DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, W.-T.; Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
2010-02-15
Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 muM. Under NNK exposure, arsenite wasmore » able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.« less
Costa, D L; Dreher, K L
1997-01-01
Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two oil and one coal fly ash) and four ambient airsheds (St. Louis, MO; Washington; Dusseldorf, Germany; and Ottawa, Canada). PM was administered to rats by intratracheal instillation in equimass or equimetal doses to address directly the influence of PM mass versus metal content on acute lung injury and inflammation. Our results indicated that the lung dose of bioavailable transition metal, not instilled PM mass, was the primary determinant of the acute inflammatory response for both the combustion source and ambient PM samples. Residual oil fly ash, a combustion PM rich in bioavailable metal, was evaluated in a rat model of cardiopulmonary disease (pulmonary vasculitis/hypertension) to ascertain whether the disease state augmented sensitivity to that PM. Significant mortality and enhanced airway responsiveness were observed. Analysis of the lavaged lung fluids suggested that the milieu of the inflamed lung amplified metal-mediated oxidant chemistry to jeopardize the compromised cardiopulmonary system. We propose that soluble metals from PM mediate the array of PM-associated injuries to the cardiopulmonary system of the healthy and at-risk compromised host. PMID:9400700
Sharma, Pankaj; Sharma, Aditi; Vishwakarma, Achchhe Lal; Agnihotri, Promod Kumar; Sharma, Sharad; Srivastava, Mrigank
2016-04-01
Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia. © Society for Leukocyte Biology.
Effect of Phase Lag on Fluid Flow and Particle Dispersion in a Single Human Alveolus
NASA Astrophysics Data System (ADS)
Chhabra, Sudhaker; Prasad, Ajay
2007-11-01
The human lung can be divided into (1) the conducting airways, and (2) the acini. The acini are responsible for gas exchange and consist of alveoli and bronchioles. The acini are useful delivery sites for inhaled therapeutic aerosols. In normal lung function the alveolus expands and contracts in phase with the bronchiole airflow oscillation. Lung diseases such as emphysema compromise the elasticity of the lung. Consequently, the alveolus may not oscillate in-phase with the oscillating bronchiole airflow. We have previously studied flow and particle transport in an alveolus for in-phase flow. The current work focuses on measuring out-of-phase airflow patterns and particle transport in an in-vitro model of a single expanding/contracting human alveolus. The model consists of a transparent, elastic, oscillating alveolus (represented by a 5/6th hemisphere) attached to a rigid circular tube. Realistic tidal breathing conditions were achieved by matching Reynolds and Womersley numbers. Flow patterns were measured using PIV; these velocity maps were subsequently used to calculate particle transport and deposition on the alveolar wall.
Aging effects on airflow dynamics and lung function in human bronchioles.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-01-01
The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.
Aging effects on airflow dynamics and lung function in human bronchioles
Kim, JongWon; Heise, Rebecca L.; Reynolds, Angela M.; Pidaparti, Ramana M.
2017-01-01
Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies. PMID:28846719
Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu
2016-10-02
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu
2016-01-01
ABSTRACT Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure. PMID:27467530
Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren
2015-12-01
To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.
Fernandez, Isis E; Heinzelmann, Katharina; Verleden, Stijn; Eickelberg, Oliver
2015-03-01
Tissue fibrosis, a major cause of death worldwide, leads to significant organ dysfunction in any organ of the human body. In the lung, fibrosis critically impairs gas exchange, tissue oxygenation, and immune function. Idiopathic pulmonary fibrosis (IPF) is the most detrimental and lethal fibrotic disease of the lung, with an estimated median survival of 50% after 3-5 years. Lung transplantation currently remains the only therapeutic alternative for IPF and other end-stage pulmonary disorders. Posttransplant lung function, however, is compromised by short- and long-term complications, most importantly chronic lung allograft dysfunction (CLAD). CLAD affects up to 50% of all transplanted lungs after 5 years, and is characterized by small airway obstruction with pronounced epithelial injury, aberrant wound healing, and subepithelial and interstitial fibrosis. Intriguingly, the mechanisms leading to the fibrotic processes in the engrafted lung exhibit striking similarities to those in IPF; therefore, antifibrotic therapies may contribute to increased graft function and survival in CLAD. In this review, we focus on these common fibrosis-related mechanisms in IPF and CLAD, comparing and contrasting clinical phenotypes, the mechanisms of fibrogenesis, and biomarkers to monitor, predict, or prognosticate disease status.
Li, Dongqi; He, Chuanchun; Xia, Yaoxiong; Du, Yaxi; Zhang, Jing
2018-04-23
Pembrolizumab has significantly improved outcomes in patients with advanced non-small cell lung cancer. Combining programmed death-1 inhibitor with stereotactic body radiotherapy showed a slight toxicity and good benefits in recent clinical trials. However, patients infected with human immunodeficiency virus were excluded from most trials because it was assumed that their anti-tumor immunity was compromised compared with immunocompetent patients. In June 2016, a 52-year-old Chinese man presented with human immunodeficiency virus and lung adenocarcinoma (T1bN3M1b). From November 2016 to December 2016, systemic chemotherapy and palliative radiotherapy for bone metastasis of femoral neck were carried out, but the tumor progressed. In January 2017, after immunochemistry detection of programmed death-1 and programmed death-ligand 1 expression (both > 50%), pembrolizumab was started. Three weeks after pembrolizumab, we combined stereotactic body radiotherapy for the primary lung tumor. He received no comfort and his CD4 lymphocyte count was stable. Human immunodeficiency virus-ribonucleic acid remained below the limits of detection. In March 2017, after three cycles of pembrolizumab and 5 weeks of stereotactic body radiotherapy therapy, he suddenly presented with palpitations. Emergency computed tomography scanning showed massive pericardial effusion and interstitial pneumonia. So we interrupted the pembrolizumab use and initiated treatment with prednisolone 1 mg/kg; however, the tumor progressed. Then, his CD4 lymphocyte count declined. Finally he died in June 2017 due to dyscrasia. Pembrolizumab combined with SBRT therapy for patients with human immunodeficiency virus infection and non-small cell lung cancer may lead to serious immune-related adverse events and more clinical trials are needed.
Fungemia and interstitial lung compromise caused by Malassezia sympodialis in a pediatric patient.
Aguirre, Clarisa; Euliarte, Cristina; Finquelievich, Jorge; Sosa, María de los Ángeles; Giusiano, Gustavo
2015-01-01
A case of fungemia with interstitial lung compromise caused by Malassezia sympodialis is reported in an obese pediatric patient on long-term treatment with inhaled corticosteroids for asthma. The patient was hospitalized due to a post-surgical complication of appendicitis. The patient was treated with amphotericin B for 3 weeks, with good clinical evolution and subsequent negative cultures. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Respiratory Compromise as a New Paradigm for the Care of Vulnerable Hospitalized Patients.
Morris, Timothy A; Gay, Peter C; MacIntyre, Neil R; Hess, Dean R; Hanneman, Sandra K; Lamberti, James P; Doherty, Dennis E; Chang, Lydia; Seckel, Maureen A
2017-04-01
Acute respiratory compromise describes a deterioration in respiratory function with a high likelihood of rapid progression to respiratory failure and death. Identifying patients at risk for respiratory compromise coupled with monitoring of patients who have developed respiratory compromise might allow earlier interventions to prevent or mitigate further decompensation. The National Association for the Medical Direction of Respiratory Care (NAMDRC) organized a workshop meeting with representation from many national societies to address the unmet needs of respiratory compromise from a clinical practice perspective. Respiratory compromise may arise de novo or may complicate preexisting lung disease. The group identified distinct subsets of respiratory compromise that present similar opportunities for early detection and useful intervention to prevent respiratory failure. The subtypes were characterized by the pathophysiological mechanisms they had in common: impaired control of breathing, impaired airway protection, parenchymal lung disease, increased airway resistance, hydrostatic pulmonary edema, and right-ventricular failure. Classification of acutely ill respiratory patients into one or more of these categories may help in selecting the screening and monitoring strategies that are most appropriate for the patient's particular pathophysiology. Standardized screening and monitoring practices for patients with similar mechanisms of deterioration may enhance the ability to predict respiratory failure early and prevent its occurrence. Copyright © 2017 by Daedalus Enterprises.
Treatment of Lung Cancer in Medically Compromised Patients.
Crawford, Jeffrey; Wheatley-Price, Paul; Feliciano, Josephine Louella
2016-01-01
Outcomes for patients with lung cancer have been improved substantially through the integration of surgery, radiation, and systemic therapy for patients with early-stage disease. Meanwhile, advances in our understanding of molecular mechanisms have substantially advanced our treatment of patients with advanced lung cancer through the introduction of targeted therapies, immune approaches, improvements in chemotherapy, and better supportive care. However, the majority of these advances have occurred among patients with good functional status, normal organ function, and with the social and economic support systems to be able to benefit most from these treatments. The aim of this article is to bring greater attention to management of lung cancer in patients who are medically compromised, which remains a major barrier to care delivery. Impaired performance status is associated with poor outcomes and correlates with the high prevalence of cachexia among patients with advanced lung cancer. CT imaging is emerging as a research tool to quantify muscle loss in patients with cancer, and new therapeutics are on the horizon that may provide important adjunctive therapy in the future. The benefits of cancer therapy for patients with organ failure are poorly understood because of their exclusion from clinical trials. The availability of targeted therapy and immunotherapy may provide alternatives that may be easier to deliver in this population, but clinical trials of these new agents in this population are vital. Patients with lower socioeconomic status are disproportionately affected by lung cancer because of higher rates of tobacco addiction and the impact of socioeconomic status on delay in diagnosis, treatment, and outcomes. For all patients who are medically compromised with lung cancer, multidisciplinary approaches are particularly needed to evaluate these patients and to incorporate rapidly changing therapeutics to improve outcomes.
