at Ames, Atmosphere of Freedom NASA SP-2000-4314
Women's health and women's leadership in academic medicine: hitting the same glass ceiling?
Carnes, Molly; Morrissey, Claudia; Geller, Stacie E
2008-11-01
The term "glass ceiling" refers to women's lack of advancement into leadership positions despite no visible barriers. The term has been applied to academic medicine for over a decade but has not previously been applied to the advancement of women's health. This paper discusses (1) the historical linking of the advances in women's health with women's leadership in academic medicine, (2) the slow progress of women into leadership in academic medicine, and (3) indicators that the advancement of women's health has stalled. We make the case that deeply embedded unconscious gender-based biases and assumptions underpin the stalled advancement of women on both fronts. We conclude with recommendations to promote progress beyond the apparent glass ceiling that is preventing further advancement of women's health and women leaders. We emphasize the need to move beyond "fixing the women" to a systemic, institutional approach that acknowledges and addresses the impact of unconscious, gender-linked biases that devalue and marginalize women and issues associated with women, such as their health.
NASA Technical Reports Server (NTRS)
Skavdahl, H.; Patterson, D. H.
1972-01-01
The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... high-pressure compressor (HPC) of both engines. That AD also requires removing from service any engine... monitoring of EGT margin deterioration on engines in service to prevent two engines on an airplane from... 75 [deg]C; Removes FADEC software version 5.B.Q and earlier versions from the engine as mandatory...
NASA Technical Reports Server (NTRS)
Sajben, Miklos; Freund, Donald D.
1998-01-01
The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study is focused on the response of an inlet/compressor system to acoustic disturbances. From the viewpoint of inlet computations, acoustic disturbances are clearly the most important, since they are the only ones capable of moving upstream. Convective and entropy disturbances may also produce upstream-moving acoustic waves, but such processes are outside the scope of the present study.
Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan
2014-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. In a previous study, analysis of select PSL test data points helped to calibrate the engine icing computational tool to assess the risk of ice accretion. This current study is a continuation of that data analysis effort. The study focused on tracking the variations in wet bulb temperature and ice particle melt ratio through the engine core flow path. The results from this study have identified trends, while also identifying gaps in understanding as to how the local wet bulb temperature and melt ratio affects the risk of ice accretion and subsequent engine behavior.
Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan
2014-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. In a previous study, analysis of select PSL test data points helped to calibrate the engine icing computational tool to assess the risk of ice accretion. This current study is a continuation of that data analysis effort. The study focused on tracking the variations in wet bulb temperature and ice particle melt ratio through the engine core flow path. The results from this study have identified trends, while also identifying gaps in understanding as to how the local wet bulb temperature and melt ratio affects the risk of ice accretion and subsequent engine behavior.
Study to Improve Airframe Turbine Engine Rotor Blade Containment
1977-07-01
REPORT NO. FAA-RD-77-44 ( DOT-FA76WA-3843 JUNE 1976 STUDY TO IMPROVE AIRFRAME TURBINE ENGINE ROTOR BLADE CONTAINMENT C. 0. GUNDERSON SOF Tftj. -" So...both engines appeared to be able to marginally contain the 1 and 2 blade fragments in all compressor and turbine stages, but probably would rfiot have...adjacent blades including serrations from any stage. The investigation was made on high bypass ratio turbofan engines which power wide body transports
Supersonic Stall Flutter of High Speed Fans. [in turbofan engines
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Stevens, W.; Jutras, R.
1981-01-01
An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, M.D.; Wood, J.R.
1997-10-01
CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certainmore » features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.« less
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1992-01-01
Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.
NASA Engine Icing Research Overview: Aeronautics Evaluation and Test Capabilities (AETC) Project
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2015-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.
NASA Technical Reports Server (NTRS)
Halle, J. E.; Ruschak, J. T.
1975-01-01
A highly loaded, high tip-speed fan rotor was designed with multiple-circular-arc airfoil sections as a replacement for a marginally successful rotor which had precompression airfoil sections. The substitution of airfoil sections was the only aerodynamic change. Structural design of the redesigned rotor blade was guided by successful experience with the original blade. Calculated stress levels and stability parameters for the redesigned rotor are within limits demonstrated in tests of the original rotor.
Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1980-01-01
Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.
Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations
Li, Nailu; Balas, Mark J.; Nikoueeyan, Pourya; ...
2016-01-01
Stall flutter is an aeroelastic phenomenon resulting in unwanted oscillatory loads on the blade, such as wind turbine blade, helicopter rotor blade, and other flexible wing blades. While the stall flutter and related aeroelastic control have been studied theoretically and experimentally, microtab control of asymmetric limit cycle oscillations (LCOs) in stall flutter cases has not been generally investigated. This paper presents an aeroservoelastic model to study the microtab control of the blade section undergoing moderate stall flutter and deep stall flutter separately. The effects of different dynamic stall conditions and the consequent asymmetric LCOs for both stall cases are simulatedmore » and analyzed. Then, for the design of the stall flutter controller, the potential sensor signal for the stall flutter, the microtab control capability of the stall flutter, and the control algorithm for the stall flutter are studied. Lastly, the improvement and the superiority of the proposed adaptive stall flutter controller are shown by comparison with a simple stall flutter controller.« less
Women's Health and Women's Leadership in Academic Medicine: Hitting the Same Glass Ceiling?
Morrissey, Claudia; Geller, Stacie E.
2008-01-01
Abstract The term “glass ceiling” refers to women's lack of advancement into leadership positions despite no visible barriers. The term has been applied to academic medicine for over a decade but has not previously been applied to the advancement of women's health. This paper discusses (1) the historical linking of the advances in women's health with women's leadership in academic medicine, (2) the slow progress of women into leadership in academic medicine, and (3) indicators that the advancement of women's health has stalled. We make the case that deeply embedded unconscious gender-based biases and assumptions underpin the stalled advancement of women on both fronts. We conclude with recommendations to promote progress beyond the apparent glass ceiling that is preventing further advancement of women's health and women leaders. We emphasize the need to move beyond “fixing the women” to a systemic, institutional approach that acknowledges and addresses the impact of unconscious, gender-linked biases that devalue and marginalize women and issues associated with women, such as their health. PMID:18954235
High-tip-speed, low-loading transonic fan stage. Part 3: Final report
NASA Technical Reports Server (NTRS)
Ware, T. C.; Kobayashi, R. J.; Jackson, R. J.
1974-01-01
Tests were conducted on a high-tip-speed, low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. The fan was designed for high efficiency at a moderate pressure ratio by designing the hub section to operate at minimum loss when the tip operates with an oblique shock. The design objective was an efficiency of 86 percent at a pressure ratio of 1.5, a specific flow (flow per unit annulus area) of 42 lb/sec-sq. ft (205.1 kgm/sec-m sq), and a tip speed of 1600 ft/sec (488.6 m/sec). During testing, a peak efficiency of 84 percent was achieved at design speed and design specific flow. At the design speed and pressure ratio, the flow was 4 percent greater than design, efficiency was 81 percent, and a stall margin of 24 percent was obtained. The stall line was improved with hub radial distortion but was reduced when the stage was tested with tip radial and circumferential flow distortions. Blade-to-blade values of static pressures were measured over the rotor blade tips.
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.
2013-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to ice accretion in an ice crystal environment.
Direct and system effects of water ingestion into jet engine compresors
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Ehresman, C. M.; Haykin, T.
1986-01-01
Water ingestion into aircraft-installed jet engines can arise both during take-off and flight through rain storms, resulting in engine operation with nearly saturated air-water droplet mixture flow. Each of the components of the engine and the system as a whole are affected by water ingestion, aero-thermally and mechanically. The greatest effects arise probably in turbo-machinery. Experimental and model-based results (of relevance to 'immediate' aerothermal changes) in compressors have been obtained to show the effects of film formation on material surfaces, centrifugal redistribution of water droplets, and interphase heat and mass transfer. Changes in the compressor performance affect the operation of the other components including the control and hence the system. The effects on the engine as a whole are obtained through engine simulation with specified water ingestion. The interest is in thrust, specific fuel consumption, surge margin and rotational speeds. Finally two significant aspects of performance changes, scalability and controllability, are discussed in terms of characteristic scales and functional relations.
Factors affecting stall use for different freestall bases.
Wagner-Storch, A M; Palmer, R W; Kammel, D W
2003-06-01
The objective of this study was to compare stall use (stall occupancy and cow position) by barn side for factors affecting stall use. A closed circuit television system recorded stall use four times per day for a 9-mo period starting May 9, 2001. Six factors were analyzed: stall base, distance to water, stall location within stall base section, stall location within barn, inside barn temperature, and length of time cows were exposed to stall bases. Two barn sides with different stocking densities were analyzed: low (66%), with cows milked by robotic milker; and high (100%), with cows milked 2X in parlor. Six stall base types were tested: two mattresses, a waterbed, a rubber mat, concrete, and sand (high side only). The base types were grouped 3 to 7 stalls/section and randomly placed in each row. Cows spent more time in mattress-based stalls, but the highest percentage lying was in sand-based stalls. The following significant stall occupancy percentages were found: sand had the highest percentage of cows lying on the high stocking density side (69%), followed by mattress type 1 (65%) > mattress type 2 (57%) > waterbed (45%) > rubber mat (33%) > concrete (23%). Mattress type 1 had the highest percentage stalls occupied (88%), followed by mattress type 2 (84%) > sand (79%) > soft rubber mat (65%) > waterbed (62%) > concrete (39%). On the low stocking rate side, mattress type 1 had the highest percentage cows lying (45%) and occupied (59.6%), followed by mattress type 2 > waterbed > soft rubber mat > concrete. Cow lying and stalls occupied percentages were highest for stalls 1) not at the end of a section, and 2) on the outside row, and varied by base type for time cows exposed to stalls and inside barn temperature. Lying and occupied percentages were different for different mattress types. The percentage of stalls with cows standing was higher for mat and mattress-based stalls. Results show mattress type 1 and sand to be superior and rubber mats and concrete inferior stall bases.
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1951-01-01
An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Douglas XF4D-1 airplane has been made in the Langley free-flight tunnel. The model was flown with leading-edge slats retracted and extended over a lift-coefficient range from 0.5 to the stall. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect on the stability characteristics of freeing the controls. The longitudinal stability and control characteristics of the model were satisfactory for all conditions investigated except near the stall with slats extended, where the model had a slight nosing-up tendency. The lateral stability and control characteristics of the model were considered satisfactory for all conditions investigated except near the stall with slats retracted, where a change in sign of the static- directional-stability parameter Cn(sub beta) caused the model to be directionally divergent. The addition of an extension to the top of the vertical tail did not increase Cn(sub beta) enough to eliminate the directional divergence of the model, but a large increase in Cn(sub beta) that was obtainable by artificial means appeared to eliminate the divergence and flights near the stall could be made. Artificially increasing the stability derivative-Cn(sub r) (yawing moment due to yawing) and Cn(sub p) (yawing moment due to rolling) had little effect on the divergence for the range of these parameters investigated. Calculations indicate that the damping of the lateral oscillation of the airplane with slats retracted or extended will be satisfactory at sea level but will be only marginally satisfactory at 40,000 feet.
Advanced Control Considerations for Turbofan Engine Design
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy
2016-01-01
This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.
A Flight Examination of Operating Problems of V/STOL Aircraft in STOL-Type Landing and Approach
NASA Technical Reports Server (NTRS)
Innis, Robert C.; Quigley, Hervey C.
1961-01-01
A flight investigation has been conducted using a large twin-engine cargo aircraft to isolate the problems associated with operating propeller-driven aircraft in the STOL speed range where appreciable engine power is used to augment aerodynamic lift. The problems considered would also be representative of those of a large overloaded VTOL aircraft operating in an STOL manner with comparable thrust-to-weight ratios. The study showed that operation at low approach speeds was compromised by the necessity of maintaining high thrust to generate high lift and yet achieving the low lift-drag ratios needed for steep descents. The useable range of airspeed and flight path angle was limited by the pilot's demand for a positive climb margin at the approach speed, a suitable stall margin, and a control and/or performance margin for one engine inoperative. The optimum approach angle over an obstacle was found to be a compromise between obtaining the shortest air distance and the lowest touchdown velocity. In order to realize the greatest low-speed potential from STOL designs, the stability and control characteristics must be satisfactory.
Brocher, T.M.; ten Brink, Uri S.; Abramovitz, T.
1999-01-01
Compilation of seismic transects across the central and northern California Coast Ranges provides evidence for the widespread tectonic emplacement beneath the margin of a slab of partially subducted oceanic lithosphere. The oceanic crust of this lithosphere can be traced landward from the former convergent margin (fossil trench), beneath the Coast Ranges, to at least as far east as the Coast Range/Great Valley boundary. Comparison of measured shear and compressional wave velocities in the middle crust beneath the Hayward fault with laboratory measurements suggests that the middle crust is a diabase (oceanic crust). Both of these observations are consistent with recent models of the high heat flow and age progression of Neogene volcanism along the Coast Ranges based on tectonic emplacement (stalling) of young, hot oceanic lithosphere beneath the margin, but appear to contradict the major predictions of the slab-gap or asthenospheric-window model. Finally, the Neogene volcanism and major strike-slip faults in the Coast Ranges occur within the thickest regions (>14 km thick) of the forearc, suggesting that the locations of Cenozoic volcanism and faulting along the margin are structurally controlled by the forearc thickness rather than being determined by the location of a broad slab gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.
2000-01-01
This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The rangesmore » of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.« less
NASA Technical Reports Server (NTRS)
Tan, C. M.; Carr, L. W.
1996-01-01
A variety of empirical and computational fluid dynamics two-dimensional (2-D) dynamic stall models were compared to recently obtained three-dimensional (3-D) dynamic stall data in a workshop on modeling of 3-D dynamic stall of an unswept, rectangular wing, of aspect ratio 10. Dynamic stall test data both below and above the static stall angle-of-attack were supplied to the participants, along with a 'blind' case where only the test conditions were supplied in advance, with results being compared to experimental data at the workshop itself. Detailed graphical comparisons are presented in the report, which also includes discussion of the methods and the results. The primary conclusion of the workshop was that the 3-D effects of dynamic stall on the oscillating wing studied in the workshop can be reasonably reproduced by existing semi-empirical models once 2-D dynamic stall data have been obtained. The participants also emphasized the need for improved quantification of 2-D dynamic stall.
Ferrin, Michael A; Subramaniam, Arvind R
2017-01-01
Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes. DOI: http://dx.doi.org/10.7554/eLife.23629.001 PMID:28498106
Cook, Nigel B
2003-11-01
To determine the prevalence of lameness as a function of season (summer vs winter), housing type (free stalls vs tie stalls), and stall surface (sand vs any other surface) among lactating dairy cows in Wisconsin. Epidemiologic survey. 3,621 lactating dairy cows in 30 herds. Herds were visited once during the summer and once during the winter, and a locomotion score ranging from 1 (no gait abnormality) to 4 (severe lameness) was assigned to all lactating cows. Cows with a score of 3 or 4 were considered to be clinically lame. Mean +/- SD herd lameness prevalence was 21.1 +/- 10.5% during the summer and 23.9 +/- 10.7% during the winter; these values were significantly different. During the winter, mean prevalence of lameness in free-stall herds with non-sand stall surfaces (33.7%) was significantly higher than prevalences in free-stall herds with sand stall surfaces (21.2%), tie-stall herds with non-sand stall surfaces (21.7%), and tie-stall herds with sand stall surfaces (12.1%). Results suggest that the prevalence of lameness among dairy cattle in Wisconsin is higher than previously thought and that lameness prevalence is associated with season, housing type, and stall surface.