Transcription factor Etv5 is essential for the maintenance of alveolar type II cells.
Zhang, Zhen; Newton, Kim; Kummerfeld, Sarah K; Webster, Joshua; Kirkpatrick, Donald S; Phu, Lilian; Eastham-Anderson, Jeffrey; Liu, Jinfeng; Lee, Wyne P; Wu, Jiansheng; Li, Hong; Junttila, Melissa R; Dixit, Vishva M
2017-04-11
Alveolar type II (AT2) cell dysfunction contributes to a number of significant human pathologies including respiratory distress syndrome, lung adenocarcinoma, and debilitating fibrotic diseases, but the critical transcription factors that maintain AT2 cell identity are unknown. Here we show that the E26 transformation-specific (ETS) family transcription factor Etv5 is essential to maintain AT2 cell identity. Deletion of Etv5 from AT2 cells produced gene and protein signatures characteristic of differentiated alveolar type I (AT1) cells. Consistent with a defect in the AT2 stem cell population, Etv5 deficiency markedly reduced recovery following bleomycin-induced lung injury. Lung tumorigenesis driven by mutant KrasG12D was also compromised by Etv5 deficiency. ERK activation downstream of Ras was found to stabilize Etv5 through inactivation of the cullin-RING ubiquitin ligase CRL4 COP1/DET1 that targets Etv5 for proteasomal degradation. These findings identify Etv5 as a critical output of Ras signaling in AT2 cells, contributing to both lung homeostasis and tumor initiation.
Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-09-29
Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.
Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue.
Vasilescu, Dragoş M; Phillion, André B; Tanabe, Naoya; Kinose, Daisuke; Paige, David F; Kantrowitz, Jacob J; Liu, Gang; Liu, Hanqiao; Fishbane, Nick; Verleden, Stijn E; Vanaudenaerde, Bart M; Lenburg, Marc; Stevenson, Christopher S; Spira, Avrum; Cooper, Joel D; Hackett, Tillie-Louise; Hogg, James C
2017-01-01
Micro-computed tomography (CT) enables three-dimensional (3D) imaging of complex soft tissue structures, but current protocols used to achieve this goal preclude cellular and molecular phenotyping of the tissue. Here we describe a radiolucent cryostage that permits micro-CT imaging of unfixed frozen human lung samples at an isotropic voxel size of (11 µm) 3 under conditions where the sample is maintained frozen at -30°C during imaging. The cryostage was tested for thermal stability to maintain samples frozen up to 8 h. This report describes the methods used to choose the materials required for cryostage construction and demonstrates that whole genome mRNA integrity and expression are not compromised by exposure to micro-CT radiation and that the tissue can be used for immunohistochemistry. The new cryostage provides a novel method enabling integration of 3D tissue structure with cellular and molecular analysis to facilitate the identification of molecular determinants of disease. The described micro-CT cryostage provides a novel way to study the three-dimensional lung structure preserved without the effects of fixatives while enabling subsequent studies of the cellular matrix composition and gene expression. This approach will, for the first time, enable researchers to study structural changes of lung tissues that occur with disease and correlate them with changes in gene or protein signatures. Copyright © 2017 the American Physiological Society.
Practical use of advanced mouse models for lung cancer.
Safari, Roghaiyeh; Meuwissen, Ralph
2015-01-01
To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.
20 CFR 410.565 - Collection and compromise of claims for overpayment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Collection and compromise of claims for overpayment. 410.565 Section 410.565 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.565...
Lung Structure and the Intrinsic Challenges of Gas Exchange
Hsia, Connie C.W.; Hyde, Dallas M.; Weibel, Ewald R.
2016-01-01
Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. PMID:27065169
A Lung Segmental Model of Chronic Pseudomonas Infection in Sheep
Collie, David; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Smith, Sionagh; Doherty, Catherine; McLachlan, Gerry
2013-01-01
Background Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. Methodology/Principal Findings Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>104 cfu/g). Conclusions/Significance The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches. PMID:23874438
Isolated Human Pulmonary Artery Structure and Function Pre- and Post-Cardiopulmonary Bypass Surgery.
Dora, Kim A; Stanley, Christopher P; Al Jaaly, Emad; Fiorentino, Francesca; Ascione, Raimondo; Reeves, Barnaby C; Angelini, Gianni D
2016-02-23
Pulmonary dysfunction is a known complication after cardiac surgery using cardiopulmonary bypass, ranging from subclinical functional changes to prolonged postoperative ventilation, acute lung injury, and acute respiratory distress syndrome. Whether human pulmonary arterial function is compromised is unknown. The aim of the present study was to compare the structure and function of isolated and cannulated human pulmonary arteries obtained from lung biopsies after the chest was opened (pre-cardiopulmonary bypass) to those obtained at the end of cardiopulmonary bypass (post-cardiopulmonary bypass) from patients undergoing coronary artery bypass graft surgery. Pre- and post-cardiopulmonary bypass lung biopsies were received from 12 patients undergoing elective surgery. Intralobular small arteries were dissected, cannulated, pressurized, and imaged using confocal microscopy. Functionally, the thromboxane mimetic U46619 produced concentration-dependent vasoconstriction in 100% and 75% of pre- and post-cardiopulmonary bypass arteries, respectively. The endothelium-dependent agonist bradykinin stimulated vasodilation in 45% and 33% of arteries pre- and post-cardiopulmonary bypass, respectively. Structurally, in most arteries smooth muscle cells aligned circumferentially; live cell viability revealed that although 100% of smooth muscle and 90% of endothelial cells from pre-cardiopulmonary bypass biopsies had intact membranes and were considered viable, only 60% and 58%, respectively, were viable from post-cardiopulmonary bypass biopsies. We successfully investigated isolated pulmonary artery structure and function in fresh lung biopsies from patients undergoing heart surgery. Pulmonary artery contractile tone and endothelium-dependent dilation were significantly reduced in post-cardiopulmonary bypass biopsies. The decreased functional responses were associated with reduced cell viability. URL: http://www.isrctn.com/ISRCTN34428459. Unique identifier: ISRCTN 34428459. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Büchner, Nicole; Ale-Agha, Niloofar; Jakob, Sascha; Sydlik, Ulrich; Kunze, Kerstin; Unfried, Klaus; Altschmied, Joachim; Haendeler, Judith
2013-01-01
Diet and pollution are environmental factors known to compromise "healthy aging" of the cardiovascular and respiratory systems. The molecular consequences of this permanent burden in these cells are still unknown. Therefore, this study investigates the impact of unhealthy diet on aging-related signaling pathways of human, primary cardiovascular cells and of airborne particles on lung epithelial and human endothelial cells. Nutrition health reports have shown that the diet in industrialized countries contains more than 100mg/dl low density lipoprotein (LDL) and a high fraction of added sugars, especially fructose. Several studies demonstrated that ultrafine particles can enter the circulation and thus may interact with endothelial cells directly. Both, dietary compounds and pollution derived particles, have been shown to increase the risk for cardiovascular diseases. To simulate an unhealthy diet, we supplemented cell culture media of human primary endothelial cells, smooth muscle cells and cardiomyocytes with LDL and replaced 1/3 of glucose with fructose. We observed hypertrophy in cardiomyocytes, enhanced proliferation in smooth muscle cells and increased senescence, loss of endothelial nitric oxide synthase and increased nuclear FoxO3A in endothelial cells. With respect to pollution we have used ultrafine carbon black particles (ufCB), one of the major constituents of industrial and exhaust emissions, in concentrations our lungs and vessels are constantly exposed to. These concentrations of ufCB increased reactive oxygen species in lung epithelial and vascular endothelial cells and reduced the S-NO content, a marker for NO-bioavailability, in endothelial cells. NO increases activation of Telomerase Reverse Transcriptase (TERT), an enzyme essential for telomere maintenance. TERT is required for proper endothelial cell function and is inactivated by Src kinase under conditions of oxidative stress. ufCB significantly increased Src kinase activation and reduced Telomerase activity in endothelial and lung epithelial cells. As a consequence, ufCB increased senescence of endothelial cells. To investigate whether ufCB show also effects in vivo, we instilled ufCB in concentrations not inducing inflammation into mice. Indeed, eNOS expression was reduced in the abdominal aorta of animals treated with ufCB. Thus, a combination of fructose and LDL in the diet and ufCB, as a major constituent of air pollution, seem to accelerate respiratory and cardiovascular cellular changes, which may compromise "healthy aging" and can lead to cardiovascular and pulmonary diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Ozawa, Chihiro; Horiguchi, Michiko; Akita, Tomomi; Oiso, Yuki; Abe, Kaori; Motomura, Tomoki; Yamashita, Chikamasa
2016-01-01
Pulmonary emphysema is a disease in which lung alveoli are irreversibly damaged, thus compromising lung function. Our previous study revealed that all-trans-retinoic acid (ATRA) induces the differentiation of human lung alveolar epithelial type 2 progenitor cells and repairs the alveoli of emphysema model mice. ATRA also reportedly has the ability to activate peroxisome proliferator-activated receptor (PPAR) β/δ. A selective PPARβ/δ ligand has been reported to induce the differentiation of human keratinocytes during wound repair. Here, we demonstrate that treatment using a high-affinity PPARβ/δ agonist, GW0742, reverses the lung tissue damage induced by elastase in emphysema-model mice and improves respiratory function. Mice treated with elastase, which collapsed their alveoli, were then treated with either 10% dimethyl sulfoxide (DMSO) in saline (control group) or GW0742 (1.0 mg/kg twice a week) by pulmonary administration. Treatment with GW0742 for 2 weeks increased the in vivo expression of surfactant proteins A and D, which are known alveolar type II epithelial cell markers. GW0742 treatment also shortened the average distance between alveolar walls in the lungs of emphysema model mice, compared with a control group treated with 10% DMSO in saline. Treatment with GW0742 for 3 weeks also improved tissue elastance (cm H2O/mL), as well as the ratio of the forced expiratory volume in the first 0.05 s to the forced vital capacity (FEV 0.05/FVC). In each of these experiments, GW0742 treatment reversed the damage caused by elastase. In conclusion, PPARβ/δ agonists are potential therapeutic agents for pulmonary emphysema.
Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott
2013-01-01
Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408
[Supportive care during chemotherapy for lung cancer in daily practice].
Müller, Veronika; Tamási, Lilla; Gálffy, Gabriella; Losonczy, György
2012-09-01
Active oncotherapy, combination chemotherapy of lung cancer is accompanied with many side effects which may impair patients' quality of life and compromise the effectiveness of chemotherapy. Most side effects of chemotherapy are preventable or treatable with optimal supportive care which enhances success in patient care and treatment. The aim of this review is to summarize the most important conditions that may be associated with combined chemotherapy of lung cancer from the practical point of view.
Lung Structure and the Intrinsic Challenges of Gas Exchange.
Hsia, Connie C W; Hyde, Dallas M; Weibel, Ewald R
2016-03-15
Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. Copyright © 2016 John Wiley & Sons, Inc.
Tokman, S; Hays, S R; Leard, L E; Bush, E L; Kukreja, J; Kleinhenz, M E; Golden, J A; Singer, J P
2015-12-01
Lung transplantation can be a life-saving measure for people with end-stage lung disease from systemic sclerosis. However, outcomes of lung transplantation may be compromised by gastrointestinal manifestations of systemic sclerosis, which can involve any part of the gastrointestinal tract. Esophageal and gastric disease can be managed by enteral feeding with the use of a gastrojejunal feeding tube. In this report, we describe the clinical courses of 2 lung transplant recipients with systemic sclerosis who experienced severe and prolonged barium-impaction ileus after insertion of a percutaneous gastrojejunal feeding tube. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Sally Yunsun; Burgess, Janette K; Wang, Yiwei; Kable, Eleanor P W; Weiss, Daniel J; Chan, Hak-Kim; Chrzanowski, Wojciech
2016-12-01
Current treatment regimens for inhalation injury are mainly supportive and rely on self-regeneration processes for recovery. Cell therapy with mesenchymal stromal cells (MSCs) is increasingly being investigated for the treatment of inhalation injury. Human amniotic MSCs (hAMSCs) were used in this study due to their potential use in inflammatory and fibrotic conditions of the lung. This study aimed at demonstrating that hAMSCs can be atomized with high viability, for the purpose of achieving a more uniform distribution of cells throughout the lung. Another aim of this study was to set ground for future application to healthy and diseased lungs by demonstrating that hAMSCs were able to survive after being sprayed onto substrates with different stiffness. Two methods of atomization were evaluated, and the LMA MAD780 device was selected for atomizing hAMSCs for optimized delivery. To mimic the stiffness of healthy and diseased lungs, gelatin gel (10% w/v) and tissue culture plastic were used as preliminary models. Poly-l-lysine (PLL) and collagen I coatings were used as substrates on which the hAMSCs were cultured after being sprayed. The feasibility of atomizing hAMSCs was demonstrated with high cell viability (81 ± 3.1% and 79 ± 11.6% for cells sprayed onto plastic and gelatin, respectively, compared with 85 ± 4.8% for control/nonsprayed cells) that was unaffected by the different stiffness of substrates. The presence of the collagen I coating on which the sprayed cells were cultured yielded higher cell proliferation compared with both PLL and no coating. The morphology of sprayed cells was minimally compromised in the presence of the collagen I coating. This study demonstrated that hAMSCs are able to survive after being sprayed onto substrates with different stiffness, especially in the presence of collagen I. Further studies may advance the effectiveness of cell therapy for lung regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dairou, Julien; Petit, Emile; Ragunathan, Nilusha
2009-05-01
Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating thatmore » inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.« less
45 CFR 1177.12 - Compromise, suspension and termination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... THE ARTS AND THE HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES CLAIMS COLLECTION § 1177.12 Compromise, suspension and termination. (a) The Chairperson of the National Endowment for the Humanities or... available to the public. (b) The Chairperson of the National Endowment for the Humanities may compromise...
45 CFR 1177.12 - Compromise, suspension and termination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... THE ARTS AND THE HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES CLAIMS COLLECTION § 1177.12 Compromise, suspension and termination. (a) The Chairperson of the National Endowment for the Humanities or... available to the public. (b) The Chairperson of the National Endowment for the Humanities may compromise...
Role of Nrf2 and Autophagy in Acute Lung Injury
Rojo de la Vega, Montserrat; Dodson, Matthew; Gross, Christine; Manzour, Heidi; Lantz, R. Clark; Chapman, Eli; Wang, Ting; Black, Stephen M.; Garcia, Joe G.N.; Zhang, Donna D.
2016-01-01
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the clinical manifestations of severe lung damage and respiratory failure. Characterized by severe inflammation and compromised lung function, ALI/ARDS result in very high mortality of affected individuals. Currently, there are no effective treatments for ALI/ARDS, and ironically, therapies intended to aid patients (specifically mechanical ventilation, MV) may aggravate the symptoms. Key events contributing to the development of ALI/ARDS are: increased oxidative and proteotoxic stresses, unresolved inflammation, and compromised alveolar-capillary barrier function. Since the airways and lung tissues are constantly exposed to gaseous oxygen and airborne toxicants, the bronchial and alveolar epithelial cells are under higher oxidative stress than other tissues. Cellular protection against oxidative stress and xenobiotics is mainly conferred by Nrf2, a transcription factor that promotes the expression of genes that regulate oxidative stress, xenobiotic metabolism and excretion, inflammation, apoptosis, autophagy, and cellular bioenergetics. Numerous studies have demonstrated the importance of Nrf2 activation in the protection against ALI/ARDS, as pharmacological activation of Nrf2 prevents the occurrence or mitigates the severity of ALI/ARDS. Another promising new therapeutic strategy in the prevention and treatment of ALI/ARDS is the activation of autophagy, a bulk protein and organelle degradation pathway. In this review, we will discuss the strategy of concerted activation of Nrf2 and autophagy as a preventive and therapeutic intervention to ameliorate ALI/ARDS. PMID:27313980
Taylor, Oliver J; Thatcher, Mikayla O; Carr, Sheryl T; Gibbs, Jonathan L; Trumbull, Annie M; Harrison, Mitchell E; Winden, Duane R; Pearson, Mackenzie J; Tippetts, Trevor S; Holland, William L; Reynolds, Paul R; Bikman, Benjamin T
2017-05-20
We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1), which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure.
Taylor, Oliver J.; Thatcher, Mikayla O.; Carr, Sheryl T.; Gibbs, Jonathan L.; Trumbull, Annie M.; Harrison, Mitchell E.; Winden, Duane R.; Pearson, Mackenzie J.; Tippetts, Trevor S.; Holland, William L.; Reynolds, Paul R.; Bikman, Benjamin T.
2017-01-01
We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1), which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure. PMID:28531105
Interplay of macrophages and T cells in the lung vasculature.
Gerasimovskaya, Evgenia; Kratzer, Adelheid; Sidiakova, Asya; Salys, Jonas; Zamora, Martin; Taraseviciene-Stewart, Laimute
2012-05-15
In severe pulmonary arterial hypertension (PAH), vascular lesions are composed of phenotypically altered vascular and inflammatory cells that form clusters or tumorlets. Because macrophages are found in increased numbers in intravascular and perivascular space in human PAH, here we address the question whether macrophages play a role in pulmonary vascular remodeling and whether accumulation of macrophages in the lung vasculature could be compromised by the immune system. We used the mouse macrophage cell line RAW 264.7 because these cells are resistant to apoptosis, have high proliferative capacity, and resemble cells in the plexiform lesions that tend to pile up instead of maintaining a monolayer. Cells were characterized by immunocytochemistry with cell surface markers (Lycopersicon Esculentum Lectin, CD117, CD133, FVIII, CD31, VEGFR-2, and S100). Activated, but not quiescent, T cells were able to suppress RAW 264.7 cell proliferative and migration activity in vitro. The carboxyfluorescein diacetate-labeled RAW 264.7 cells were injected into the naïve Sprague Dawley (SD) rat and athymic nude rat. Twelve days later, cells were found in the lung vasculature of athymic nude rats that lack functional T cells, contributing to vascular remodeling. No labeled RAW 264.7 cells were detected in the lungs of immune-competent SD rats. Our data demonstrate that T cells can inhibit in vitro migration and in vivo accumulation of macrophage-like cells.
Bonde, Robert K.
2018-01-01
Sirenians, including the manatees and dugongs, are large herbivorous mammals that have evolved to an aquatic form since the Eocene epoch. Sirenians have unique adaptations, including dense bone for ballast and a longitudinal hemidiaphragm separating paired lungs (which aid in maintaining a horizontal posture in the water column), species-specific rostral deflection, and unique dentition for specialized feeding, which all contribute to their success. All sirenians produce one calf per breeding cycle and have long calf-dependency periods. Low reproduction rates are common for long-lived, large mammals, but may compromise their existence in today’s quickly changing world today. All sirenian populations are listed as either threatened or endangered, and some local stocks have been completely extirpated by human activities.
Morrison, Janna L.; Botting, Kimberley J.; Soo, Poh Seng; McGillick, Erin V.; Hiscock, Jennifer; Zhang, Song; McMillen, I. Caroline; Orgeig, Sandra
2012-01-01
Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia. PMID:23227338
Bronchial blood supply after lung transplantation without bronchial artery revascularization.
Nicolls, Mark R; Zamora, Martin R
2010-10-01
This review discusses how the bronchial artery circulation is interrupted following lung transplantation and what may be the long-term complications of compromising systemic blood flow to allograft airways. Preclinical and clinical studies have shown that the loss of airway microcirculations is highly associated with the development of airway hypoxia and an increased susceptibility to chronic rejection. The bronchial artery circulation has been highly conserved through evolution. Current evidence suggests that the failure to routinely perform bronchial artery revascularization at the time of lung transplantation may predispose patients to develop the bronchiolitis obliterans syndrome.