A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack
NASA Technical Reports Server (NTRS)
Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.
2013-01-01
This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
NASA Technical Reports Server (NTRS)
Jeracki, Robert J.
2006-01-01
A large scale model representative of an advanced ducted propulsor-type, low-noise, very high bypass ratio turbofan engine was tested for acoustics, aerodynamic performance, and off-design operability in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel. The test was part of NASA s Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and un-powered core passage were simulated. As might be expected, the effect of stall management casing treatment was a performance penalty. Reducing the recirculating flow at the fan tip reduced the penalty while still providing sufficient stall margin. Two fans were tested with the same aerodynamic design; one with graphite composite material, and the other with solid titanium. There were surprising performance differences between the two fans, though both blades showed some indication of transitional flow near the tips. Though the pressure and temperature ratios were low for this fan design, the techniques used to improve thermocouple measurement accuracy gave repeatable data with adiabatic efficiencies agreeing within 1 percent. The measured fan adiabatic efficiency at simulated takeoff conditions was 93.7 percent and matched the design intent.
NASA Technical Reports Server (NTRS)
Fite, E. Brian
2006-01-01
A 1.294 pressure ratio, 725 ft/sec tip speed, variable pitch low noise fan was designed and tested in the NASA Glenn 9- by 15-foot Wind Tunnel. The design included a casing treatment that used recirculation to extend the fan stall line and provide an acceptable operating range. Overall aerodynamic experimental results are presented for this low tip speed, low noise fan without casing treatment as well as using several variants of the casing treatment that moved the air extraction and insertion axial locations. Measurements were made to assess effects on performance, operability, and noise. An unusual instability was discovered near the design operating line and is documented in the fan operating range. Measurements were made to compare stall margin improvements as well as measure the performance impact of the casing treatments. Experimental results in the presence of simulated inlet distortion, via screens, are presented for the baseline and recirculation casing treatment configurations. Estimates are made for the quantity of recirculation weight flow based on limited instrumentation in the recirculation system along with discussion of results and conclusions
Associations between cow hygiene, hock injuries, and free stall usage on US dairy farms.
Lombard, J E; Tucker, C B; von Keyserlingk, M A G; Kopral, C A; Weary, D M
2010-10-01
This cross-sectional study evaluated cow comfort measures in free stall dairies across the United States as part of the National Animal Health Monitoring System's Dairy 2007 study. The study was conducted in 17 states and evaluations were completed between March 5 and September 5, 2007. Assessors recorded hygiene and hock scores, number of cows housed in the pen, the number of cows standing with only the front feet in a stall, standing fully in a stall, and lying in a stall. Facility design measures included bedding type, bedding quantity, stall length and width, presence of a neck rail or brisket locator, and relevant distances from the rear and bed of the stall. Of the 491 operations that completed the cow comfort assessment, 297 had Holstein cows housed in free stalls and were included in this analysis. Negative binomial models were constructed to evaluate the following outcomes: the number of cows that were very dirty, had severe hock injuries, stood with front feet in the stall, stood with all feet in the stall, and were lying in the stall. Hygiene was better on farms that did not tail dock cows compared with those that did (5.7 vs. 8.8% were dirty) and on farms located in the study's west region compared with those located in the east region (5.2 vs. 9.7% were dirty). Severe hock injuries were less common on farms in the west than those in the east (0.5 vs. 4.1%). In addition, severe hock injuries were less common on farms that used dirt as a stall base or sand as bedding compared with farms that did not. A higher percentage of cows was standing with front feet in the stall at higher ambient temperatures (incidence rate ratio=1.016) and as time since feeding increased (incidence rate ratio=1.030). A lower percentage of cows were standing with front feet in the stall when the stalls were shorter and when there were fewer cows per stall. Standing fully in a stall was performed by a higher percentage of cows during the summer than during the spring (13.6 vs. 8.1%), when cows were provided free stalls with rubber mats or mattresses, and as the distance from the rear curb to neck rail increased. A higher percentage of cows were lying in a stall when sand bedding was used, when bedding was added more frequently, and during the spring months. Results of this national survey indicate that tail docking provides no benefit to cow hygiene and that stall base and bedding are key factors influencing hock injuries and stall usage on US free stall dairy farms. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The phenomenon of dynamic stall. [vortex shedding phenomenon on oscillating airfoils
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1981-01-01
The general features of dynamic stall on oscillating airfoils are explained in terms of the vortex shedding phenomenon, and the important differences between static stall, light dynamic stall, and deep stall are described. An overview of experimentation and prediction techniques is given.
Analysis of stall flutter of a helicopter radar blade
NASA Technical Reports Server (NTRS)
Crimi, P.
1973-01-01
A study of rotor blade aeroelastic stability was carried out, using an analytic model of a two-dimensional airfoil undergoing dynamic stall and an elastomechanical representation including flapping, flapwise bending and torsional degrees of freedom. Results for a hovering rotor demonstrated that the models used are capable of reproducing both classical and stall flutter. The minimum rotor speed for the occurrence of stall flutter in hover, was found to be determined from coupling between torsion and flapping. Instabilities analogous to both classical and stall flutter were found to occur in forward flight. However, the large stall-related torsional oscillations which commonly limit aircraft forward speed appear to be the response to rapid changes in aerodynamic moment which accompany stall and unstall, rather than the result of an aeroelastic instability. The severity of stall-related instabilities and response was found to depend to some extent on linear stability. Increasing linear stability lessens the susceptibility to stall flutter and reduced the magnitude of the torsional response to stall and unstall.
14 CFR 23.201 - Wings level stall.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.201 Wings level... airplane stalls. (b) The wings level stall characteristics must be demonstrated in flight as follows...
14 CFR 25.207 - Stall warning.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Stall warning. 25.207 Section 25.207... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.207 Stall warning. (a) Stall warning with... be clear and distinctive to the pilot in straight and turning flight. (b) The warning must be...
14 CFR 23.207 - Stall warning.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall warning. 23.207 Section 23.207... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.207 Stall warning. (a) There must be a clear and distinctive stall warning, with the flaps and landing gear in any...
14 CFR 25.207 - Stall warning.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall warning. 25.207 Section 25.207... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.207 Stall warning. (a) Stall warning with... be clear and distinctive to the pilot in straight and turning flight. (b) The warning must be...
14 CFR 23.207 - Stall warning.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Stall warning. 23.207 Section 23.207... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.207 Stall warning. (a) There must be a clear and distinctive stall warning, with the flaps and landing gear in any...
14 CFR 23.207 - Stall warning.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Stall warning. 23.207 Section 23.207... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.207 Stall warning. (a) There must be a clear and distinctive stall warning, with the flaps and landing gear in any...
14 CFR 25.207 - Stall warning.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Stall warning. 25.207 Section 25.207... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.207 Stall warning. (a) Stall warning with... be clear and distinctive to the pilot in straight and turning flight. (b) The warning must be...
14 CFR 23.207 - Stall warning.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Stall warning. 23.207 Section 23.207... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.207 Stall warning. (a) There must be a clear and distinctive stall warning, with the flaps and landing gear in any...
14 CFR 25.207 - Stall warning.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Stall warning. 25.207 Section 25.207... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.207 Stall warning. (a) Stall warning with... be clear and distinctive to the pilot in straight and turning flight. (b) The warning must be...
14 CFR 25.207 - Stall warning.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Stall warning. 25.207 Section 25.207... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.207 Stall warning. (a) Stall warning with... be clear and distinctive to the pilot in straight and turning flight. (b) The warning must be...
14 CFR 23.207 - Stall warning.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Stall warning. 23.207 Section 23.207... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stalls § 23.207 Stall warning. (a) There must be a clear and distinctive stall warning, with the flaps and landing gear in any...
NASA Astrophysics Data System (ADS)
Davidson, Phillip; Babbitt, Ashli; Magstadt, Andrew; Nikoueeyan, Pourya; Naughton, Jonathan; Jonathan Naughton Team
2014-11-01
The performance of helicopter and wind turbine blades is affected by dynamic stall. Dynamic stall has received considerable attention, but it is still difficult to simulate and not fully understood. Over the past seven years, many airfoils for helicopter and wind turbine use ranging from 9.5 to 30% thick have been experimentally tested and simulated while dynamically pitching to further characterize dynamic stall. Tests have been run at chord Reynolds number between 225,000-440,000 for various reduced frequencies, mean angles of attack, and oscillation amplitudes. Characterization of stall has been accomplished using data from previous studies as well as the unsteady pressure and flow-field data available from our own work. Where available, combined surface and flow-field data allow for clear identification of the types of stall observed and the flow structure associated with them. The results indicate that thin airfoil stall, leading edge stall, and trailing edge stall are observed in the oscillating airfoil experiments and simulations. These three main stall types are further divided into subcategories. By improving our understanding of the features of dynamic stall, it is expected that physics-based simulations can be improved. Work supported by DOE and a gift from BP.
Boosting devices with integral features for recirculating exhaust gas
Wu, Ko -Jen
2015-09-15
According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall speed. 25.103 Section 25.103... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.103 Stall speed. (a) The reference stall speed, VSR, is a calibrated airspeed defined by the applicant. VSR may not be less than a 1-g stall...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Stall speed. 25.103 Section 25.103... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.103 Stall speed. (a) The reference stall speed, VSR, is a calibrated airspeed defined by the applicant. VSR may not be less than a 1-g stall...
Analysis of oscillatory pressure data including dynamic stall effects
NASA Technical Reports Server (NTRS)
Carta, F. O.
1974-01-01
The dynamic stall phenomenon was examined in detail by analyzing an existing set of unsteady pressure data obtained on an airfoil oscillating in pitch. Most of the data were for sinusoidal oscillations which penetrated the stall region in varying degrees, and here the effort was concentrated on the chordwise propagation of pressure waves associated with the dynamic stall. It was found that this phenomenon could be quantified in terms of a pressure wave velocity which is consistently much less than free-stream velocity, and which varies directly with frequency. It was also found that even when the stall region has been deeply penetrated and a substantial dynamic stall occurs during the downstroke, stall recovery near minimum incidence will occur, followed by a potential flow behavior up to stall inception.
NASA Astrophysics Data System (ADS)
Dvorkin, Irina; Barausse, Enrico
2017-10-01
Massive black hole binaries, formed when galaxies merge, are among the primary sources of gravitational waves targeted by ongoing pulsar timing array (PTA) experiments and the upcoming space-based Laser Interferometer Space Antenna (LISA) interferometer. However, their formation and merger rates are still highly uncertain. Recent upper limits on the stochastic gravitational wave background obtained by PTAs are starting to be in marginal tension with theoretical models for the pairing and orbital evolution of these systems. This tension can be resolved by assuming that these binaries are more eccentric or interact more strongly with the environment (gas and stars) than expected, or by accounting for possible selection biases in the construction of the theoretical models. However, another (pessimistic) possibility is that these binaries do not merge at all, but stall at large (˜pc) separations. We explore this extreme scenario by using a semi-analytic galaxy formation model including massive black holes (isolated and in binaries), and show that future generations of PTAs will detect the stochastic gravitational wave background from the massive black hole binary population within 10-15 yr of observations, even in the `nightmare scenario' in which all binaries stall at the hardening radius. Moreover, we argue that this scenario is too pessimistic, because our model predicts the existence of a subpopulation of binaries with small mass ratios (q ≲ 10-3) that should merge within a Hubble time simply as a result of gravitational wave emission. This subpopulation will be observable with large signal-to-noise ratios by future PTAs thanks to next-generation radio telescopes such as Square Kilometre Array or Five-hundred-meter Aperture Spherical Telescope, and possibly by LISA.
Comfort zone-design free stalls: do they influence the stall use behavior of lame cows?
Cook, N B; Marin, M J; Mentink, R L; Bennett, T B; Schaefer, M J
2008-12-01
The behavior of 59 cows in 4 herds, each with Comfort Zone-design free stalls with dimensions suitable for 700-kg, mature Holstein dairy cows, was filmed for a 48-h period. Comparison was made between nonlame, slightly lame, and moderately lame cows on either rubber-crumb-filled mattress stall surfaces bedded with a small amount of sawdust (2 herds) or a Pack Mat design, which consisted of a rubber-crumb-filled mattress pad installed 5 cm below a raised rear curb, bedded with 5 to 8 cm of sand bedding (2 herds). All other stall design components were similar. Despite adequate resting space and freedom to perform normal rising and lying movements, lame cows on mattresses stood in the stall for >2 h longer than nonlame cows. Although a significant increase in stall standing behavior was observed in lame cows on Pack Mat stalls, the mean (95% confidence interval) standing time in the stall was only 0.7 (0 to 3.0) h/d for nonlame cows and 1.6 (0 to 4.2) h/d for moderately lame cows, which was less than the 2.1 (0 to 4.4), 4.3 (1.6 to 6.9), and 4.9 (2.5 to 7.3) h/d spent standing in the stall for nonlame, slightly lame, and moderately lame cows on mattresses, respectively. This observation supports the hypothesis that it is the nature of the stall surface that dictates changes in stall standing behavior observed in lame cows, rather than other components of stall design. The finding that only 5 to 8 cm of sand over a mattress pad provides most of the benefits of deep sand-bedded stalls, along with other advantages related to stall maintenance and manure handling, gives farmers another useful housing alternative with which to improve cow comfort and well-being.
Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California
Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary
2012-01-01
Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.
NASA Astrophysics Data System (ADS)
Zhang, Tony S.
Loss-of-control following aerodynamic stall remains the largest contributor to fatal civil aviation accidents. Aerodynamic models past stall are required to train pilots on stall recovery techniques using ground-based simulators, which are safe, inexpensive, and accessible. A methodology for creating representative stall models, which capture essential stall characteristics, is being developed for classes of twin-turboprop commuter and twin-engine regional jet aircraft. Despite having lower fidelity than type specific stall models generated from wind tunnel, flight test, and/or CFD studies data, these models are configuration adjustable and significantly cheaper to construct for high angle-of-attack regimes. Baseline specific stall models are modified to capture changes in aerodynamic coefficients due to configuration variations from a baseline to a target aircraft. A Shape Prescriptive Modeling approach combining existing theory and data using least-squares splines is used to make coefficient change predictions. Initial results are satisfactory and suggest that representative models are suitable for stall training.
NASA Technical Reports Server (NTRS)
Crimi, P.