The iron lung: halfway technology or necessary step?
Maxwell, J H
1986-01-01
The iron lung is often used to epitomize the costly halfway technologies of modern-day medicine that fail to cure and only prolong a seriously compromised existence. Historical evidence indicates that the iron lung was not a costly instrument of last resort; instead, it was a lifesaving device that played a critical role in the evolution of modern respirators and respiratory care. Contrary to the prevailing views of the biomedical research community, the creation of new devices and instruments is often as important a source of technical change in medicine as are advances in the biological sciences.
Vipparti, Haritha
2014-01-01
The frequency of invasive, opportunistic mycoses has increased significantly over the past 2 decades. In the immune-compromised host, many fungi, including species of fungi typically considered non-pathogenic, have the potential to cause serious morbidity and mortality. Here we report a rare case of mixed fungal infection of the lung with Candida albicans and Aspergillus fumigatus in a patient on prolonged steroid therapy. PMID:24959447
2006-09-01
these tissues. There was essentially no change in the tocopherol levels. These results imply that CEES produces systemic oxidative stress at a...of CEES-induced acute lung injury, even though little is currently known about how CEES produces acute and progressive lung injury. Body...Medical School). 3. Pulmonary clearance of Pseudomonas aeruginosa in CEES treated rats. It is not known if exposure to CEES compromises the ability
Lugade, Amit A.; Bogner, Paul N.; Thatcher, Thomas H.; Sime, Patricia J.; Phipps, Richard P.; Thanavala, Yasmin
2014-01-01
The detrimental impact of tobacco on human health is clearly recognized and despite aggressive efforts to prevent smoking, close to one billion individuals worldwide continue to smoke. People with chronic obstructive pulmonary disease (COPD) are susceptible to recurrent respiratory infections with pathogens, including non-typeable Haemophilus influenzae (NTHI), yet the reasons for this increased susceptibility are poorly understood. As mortality rapidly increases with multiple exacerbations, development of protective immunity is critical to improving patient survival. Acute NTHI infection has been studied in the context of cigarette smoke exposure, but this is the first study to investigate chronic infection and the generation of adaptive immune responses to NTHI following chronic smoke exposure. After chronic NTHI infection, mice that had previously been exposed to cigarette smoke developed increased lung inflammation and compromised adaptive immunity relative to air-exposed controls. Importantly, NTHI-specific T cells from mice exposed to cigarette smoke produced lower levels of IFN-γ and IL-4, and B cells produced reduced levels of antibodies against outer membrane lipoprotein P6, with impaired IgG1, IgG2a and IgA class-switching. However, production of IL-17, which is associated with neutrophilic inflammation, was enhanced. Interestingly, cigarette smoke exposed mice exhibited a similar defect in the generation of adaptive immunity following immunization with P6. Our study has conclusively demonstrated that cigarette smoke exposure has a profound suppressive effect on the generation of adaptive immune responses to NTHI and suggests the mechanism by which prior cigarette smoke exposure predisposes COPD patients to recurrent infections, leading to exacerbations and contributing to mortality. PMID:24752444
Mayhew, Terry M
2014-01-01
For many organisms, respiratory gas exchange is a vital activity and different types of gas-exchange apparatus have evolved to meet individual needs. They include not only skin, gills, tracheal systems and lungs but also transient structures such as the chorioallantois of avian eggs and the placenta of eutherian mammals. The ability of these structures to allow passage of oxygen by passive diffusion can be expressed as a diffusive conductance (units: cm(3) O2 min(-1) kPa(-1)). Occasionally, the ability to estimate diffusive conductance by physiological techniques is compromised by the difficulty of obtaining O2 partial pressures on opposite sides of the tissue interface between the delivery medium (air, water, blood) and uptake medium (usually blood). An alternative strategy is to estimate a morphometric diffusive conductance by combining stereological estimates of key structural quantities (volumes, surface areas, membrane thicknesses) with complementary physicochemical data (O2-haemoglobin chemical reaction rates and Krogh's permeability coefficients). This approach has proved valuable in a variety of comparative studies on respiratory organs from diverse species. The underlying principles were formulated in pioneering studies on the pulmonary lung but are illustrated here by taking the human placenta as the gas exchanger. Copyright © 2012 Elsevier GmbH. All rights reserved.
A respiratory syncytial virus (RSV) vaccine based on parainfluenza virus 5 (PIV5)
Phan, Shannon I.; Chen, Zhenhai; Xu, Pei; Li, Zhuo; Gao, Xiudan; Foster, Stephanie L.; Teng, Michael N.; Tripp, Ralph A.; Sakamoto, Kaori; He, Biao
2014-01-01
Human respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease and hospitalizations in infants and young children. It also causes significant morbidity and mortality in elderly and immune compromised individuals. No licensed vaccine currently exists. Parainfluenza virus 5 (PIV5) is a paramyxovirus that causes no known human illness and has been used as a platform for vector-based vaccine development. To evaluate the efficacy of PIV5 as a RSV vaccine vector, we generated two recombinant PIV5 viruses - one expressing the fusion (F) protein and the other expressing the attachment glycoprotein (G) of RSV strain A2 (RSV A2). The vaccine strains were used separately for single-dose vaccinations in BALB/c mice. The results showed that both vaccines induced RSV antigen-specific antibody responses, with IgG2a/IgG1 ratios similar to those seen in wild-type RSV A2 infection. After challenging the vaccinated mice with RSV A2, histopathology of lung sections showed that the vaccines did not exacerbate lung lesions relative to RSV A2-immunized mice. Importantly, both F and G vaccines induced protective immunity. Therefore, PIV5 presents an attractive platform for vector-based vaccines against RSV infection. PMID:24717150
Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways
Abdullah, Lubna H.; Evans, Jessica R.; Wang, T. Tiffany; Ford, Amina A.; Makhov, Alexander M.; Nguyen, Kristine; Coakley, Raymond D.; Griffith, Jack D.; Davis, C. William; Ballard, Stephen T.
2017-01-01
In cystic fibrosis (CF), airway mucus becomes thick and viscous, and its clearance from the airways is impaired. The gel-forming mucins undergo an ordered “unpacking/maturation” process after granular release that requires an optimum postsecretory environment, including hydration and pH. We hypothesized that this unpacking process is compromised in the CF lung due to abnormal transepithelial fluid transport that reduces airway surface hydration and alters ionic composition. Using human tracheobronchial epithelial cells derived from non-CF and CF donors and mucus samples from human subjects and domestic pigs, we investigated the process of postsecretory mucin unfolding/maturation, how these processes are defective in CF airways, and the probable mechanism underlying defective unfolding. First, we found that mucins released into a normal lung environment transform from a compact granular form to a linear form. Second, we demonstrated that this maturation process is defective in the CF airway environment. Finally, we demonstrated that independent of HCO3− and pH levels, airway surface dehydration was the major determinant of this abnormal unfolding process. This defective unfolding/maturation process after granular release suggests that the CF extracellular environment is ion/water depleted and likely contributes to abnormal mucus properties in CF airways prior to infection and inflammation. PMID:28352653
Methemoglobinemia secondary to topical benzocaine use in a lung transplant patient.
LeClaire, Aimée C; Mullett, Timothy W; Jahania, M Salik; Flynn, Jeremy D
2005-02-01
To report a case of methemoglobinemia secondary to the administration of topical benzocaine spray in an anemic patient who had previously undergone a lung transplant. A 40-year-old white man with a past medical history significant for lung transplant acutely decompensated following oropharyngeal administration of topical benzocaine spray. Subsequent blood analysis revealed a methemoglobin concentration of 51.2%. Following the administration of a single dose of methylene blue 2 mg/kg intravenously, the patient's respiratory status dramatically improved and stabilized. Methemoglobinemia is a rare but potentially fatal condition that may be either acquired or congenital; however, the disorder is most commonly acquired secondary to exposure to oxidizing chemicals, which are often routinely prescribed medications, including benzocaine. Benzocaine can react with hemoglobin to form methemoglobin at a rate that exceeds reduction capabilities, which may result in oxygenation difficulty and respiratory distress. In severe or symptomatic methemoglobinemia, the treatment of choice is methylene blue. Application of the Naranjo probability scale established a highly probable relationship between topical benzocaine spray and methemoglobinemia and associated respiratory compromise. The risks of palliative use of topical benzocaine in patients with preexisting disorders that compromise oxygen delivery may outweigh any benefit. In our patient, anemia and lung disease increased his risk for clinically significant adverse respiratory events secondary to deficiencies or interferences in oxygen delivery. Topical benzocaine should be administered with caution and careful monitoring in such patient populations.
Heathcote, Karen L; Cockcroft, Donald W; Fladeland, Derek A; Fenton, Mark E
2011-01-01
Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
45 CFR 30.22 - Bases for compromise.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Bases for compromise. 30.22 Section 30.22 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CLAIMS COLLECTION Debt Compromise § 30.22 Bases for compromise. (a) Compromise. The Secretary may compromise a debt if the full amount...
45 CFR 30.22 - Bases for compromise.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Bases for compromise. 30.22 Section 30.22 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CLAIMS COLLECTION Debt Compromise § 30.22 Bases for compromise. (a) Compromise. The Secretary may compromise a debt if the full amount...
45 CFR 30.22 - Bases for compromise.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Bases for compromise. 30.22 Section 30.22 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CLAIMS COLLECTION Debt Compromise § 30.22 Bases for compromise. (a) Compromise. The Secretary may compromise a debt if the full amount...
45 CFR 30.22 - Bases for compromise.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Bases for compromise. 30.22 Section 30.22 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CLAIMS COLLECTION Debt Compromise § 30.22 Bases for compromise. (a) Compromise. The Secretary may compromise a debt if the full amount...