1974-01-01
A method for analyzing unsteady airfoil stall was refined by including nonlinear effects in the representation of the inviscid flow. Certain other aspects of the potential-flow model were reexamined and the effects of varying Reynolds number on stall characteristics were investigated. Refinement of the formulation improved the representation of the flow and chordwise pressure distribution below stall, but substantial quantitative differences between computed and measured results are still evident for sinusoidal pitching through stall. Agreement is substantially improved by assuming the growth rate of the dead-air region at the onset of leading-edge stall is of the order of the component of the free stream normal to the airfoil chordline. The method predicts the expected increase in the resistance to stalling with increasing Reynolds number. Results indicate that a given airfoil can undergo both trailing-edge and leading-edge stall under unsteady conditions.
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently
Yu, Chuanhe; Gan, Haiyun
2017-01-01
ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720
2005-01-01
Abstract The study objectives were to provide a province-wide description of stall dimensions and the aspects of cattle welfare linked to stall design in the tie-stall industry. Data on stall design; stall dimensions; and the prevalence of lameness, injury, and hind limb and udder cleanliness in lactating dairy cattle were collected from a sample of 317 tie-stall farms across Ontario. The majority of the study farms (90%) had stalls with dimensions (length, width, tie-chain length, and tie rail height) that were less than the current recommendations. This may explain, in part, the prevalence of lameness measured as the prevalence of back arch (3.2%) and severe hind claw rotation (23%), hock lesions (44%), neck lesions (3.8%), broken tails (3%), dirty hind limbs (23%), and dirty udders (4.6%). Veterinarians and producers may use this information to compare farms with the industry averages and target areas in need of improvement. PMID:16454382
Comparison of dynamic stall phenomena for pitching and vertical translation motions
NASA Technical Reports Server (NTRS)
Fukushima, T.; Dadone, L. U.
1977-01-01
Test data for vertical translation motions of the V0012 and V23010-1.58 airfoils were compared with force pitch and oscillation data to determine qualitative differences in dynamic stall behavior. Chordwise differential pressure variations were examined in detail for the test conditions displaying dynamic stall. The comparison revealed a number of differences both in the onset of stall and in the progression separation as a function of the type of motion. The evidence of secondary stall events following the recovery from initial stall were found to be dependent on the type of motion, but additional data will be needed to incorporate vertical translation effects into the empirical approximation of dynamic stall.
Flow Visualization of Dynamic Stall on an Oscillating Airfoil
1989-09-01
Dynamic Stall; Dynamic lift, ’Unsteady lift; Helicopter retreating blade stall; Oscillating airfoil ; Flow visualization,’Schlieren method ;k ez.S-,’ .0...the degree of MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 1989 Author...and moment behavior is quite different from the static stall associated with fixed-wing airfoils . Helicopter retreating blade stall is a dynamic
Preferences of dairy cows for three stall surface materials with small amounts of bedding.
Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Saloniemi, H
2010-01-01
Farmers' concerns about the economy, cost of labor, and hygiene have resulted in reduced use of organic bedding in stalls for dairy cows; however, the reduced use of organic bedding possibly impairs cow comfort. The effects of different stall surface materials were evaluated in an unheated building in which only a small amount of bedding was used. The lying time and preferences of 18 cows using 3 stall surface materials (concrete, soft rubber mat, and sand) were compared. All materials were lightly bedded with a small amount of straw, and the amount of straw added to each stall was measured. The cows only had access to stalls of one surface type while their lying time was observed. Lying times were longest on the rubber mats compared with other surfaces (rubber mat 768; concrete 727; sand 707+/-16 min/d). In a preference test, cows had access to 2 of the 3 types of stalls for 10 d and their stall preference was measured. Cows preferred stalls with rubber mats to stalls with a concrete floor (median 73 vs. 18 from a total of 160 observations per day; interquartile range was 27 and 12, respectively), but showed no preference for sand stalls compared with stalls with a concrete floor or with rubber mats. More straw was needed on sand stalls compared with concrete or mat (638+/-13 g/d on sand, 468+/-10 g/d on concrete, and 464+/-8 g/d on rubber mats). Lying times on bedded mats indicated that mats were comfortable for the cows. If availability or cost of bedding material requires limiting the amount of bedding used, rubber mats may help maintain cow comfort. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USAF Test Pilot School. Flying Qualities Textbook, Volume 2 Part 2
1986-04-01
regime that precipitates entry into a PSG, spin, or deep stall condition (MIL-F-83691A, Reference 10.4, Paragraph 6.3.9). Notice two things about...motions may result after departure - the aircraft enters either a PSG, spin, or deep stall (of course, a PSG can progress into a spin or deep stall...gyration," "spin" and " deep stalls," used to define a departure. 10.3.1.3 Post-Stall Gyration. A post-stall gyration is an uncontrolled motion about one
Why do Cross-Flow Turbines Stall?
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian
2015-11-01
Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.
High ratio recirculating gas compressor
Weinbrecht, J.F.
1989-08-22
A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.
Close-loop Dynamic Stall Control on a Pitching Airfoil
NASA Astrophysics Data System (ADS)
Giles, Ian; Corke, Thomas
2017-11-01
A closed-loop control scheme utilizing a plasma actuator to control dynamic stall is presented. The plasma actuator is located at the leading-edge of a pitching airfoil. It initially pulses at an unsteady frequency that perturbs the boundary layer flow over the suction surface of the airfoil. As the airfoil approaches and enters stall, the amplification of the unsteady disturbance is detected by an onboard pressure sensor also located near the leading edge. Once detected, the actuator is switched to a higher voltage control state that in static airfoil experiments would reattach the flow. The threshold level of the detection is a parameter in the control scheme. Three stall regimes were examined: light, medium, and deep stall, that were defined by their stall penetration angles. The results showed that in general, the closed-loop control scheme was effective at controlling dynamic stall. The cycle-integrated lift improved in all cases, and increased by as much as 15% at the lowest stall penetration angle. As important, the cycle-integrated aerodynamic damping coefficient also increased in all cases, and was made to be positive at the light stall regime where it traditionally is negative. The latter is important in applications where negative damping can lead to stall flutter.
The quest for stall-free dynamic lift
NASA Technical Reports Server (NTRS)
Tung, C.; Mcalister, K. W.; Carr, Lawrence W.; Duque, E.; Zinner, R.
1992-01-01
During the past decade, numerous major effects have addressed the question of how to control or alleviate dynamic stall effects on helicopter rotors, but little concrete evidence of any significant reduction of the adverse characteristics of the dynamic stall phenomenon has been demonstrated. Nevertheless, it is important to remember that the control of dynamic stall is an achievable goal. Experiments performed at the US Army Aeroflight-dynamics Directorate more than a decade ago demonstrated that dynamic stall is not an unavoidable penalty of high amplitude motion, and that airfoils can indeed operate dynamically at angles far above the static-stall angle without necessarily forming a stall vortex. These experiments, one of them featuring a slat that was designed from static airfoil considerations, showed that unsteadiness can be a very beneficial factor in the development of high-lift devices for helicopter rotors. The experience drawn from these early experiments is now being focused on a program for the alleviation of dynamic-stall effects on helicopter rotors. The purpose of this effort is to demonstrate that rotor stall can be controlled through an improved understanding of the unsteady effects on airfoil stall and to document the role of specific means that lead to stall alleviation in the three dimensional unsteady environment of helicopter rotors in forward flight. The first concept to be addressed in this program will be a slatted airfoil. A two dimensional unsteady Navier-Stokes code has been modified to compute the flow around a two-element airfoil.
77 FR 73279 - Airworthiness Directives; Saab AB, Saab Aerosystems Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... AD was prompted by reports of stall events during icing conditions where the natural stall warning (buffet) was not identified. This AD requires replacing the stall warning computer (SWC) with a new SWC, which provides an artificial stall [[Page 73280
The "stall barrier" as a new preventive in general aviation accidents.
DOT National Transportation Integrated Search
1966-09-01
An elementary device, actuated by the conventional stall warning vane, is described which can be inexpensively installed in any aircraft. The new device, the Stall Barrier, prevents stalls through (1) warning the pilot through the 'touch sense' of th...
Study of the Unsteady Flow Features on a Stalled Wing
NASA Technical Reports Server (NTRS)
Yon, Steven A.; Katz, Joseph
1997-01-01
The occurrence of large scale structures in the post stall flow over a rectangular wing at high angles of attack was investigated in a small-scale subsonic wind tunnel. Mean and time dependent measurements within the separated flow field suggest the existence of two distinct angle of attack regimes beyond wing stall. The shallow stall regime occurs over a narrow range of incidence angles (2-3 deg.) immediately following the inception of leading edge separation. In this regime, the principal mean flow structures, termed stall cells, are manifested as a distinct spanwise periodicity in the chordwise extent of the separated region on the model surface with possible lateral mobility not previously reported. Within the stall cells and on the wing surface, large amplitude pressure fluctuations occur with a frequency much lower than anticipated for bluff body shedding, and with minimum effect in the far wake. In the deep stall regime, stall cells are not observed and the separated region near the model is relatively free of large amplitude pressure disturbances.
Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.
1990-01-01
Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.
Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane
NASA Technical Reports Server (NTRS)
Conners, Timothy R.
1992-01-01
Results are presented from the evaluation of the performance seeking control (PSC) optimization algorithm developed by Smith et al. (1990) for F-15 aircraft, which optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. Comparisons are presented between the load cell measurements, PSC onboard model thrust calculations, and posttest state variable model computations. Actual performance improvements using the PSC algorithm are presented for its various modes. The results of using PSC algorithm are compared with similar test case results using the HIDEC algorithm.
NASA Astrophysics Data System (ADS)
Tan, Yuehan; Crittenden, Thomas; Glezer, Ari
2017-11-01
The aerodynamic loads on an airfoil moving in coupled, time-periodic pitch-plunge beyond the static stall margin are controlled using transitory regulation of trapped vorticity concentrations. Actuation is effected by a spanwise array of integrated miniature chemical (combustion based) impulse actuators that are triggered intermittently during the airfoil's motion and have a characteristic time scale that is an order of magnitude shorter than the airfoil's convective time scale. Each actuation pulse effects momentary interruption and suspension of the vorticity flux with sufficient control authority to alter the airfoil's global aerodynamic characteristics throughout its motion cycle. The effects of the actuation are assessed using time-dependent measurements of the lift and pitching moment coupled with time-resolved particle image velocimetry over the airfoil and in its near wake that is acquired phased-locked to its motion. It is shown that while the presence of the pitch-coupled plunge delays lift and moment stall during upstroke, it also delays flow reattachment during the downstroke and results in significant degradation of the pitch stability. These aerodynamic shortcomings are mitigated using superposition of a limited number of pulses that are staged during the pitch/plunge cycle and lead to enhancement of cycle lift and pitch stability, and reduces the cycle hysteresis and peak pitching moment.
Suppression of Dynamic Stall by Steady and Pulsed Upper-Surface Blowing
NASA Technical Reports Server (NTRS)
Weaver, D.; McAlister, K. W.; Tso, J.
1996-01-01
The Boeing-Vertol VR-7 airfoil was experimentally studied with steady and pulsed upper-surface blowing for sinusoidal pitching oscillations described by alpha = alpha(sub m) + 10 deg sin(omega t). The tests were conducted in the U.S. Army Aeroflightdynamics Directorate's Water Tunnel at NASA Ames Research Center. The experiment was performed at a Reynolds number of 100,000. Pitch oscillations with alpha(sub m) = 10 deg and 15 deg and with reduced frequencies ranging from k = 0.005 to 0.15 were examined. Blowing conditions ranged from C(sub mu) = 0.03 to 0.66 and F(+) = 0 to 3. Unsteady lift, drag, and pitching-moment loads were measured, and fluorescent-dye flow visualizations were obtained. Steady, upper-surface blowing was found to be capable of trapping a separation bubble near the leading edge during a portion of the airfoil's upward rotation. When this occurred, the lift was increased significantly and stall was averted. In all cases, steady blowing reduced the hysteresis amplitudes present in the loads and produced a large thrust force. The benefits of steady blowing diminished as the reduced frequency and mean angle of oscillation increased. Pulsed blowing showed only marginal benefits for the conditions tested. The greatest gains from pulsed blowing were achieved at F(+) = 0.9.
Effects of bedding quality on lying behavior of dairy cows.
Fregonesi, J A; Veira, D M; von Keyserlingk, M A G; Weary, D M
2007-12-01
Cows prefer to spend more time lying down in free stalls with more bedding, but no research to date has addressed the effects of bedding quality. Bedding in stalls often becomes wet either from exposure to the elements or from feces and urine. The aim of this study was to test the effect of wet bedding on stall preference and use. Four groups of 6 nonlactating Holstein cows were housed in free stalls bedded daily with approximately 0.1 m of fresh sawdust. Following a 5-d adaptation period, each group of cows was tested sequentially with access to stalls with either dry or wet sawdust bedding (86.4 +/- 2.1 vs. 26.5 +/- 2.1% dry matter), each for 2 d. These no-choice phases were followed by a 2-d free-choice phase during which cows had simultaneous access to stalls containing either wet or dry bedding. Stall usage was assessed by using 24-h video recordings scanned at 10-min intervals, and responses were analyzed by using a mixed model, with group (n = 4) as the observational unit. The minimum and maximum environmental temperatures during the experiment were 3.4 +/- 2.2 and 6.8 +/- 2.5 degrees C, respectively. When cows had access only to stalls with wet bedding, they spent 8.8 +/- 0.8 h/d lying down, which increased to 13.8 +/- 0.8 h/d when stalls with dry bedding were provided. Cows spent more time standing with their front 2 hooves in the stall when provided with wet vs. dry bedding (92 +/- 10 vs. 32 +/- 10 min/d). During the free-choice phase, all cows spent more time lying down in the dry stalls, spending 12.5 +/- 0.3 h/d in the dry stalls vs. 0.9 +/- 0.3 h/ d in stalls with wet bedding. In conclusion, dairy cows show a clear preference for a dry lying surface, and they spend much more time standing outside the stall when only wet bedding is available.
A Comparative Study of Some Dynamic Stall Models
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Kaza, K. R. V.
1987-01-01
Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction to the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles and the time history effects are accounted through the Wagner function. In both models the life and moment coefficients for angle of attack below stall are obtained from tabular data for a given Mach number and angle of attack. In model C, referred to an the ONERA model, the life and moment coefficients are given in the form of two differential equations, one for angles below stall, and the other for angles above stall. The parameters of those equations are nonlinear functions of the angle of attack.
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex
Evaluation of Water consumption and savings achieved in Datacenters through Air side Economization
NASA Astrophysics Data System (ADS)
Mishra, Ravi
Recent researches and a few facility owners have focused on eliminating the chiller plant altogether by implementing 'Evaporative Cooling', as an alternative or augmentation to compressor-based air conditioning since the energy consumption is dominated by the compressor work (around 41%) in the chiller plant. Because evaporative cooling systems consume water, when evaluating the energy savings potential of these systems, it is imperative to consider not just their impacts on electricity use, but also their impacts on water consumption as well since Joe Kava, Google's head of data center operations, was quoted as saying that water is the "big elephant in the room" for data center companies. The objective of this study was to calculate the savings achieved in water consumption when these evaporative cooling systems were completely or partially marginalized when the facility is strictly working in the Economizer mode also known as 'free cooling' considering other modes of cooling required only for a part of the time when outside temperature, humidity and pollutant level were unfavorable causing improper functioning and reliability issues. The analysis was done on ASHRAE climatic zones with the help of TMY-3 weather data.
Simulator Studies of the Deep Stall
NASA Technical Reports Server (NTRS)
White, Maurice D.; Cooper, George E.
1965-01-01
Simulator studies of the deep-stall problem encountered with modern airplanes are discussed. The results indicate that the basic deep-stall tendencies produced by aerodynamic characteristics are augmented by operational considerations. Because of control difficulties to be anticipated in the deep stall, it is desirable that adequate safeguards be provided against inadvertent penetrations.
75 FR 80735 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
..., Aircraft Certification Service, 1601 Lind Avenue, SW., Renton, Washington, 98057-3356; telephone (425) 227... from stalling, limits the angle of attack at which the airplane can be flown during normal low speed... limit impacts the stall speed determination, the stall characteristics, the stall warning demonstration...
Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage
NASA Technical Reports Server (NTRS)
Merchant, Ali; Kerrebrock, Jack L.; Adamczyk, John J.; Braunscheidel, Edward
2004-01-01
The experimental investigation of an aspirated fan stage designed to achieve a pressure ratio of 3.4:1 at 1500 ft/sec is presented in this paper. The low-energy viscous flow is aspirated from diffusion-limiting locations on the blades and flowpath surfaces of the stage, enabling a very high pressure ratio to be achieved in a single stage. The fan stage performance was mapped at various operating speeds from choke to stall in a compressor facility at fully simulated engine conditions. The experimentally determined stage performance, in terms of pressure ratio and corresponding inlet mass flow rate, was found to be in good agreement with the three-dimensional viscous computational prediction, and in turn close to the design intent. Stage pressure ratios exceeding 3:1 were achieved at design speed, with an aspiration flow fraction of 3.5 percent of the stage inlet mass flow. The experimental performance of the stage at various operating conditions, including detailed flowfield measurements, are presented and discussed in the context of the computational analyses. The sensitivity of the stage performance and operability to reduced aspiration flow rates at design and off design conditions are also discussed.
NASA Technical Reports Server (NTRS)
Blanchard, W. S., Jr.
1981-01-01
Ultradeep stall descent and spin recovery characteristics of a 1/6 scale radio controlled model of the Piper PA38 Tomahawk aircraft was investigated. It was shown that the full scale PA38 is a suitable aircraft for conducting ultradeep stall research. Spin recovery was accomplished satisfactorily by entry to the ultradeep stall mode, followed by the exit from the ultradeep stall mode. It is concluded that since the PA38 has excellent spin recovery characteristics using normal recovery techniques (opposite rudder and forward control colum pressure), recovery using ultradeep stall would be beneficial only if the pilot suffered from disorientation.
Stall flutter analysis of propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1988-01-01
Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction of the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles, and the time history effects are accounted for through the Wagner function.
Aerodynamic study of a stall regulated horizontal-axis wind turbine
NASA Astrophysics Data System (ADS)
Constantinescu, S. G.; Crunteanu, D. E.; Niculescu, M. L.
2013-10-01
The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of small stall regulated wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. During the running stall regulated wind turbines, due to the extremely broad range of the wind velocity, the angle of attack can reach high values and some regions of the blade will show stall and post-stall behavior. This paper deals with stall and post-stall regimes because they can induce significant vibrations, fatigue and even the wind turbine failure.
Counterrotatable booster compressor assembly for a gas turbine engine
NASA Technical Reports Server (NTRS)
Moniz, Thomas Ory (Inventor); Orlando, Robert Joseph (Inventor)
2004-01-01
A counterrotatable booster compressor assembly for a gas turbine engine having a counterrotatable fan section with a first fan blade row connected to a first drive shaft and a second fan blade row axially spaced from the first fan blade row and connected to a second drive shaft, the counterrotatable booster compressor assembly including a first compressor blade row connected to the first drive shaft and a second compressor blade row interdigitated with the first compressor blade row and connected to the second drive shaft. A portion of each fan blade of the second fan blade row extends through a flowpath of the counterrotatable booster compressor so as to function as a compressor blade in the second compressor blade row. The counterrotatable booster compressor further includes a first platform member integral with each fan blade of the second fan blade row at a first location so as to form an inner flowpath for the counterrotatable booster compressor and a second platform member integral with each fan blade of the second fan blade row at a second location so as to form an outer flowpath for the counterrotatable booster compressor.
NASA Technical Reports Server (NTRS)
Tucker, Warren A.; Comisarow, Paul
1946-01-01
During the first flight tests of the Republic XP-84 airplane it was discovered that there was a complete lack of stall warning. A short series of development tests of a suitable stall-warning device for the airplane was therefore made on a 1/5-scale model in the Langley 300 MPH 7- by 10-foot tunnel. Two similar stall-warning devices, each designed to produce early root stall which would provide a buffet warning, were tested. It appeared that either device would give a satisfactory buffet warning in the flap-up configuration, at the cost of an increase of 8 or 10 miles per hour in minimum speed. Although neither device seemed to give a true buffet warning in the flaps-down configuration, it appeared that either device would improve the flaps-down stalling characteristics by lessening the severity of the stall and by maintaining better control at the stall. The flaps-down minimum-speed increase caused by the devices was only 1 or 2 miles per hour.
Xu, Xiaogang; Wang, Songling; Liu, Jinlian; Liu, Xinyu
2014-01-01
Blower and exhaust fans consume over 30% of electricity in a thermal power plant, and faults of these fans due to rotation stalls are one of the most frequent reasons for power plant outage failures. To accurately predict the occurrence of fan rotation stalls, we propose a support vector regression machine (SVRM) model that predicts the fan internal pressures during operation, leaving ample time for rotation stall detection. We train the SVRM model using experimental data samples, and perform pressure data prediction using the trained SVRM model. To prove the feasibility of using the SVRM model for rotation stall prediction, we further process the predicted pressure data via wavelet-transform-based stall detection. By comparison of the detection results from the predicted and measured pressure data, we demonstrate that the SVRM model can accurately predict the fan pressure and guarantee reliable stall detection with a time advance of up to 0.0625 s. This superior pressure data prediction capability leaves significant time for effective control and prevention of fan rotation stall faults. This model has great potential for use in intelligent fan systems with stall prevention capability, which will ensure safe operation and improve the energy efficiency of power plants. PMID:24854057
Monitoring indices of cow comfort in free-stall-housed dairy herds.
Cook, N B; Bennett, T B; Nordlund, K V
2005-11-01
Indices of cow comfort are used widely by consultants in the dairy industry, with a general understanding that they are representative of lying behavior. This study examines the influence of stall base type (sand or a geotextile mattress filled with rubber crumbs) and time of measurement on 4 indices of comfort collected at hourly intervals in 12 herds, aligned by morning and afternoon milking. Stall base type significantly influenced all indices of comfort. For example, the least squares mean (SE) cow comfort index (proportion of cows touching a stall that are lying down) was 0.76 (0.015) in herds with mattresses compared with 0.86 (0.015) in herds with sand stalls. Significant hourly variation was also identified suggesting that timing of measurement is important. None of the indices of cow comfort derived from the high-yielding group pen was associated with the mean 24-h lying time of 10 sentinel cows whose time budgets were known in each herd. However, the cow comfort index was associated with the herd mean 24-h stall standing time, with the strongest relationships occurring 2 h before the morning and afternoon milking, when stall base type did not significantly influence the association. When measured at these times, we recommend use of the stall standing index (proportion of cows touching a stall that are standing), with values greater than 0.20 being associated with abnormally long herd mean stall standing times greater than 2 h/d.
Kuzmina, Tetiana A
2012-05-01
Analysis of the influence of horse-keeping conditions by contamination of the environment (pastures, paddocks, and stalls) by the strongylid infective larvae (L(3)) was carried out at various types of horse farms, hippodromes, and riding clubs in Ukraine. A total of 1,237 horses from three types of horse-keeping conditions were examined. Epidemiological studies of stall and grazing area (pasture and paddocks) contamination by L(3) were performed at hippodrome (stalled horse-keeping) and horse farms with stall/paddock-keeping and stall/pasture-keeping conditions. Grass and stall litter samples were examined by the Baermann procedure. It was found that horses of stall-keeping conditions had the lowest level of strongylid infection (prevalence 46.4-77.8%, average infection 25.6-92.9 eggs per gram of feces (EPG)) and lowest proportion of large strongyle L(3) in coprocultures (1.6-11.3%). Horses of stall/pasture-keeping conditions were the most infected (prevalence 95.1-100%, average infection 198.2-453.7 EPG), and the proportion of large strongyle L(3) was 17.3-24.7%. Strongyle L(3) were found in litter of all parts of individual stalls; areas at the stall center, "toilet", and entrance were the most contaminated. The highest L(3) number in stall litter was registered in summer. Contamination of permanent pasture grass by L(3) was notably lower than grass in paddocks (86.3-161.4 L(3)/kg compared with 305.9-409.1 L(3)/kg). The highest level of pasture grass contamination was observed in the middle of summer (July)--up 970.7 L(3)/kg. The results obtained confirmed importance of environmental contamination in epidemiology of horse strongylidosis at various types of horse-keeping conditions.
Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Munksgaard, L; Saloniemi, H
2008-02-01
This experiment compared the effects of sand and straw bedding in free stalls on resting time, cleanliness, hock injuries, and hoof health of dairy cows and tested whether cow preferences for a bedding material depended on the familiarity with the material. A total of 52 dairy cows were kept either on straw bedded concrete stalls or sand stalls for at least 21 wk. The lying behavior was observed, and hock lesions, hoof health, and cleanliness of the cows and stalls were measured. A 5-d preference test between sand and straw stalls was conducted at the end of the experiment. The total daily duration of lying was longer for cows on straw bedding than on sand bedding (straw 749 +/- 16 vs. sand 678 +/- 19 min). During the preference test, cows that had been kept on straw bedding preferred lying in straw stalls [straw 218.7 (133.4 to 239.7) vs. sand 9.0 min (2.8 to 44.8)]; however, cows that had been kept on sand showed no preference [straw 101.3 (51.7 to 205.9) vs. sand 94.3 min (54.1 to 156.1, median and interquartile range)]. Although there were no differences in the dirtiness of stalls, the cows using straw stalls were dirtier than cows using sand stalls [straw 6.04 (5.39 to 6.28) vs. sand 4.19 (3.62 to 5.16)]. At the end of experiment the severity of hock lesions was lower for cows on sand than for cows on straw [sand 0.5 (0.0 to 1.0) vs. straw 1.0 (1.0 to 2.0)]. The improvement in overall hoof health over the observation period was greater for cows kept on sand compared with cows kept on straw [sand -2.00 (-3.75 to -0.25) vs. straw 0.00 (-2.00 to 2.00)]. Straw bedding increased the time that cows spend lying, and cows preferred straw stalls to sand stalls. However, previous experience with sand reduces avoidance of sand stalls. Sand stalls were advantageous for cow cleanliness and health; hock lesions and claw diseases healed more quickly for cows using sand stalls compared with straw.
Wider stall space affects behavior, lesion scores, and productivity of gestating sows.
Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M
2015-10-01
Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( < 0.001). Higher-parity sows in FAS had the most severe lesion scores (TRT × parity, < 0.0001) and scores were greatest at all gestational days (TRT × day, < 0.05). Regardless of parity, sows in FLX had the least severe scores ( < 0.0001). As pregnancy progressed, lesion scores increased among sows in CTL ( < 0.05). Sow BW and backfat (BF) were greater for sows in FLX and FAS ( < 0.05), and BCS and BF were greater for parity 1 and 2 sows in FAS than the same parity sows in CTL (TRT × parity, < 0.05). Duration and frequency of some postural behaviors and sham chew behavior were affected by TRT ( < 0.05) and time of day (TRT × day, < 0.05). These data indicate that adequate stall space, especially late in gestation, may improve the well-being of higher-parity and heavier-bodied gestating sows as assessed by changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.
Helium compressors for closed-cycle, 4.5-Kelvin refrigerators
NASA Technical Reports Server (NTRS)
Hanson, T. R.
1992-01-01
An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor.
16 CFR 1505.50 - Stalled motor testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...
16 CFR 1505.50 - Stalled motor testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...
NASA Technical Reports Server (NTRS)
Gustafson, F B; Myers, G C , Jr
1946-01-01
Theoretical studies have predicted that operation of helicopter rotor beyond certain combinations of thrust, forward speed, and rotational speed might be prevented by rapidly increasing stalling of the retreating blade. The same studies also indicate that the efficiency of the rotor will increase until these limits are reached or closely approached, so that it is desirable to design helicopter rotors for operation close to the limits imposed by blade stalling. Inasmuch as the theoretical predictions of blade stalling involve numerous approximations and assumptions, an experimental investigation was needed to determine whether, in actual practice, the stall did occur and spread as predicted and to establish the amount of stalling that could be present without severe vibration or control difficulties being introduced. This report presents the results of such an investigation.
Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2
NASA Astrophysics Data System (ADS)
Kusuma, Yuriadi; Permana, Dadang S.
2018-03-01
The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.
Turbo-alternator-compressor design for supercritical high density working fluids
Wright, Steven A.; Fuller, Robert L.
2013-03-19
Techniques for generating power are provided. Such techniques involve a thermodynamic system including a housing, a turbine positioned in a turbine cavity of the housing, a compressor positioned in a compressor cavity of the housing, and an alternator positioned in a rotor cavity between the turbine and compressor cavities. The compressor has a high-pressure face facing an inlet of the compressor cavity and a low-pressure face on an opposite side thereof. The alternator has a rotor shaft operatively connected to the turbine and compressor, and is supported in the housing by bearings. Ridges extending from the low-pressure face of the compressor may be provided for balancing thrust across the compressor. Seals may be positioned about the alternator for selectively leaking fluid into the rotor cavity to reduce the temperature therein.
NASA Astrophysics Data System (ADS)
Heintz, Kyle C.
An experimental study of a cambered airfoil undergoing non-cyclical, transient pitch trajectories and the resulting effects on the dynamic stall phenomenon is presented. Surface pressure measurements and airfoil incidence angle are acquired simultaneously to resolve instantaneous aerodynamic load coefficients at Mach numbers ranging from 0.2 to 0.4. Derived from these coefficients are various formulations of the aerodynamic damping factor, referred to copiously throughout. Using a two-motor mechanism, each providing independent frequency and amplitude input to the airfoil, unique pitch motions can be implemented by actively controlling the phase between inputs. This work primarily focuses on three pitch motion schemas, the first of which is a "chirp" style trajectory featuring concurrent exponential frequency growth and amplitude decay. Second, these parameters are tested separately to determine their individual contributions. Lastly, a novel dual harmonic pitch motion is devised which rapidly traverses dynamic stall regimes on an inter-cycle basis by modulating the static-stall penetration angle. Throughout all results presented, there is evidence that for consecutive pitch-cycles, the process of dynamic stall is affected when prior oscillations prior have undergone deeper stall-penetration angles. In other words when stall-penetration is descending, retreating from a regime of light or deep stall, statistics of load coefficients, such as damping coefficient, maximum lift, minimum quarter-chord moment, and their phase relationships, do not match the values seen when stall-penetration was growing. The outcomes herein suggest that the airfoil retains some memory of previous flow separation which has the potential to change the influence of the dynamic stall vortex.