Pulmonary Transcriptional Response to Ozone in Healthy and Cardiovascular Compromised Rat Models
The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic ins...
Rationale: Acute pulmonary injury and chronic disease can impact systemic vasculature because the lung capillary network can release inflammogenic and vasoactive mediators into the circulation. Occupational exposure to Libby amphibole (LA) type asbestos is associated with increas...
Genomic pathways modulated by Twist in breast cancer.
Vesuna, Farhad; Bergman, Yehudit; Raman, Venu
2017-01-13
The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Moreover, many of the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtained from larger, independant datasets of breast cancer patients. We over-expressed the human Twist gene in non-metastatic MCF-7 breast cancer cells to generate the estrogen-independent metastatic breast cancer cell line MCF-7/Twist. These cells were inoculated in the mammary fat pad of female severe compromised immunodeficient mice, which subsequently formed xenograft tumors that metastasized to the lungs. Microarray data was collected from both in vitro (MCF-7 and MCF-7/Twist cell lines) and in vivo (primary tumors and lung metastases) models of Twist expression. Our data was compared to several gene datasets of various subtypes, classes, and grades of human breast cancers. Our data establishes a Twist over-expressing mouse model of breast cancer, which metastasizes to the lung and replicates some of the ontogeny of human breast cancer progression. Gene profiling data, following Twist expression, exhibited novel metastasis driver genes as well as cellular maintenance genes that were synonymous with the metastatic process. We demonstrated that the genes and pathways altered in the transgenic cell line and metastatic animal models parallel many of the dysregulated gene pathways observed in human breast cancers. Analogous gene expression patterns were observed in both in vitro and in vivo Twist preclinical models of breast cancer metastasis and breast cancer patient datasets supporting the functional role of Twist in promoting breast cancer metastasis. The data suggests that genetic dysregulation of Twist at the cellular level drives alterations in gene pathways in the Twist metastatic mouse model which are comparable to changes seen in human breast cancers. Lastly, we have identified novel genes and pathways that could be further investigated as targets for drugs to treat metastatic breast cancer.
Respiratory mechanics and fluid dynamics after lung resection surgery.
Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria
2010-08-01
Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur. Published by Elsevier Inc.
Histone deacetylases as regulators of inflammation and immunity.
Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J
2011-07-01
Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Increased levels of oxidants and compromised compensatory response are associated with CVD susceptibility. We hypothesized that rat strains demonstrating genetic CVD will have lower levels of antioxidants and greater ozone-induced pulmonary injury relative to healthy strains. Mal...
CPAP of 4 cm H(2)O Has no short-term benefit at term in infants with BPD.
Sandberg, Kenneth L; Hjalmarson, Ola
2012-01-01
Lung development and function is compromised at term in infants with bronchopulmonary dysplasia (BPD), characterized by reduced functional residual capacity (FRC) and impaired gas-mixing efficiency in distal airways. To determine whether continuous positive airway pressure (CPAP) improves FRC, ventilation, distal airway function, and gas exchange in spontaneously breathing infants with BPD. Twenty-one infants with BPD (median birth weight 0.72 kg (range 0.50-1.27) and median gestational age 26 weeks (range 23-28)) were studied before and after CPAP of 4 cm H(2)O was applied by a facemask system. A multiple-breath nitrogen washout method was used to assess FRC, ventilation, and gas-mixing efficiency. Moment analysis and lung clearance index was calculated from the nitrogen-decay curve for assessment of gas-mixing efficiency. Transcutaneous (Tc) PO(2)/PCO(2) was monitored during stable infant conditions before each washout test. When CPAP was raised from 0 to 4 cm H(2)O, FRC increased significantly together with a significant increase in moment ratios (M(1)/M(0) and M(2)/M(0)). Tc PO(2) decreased significantly and the breathing pattern changed, with significantly reduced respiratory rate, minute ventilation, and alveolar ventilation. There was also an increase in tidal volume and dead space. CPAP of 4 cm H(2)O applied with a facemask at term to infants with BPD did not improve ventilation, gas-mixing efficiency in distal airways, or oxygenation despite an increase in FRC. We speculate that instead of promoting recruitment of unventilated lung volumes, increasing the end-expiratory pressure in infants with BPD may lead to an overexpansion of already ventilated parts of the lung, causing further compromise of lung function. Copyright © 2012 S. Karger AG, Basel.
Respiratory deposition of inhaled micron particles in subjects with mild asthma
Rational: Particulate matter (PM) in the ambient air can cause adverse health effects to some people including an aggravation of asthma. Although compromised lung conditions in disease are likely to be the primary cause of the effects, enhanced respiratory dose of particles may a...
42 CFR 73.13 - Restricted experiments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... acquisition could compromise the control of disease agents in humans, veterinary medicine, or agriculture, or... control of disease agents in humans, veterinary medicine, or agriculture, or recombinant and/or synthetic... trait naturally, if such acquisition could compromise the control of disease agents in humans...
20 CFR 410.565 - Collection and compromise of claims for overpayment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... overpayment. 410.565 Section 410.565 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.565... individual's age, health, present and potential income (including inheritance prospects), assets (e.g., real...
Biological and statistical approaches to predicting human lung cancer risk from silica.
Kuempel, E D; Tran, C L; Bailer, A J; Porter, D W; Hubbs, A F; Castranova, V
2001-01-01
Chronic inflammation is a key step in the pathogenesis of particle-elicited fibrosis and lung cancer in rats, and possibly in humans. In this study, we compute the excess risk estimates for lung cancer in humans with occupational exposure to crystalline silica, using both rat and human data, and using both a threshold approach and linear models. From a toxicokinetic/dynamic model fit to lung burden and pulmonary response data from a subchronic inhalation study in rats, we estimated the minimum critical quartz lung burden (Mcrit) associated with reduced pulmonary clearance and increased neutrophilic inflammation. A chronic study in rats was also used to predict the human excess risk of lung cancer at various quartz burdens, including mean Mcrit (0.39 mg/g lung). We used a human kinetic lung model to link the equivalent lung burdens to external exposures in humans. We then computed the excess risk of lung cancer at these external exposures, using data of workers exposed to respirable crystalline silica and using Poisson regression and lifetable analyses. Finally, we compared the lung cancer excess risks estimated from male rat and human data. We found that the rat-based linear model estimates were approximately three times higher than those based on human data (e.g., 2.8% in rats vs. 0.9-1% in humans, at mean Mcrit lung burden or associated mean working lifetime exposure of 0.036 mg/m3). Accounting for variability and uncertainty resulted in 100-1000 times lower estimates of human critical lung burden and airborne exposure. This study illustrates that assumptions about the relevant biological mechanism, animal model, and statistical approach can all influence the magnitude of lung cancer risk estimates in humans exposed to crystalline silica.
Planning A Town To Save the Environment
Much of the environment is compromised due to land-use change and development to meet human needs. Because the environment also sustains human life, the amount of the environment that can be compromised is limited by how much must remain to meet human needs. Although people can...
Marini, John J
2011-02-01
To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.
Domm, William; Misra, Ravi S.; O’Reilly, Michael A.
2015-01-01
Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health. PMID:26322310
45 CFR 79.46 - Compromise or settlement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Compromise or settlement. 79.46 Section 79.46 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.46 Compromise or settlement. (a) Parties may make offers of compromise or settlement at any...
45 CFR 30.25 - Further review of compromise offers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Further review of compromise offers. 30.25 Section 30.25 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CLAIMS COLLECTION Debt Compromise § 30.25 Further review of compromise offers. If the Secretary is uncertain whether to...
[Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].
Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María
2008-01-01
Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
Cardiorespiratory Interactions in Paediatrics: 'It's (almost always) the circulation stupid!'
Rigby, M L; Rosenthal, M
2017-03-01
The interaction of the heart and lungs is probably the most important aspect of life and survival. Fortunately, it is not difficult to understand the fundamentals. The purpose of the lungs and their ventilation is to present oxygen to the circulation via the alveoli and to receive carbon dioxide from the circulation and then expel it. The relations of the heart and lungs and the matching of blood flow to the various organs with ventilation and lung perfusion may be disrupted by a variety of congenital or acquired heart malformations. They include those giving rise to an increased or reduced pulmonary blood flow, elevated pulmonary venous pressure or external physical pressure on the airways or lung parenchyma. Respiratory disorders which compromise cardiac function include states with reduced alveolar ventilation, those with a barrier to ventilation or perfusion, ventilation/perfusion mismatch and pulmonary vascular disease. There is also a fascinating group in which congenital disorders of the heart and lung co-exist to produce very particular modes of abnormal cardiopulmonary interaction. Copyright © 2016. Published by Elsevier Ltd.
Arsenic Alters ATP-Dependent Ca2+ Signaling in Human Airway Epithelial Cell Wound Response
Sherwood, Cara L.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott
2011-01-01
Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca2+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4μM as Na-arsenite) on wound-induced Ca2+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca2+ signaling in a dose-dependent manner and results in a reshaping of the Ca2+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca2+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385
Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.
2016-01-01
During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575
Pulmonary Hypertensive Crisis on Induction of Anesthesia.
Schisler, Travis; Marquez, Jose M; Hilmi, Ibtesam; Subramaniam, Kathirvel
2017-03-01
Anesthesia for lung transplantation remains one of the highest risk surgeries in the domain of the cardiothoracic anesthesiologist. End-stage lung disease, pulmonary hypertension, and right heart dysfunction as well as other comorbid disease factors predispose the patient to cardiovascular, respiratory and metabolic dysfunction during general anesthesia. Perhaps the highest risk phase of surgery in the patient with severe pulmonary hypertension is during the induction of anesthesia when the removal of intrinsic sympathetic tone and onset of positive pressure ventilation can decompensate a severely compromised cardiovascular system. Severe hypotension, cardiac arrest, and death have been reported previously. Here we present 2 high-risk patients for lung transplantation, their anesthetic induction course, and outcomes. We offer suggestions for the safe management of anesthetic induction to mitigate against hemodynamic and respiratory complications.
Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry
2017-08-01
Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. Copyright © 2017 American Society for Microbiology.
Escaffre, Olivier; Saito, Tais B.; Juelich, Terry L.; Ikegami, Tetsuro; Smith, Jennifer K.; Perez, David D.; Atkins, Colm; Levine, Corri B.; Huante, Matthew B.; Nusbaum, Rebecca J.; Endsley, Janice J.
2017-01-01
ABSTRACT Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. PMID:28539439
Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.
Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J
2017-08-01
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
Rakshit, Raj; Khasnobish, Anwesha; Chowdhury, Arijit; Sinharay, Arijit; Pal, Arpan; Chakravarty, Tapas
2018-04-25
Smoking causes unalterable physiological abnormalities in the pulmonary system. This is emerging as a serious threat worldwide. Unlike spirometry, tidal breathing does not require subjects to undergo forceful breathing maneuvers and is progressing as a new direction towards pulmonary health assessment. The aim of the paper is to evaluate whether tidal breathing signatures can indicate deteriorating adult lung condition in an otherwise healthy person. If successful, such a system can be used as a pre-screening tool for all people before some of them need to undergo a thorough clinical checkup. This work presents a novel systematic approach to identify compromised pulmonary systems in smokers from acquired tidal breathing patterns. Tidal breathing patterns are acquired during restful breathing of adult participants. Thereafter, physiological attributes are extracted from the acquired tidal breathing signals. Finally, a unique classification approach of locally weighted learning with ridge regression (LWL-ridge) is implemented, which handles the subjective variations in tidal breathing data without performing feature normalization. The LWL-ridge classifier recognized compromised pulmonary systems in smokers with an average classification accuracy of 86.17% along with a sensitivity of 80% and a specificity of 92%. The implemented approach outperformed other variants of LWL as well as other standard classifiers and generated comparable results when applied on an external cohort. This end-to-end automated system is suitable for pre-screening people routinely for early detection of lung ailments as a preventive measure in an infrastructure-agnostic way.
Winkler-Heil, R; Hussain, M; Hofmann, W
2015-05-01
Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.
Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa
2015-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ. PMID:25706389
Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa
2015-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ.
9 CFR 121.13 - Restricted experiments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... naturally, if such acquisition could compromise the control of disease agents in humans, veterinary medicine... such acquisition could compromise the control of disease agents in humans, veterinary medicine, or... of select toxins lethal for vertebrates at an LD[50] body weight) resulting from, the...
9 CFR 121.13 - Restricted experiments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... naturally, if such acquisition could compromise the control of disease agents in humans, veterinary medicine... such acquisition could compromise the control of disease agents in humans, veterinary medicine, or... of select toxins lethal for vertebrates at an LD[50] body weight) resulting from, the...
Impact of a lung transplantation donor-management protocol on lung donation and recipient outcomes.
Angel, Luis F; Levine, Deborah J; Restrepo, Marcos I; Johnson, Scott; Sako, Edward; Carpenter, Andrea; Calhoon, John; Cornell, John E; Adams, Sandra G; Chisholm, Gary B; Nespral, Joe; Roberson, Ann; Levine, Stephanie M
2006-09-15
One of the limitations associated with lung transplantation is the lack of available organs. To determine whether a lung donor-management protocol could increase the number of lungs for transplantation without affecting the survival rates of the recipients. We implemented the San Antonio Lung Transplant protocol for managing potential lung donors according to modifications of standard criteria for donor selection and strategies for donor management. We then compared information gathered during a 4-yr period, during which the protocol was used with information gathered during a 4-yr period before protocol implementation. Primary outcome measures were the procurement rate of lungs and the 30-d and 1-yr survival rates of recipients. We reviewed data from 711 potential lung donors. The mean rate of lung procurement was significantly higher (p < 0.0001) during the protocol period (25.5%) than during the pre-protocol period (11.5%), with an estimated risk ratio of 2.2 in favor of the protocol period. More patients received transplants during the protocol period (n = 121) than during the pre-protocol period (n = 53; p < 0.0001). Of 98 actual lung donors during the protocol period, 53 (54%) had initially been considered poor donors; these donors provided 64 (53%) of the 121 lung transplants. The type of donor was not associated with significant differences in recipients' 30-d and 1-yr survival rates or any clinical measures of adequate graft function. The protocol was associated with a significant increase in the number of lung donors and transplant procedures without compromising pulmonary function, length of stay, or survival of the recipients.
Streich, Roswita; Breysach, Caroline; Raddatz, Dirk; Oniga, Septimia; Peccerella, Teresa; Findeisen, Peter; Kzhyshkowska, Julia; Gratchev, Alexei; Schweyer, Stefan; Saunders, Bernadette; Wessels, Johannes T.; Möbius, Wiebke; Keane, Joseph; Becker, Heinz; Ganser, Arnold; Neumaier, Michael; Kaminski, Wolfgang E.
2011-01-01
Macrophages play a central role in host defense against mycobacterial infection and anti- TNF therapy is associated with granuloma disorganization and reactivation of tuberculosis in humans. Here, we provide evidence for the presence of a T cell receptor (TCR) αβ based recombinatorial immune receptor in subpopulations of human and mouse monocytes and macrophages. In vitro, we find that the macrophage-TCRαβ induces the release of CCL2 and modulates phagocytosis. TNF blockade suppresses macrophage-TCRαβ expression. Infection of macrophages from healthy individuals with mycobacteria triggers formation of clusters that express restricted TCR Vβ repertoires. In vivo, TCRαβ bearing macrophages abundantly accumulate at the inner host-pathogen contact zone of caseous granulomas from patients with lung tuberculosis. In chimeric mouse models, deletion of the variable macrophage-TCRαβ or TNF is associated with structurally compromised granulomas of pulmonary tuberculosis even in the presence of intact T cells. These results uncover a TNF-regulated recombinatorial immune receptor in monocytes/macrophages and demonstrate its implication in granuloma formation in tuberculosis. PMID:22114556
Zarantonelli, Maria Leticia; Skoczynska, Anna; Antignac, Aude; El Ghachi, Meriem; Deghmane, Ala-Eddine; Szatanik, Marek; Mulet, Céline; Werts, Catherine; Peduto, Lucie; d'Andon, Martine Fanton; Thouron, Françoise; Nato, Faridabano; Lebourhis, Lionel; Philpott, Dana J; Girardin, Stephen E; Vives, Francina Langa; Sansonetti, Philippe; Eberl, Gérard; Pedron, Thierry; Taha, Muhamed-Kheir; Boneca, Ivo G
2013-06-12
Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains. Copyright © 2013 Elsevier Inc. All rights reserved.
Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair
2015-08-01
Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.
Balestrini, Jenna L.; Gard, Ashley L.; Gerhold, Kristin A.; Wilcox, Elise C.; Liu, Angela; Schwan, Jonas; Le, Andrew V.; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J.; Mecham, Robert P.; Schwartz, Martin A.; Niklason, Laura E.; White, Eric S.
2016-01-01
Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao
2015-01-01
Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation,more » or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.« less
Eisenhut, Michael
2007-01-01
All forms of malnutrition have been associated with increased severity of pneumonia, an increased pneumonia associated mortality and an increased risk of pulmonary fluid overload. Malnutrition was found to be associated with increased sweat sodium and chloride concentrations. A reduction of systemic sodium and chloride transport reflected in sweat sodium and chloride levels has been linked to increased severity of pulmonary edema in children with septicemia. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury. SUPPORTING EVIDENCE FOR THE HYPOTHESIS: Malnutrition caused reduced pulmonary fluid clearance in the rat model. Amiloride insensitive pulmonary fluid clearance in malnourished rats was reduced. The reduction in fluid clearance was reversible by beta agonists which increases epithelial sodium and chloride transport. Reduction of alveolar ion and fluid transport capacity explains the predisposition to death from pulmonary edema associated with intravenous fluids and blood transfusions in inpatients with malnutrition. Reduced alveolar epithelial ion transport impairs absorption of intra-alveolar inflammatory exudate in pneumonia leading to a increased severity of respiratory compromise and increased mortality. MEANS TO TEST THE HYPOTHESIS: Nasal potential difference measurements could compare airway epithelial sodium and chloride transport in patients with and without malnutrition and malnutrition associated lung disease. Sweat sodium and chloride concentrations could be compared in patients with and without respiratory disease associated with malnutrition and correlated with the severity of respiratory compromise.
Control of Respiratory Motion by Hypnosis Intervention during Radiotherapy of Lung Cancer I
Deng, Jie; Xie, Yaoqin
2013-01-01
The uncertain position of lung tumor during radiotherapy compromises the treatment effect. To effectively control respiratory motion during radiotherapy of lung cancer without any side effects, a novel control scheme, hypnosis, has been introduced in lung cancer treatment. In order to verify the suggested method, six volunteers were selected with a wide range of distribution of age, weight, and chest circumference. A set of experiments have been conducted for each volunteer, under the guidance of the professional hypnotist. All the experiments were repeated in the same environmental condition. The amplitude of respiration has been recorded under the normal state and hypnosis, respectively. Experimental results show that the respiration motion of volunteers in hypnosis has smaller and more stable amplitudes than in normal state. That implies that the hypnosis intervention can be an alternative way for respiratory control, which can effectively reduce the respiratory amplitude and increase the stability of respiratory cycle. The proposed method will find useful application in image-guided radiotherapy. PMID:24093100
LungMAP: The Molecular Atlas of Lung Development Program
Ardini-Poleske, Maryanne E.; Ansong, Charles; Carson, James P.; Corley, Richard A.; Deutsch, Gail H.; Hagood, James S.; Kaminski, Naftali; Mariani, Thomas J.; Potter, Steven S.; Pryhuber, Gloria S.; Warburton, David; Whitsett, Jeffrey A.; Palmer, Scott M.; Ambalavanan, Namasivayam
2017-01-01
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. PMID:28798251
Production and Assessment of Decellularized Pig and Human Lung Scaffolds
Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-01-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production. PMID:23638920
Production and assessment of decellularized pig and human lung scaffolds.