3-D Stall Cell Inducement Using Static Trips on a NACA0015 Airfoil
NASA Astrophysics Data System (ADS)
Dell'Orso, Haley; Amitay, Michael
2015-11-01
Stall cells typically occur at high angles of attack and moderate to high Reynolds numbers (105 to 106) , which are applicable to High Altitude Long Endurance (HALE) vehicles. Under certain conditions stall cells can form abruptly and have a severe and detrimental impact on flight. In order to better understand this phenomenon, stall cell formation is studied using oil flow visualization and SPIV on a NACA0015 airfoil with AR = 2.67. It was shown that there is a critical Reynolds number above which stall cells begin to form, and that Recrit varies with angle of attack. Zig-zag tape and balsa wood trips were used to induce stall cells at lower Reynolds numbers than they would otherwise be present. This will aid in understanding the formation mechanism of these cells. It was also demonstrated that, in the case of full span trips, stall cells are induced by the 3-D nature of zig-zag trips and did not appear when balsa wood trips were used. This suggests that the formation of the stall cell might be due to 3-D disturbances that are naturally present in a flow field. AFOSR Grant Number FA9550-13-1-0059.
High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression
NASA Technical Reports Server (NTRS)
Matalanis, Claude; Bowles, Patrick; Lorber, Peter; Crittenden, Thomas; Glezer, Ari; Schaeffler, Norman; Min, Byung-Young; Jee, Solkeun; Kuczek, Andrzej; Wake, Brian
2016-01-01
This work documents high-speed wind tunnel experiments conducted on a pitching airfoil equipped with an array of combustion-powered actuators (COMPACT). The main objective of these experiments was to demonstrate the stall-suppression capability of COMPACT on a high-lift rotorcraft airfoil, the VR-12, at relevant Mach numbers. Through dynamic pressure measurements at the airfoil surface it was shown that COMPACT can positively affect the stall behavior of the VR-12 at Mach numbers up to 0.4. Static airfoil results demonstrated 25% and 50% increases in post-stall lift at Mach numbers of 0.4 and 0.3, respectively. Deep dynamic stall results showed cycle-averaged lift coefficient increases up to 11% at Mach 0.4. Furthermore, it was shown that these benefits could be achieved with relatively few pulses during down-stroke and with no need to pre-anticipate the stall event. The flow mechanisms responsible for stall suppression were investigated using particle image velocimetry.
Effects of three types of free-stall surfaces on preferences and stall usage by dairy cows.
Tucker, C B; Weary, D M; Fraser, D
2003-02-01
One important criterion in choosing appropriate housing systems for dairy cattle is that the freestall provides a comfortable surface for the cow. This paper describes two experiments testing the effects of commonly used lying surfaces on stall preference and stall usage by Holstein cows. In both experiments, 12 cows were housed individually in separate pens. Each pen contained three free stalls with a different surface: deep-bedded sawdust, deep-bedded sand, and a geotextile mattress covered with 2 to 3 cm of sawdust. The animals were restricted to each surface in turn, in a random order for either 2 (Experiment 1) or 3 d (Experiment 2). Both before and after this restriction phase, the animals were allowed access to all three surfaces, and preference was determined, based on lying times. Of the 12 cows used in Experiment 1, 10 preferred sawdust before and nine after the restriction phase. During the restriction phase, average lying times and number of lying events during the restriction phase were significantly lower for the sand-bedded stalls (P < or = 0.05), and standing times were higher on mattresses (P < or = 0.05), compared with sawdust. Although these cows had some experience with all three surfaces during the experiment, they had been housed in sawdust-bedded stalls during their previous lactation. Cows used in Experiment 2 had spent their previous lactation in sand bedded stalls. In this experiment, about half the cows preferred sand and half sawdust, after the restriction phase. During the restriction phase of experiment, lying times and number of lying events were lower, and standing times were higher when the animals were restricted to the mattresses compared to either sand or sawdust (P < or = 0.05). These results indicate that (1) free stall surface can affect both stall preferences and stall usage, and (2) mattresses are less preferred.
A comparison of free-stall barns used by modernized Wisconsin dairies.
Bewley, J; Palmer, R W; Jackson-Smith, D B
2001-02-01
A primary objective of the Wisconsin Dairy Modernization Survey was to compare features of free-stall barns available to dairy producers. This study used data from a large random sample of expanding dairy farms to determine whether the theoretical benefits of particular free-stall configurations bear out under on-farm conditions. Comparisons were made among herds using free-stall barns as their primary housing for new versus remodeled facilities, barn design, bedding used, feed-delivery design, manure removal strategies, animal restraint, maternity areas, overcrowding, and cooling methods. Producers who made the transition from tie-stall housing to free-stall housing were satisfied with this decision. New free-stall barns provided a more desirable environment for the herds than remodeled free-stall barns, although initial investments were higher. When new free-stall barns were compared, herds with four-row barns had higher production, lower somatic cell count, and higher stocking rates than herds with six-row barns. Respondents were more satisfied with four- and six-row barns than with two- and three-row barns. Respondents felt sand provided some advantages for cow comfort, while satisfaction with bedding cost and manure handling was higher with mattresses. Dairy Herd Improvement data showed no difference in milk production or somatic cell count for producers who chose sand or mattress-based free stalls. Respondents were more satisfied with the use of drive-through feeding than other feed-delivery designs. Most producers chose to use tractor scrapers to remove manure; however, producers who used automated systems were more satisfied with manure management. Few differences were observed when comparing self-locking head gates to palpation rails. Overcrowding did not have any adverse affect on production or user satisfaction with feed intake or cow comfort. Using supplemental cooling appeared to facilitate higher production.
Sorter, D E; Kester, H J; Hogan, J S
2014-05-01
An experiment was conducted to compare bacterial counts of mastitis pathogens in deep-packed manure solids bedding with those in manure solids bedding replaced daily from mattresses. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 stalls was equipped with mattresses topped with bedding. The back one-third of these stalls toward the alleyway was covered in 25 mm of recycled manure solids, which was removed daily for the next 6 d and replaced with bedding from the brisket board and lunge space areas of stalls. The second row of 9 stalls was bedded for 3 wk with 100 to 150 mm of deep-pack recycled manure bedding from which only fecal matter was removed daily. After 3 wk, bedding treatments were changed between rows in a switchback design. Mean total gram-negative bacterial counts did not differ between treatments throughout the experiment. Coliform and Klebsiella spp. bacterial counts were lower in daily replaced bedding compared with deep pack across the experiment and on each of d 0, 1, 2, and 6. Streptococcal counts were reduced in daily replacement stalls compared with deep-pack stalls on d 0 and greater in daily replacement stalls compared with deep-pack stalls on d 1, 2, and 6. Daily replacement of recycled manure bedding from the back one-third of the stalls appeared to be an effective approach to reducing exposure to coliforms, specifically Klebsiella, but not streptococci. However, bacterial counts in bedding from both treatments were elevated throughout the trial and resulted in considerable risk for exposure to teats and development of intramammary infections. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
30 CFR 57.13010 - Reciprocating-type air compressors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors rated...
30 CFR 57.13010 - Reciprocating-type air compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors rated...
49 CFR 192.736 - Compressor stations: Gas detection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...
49 CFR 192.736 - Compressor stations: Gas detection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...
49 CFR 192.736 - Compressor stations: Gas detection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...
49 CFR 192.736 - Compressor stations: Gas detection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Compressor stations: Gas detection. 192.736... Compressor stations: Gas detection. (a) Not later than September 16, 1996, each compressor building in a compressor station must have a fixed gas detection and alarm system, unless the building is— (1) Constructed...
33 CFR 154.826 - Vapor compressors and blowers.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor in... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
23. Station Compressor Room 1 with Air Compressors and Accumulator ...
23. Station Compressor Room 1 with Air Compressors and Accumulator Tanks, view to the south. One of the two large station air compressor units used for depressing the draft tube water level is visible atop a concrete pedestal on the left side of photograph (the second identical compressor is located in an adjacent room). Two of the six station air accumulator tanks are visible in the background. The smaller station service air compressor is visible in right foreground of the photograph was installed in the early 1980s, and replaced the original station service air compressor. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
Control means for a gas turbine engine
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Sellers, F. J.; Bennett, G. W. (Inventor)
1982-01-01
A means is provided for developing a signal representative of the actual compressor casing temperature, a second signal representative of compressor inlet gas temperature, and a third signal representative of compressor speed. Another means is provided for receiving the gas temperature and compressor speed signals and developing a schedule output signal which is a representative of a reference casing temperature at which a predetermined compressor blade stabilized clearance is provided. A means is also provided for comparing the actual compressor casing temperature signal and the reference casing temperature signal and developing a clearance control system representative of the difference. The clearance control signal is coupled to a control valve which controls a flow of air to the compressor casing to control the clearance between the compressor blades and the compressor casing. The clearance control signal can be modified to accommodate transient characteristics. Other embodiments are disclosed.
NASA Technical Reports Server (NTRS)
Creagh, John W. R.
1950-01-01
The compressor from the XT-46 turbine-propeller engine was revised by removing the last two rows of stator blades and by eliminating the interstage leakage paths described in a previous report. With the revised compressor, the flow choking point shifted upstream into the last rotor-blade row but the maximum weight flow was not increased over that of the original compressor. The flow range of the revised compressor was reduced to about two-thirds that obtained with the original compressor. The later stages of the compressor did not produce the design static-pressure increase probably because of excessive boundary-layer build-up in this region. Measurements obtained in the ninth-stage stator showed that the performance up to this station was promising but that the last three stages of the compressor were limiting the useful operating range of the preceding stages. Some modifications in flow-passage geometry and blade settings are believed to be necessary, however, before any major improvements in over-all compressor performance can be obtained.
Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor
NASA Astrophysics Data System (ADS)
Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard
2017-08-01
Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.
NASA Technical Reports Server (NTRS)
Anderson, Seth B.; Cooper, George E.
1947-01-01
This report contains the flight-test results of the stalling characteristics measured during the flying-qualities investigation of the Lockheed P-8OA airplane (Army No. 44-85099). The tests were conducted in straight and turning flight with and without wing-tip tanks. These tests showed satisfactory stalling characteristics and adequate stall warning for all configurations and conditions tested.
Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove
NASA Technical Reports Server (NTRS)
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Enhancing BEM simulations of a stalled wind turbine using a 3D correction model
NASA Astrophysics Data System (ADS)
Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi
2018-03-01
Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.
Preliminary compressor design study for an advanced multistage axial flow compressor
NASA Technical Reports Server (NTRS)
Marman, H. V.; Marchant, R. D.
1976-01-01
An optimum, axial flow, high pressure ratio compressor for a turbofan engine was defined for commercial subsonic transport service starting in the late 1980's. Projected 1985 technologies were used and applied to compressors with an 18:1 pressure ratio having 6 to 12 stages. A matrix of 49 compressors was developed by statistical techniques. The compressors were evaluated by means of computer programs in terms of various airline economic figures of merit such as return on investment and direct-operating cost. The optimum configuration was determined to be a high speed, 8-stage compressor with an average blading aspect ratio of 1.15.
Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater
NASA Astrophysics Data System (ADS)
Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun
2010-06-01
For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.
The design of a small linear-resonant, split Stirling cryogenic refrigerator compressor
NASA Technical Reports Server (NTRS)
Ackermann, R. A.
1985-01-01
The development of a small linear-resonant compressor for use in a 1/4-watt, 78K, split Stirling cryogenic refrigerator is discussed. The compressor contains the following special features: (1) a permanent-magnet linear motor; (2) resonant dynamics; (3) dynamic balancing; and (4) a close-clearance seal between the compressor piston and cylinder. This paper describes the design of the compressor, and presents component test data and system test data for the compressor driving a 1/4-watt expander.
On recent developments in marginal separation theory.
Braun, S; Scheichl, S
2014-07-28
Thin aerofoils are prone to localized flow separation at their leading edge if subjected to moderate angles of attack α. Although 'laminar separation bubbles' at first do not significantly alter the aerofoil performance, they tend to 'burst' if α is increased further or if perturbations acting upon the flow reach a certain intensity. This then either leads to global flow separation (stall) or triggers the laminar-turbulent transition process within the boundary layer flow. This paper addresses the asymptotic analysis of the early stages of the latter phenomenon in the limit as the characteristic Reynolds number [Formula: see text], commonly referred to as marginal separation theory. A new approach based on the adjoint operator method is presented that enables the fundamental similarity laws of marginal separation theory to be derived and the analysis to be extended to higher order. Special emphasis is placed on the breakdown of the flow description, i.e. the formation of finite-time singularities (a manifestation of the bursting process), and on its resolution being based on asymptotic arguments. The passage to the subsequent triple-deck stage is described in detail, which is a prerequisite for carrying out a future numerical treatment of this stage in a proper way. Moreover, a composite asymptotic model is developed in order for the inherent ill-posedness of the Cauchy problems associated with the current flow description to be resolved.
Rotating Stall Suppression Using Oscillatory Blowing Actuation on Blades
2010-06-30
severe mechanical vibrations. Certainly, violent surge cannot be tolerated in an aircraft jet engine because of the danger of mechanical failure or...isolated airfoils increases the stall angle. Therefore, herein it was hypothesized that when a stall cell reaches a blade with jet actuation, the stall...Detailed view of the jet slot. Figure 2.30: Wing fences mounted on test blade (with the neighboring airfoils re- moved). (a) Attachment and pipe (b
Centrifugal compressor modifications and their effect on high-frequency pipe wall vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motriuk, R.W.; Harvey, D.P.
1998-08-01
High-frequency pulsation generated by centrifugal compressors, with pressure wave-lengths much smaller than the attached pipe diameter, can cause fatigue failures of the compressor internals, impair compressor performance, and damage the attached compressor piping. There are numerous sources producing pulsation in centrifugal compressors. Some of them are discussed in literature at large (Japikse, 1995; Niese, 1976). NGTL has experienced extreme high-frequency discharge pulsation and pipe wall vibration on many of its radial inlet high-flow centrifugal gas compressor facilities. These pulsations led to several piping attachment failures and compressor internal component failures while the compressor operated within the design envelope. This papermore » considers several pulsation conditions at an NGTL compression facility which resulted in unacceptable piping vibration. Significant vibration attenuation was achieved by modifying the compressor (pulsation source) through removal of the diffuser vanes and partial removal of the inlet guide vanes (IGV). Direct comparison of the changes in vibration, pulsation, and performance are made for each of the modifications. The vibration problem, probable causes, options available to address the problem, and the results of implementation are reviewed. The effects of diffuser vane removal on discharge pipe wall vibration as well as changes in compressor performance are described.« less
Performance Investigations of a Large Centrifugal Compressor from an Experimental Turbojet Engine
NASA Technical Reports Server (NTRS)
Ginsburg, Ambrose; Creagh, John W. R.; Ritter, William K.
1948-01-01
An investigation was conducted on a large centrifugal compressor from an experimental turbojet engine to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the compressor indicated that the compressor would not meet the desired engine-design air-flow requirements (78 lb/sec) because of an air-flow restriction in the vaned collector (diffuser). Revision of the vaned collector resulted in an increased air-flow capacity over the speed range and showed improved matching of the impeller and diffuser components. At maximum flow, the original compressor utilized approximately 90 percent of the available geometric throat area at the vaned-collector inlet and the revised compressor utilized approximately 94 percent, regardless of impeller speed. The ratio of the maximum weight flows of the revised and original compressors were less than the ratio of effective critical throat areas of the two compressors because of the large pressure losses in the impeller near the impeller inelt and the difference increased with an increase in impeller speed. In order to further increase the pressure ratio and maximum weight flow of the compressor, the impeller must be modified to eliminate the pressure losses therein.
Kara, Nurcan Karslioglu; Galic, Askin; Koyuncu, Mehmet
2015-01-01
The current study was carried out to determine the influence of different resting surfaces and stall types on milk yield and animal health. Study was carried out in Bursa that is one of the most important cities of Turkey in terms of dairy production. Effects of resting surfaces and stall types on milk yield were found to be important. Also influence of different resting surfaces and stall types on lactation length was examined and found that rubber mats were different from the two other options. Relationships between different resting surfaces or stall types and health problems were examined and connection between stall type and repeat breeding (RB), dystocia, retained placenta and a connection between resting surface types and RB and clinical mastitis were found to be important. Considering their economic reflections, it can be said that results are quite important to the Turkish dairy industry. PMID:25557824
Vertical Motion Simulator Experiment on Stall Recovery Guidance
NASA Technical Reports Server (NTRS)
Schuet, Stefan; Lombaerts, Thomas; Stepanyan, Vahram; Kaneshige, John; Shish, Kimberlee; Robinson, Peter; Hardy, Gordon H.
2017-01-01
A stall recovery guidance system was designed to help pilots improve their stall recovery performance when the current aircraft state may be unrecognized under various complicating operational factors. Candidate guidance algorithms were connected to the split-cue pitch and roll flight directors that are standard on large transport commercial aircraft. A new thrust guidance algorithm and cue was also developed to help pilots prevent the combination of excessive thrust and nose-up stabilizer trim. The overall system was designed to reinforce the current FAA recommended stall recovery procedure. A general transport aircraft model, similar to a Boeing 757, with an extended aerodynamic database for improved stall dynamics simulation fidelity was integrated into the Vertical Motion Simulator at NASA Ames Research Center. A detailed study of the guidance system was then conducted across four stall scenarios with 30 commercial and 10 research test pilots, and the results are reported.
Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor
NASA Technical Reports Server (NTRS)
Wilson, Robert E.
1995-01-01
Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.
Wilson, Tanya R; LeBlanc, Stephen J; DeVries, Trevor J; Haley, Derek B
2018-06-01
Automatic milk feeders (AMF) for young dairy calves are widely used in the dairy industry. These feeders are thought to have benefits for calf health and welfare and may reduce labor required for feeding; however, little is known about how calves adapt to feeding with AMF. The objective of this study was to observe the effects of feeding stall design on calves learning to use the AMF. The hypothesis was that solid side stalls, compared with steel bar stalls, would result in a longer latency to approach and feed from the AMF without assistance. A total of 147 Holstein calves (80 male and 67 female) were enrolled at 4 d of age, introduced to a group pen, and, at the same time, trained on an AMF. For training, calves were allowed to suck on the trainer's fingers and guided to the teat. Calves were allocated to 1 of 2 stall designs at the pen level, depending on which treatment cohort they were born into, either with steel bar stall walls (n = 46 male, 34 female calves) or with solid side stall walls (n = 34 male, 33 female calves). For 72 h after introductory training on the AMF, data from the feeders were collected and calf behavior was monitored by video. Outcomes measured included latency to first voluntary visit to the feeder and to first feeding, time spent in the feeder, amount of milk consumed over 72 h, number of retraining sessions required (retrained if <2 L was consumed every 12 h), and exploratory behavior, such as sniffing and licking of the feeder. Data were analyzed using mixed effects linear regression models or a Poisson model for the outcome of retraining. For certain outcomes the effects of stall design interacted with difficulty of training (willingness to enter feeder and drink); for the 38% of calves that were scored as moderately difficult to train on a scale of easy, moderate, or difficult, treatment (stall design) differences were detected. These calves took 2× longer to lick or bite toward the nipple, 2× longer to first voluntarily feeding, and consumed less milk over 72 h following training when trained on the steel bar stall design. These results suggest simple features of a stall may influence how quickly calves learn to use an AMF, but that the influence of stall wall design was affected by how easy calves were to train on the feeder upon initial introduction, which may depend in part on certain aspects of calf temperament. For many calves, solid side stalls at an AMF resulted faster in adaption than the steel bar stalls. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... Project Transco proposes to add a new compressor unit to its existing Compressor Station 85 in Choctaw County, Alabama and up-rate an existing compressor unit at its existing Compressor Station 83 in Mobile... 225,000 dekatherms per day (dth/d) from Compressor Station 85 Receipt Points southward to the...
NASA Astrophysics Data System (ADS)
Jia, Ren; Jianying, Hu; Ercang, Luo; Xiaotao, Wang
2010-04-01
Because lubricating oil for moving parts is not allowed to go into the pulse tube cryocooler, Stirling type pulse tube cryocoolers are generally driven by oil-free compressors although oil-lubricated compressors are much cheaper and facile. Recently, it was proposed that an acoustic transparent and oil blocking diaphragm could be employed to separate the compressor and the cryocooler. Thus, the cryocooler can be driven by oil-lubricated compressors. In this paper, a pulse tube cryocooler is designed to match a crankcase compressor. Although the efficiency of the crankcase compressor is lower compared with the oil-free linear compressor, the crankcase compressor can easily work at lower frequency which results in higher efficiency for the cryocooler. So the relative high performance of the whole system can be maintained. In this system, the cryocooler delivers 28.5 W of cooling at 80 K with 680 W of electrical input power and operates at 15 Hz. The corresponding Carnot efficiency is 11.52%.
NASA Technical Reports Server (NTRS)
Creagh, John W. R.; Ginsburg, Ambrose
1948-01-01
An investigation of the XJ-41-V turbojet-engine compressor was conducted to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the original compressor indicated the compressor would not meet the desired engine-design air-flow requirements because of an air-flow restriction in the vaned collector. The compressor air-flow choking point occurred near the entrance to the vaned-collector passage and was instigated by a poor mass-flow distribution at the vane entrance and from relatively large negative angles of attack of the air stream along the entrance edges of the vanes at the outer passage wall and large positive angles of attack at the inner passage wall. As a result of the analysis, a design change of the vaned collector entrance is recommended for improving the maximum flow capacity of the compressor.
Consideration of Sludge Formation in HFC-134a / Polyol Ester oil Refrigeration System
NASA Astrophysics Data System (ADS)
Yamamoto, Tsutomu; Yamamoto, Tethuya; Simizu, Yasuhiko; Nakayama, Yoshinori; Takizawa, Kikuo
A refrigeration test employing HFC-134a and polyol ester oil was carried out in order to make clear the causes of the sludge formation in the capillary tube. Compressors used were two types: a hermetic reciprocating compressor and a rotary compressor. Installed dryer contained desiccant of the compound zeolite type. The results showed that the amount of capillary sludge increased as the compressor temperature rose. The capillary sludge was determined to consist of desiccant and metal dust for the reciprocating compressor, and of tar-like substance for the rotary compressor. Thermal stability test which was used to check the degree of deterioration of the ester oil, suggested that the presence of desiccant and high compressor temperature might produce tar-like substance by the break down and polymerization of the ester oil. In addition, it was confirmed that factors affecting the sludge formation were the dirtiness of the refrigeration circuit for the reciprocating compressor, and the presence of desiccant, for the rotary compressor.
Comprehensive model of a hermetic reciprocating compressor
NASA Astrophysics Data System (ADS)
Yang, B.; Ziviani, D.; Groll, E. A.
2017-08-01
A comprehensive simulation model is presented to predict the performance of a hermetic reciprocating compressor and to reveal the underlying mechanisms when the compressor is running. The presented model is composed of sub-models simulating the in-cylinder compression process, piston ring/journal bearing frictional power loss, single phase induction motor and the overall compressor energy balance among different compressor components. The valve model, leakage through piston ring model and in-cylinder heat transfer model are also incorporated into the in-cylinder compression process model. A numerical algorithm solving the model is introduced. The predicted results of the compressor mass flow rate and input power consumption are compared to the published compressor map values. Future work will focus on detailed experimental validation of the model and parametric studies investigating the effects of structural parameters, including the stroke-to-bore ratio, on the compressor performance.
Progress has Stalled in U.S. Stroke Death Rates after Decades of Decline
... Library (PHIL) Progress has stalled in US stroke death rates after decades of decline More timely stroke ... cdc.gov/vitalsigns/stroke/infographic.html#graphic) Stroke death declines have stalled in 3 out of every ...
Aerodynamic analysis of the Darrieus wind turbines including dynamic-stall effects
NASA Astrophysics Data System (ADS)
Paraschivoiu, Ion; Allet, Azeddine
Experimental data for a 17-m wind turbine are compared with aerodynamic performance predictions obtained with two dynamic stall methods which are based on numerical correlations of the dynamic stall delay with the pitch rate parameter. Unlike the Gormont (1973) model, the MIT model predicts that dynamic stall does not occur in the downwind part of the turbine, although it does exist in the upwind zone. The Gormont model is shown to overestimate the aerodynamic coefficients relative to the MIT model. The MIT model is found to accurately predict the dynamic-stall regime, which is characterized by a plateau oscillating near values of the experimental data for the rotor power vs wind speed at the equator.
NASA Astrophysics Data System (ADS)
Kikuchi, Shigeta; Yamasaki, Nobuhiko; Yamagata, Akihiro
2013-02-01
Since the automobile turbochargers are installed in an engine compartment with limited space, the ducts upstream of the turbocharger compressor may be curved in a complex manner. In the present paper, the effect of a curved duct upstream on performance of small centrifugal compressors for automobile turbochargers is discussed. The computational fluid dynamics (CFD) analysis of a turbocharger compressor validated for the compressor model with the straight pipe applied to the compressor with the curved pipe are executed, and the deterioration of the performance for the curved pipe is confirmed. It is also found that the deterioration of compressor performance is caused by the interaction of the secondary flow and the impeller.
Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration
NASA Technical Reports Server (NTRS)
Bard, Steven (Inventor); Jones, Jack A. (Inventor)
1992-01-01
A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power.
Temperature Swing Adsorption Compressor Development
NASA Technical Reports Server (NTRS)
Finn, John E.; Mulloth, Lila M.; Affleck, Dave L.
2001-01-01
Closing the oxygen loop in an air revitalization system based on four-bed molecular sieve and Sabatier reactor technology requires a vacuum pump-compressor that can take the low-pressure CO, from the 4BMS and compress and store for use by a Sabatier reactor. NASA Ames Research Center proposed a solid-state temperature-swing adsorption (TSA) compressor that appears to meet performance requirements, be quiet and reliable, and consume less power than a comparable mechanical compressor/accumulator combination. Under this task, TSA compressor technology is being advanced through development of a complete prototype system. A liquid-cooled TSA compressor has been partially tested, and the rest of the system is being fabricated. An air-cooled TSA compressor is also being designed.
Water injected fuel cell system compressor
Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe
2001-01-01
A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.
Similarities in basalt and rhyolite lava flow emplacement processes
NASA Astrophysics Data System (ADS)
Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte
2016-04-01
Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This range in breakout morphologies is in stark contrast to breakouts observed at Cordón Caulle. We also compare the cooled crusts that form on the surface of the flows; in basalts this is of order tens of centimetres thick, in rhyolite flows the crust is of order several metres thick (based on field observations and theoretical values). This surface crust may control the flow advance in the latter phases of the flow evolution, causing stalling of the flow front and subsequent breakout formation. The similarities in flow features between compositional end members hints at a more universal model for lava flow emplacement.
Use of impact testing to predict softness, cow preference, and hardening over time of stall bases.
Fulwider, W K; Palmer, R W
2004-09-01
The objective of this study was to assess the softness and durability of commercially available free-stall bases, and to determine the relationship of stall base softness to cow preference. Clegg impact values were recorded at the University of Wisconsin-Madison Arlington Agricultural Research Station on June 19, 2002, and again on July 24, 2003. The Clegg Impact Soil Tester (model 95051, Lafayette Instruments, Lafayette, IN) with a 20-kg hammer was used in this study. The impact of the hammer on the free-stall base results in a digital display based on peak deceleration of the hammer's impact with the free-stall base in tens of gravities (CIV/H). The CIV/H value, as measured by the Clegg Impact hammer, is based on peak deceleration of the 20-kg hammer's impact with the surface, from a height of 30 cm. Clegg impact measures were highly correlated with cow preference measurements. This relationship suggests that Clegg impact measures of compressibility were good indicators for predicting stall-base acceptance. A cork mattress, 4 foam mattresses, 4 rubber mattresses, 4 rubber mats, and a waterbed were evaluated in this study. Foam-based mattresses lost cushioning ability faster than rubber mattresses or rubber mats. Clegg impact values increased over the 13-mo time period for most stall base types, which indicated a tendency of stall bases to harden.
A modeling study of a centrifugal compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, P.; Shapiro, H.N.
1998-12-31
A centrifugal compressor, which is part of a chlorofluorocarbon R-114 chiller installation, was investigated, operating with a new refrigerant, hydrofluorocarbon R-236ea, a proposed alternative to R-114. A large set of R-236ea operating data, as well as a limited amount of R-114 data, were available for this study. A relatively simple analytical compressor model was developed to describe compressor performance. The model was built upon a thorough literature search, experimental data, and some compressor design parameters. Two original empirical relations were developed, providing a new approach to the compressor modeling. The model was developed in a format that would permit itmore » to be easily incorporated into a complete chiller simulation. The model was found to improve somewhat on the quantitative and physical aspects of a compressor model of the same format found in the literature. It was found that the compressor model is specific to the particular refrigerant.« less
Fault detection and diagnosis for refrigerator from compressor sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.
A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less
NASA Astrophysics Data System (ADS)
Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.
2015-12-01
Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.
Core compressor exit stage study. 1: Aerodynamic and mechanical design
NASA Technical Reports Server (NTRS)
Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.
1979-01-01
The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.