Nichols, Joan E; Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-09-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.
Community acquired Pseudomonas pneumonia in an immune competent host.
Gharabaghi, Mehrnaz Asadi; Abdollahi, Seyed Mojtaba Mir; Safavi, Enayat; Abtahi, Seyed Hamid
2012-05-26
Pseudomonas aeruginosa is an uncommon cause of community-acquired pneumonia in immune-competent hosts. It is commonly seen in patients with structural lung abnormality such as cystic fibrosis or in immune compromised hosts. Here, the authors report a case of community-acquired Pseudomonas pneumonia in a 26-year old healthy man who presented with 8-week history of malaise and cough.
Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R
2007-09-01
A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.
THE EPITHELIUM AS A TARGET IN SEPSIS.
Chawla, Lakhmir S; Fink, Mitchell; Goldstein, Stuart L; Opal, Steven; Gómez, Alonso; Murray, Patrick; Gómez, Hernando; Kellum, John A
2016-03-01
Organ dysfunction induced by sepsis has been consistently associated with worse outcome and death. Regardless of the organ compromised, epithelial dysfunction is present throughout the body, affecting those organs that contain epithelia like the skin, lungs, liver, gut, and kidneys. Despite their obvious differences, sepsis seems to alter common features of all epithelia, such as barrier function and vectorial ion transport. Such alterations in the lung, the gut, and the kidney have direct implications that may explain the profound organ functional impairments in the absence of overt cell death. Epithelial injury in this context is not only an explanatory real pathophysiologic event, but also represents a source of biomarkers that have been explored to identify organ compromise earlier, predict outcome, and even to test novel therapeutic interventions such as blood purification. However, this remains largely experimental, and despite promising results, work is still required to better understand the response of the epithelial cells to sepsis, to define their role in adaptation to insults, to comprehend the interorgan cross-talk that occurs in these circumstances, and to exploit these aspects in pursuit of targeted therapies like blood purification, which may improve outcome for these patients in the future.
Roy, Anirban; Bauer, Stephen M; Lawrence, B Paige
2012-01-01
Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There is mounting evidence that developmental exposures to chemicals from our environment, including BPA, contribute to diseases late in life; yet, studies of how early life exposures specifically alter the immune system are limited. Herein we report an examination of how maternal exposure to a low, environmentally relevant dose of BPA affects the immune response to infection with influenza A virus. We exposed female mice during pregnancy and through lactation to the oral reference dose for BPA listed by the US Environmental Protection Agency, and comprehensively examined immune parameters directly linked to disease outcomes in adult offspring following infection with influenza A virus. We found that developmental exposure to BPA did not compromise disease-specific adaptive immunity against virus infection, or reduce the host's ability to clear the virus from the infected lung. However, maternal exposure to BPA transiently reduced the extent of infection-associated pulmonary inflammation and anti-viral gene expression in lung tissue. From these observations, we conclude that maternal exposure to BPA slightly modulates innate immunity in adult offspring, but does not impair the anti-viral adaptive immune response, which is critical for virus clearance and survival following influenza virus infection.
Plasma membrane wounding and repair in pulmonary diseases.
Cong, Xiaofei; Hubmayr, Rolf D; Li, Changgong; Zhao, Xiaoli
2017-03-01
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases. Copyright © 2017 the American Physiological Society.
The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuzhou; Pan, Xufeng; Zhao, Heng, E-mail: hengzhao1966@sina.com
2014-08-15
Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved inmore » the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.« less
LungMAP: The Molecular Atlas of Lung Development Program.
Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam
2017-11-01
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.
Nikolić, Marko Z; Caritg, Oriol; Jeng, Quitz; Johnson, Jo-Anne; Sun, Dawei; Howell, Kate J; Brady, Jane L; Laresgoiti, Usua; Allen, George; Butler, Richard; Zilbauer, Matthias; Giangreco, Adam; Rawlins, Emma L
2017-01-01
The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated. DOI: http://dx.doi.org/10.7554/eLife.26575.001 PMID:28665271
Influence of Central Obesity Assessed by Conicity Index on Lung Age in Young Adults.
Shenoy, Usha; Jagadamba
2017-04-01
Central obesity is an emerging public health problem in young adults which compromises lung mechanics. Conicity Index (CI) is a simple anthropometric measure to assess central adiposity. The concept of lung age relates to a person's current lung function at which his/her lung function would be considered abnormal in relation to the present actual age. To determine the effect of central obesity by CI on lung age in young adults. A total of 319 young adults in the age group 18-25 years were recruited for this cross-sectional observational study. Written informed consent and Institutional Ethical Clearance (IEC) approval were obtained. Anthropometric parameters were measured and CI was calculated using the following formula: CI = Waist Circumference (WC) (m)/ [0.109 X√ {Bodyweight (kg)/ Height (m)}] where 0.109 is a constant. Spirometry was performed and all the lung volumes and capacities were obtained. There was a significant increase in mean values of CI in obese young adults compared to non obese (1.36±0.15 and 1.16±0.08, p<0.001). The effect of central obesity on lung age in young adults was compared using an independent t-test. Mean of lung age was significantly higher in centrally obese young adults compared to non obese 23.87±3.03 and 21.30±2.6, p<0.001) which was statistically significant. Lung age is significantly increased in centrally obese young adults compared to non obese. Hence, lung age can be used as a potential psychological tool to show an individual with central obesity that there is premature aging of their lungs.
The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR
Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela
2016-01-01
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344
45 CFR 30.4 - Compromise, waiver, or disposition under other statutes not precluded.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Compromise, waiver, or disposition under other statutes not precluded. 30.4 Section 30.4 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CLAIMS COLLECTION General Provisions § 30.4 Compromise, waiver, or disposition under other...
Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin
2016-01-01
Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.
The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22.
Lilly, Lauren M; Gessner, Melissa A; Dunaway, Chad W; Metz, Allison E; Schwiebert, Lisa; Weaver, Casey T; Brown, Gordon D; Steele, Chad
2012-10-01
Sensitization to fungi, such as the mold Aspergillus fumigatus, is increasingly becoming linked with asthma severity. We have previously shown that lung responses generated via the β-glucan receptor Dectin-1 are required for lung defense during acute, invasive A. fumigatus infection. Unexpectedly, in an allergic model of chronic lung exposure to live A. fumigatus conidia, β-glucan recognition via Dectin-1 led to the induction of multiple proallergic (Muc5ac, Clca3, CCL17, CCL22, and IL-33) and proinflammatory (IL-1β and CXCL1) mediators that compromised lung function. Attenuated proallergic and proinflammatory responses in the absence of Dectin-1 were not associated with changes in Ido (IDO), Il12p35/Ebi3 (IL-35), IL-10, or TGF-β levels. Assessment of Th responses demonstrated that purified lung CD4(+) T cells produced IL-4, IL-13, IFN-γ, and IL-17A, but not IL-22, in a Dectin-1-dependent manner. In contrast, we observed robust, Dectin-1-dependent IL-22 production by unfractionated lung digest cells. Intriguingly, the absence of IL-22 alone mimicked the attenuated proallergic and proinflammatory responses observed in the absence of Dectin-1, suggesting that Dectin-1-mediated IL-22 production potentiated responses that led to decrements in lung function. To this end, neutralization of IL-22 improved lung function in normal mice. Collectively, these results indicate that the β-glucan receptor Dectin-1 contributes to lung inflammation and immunopathology associated with persistent fungal exposure via the production of IL-22.
Clinical and imaging features in lung torsion and description of a novel imaging sign.
Hammer, Mark M; Madan, Rachna
2018-04-01
We set out to identify the clinical and imaging features seen in lung torsion, a rare but emergent diagnosis leading to vascular compromise of a lobe or entire lung. We retrospectively identified 10 patients with torsion who underwent chest CT. We evaluated each case for the presence of bronchial obstruction and abnormal fissure orientation. In seven patients who underwent contrast-enhanced CTs, we assessed for the presence of the antler sign, a novel sign seen on axial images demonstrating abnormal curvature of the artery and branches originating on one side. Five patients had right middle lobe (RML) torsion after right upper lobectomy, and the remaining occurred following thoracentesis, aortic surgery, or spontaneously. Chest CTs demonstrated bronchial obstruction in eight cases and presence of abnormal fissure orientation in four patients. The antler sign was present in three patients with whole-lung torsion and one patient with lobar torsion; vascular swirling was seen on 3-D images in all seven patients with contrast-enhanced CTs. Lung parenchymal imaging findings in lung torsion may be non-specific. Identification of the antler sign on contrast-enhanced chest CT, in combination with other signs such as bronchial obstruction and abnormal fissure orientation, indicates rotation of the bronchovascular pedicle. The presence of this sign should prompt further evaluation with 3-dimensional reconstructions.
Bhome, Arvind B; Brashier, Bill
2014-03-01
This review discusses the recent Asian chronic obstructive lung disease (COPD) studies that characterize stable COPD, to understand its peculiarities. Asian research has improved our understanding of COPD. Household air pollution (HAP) is as important as smoking. Smoking in Asia is varied, and noncigarette smoking exposure remains under-investigated. Prevalence studies are often questionnaire based. Spirometry-based prevalence needs study. Burden of obstructive lung disease studies are getting published. Female COPD in Asia is predominantly HAP induced. The patients are underweight, milder 'Global Initiative for Obstructive Lung Disease- class' and have compromised health-related quality of life often with depression and anxiety, but other comorbidities do occur and are getting defined.Nonsmokers' COPD is often associated with small airway thickening, less emphysema, but considerable morbidity. Asian COPD may have an eosinophilic component, but its significance is unknown. There is genetic predisposition among some Asians to COPD, and among some patients to lung cancer. The emerging pandemic of lifestyle diseases demands that metabolic and cardiovascular comorbidities in COPD need investigation. COPD in Asia is increasing and burdensome. It is affecting both sexes; is caused by HAP as much as smoking; causes poor quality of life and intense psychological burden; and is associated with unique patho-physiology, which will require research and action.