Dynamic stall characterization using modal analysis of phase-averaged pressure distributions
NASA Astrophysics Data System (ADS)
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
Preliminary design study of advanced multistage axial flow core compressors
NASA Technical Reports Server (NTRS)
Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.
1977-01-01
A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.
Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.
Field testing energy-saving hermetic compressors in residential refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauber, R.S.; Middleton, M.G.
The design of an energy-saving compressor for low back pressure applications is reviewed. Calorimeter performance results are stated for two sizes of the efficient design and compared with performance test results for a standard compressor. Power consumption of a refrigerator-freezer is given with a standard compressor and with the energy-saving compressor. The preparation of the refrigerators used in the field test is discussed, along with the criteria used in selecting the instrumentation for the project. Results of the energy-saving compressor in the field test, along with a comparison to a standard production compressor, are presented. Some conclusions are drawn, basedmore » on the data, in relation to important factors in residential refrigerator power consumption.« less
Field testing energy-saving hermetic compressors in residential refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauber, R.S.; Middleton, M.G.
The design of an energy saving compressor for low back pressure applications is reviewed. Calorimeter performance results are stated for two sizes of the efficient design and compared with performance test results for a standard compressor. Power consumption of a refrigerator-freezer is given with a standard compressor and with the energy saving compressor. The preparation of the refrigerators used in the field test are discussed along with the criteria used in selecting the instrumentation for the project. Results of the energy saving compressor in the field test along with a comparison to a standard production compressor are presented. Some conclusionsmore » are drawn, based on the data, in relation to important factors in residential refrigerator power consumption.« less
Trends in high performance compressors for petrochemical and natural gas industry in China
NASA Astrophysics Data System (ADS)
Zhao, Yuanyang; Li, Liansheng
2015-08-01
Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.
46 CFR 154.1415 - Air compressor.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...
46 CFR 154.1415 - Air compressor.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...
46 CFR 154.1415 - Air compressor.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...
46 CFR 154.1415 - Air compressor.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...
46 CFR 154.1415 - Air compressor.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus. ...
Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.
Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.
Cow comfort in tie-stalls: increased depth of shavings or straw bedding increases lying time.
Tucker, C B; Weary, D M; von Keyserlingk, M A G; Beauchemin, K A
2009-06-01
Over half of US dairy operations use tie-stalls, but these farming systems have received relatively little research attention in terms of stall design and management. The current study tested the effects of the amount of 2 bedding materials, straw and shavings, on dairy cattle lying behavior. The effects of 4 levels of shavings, 3, 9, 15, and 24 kg/stall (experiment 1, n = 12), and high and low levels of straw in 2 separate experiments: 1, 3, 5, and 7 kg/stall (experiment 2, n = 12) and 0.5, 1, 2, and 3 kg/stall (experiment 3, n = 12) were assessed. Treatments were compared using a crossover design with lactating cows housed in tie-stalls fitted with mattresses. Treatments were applied for 1 wk. Total lying time, number of lying bouts, and the length of each lying bout was recorded with data loggers. In experiment 1, cows spent 3 min more lying down for each additional kilogram of shavings (11.0, 11.7, 11.6, and 12.1 +/- 0.24 h/d for 3, 9, 15, and 24 kg/stall shavings, respectively). In experiment 2, cows increased lying time by 12 min for every additional kilogram of straw (11.2, 12.0, 11.8, and 12.4 +/- 0.24 h/d for 1, 3, 5, and 7 kg/stall of straw, respectively). There were no differences in lying behavior among the lower levels of straw tested in experiment 3 (11.7 +/- 0.32 h/d). These results indicated that additional bedding above a scant amount improves cow comfort, as measured by lying time, likely because a well-bedded surface is more compressible.
Stalling Tropical Cyclones over the Atlantic Basin
NASA Astrophysics Data System (ADS)
Nielsen-Gammon, J. W.; Emanuel, K.
2017-12-01
Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.
Investigation of TESCOM Driveshaft Assembly Failure
1998-10-01
ratio, two-stage axial -flow compressor with a corrected tip speed of 1250 ft/sec at design . The flowpath casing diameter downstream of the inlet... Design of a 1250 ft/sec. Low-Aspect-Ratio, Single-Stage Axial -Flow Compressor , AFAPL-TR-79-2096, Air Force Aero Propulsion Laboratory, Wright...The TESCOM compressor described in this report is a 2.5-stage, low aspect ratio, axial -flow compressor . The performance objectives of this compressor
Development of a J-T Micro Compressor
NASA Astrophysics Data System (ADS)
Champagne, P.; Olson, J. R.; Nast, T.; Roth, E.; Collaco, A.; Kaldas, G.; Saito, E.; Loung, V.
2015-12-01
Lockheed Martin has developed and tested a space-quality compressor capable of delivering closed-loop gas flow with a high pressure ratio, suitable for driving a Joule- Thomson cold head. The compressor is based on a traditional “Oxford style” dual-opposed piston compressor with linear drive motors and flexure-bearing clearance-seal technology for high reliability and long life. This J-T compressor retains the approximate size, weight, and cost of the ultra-compact, 200 gram Lockheed Martin Pulse Tube Micro Compressor, despite the addition of a flow-rectifying system to convert the AC pressure wave into a steady flow.
14 CFR 23.691 - Artificial stall barrier system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... downward pitching control will be provided must be established. (b) Considering the plus and minus airspeed...
14 CFR 23.691 - Artificial stall barrier system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... downward pitching control will be provided must be established. (b) Considering the plus and minus airspeed...
14 CFR 23.691 - Artificial stall barrier system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... downward pitching control will be provided must be established. (b) Considering the plus and minus airspeed...
14 CFR 23.691 - Artificial stall barrier system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... downward pitching control will be provided must be established. (b) Considering the plus and minus airspeed...
14 CFR 23.691 - Artificial stall barrier system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... downward pitching control will be provided must be established. (b) Considering the plus and minus airspeed...
Extended range heat pump system and centrifugal compressor for use therewith
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoemaker, J.F.
1988-04-26
Improvements in heat pump systems having indoor and outdoor heat exchangers and at least two compressors for supplying a refrigerant medium under pressure thereto, and means for circulating the medium through the heat exchangers, the improvement is described comprising a selector valve associated with each of the compressors. The selector valves provide that any combination and any one or more of the compressors can be selected for operation, each of the selector valves having a first operating condition placing the associated compressor in series with the heat exchangers and a second operating condition whereby the associated compressor is bypassed, whenmore » the selector valves for at least two of the compressors are simultaneously in their first positions a flow path is established through the associated compressors and through the heat exchangers all in series, a two position changeover valve and associated conduit means. The changeover valve has a first position wherein at least one of the compressors is connected in series with the first and second heat exchangers to produce flow of the medium in one direction therethrough and a second position whereby at least one compressor is connected to produce flow of the medium in the opposite direction through the heat exchangers.« less
RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.
Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J
2015-10-15
We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Midolo, L.
1980-07-08
A description is given of a rotary vane cooling system including a two phase coolant, comprising: a vaporizable liquid working medium within said cooling system; an evaporator having an inlet and an outlet; a condenser having an inlet and an outlet; a two stage rotary vane compressor, including means for connecting the outlet of a first compressor stage to the inlet of a second compressor stage; said two stage rotary vane compressor being connected between the outlet of said evaporator and the inlet at said condenser; an expansion device connected between the outlet of said condenser and the inlet ofmore » said evaporator; said two stage compressor including a housing having a chamber therein, a rotor on a rotatable shaft; said rotor being positioned within said chamber; said rotor having a plurality of slidable vanes which form a plurality of cells, within said chamber, which change in volume as the rotor rotates; said plurality of cells including a pluraity of cells on one side of said rotor which corresponds to said first compressor stage and a plurality of cells on the other side of said rotor which corresponds to said second compressor stage; said cells corresponding to said first compressor stage having a greater maximum volume than the cells corresponding to said second compressor stage; and means for supplying at least a portion of the vapor resulting from the expansion in said expansion device to the inlet of the second compressor stage for providing cooling in the inlet of said second compressor stage.« less
Novel Long Stroke Reciprocating Compressor for Energy Efficient Jaggery Making
NASA Astrophysics Data System (ADS)
Rane, M. V.; Uphade, D. B.
2017-08-01
Novel Long Stroke Reciprocating Compressor is analysed for jaggery making while avoiding burning of bagasse for concentrating juice. Heat of evaporated water vapour along with small compressor work is recycled to enable boiling of juice. Condensate formed during heating of juice is pure water, as oil-less compressor is used. Superheat of compressor is suppressed by flow of superheated vapours through condensate. It limits heating surface temperature and avoids caramelization of sugar. Thereby improves quality of jaggery and eliminates need to use chemicals for colour improvement. Stroke to bore ratio is 0.6 to 1.2 in conventional reciprocating drives. Long stroke in reciprocating compressors enhances heat dissipation to surrounding by providing large surface area and increases isentropic efficiency by reducing compressor outlet temperature. Longer stroke increases inlet and exit valve operation timings, which reduces inertial effects substantially. Thereby allowing use of sturdier valves. This enables handling liquid along with vapour in compressors. Thereby supressing the superheat and reducing compressor power input. Longer stroke increases stroke to clearance ratios which increases volumetric efficiency and ability of compressor to compress through higher pressure ratios efficiently. Stress-strain simulation is performed in SolidWorks for gear drive. Long Stroke Reciprocating Compressor is developed at Heat Pump Laboratory, stroke/bore 292 mm/32 mm. It is operated and tested successfully at different speeds for operational stability of components. Theoretical volumetric efficiency is 93.9% at pressure ratio 2.0. Specific energy consumption is 108.3 kWhe/m3 separated water, considering free run power.
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.55-3... the following parameters: (1) The compressor type (screw, sliding vane, etc.). (2) Number of compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters...
ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...
ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Stator Indexing in Multistage Compressors
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1997-01-01
The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.
Research and development of energy-efficient high back-pressure compressor
NASA Astrophysics Data System (ADS)
1983-09-01
Improved-efficiency compressors were developed in four capacity sizes. Changes to the baseline compressor were made to the motors, valve plates, and mufflers. The adoption of a slower running speed compressor required larger displacements to maintain the desired capacity. This involved both bore and stroke modifications. All changes that were made to the compressor are readily adaptable to manufacture. Prototype compressors were built and tested. The largest capacity size (4000 Btu/h) was selected for testing in a vending machine. Additional testing was performed on the prototype compressors in order to rate them on an alternate refrigerant. A market analysis was performed to determine the potential acceptance of the improved-efficiency machines by a vending machine manufacturer, who supplies a retail sales system of a major soft drink company.
Recirculating rotary gas compressor
Weinbrecht, John F.
1992-01-01
A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.
New concept single screw compressors and their manufacture technology
NASA Astrophysics Data System (ADS)
Feng, Q.; Liu, F.; Chang, L.; Feng, C.; Peng, C.; Xie, J.; van den Broek, M.
2017-08-01
Single screw compressors were generally acknowledged as one of the nearly perfect machines by compressor researchers and manufacturers. However the rapid wear of the star-wheel in a single screw compressor during operation is a key reason why it hasn’t previously joined the main current compressors’ market. After more than ten years of effective work, the authors of this paper have proposed a new concept single screw compressor whose mesh-couple profile is enveloped with multi-column. Also a new design method and manufacture equipment for this kind of compressor have been developed and are described in this paper. A lot of prototype tests and a long period of industrial operations under full loading conditions have shown that the mesh-couple profiles of the new concept single compressors have excellent anti-wearness.
Recirculating rotary gas compressor
Weinbrecht, J.F.
1992-02-25
A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.
Academic Learning Time in the District of Columbia Public Schools.
ERIC Educational Resources Information Center
District of Columbia Public Schools, Washington, DC. Research Information Center.
Papers generated for a symposium entitled "Effectiveness of Stallings' Use of Time Training for Teachers in Washington, D.C." are presented. The intitial presentation, "Academic Learning Time: The Current Status of the Stallings Training" (Geraldine Williams Bethune), reviews the Stallings research and describes the Academic…
14 CFR 23.49 - Stalling period.
Code of Federal Regulations, 2011 CFR
2011-01-01
... on the stalling speed, with engine(s) idling and throttle(s) closed; (3) The propeller(s) in the... which the airplane is controllable with— (1) For reciprocating engine-powered airplanes, the engine(s... more than 110 percent of the stalling speed; (2) For turbine engine-powered airplanes, the propulsive...
Centrifugal Compressor Surge Controlled
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2003-01-01
It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.
49 CFR 192.167 - Compressor stations: Emergency shutdown.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...
49 CFR 192.167 - Compressor stations: Emergency shutdown.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Components § 192.167 Compressor stations: Emergency shutdown. (a) Except for unattended field compressor... fires, and electrical facilities in the vicinity of gas headers and in the compressor building, except that: (i) Electrical circuits that supply emergency lighting required to assist station personnel in...
Oil flow at the scroll compressor discharge: visualization and CFD simulation
NASA Astrophysics Data System (ADS)
Xu, Jiu; Hrnjak, Pega
2017-08-01
Oil is important to the compressor but has other side effect on the refrigeration system performance. Discharge valves located in the compressor plenum are the gateway for the oil when leaving the compressor and circulate in the system. The space in between: the compressor discharge plenum has the potential to separate the oil mist and reduce the oil circulation ratio (OCR) in the system. In order to provide information for building incorporated separation feature for the oil flow near the compressor discharge, video processing method is used to quantify the oil droplets movement and distribution. Also, CFD discrete phase model gives the numerical approach to study the oil flow inside compressor plenum. Oil droplet size distributions are given by visualization and simulation and the results show a good agreement. The mass balance and spatial distribution are also discussed and compared with experimental results. The verification shows that discrete phase model has the potential to simulate the oil droplet flow inside the compressor.
NASA Astrophysics Data System (ADS)
Li, L.; Zhao, Y.; Wang, L.; Yang, Q.; Liu, G.; Tang, B.; Xiao, J.
2017-08-01
In this paper, the background of performance testing of in-service process flow compressors set in user field are introduced, the main technique barriers faced in the field test are summarized, and the factors that result in real efficiencies of most process flow compressors being lower than the guaranteed by manufacturer are analysed. The authors investigated the present operational situation of process flow compressors in China and found that low efficiency operation of flow compressors is because the compressed gas is generally forced to flow back into the inlet pipe for adapting to the process parameters variety. For example, the anti-surge valve is always opened for centrifugal compressor. To improve the operation efficiency of process compressors the energy efficiency monitoring technology was overviewed and some suggestions are proposed in the paper, which is the basis of research on energy efficiency evaluation and/or labelling of process compressors.
76 FR 17022 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... Directorate, Aircraft Certification Service, 1601 Lind Avenue, SW., Renton, Washington 98057-3356; telephone..., limits the angle of attack at which the airplane can be flown during normal low speed operation, and... the stall speed determination, the stall characteristics, the stall warning demonstration, and the...
Design Information for Civil Works Housing.
1984-01-01
tmm GUIDANCE Lawn Mower , Garden Equipment, Bicycles, etc. 20 ft ^ r" T STORAGE 1-STALL OARAGE 2-STALL QARAQE I I c COMMENTARY !A. Al A...Weatherproof 110-V outlets (as required per ap- plicable code). V. J 17 GUIDANCE Lawn Mower , Garden Equipment, and Bicycles 1-STALL CARPORT
Clutch-Starting Stalled Research Students
ERIC Educational Resources Information Center
Ahern, Kathy; Manathunga, Catherine
2004-01-01
Many research students go through periods where their research seems to stall, their motivation drops, and they seem unable to make any progress. As supervisors, we attempt to remain alert to signs that our student's progress has stalled. Drawing on cognitive strategies, this article explores a problem-solving model supervisors can use to identify…
How bumps on whale flippers delay stall: an aerodynamic model.
van Nierop, Ernst A; Alben, Silas; Brenner, Michael P
2008-02-08
Wind tunnel experiments have shown that bumps on the leading edge of model humpback whale flippers cause them to "stall" (i.e., lose lift dramatically) more gradually and at a higher angle of attack. Here we develop an aerodynamic model which explains the observed increase in stall angle. The model predicts that as the amplitude of the bumps is increased, the lift curve flattens out, leading to potentially desirable control properties. We find that stall delay is insensitive to the wavelength of the bumps, in accordance with experimental observations.
Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+
NASA Technical Reports Server (NTRS)
Bui, Trong
2016-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.
2014-12-31
separation during the pitch-up motion – thus interrupting the vortex shedding that is characteristic of deep dynamic stall (Ericsson and Reding , 1984). The...Aircraft, Vol. 31, No. 4, pp. 782-786. Ericsson, L. E. and Reding , J. P., (1971) “Dynamic Stall Simulation Problems,” Journal of Aircraft, Vol. 8, No...7, pp. 579-583. Ericsson, L. E. and Reding , J. P., (1984) “Shock-Induced Dynamic Stall,” Journal of Aircraft, Vol. 21, No. 5, pp. 316-321. Favier
Post-Stall Aerodynamic Modeling and Gain-Scheduled Control Design
NASA Technical Reports Server (NTRS)
Wu, Fen; Gopalarathnam, Ashok; Kim, Sungwan
2005-01-01
A multidisciplinary research e.ort that combines aerodynamic modeling and gain-scheduled control design for aircraft flight at post-stall conditions is described. The aerodynamic modeling uses a decambering approach for rapid prediction of post-stall aerodynamic characteristics of multiple-wing con.gurations using known section data. The approach is successful in bringing to light multiple solutions at post-stall angles of attack right during the iteration process. The predictions agree fairly well with experimental results from wind tunnel tests. The control research was focused on actuator saturation and .ight transition between low and high angles of attack regions for near- and post-stall aircraft using advanced LPV control techniques. The new control approaches maintain adequate control capability to handle high angle of attack aircraft control with stability and performance guarantee.
Analysis of the cycle-to-cycle pressure distribution variations in dynamic stall
NASA Astrophysics Data System (ADS)
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall is an unsteady flow phenomenon observed on blades and wings that, despite decades of focused study, remains a challenging problem for rotorcraft and wind turbine applications. Traditionally, dynamic stall has been studied on pitch-oscillating airfoils by measuring the unsteady pressure distribution that is phase-averaged, by which the typical flow pattern may be observed and quantified. In cases where light to deep dynamic stall are observed, pressure distributions with high levels of variance are present in regions of separation. It was recently observed that, under certain conditions, this scatter may be the result of a two-state flow solution - as if there were a bifurcation in the unsteady pressure distribution behavior on the suction side of the airfoil. This is significant since phase-averaged dynamic stall data are often used to tune dynamic stall models and for validation of simulations of dynamic stall. In order to better understand this phenomenon, statistical analysis of the pressure data using probability density functions (PDFs) and other statistical approaches has been carried out for the SC 1094R8, DU97-W-300, and NACA 0015 airfoil geometries. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section
NASA Astrophysics Data System (ADS)
Lind, Andrew H.; Jones, Anya R.
2016-07-01
Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 105, reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15∘, and two pitch amplitudes of 5∘ and 10∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.
Layout of bunch compressor for Beijing XFEL test facility
NASA Astrophysics Data System (ADS)
Zhu, Xiongwei; Du, Yingchao; He, Xiaozhong; Yang, Yufeng
2006-10-01
In this paper, we describe the layout of the bunch compressor for the Beijing XFEL test facility (BTF). Our bunch compressor setup is different from the usual one due to the space limit. The compensation X-BAND cavity and the first bunch compressor are separate in distance. The electron bunch is decelerated first and then accelerated to enter the first bunch compressor. The simulation result shows that our setup works well, and the nonlinear term is well compensated. Also, we present the result about the CSR emittance dilution study. Finally, we develop a program to study microbunch instability in the second BTF bunch compressor.
Three-wheel air turbocompressor for PEM fuel cell systems
Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel
2003-08-19
A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.
Multiple volume compressor for hot gas engine
Stotts, Robert E.
1986-01-01
A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.
Performance of J-33-A-21 and J-33-A-23 Compressors with and without Water Injection
NASA Technical Reports Server (NTRS)
Beede, William L.
1948-01-01
In an investigation of the J-33-A-21 and the J-33-A-23 compressors with and without water injection, it was discovered that the compressors reacted differently to water injection although they were physically similar. An analysis of the effect of water injection on compressor performance and the consequent effect on matching of the compressor and turbine components in the turbojet engine was made. The analysis of component matching is based on a turbine flow function defined as the product of the equivalent weight flow and the reciprocal of the compressor pressure ratio.
CF6 Jet Engine Diagnostics Program: High pressure compressor clearance investigation
NASA Technical Reports Server (NTRS)
Radomski, M. A.
1982-01-01
The effects of high pressure compressor clearance changes on engine performance were experimentally determined on a CF6 core engine. The results indicate that a one percent reduction in normalized average clearance, expressed as a fraction of airfoil length, improves compressor efficiency by one percent. Compressor clearances are reduced by the application of rotor bore cooling, insulation of the stator casing, and use of a low coefficient of expansion material in the aft stages. This improvement amounts to a reduction of normalized average clearance of 0.78 percent, relative to CF6-60 compressor, which is equivalent to an improvement in compressor efficiency of 0.78 percent.
NASA Astrophysics Data System (ADS)
Zhao, Yuanyang; Xiao, Jun; Li, Liansheng; Yang, Qichao; Liu, Guangbin; Wang, Le
2015-08-01
The centrifugal compressors are widely used in many fields. When the centrifugal compressors operate at the edge of the surge line, the compressor will be unstable. In addition, if the centrifugal compressor runs at this situation long time, the damage will be occurred on compressor. There are some kinds of method to improve and enlarge the range of the centrifugal compressors, such as inlet guide vane, and casing treatment. For casing treatment method, some structures have been researched, such as holed recirculation, basic slot casing treatment and groove casing treatment. All these researches are the passive methods. This paper present a new stability enhancement method based Active Control Casing Treatment (ACCT). All parts of this new method are introduced in detail. The control strategy of the system is mentioned in the paper. As a research sample, a centrifugal compressor having this system is researched using CFD method. The study focuses on the effect of the active control system on the impeller flow. The vortex in impeller is changed by the active control system. And this leads to the suppression of the extension of vortex blockage in impeller and to contribute to the enhancement of the compressor operating range.
49 CFR 192.171 - Compressor stations: Additional safety equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Additional safety equipment... Pipeline Components § 192.171 Compressor stations: Additional safety equipment. (a) Each compressor station must have adequate fire protection facilities. If fire pumps are a part of these facilities, their...
30 CFR 56.13010 - Reciprocating-type air compressors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...
30 CFR 56.13010 - Reciprocating-type air compressors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...
30 CFR 56.13010 - Reciprocating-type air compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...
30 CFR 56.13010 - Reciprocating-type air compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 56.13010...
30 CFR 57.13010 - Reciprocating-type air compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 57.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors...
1949-01-01
Aircraft Engine Research Laboratory Cleveland, Ohio Restriction Cancelled ^mmmmmmmm ^Md’^| 5;-;» <^~ k NATIONAL ADVISORY COMMTTErUf0...AEEONAUTICS RESEARCH MEMORANDUM for the Air Materiel Command’, Army Air Forces PERFORMANCE OF COMPRESSOR OF XJ-41-V TURBOJET ENGINE I - PRELIMINARY...of the XJ-41-V turbojet - engine compressor. . .’ The complete compressor was amounted on a collecting chamber having an annular air-flow
Economics of water injected air screw compressor systems
NASA Astrophysics Data System (ADS)
Venu Madhav, K.; Kovačević, A.
2015-08-01
There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.
Application of Risk-Based Inspection method for gas compressor station
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liang, Wei; Qiu, Zeyang; Lin, Yang
2017-05-01
According to the complex process and lots of equipment, there are risks in gas compressor station. At present, research on integrity management of gas compressor station is insufficient. In this paper, the basic principle of Risk Based Inspection (RBI) and the RBI methodology are studied; the process of RBI in the gas compressor station is developed. The corrosion loop and logistics loop of the gas compressor station are determined through the study of corrosion mechanism and process of the gas compressor station. The probability of failure is calculated by using the modified coefficient, and the consequence of failure is calculated by the quantitative method. In particular, we addressed the application of a RBI methodology in a gas compressor station. The risk ranking is helpful to find the best preventive plan for inspection in the case study.
Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft
NASA Technical Reports Server (NTRS)
Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.
1972-01-01
The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.
An archival analysis of stall warning system effectiveness during airborne icing encounters
NASA Astrophysics Data System (ADS)
Maris, John Michael
An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance Monitoring (APM) systems that directly measure the boundary layer airflow adjacent to the affected aerodynamic surfaces, independent of other aircraft stall protection, air data, and AoA systems. In addition to investigating APM systems, measures should also be taken to include the CIRB phenomenon in aircrew training to better prepare crews to cope with airborne icing encounters. The SDT/BLR technique would allow the forecast gains from these improved systems and training processes to be evaluated objectively and quantitatively. The SDT/BLR model developed for this study has broad application outside the realm of airborne icing. The SDT technique has been extensively validated by prior research, and the BLR is a very robust multivariate technique. Combined, they could be applied to evaluate high order constructs (such as stall awareness for this study), in complex and dynamic environments. The union of SDT and BLR reduces the modeling complexities for each variable into the four binary SDT categories of Hit, Miss, False Alarm, and Correct Rejection, which is the optimum format for the BLR. Despite this reductionist approach to complex situations, the method has demonstrated very high statistical and practical significance, as well as excellent predictive power, when applied to the airborne icing scenario.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... Glade Spring Compressor Station and Fordtown Compressor Station. The Kingsport Expansion Project would...; and modifications at the Fordtown Compressor Station. Washington County, Virginia construction of... increase capacity. modifications at the Glade Spring Compressor Station. Washington and Smyth Counties...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... Compressor Station Upgrade Project and Request for Comments on Environmental Issues The staff of the Federal... discuss the environmental impacts of the Daleville Compressor Station Upgrade Project (Project) involving... compressor engines at its existing Daleville Compressor Station in Chester County, Pennsylvania. One...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... facilities: New compressor station (Redd Farm Compressor Station) on Columbia's existing Line 1570 in... setting; Modifications to the Smithfield Compressor Station consisting of upgrades to the existing... coolers; Modifications to the Glenville Compressor Station by installing two gas-fired turbines, each...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
30 CFR 56.13012 - Compressor air intakes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...
30 CFR 57.13012 - Compressor air intakes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure...
30 CFR 56.13012 - Compressor air intakes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...
30 CFR 57.13012 - Compressor air intakes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressor air intakes. 57.13012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure...
30 CFR 56.13012 - Compressor air intakes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressor air intakes. 56.13012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only...
The report presents results of a Phase I test of emissions packing technology offered by France Compressor Products which is designed to reduce methane leaks from compressor rod packing when a compressor is in a standby and pressurized state. This Phase I test was executed betwee...
30 CFR 56.13012 - Compressor air intakes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure that only... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressor air intakes. 56.13012 Section 56...
30 CFR 57.13012 - Compressor air intakes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13012 Compressor air intakes. Compressor air intakes shall be installed to ensure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressor air intakes. 57.13012 Section 57...
Compressor Modeling for Engine Control and Maintenance
2011-07-01
four compressor stages, while the high pressure compressor (HPC) consists of a set of variable pitch inlet guide vanes ( IGVs ) and 12 compressor...bleed valves at stages 5, 14 and 17, along with the variable IGVs and stators within the engine, are used to relieve the pressure and prevent
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
Miniature Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Sixsmith, Herbert
1989-01-01
Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.
40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...-controlled, fixed-displacement or pneumatic variable displacement compressor (e.g. a compressor that controls...
49 CFR 192.163 - Compressor stations: Design and construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of... building. Except for a compressor building on a platform located offshore or in inland navigable waters, each main compressor building of a compressor station must be located on property under the control of...
Bedding on geotextile mattresses: how much is needed to improve cow comfort?
Tucker, C B; Weary, D M
2004-09-01
The objective of our study was to evaluate how the amount of sawdust bedding on mattresses affects dairy cattle behavior and preferences. Eleven nonlactating, multiparous cows were housed individually in pens with access to 3 free stalls. Each stall was fitted with a geotextile mattress covered with either 0, 1, or 7.5 kg of kiln-dried sawdust. The experiment began with 7 d of acclimatization to all 3 stalls. Cows were then allowed access to only 1 of the 3 stalls at a time, each for 3 d (restriction phase). At the end of this restriction phase, cows were allowed free access to all 3 stalls for 3 d (free-choice phase). Time spent lying and the number of lying bouts increased significantly with the amount of bedding, from 12.3 +/- 0.53 h lying and 8.5 +/- 0.62 bouts per 24 h on bare mattresses to 13.8 +/- 0.53 h lying and 10.0 +/- 0.62 bouts per 24 h on mattresses with 7.5 kg of sawdust. In addition, the animals spent less time standing with only the front hooves in the stalls when more sawdust was present. When allowed free access to all 3 options, all 11 animals spent a majority of their time lying and standing in the 7.5-kg option. In conclusion, cows preferred mattresses bedded with 7.5 kg of sawdust, on which they spent more time lying down and less time standing with only the front hooves in stalls. These results indicate that more sawdust bedding improves cow comfort in stalls with geotextile mattresses.
Dynamic Stall Characteristics of Drooped Leading Edge Airfoils
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen
2000-01-01
Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.
14 CFR 25.203 - Stall characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... recovery and to regain control of the airplane. The maximum bank angle that occurs during the recovery may... controls, up to the time the airplane is stalled. No abnormal nose-up pitching may occur. The longitudinal control force must be positive up to and throughout the stall. In addition, it must be possible to...
14 CFR 25.203 - Stall characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... recovery and to regain control of the airplane. The maximum bank angle that occurs during the recovery may... controls, up to the time the airplane is stalled. No abnormal nose-up pitching may occur. The longitudinal control force must be positive up to and throughout the stall. In addition, it must be possible to...