Shimizu, Junzo; Arano, Yoshihiko; Adachi, Iwao; Ikeda, Chikako; Ishikawa, Norihiko; Ohtake, Hiroshi
2009-11-01
A 68-year-old man, complaining of fever and puriform sputum, was referred to our hospital. A giant abscess was detected in the upper lobe of the right lung. Percutaneous drainage of a lung abscess was carried out. When the pus collected was cultured, Candida was 1+ and Escherichia coli was 2+. Later, it became difficult to control the abscess by drainage, and cavernostomy was selected. The contents of the abscess cavity were removed, and the cavity was opened, followed by exchange of gauze every day. For 14 months after cavernostomy, once-weekly gauze exchange was continued at the outpatient clinic to clean the abscess cavity. Finally, the abscess was filled with a free greater omentum flap, accompanied by microvascular anastomosis. In this way, the intractable lung abscess was successfully cured. Conventionally, surgical treatment, particularly cavernostomy, has been applied only to limited cases when dealing with a lung abscess. Our experience with the present case suggests that surgical treatment, including cavernostomy as one option, should also be considered when dealing with lung abscesses resisting medical treatment and causing compromised respiratory function. To enable maximum utilization of the greater omental flap, which is available in only a limited amount, it seems useful to prepare and graft a free omental flap making use of microvascular surgery.
Almeida, Carlos; Freitas, Maria João; Brandão, Diogo; Assunção, José Pedro
2018-01-13
Female, 85 y.o., weighting 60kg, multiple trauma patient. After an initial laparotomy, an emergent thoracotomy was performed using a bronchial blocker for lung isolation (initial active suction was applied). During surgery, bronchial cuff was deflated, causing a self-limited tracheal blood flooding. A second lung isolation was attempted but it was not as effective as initially. Probably, a lung collapse with the same bronchial blocker was impaired in the second attempt because of the obstruction of bronchial blocker lumen by intraoperative endobronchial hemorrhage. Bronchial blocker active suction may contribute to obtain or accelerate lung collapse, particularly in patients that do not tolerate ventilator disconnection technique or lung surgical compression. The use of bronchial blockers technology was a valuable alternative to double lumen tubes in this case of emergent thoracotomy in the context of a patient having thoracic, abdominal trauma, severe laceration of tongue and apophysis odontoid fracture associated to massive hemorrhage, despite several pitfalls that could compromise its use. The authors intend to discuss the advantages and disadvantages of bronchial blockers comparing to double-lumen tubes for lung isolation, and the risks of our approach, in this complex multitrauma case. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
A libertarian perspective on the stem cell debate: compromising the uncompromisible.
Block, Walter
2010-08-01
The present paper attempts to forge a compromise between those who maintain that stem cell research is out-and-out murder of young helpless human beings and those who favor this practice. The compromise is predicated upon the libertarian theory of private property rights. Starting out with the premise that not only the fetus but even the fertilized egg is a human being, with all rights thereto, it offers a competition between those who fertilize eggs for research and those who wish to adopt them. If and only if the former win this competition will they be allowed to use these very young human beings for the purposes they have constructed them. This is justified on grounds of avoiding child abuse.
RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease
Robinson, Adam B.; Stogsdill, Jeffrey A.; Lewis, Joshua B.; Wood, Tyler T.; Reynolds, Paul R.
2012-01-01
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD. PMID:22934052
USDA-ARS?s Scientific Manuscript database
The objective of this survey study was to determine a relationship between the intensity of tissue protein tyrosine nitration measured in samples of mammary gland, liver, pancreas and lung compared to estimated blood endotoxin (LPS) activity. Blood was collected from nine multiparous Holstein cows...
Brunelli, Alessandro; Charloux, Anne; Bolliger, Chris T; Rocco, Gaetano; Sculier, Jean-Paul; Varela, Gonzalo; Licker, Marc; Ferguson, Mark K; Faivre-Finn, Corinne; Huber, Rudolf Maria; Clini, Enrico M; Win, Thida; De Ruysscher, Dirk; Goldman, Lee
2009-07-01
The European Respiratory Society (ERS) and the European Society of Thoracic Surgeons (ESTS) established a joint task force with the purpose to develop clinical evidence-based guidelines on evaluation of fitness for radical therapy in patients with lung cancer. The following topics were discussed, and are summarized in the final report along with graded recommendations: Cardiologic evaluation before lung resection; lung function tests and exercise tests (limitations of ppoFEV1; DLCO: systematic or selective?; split function studies; exercise tests: systematic; low-tech exercise tests; cardiopulmonary (high tech) exercise tests); future trends in preoperative work-up; physiotherapy/rehabilitation and smoking cessation; scoring systems; advanced care management (ICU/HDU); quality of life in patients submitted to radical treatment; combined cancer surgery and lung volume reduction surgery; compromised parenchymal sparing resections and minimally invasive techniques: the balance between oncological radicality and functional reserve; neoadjuvant chemotherapy and complications; definitive chemo and radiotherapy: functional selection criteria and definition of risk; should surgical criteria be re-calibrated for radiotherapy?; the patient at prohibitive surgical risk: alternatives to surgery; who should treat thoracic patients and where these patients should be treated?
Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K
2013-01-01
We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017
Jaffe, J P; Maki, D G
1981-09-01
The authors report on their institution's experience with 53 lung biopsies, including 26 open, 22 transbronchial, and five trephine air drill biopsies, performed in immunocompromised patients with roentgenographic pulmonary infiltrates. Open biopsy was far more likely to provide a specific etiologic diagnosis (81%, P less than 0.001) than transbronchial biopsy (32%), or trephine biopsy (20%). Infection (17 biopsies), neoplastic disease, (7) or drug-related pneumonitis (2) were identified most frequently. Patients with myeloproliferative disease, granulocytopenia, or those who had not received prior immunosuppressive therapy were most likely to have a nondiagnostic biopsy (P less than 0.05 for each factor). The overall complication rate of biopsy procedures was 15% and was comparable with all three methods. Survival in this series was not significantly lower if a specific etiologic diagnosis could not be established, but correlated with the respiratory rate (less than 20 per minute), pO2 (greater than 60 torr), and the roentgenographic pattern (other than bilateral diffuse disease) at the time of biopsy (P less than 0.05 for each factor). There were 18 cases (34%) in which a clearcut etiologic diagnosis would not be established at the time of biopsy; based on serologic tests performed ex post facto, 2 of 12 of these cases (17%) were Legionnaire's disease. Lung biopsies were helpful in the management of the majority of the cases, although nondiagnostic biopsies continue to be a problem. The authors propose an approach to the management of compromised patients with pulmonary infiltrates.
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-09-28
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.
Cruzan, George; Bus, James S; Andersen, Melvin E; Carlson, Gary P; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie
2018-06-01
Based on 13 chronic studies, styrene exposure causes lung tumors in mice, but no tumor increases in other organs in mice or rats. Extensive research into the mode of action demonstrates the key events and human relevance. Key events are: metabolism of styrene by CYP2F2 in mouse lung club cells to ring-oxidized metabolites; changes in gene expression for metabolism of lipids and lipoproteins, cell cycle and mitotic M-M/G1 phases; cytotoxicity and mitogenesis in club cells; and progression to preneoplastic/neoplastic lesions in lung. Although styrene-7,8-oxide (SO) is a common genotoxic styrene metabolite in in vitro studies, the data clearly demonstrate that SO is not the proximate toxicant and that styrene does not induce a genotoxic mode of action. Based on complete attenuation of styrene short-term and chronic toxicity in CYP2F2 knockout mice and similar attenuation in CYP2F1 (humanized) transgenic mice, limited metabolism of styrene in human lung by CYP2F1, 2 + orders of magnitude lower SO levels in human lung compared to mouse lung, and lack of styrene-related increase in lung cancer in humans, styrene does not present a risk of cancer to humans. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Human Milk for Ill and Medically Compromised Infants: Strategies and Ongoing Innovation.
DiLauro, Sara; Unger, Sharon; Stone, Debbie; O'Connor, Deborah L
2016-08-01
The use of human milk (mother's own milk and/or donor milk) in ill or medically compromised infants frequently requires some adaptation to address medical diagnoses and/or altered nutrition requirements. This tutorial describes the nutrition and immunological benefits of breast milk as well as provides evidence for the use of donor milk when mother's own milk is unavailable. Several strategies used to modify human milk to meet the medical and nutrition needs of an ill or medically compromised infant are reviewed. These strategies include (1) the standard fortification of human milk to support adequate growth, (2) the novel concept of target fortification in preterm infants, (3) instructions on how to alter maternal diet to address cow's milk protein intolerance and/or allergy in breast milk-fed infants, and (4) the removal and modification of the fat in breast milk used in infants diagnosed with chylothorax. © 2016 American Society for Parenteral and Enteral Nutrition.
Parra-Bravo, José Rafael; Apolonio-Martínez, Adriana; Estrada-Loza, María de Jesús; Beirana-Palencia, Luisa Gracia; Ramírez-Portillo, César Iván
2015-01-01
The closure of patent ductus arteriosus with multiple devices has been associated with a reduction in lung perfusion. We evaluated the pulmonary perfusion after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder device using perfusion lung scan. Thirty patients underwent successful percutaneous patent ductus arteriosus occlusions using the Amplatzer Duct Occluder device were included in this study. Lung perfusion scans were preformed 6 months after the procedure. Peak flow velocities and protrusion of the device were analyzed by Doppler echocardiography. A left lung perfusion<40% was considered abnormal. The device implantation was successful in all patients. Average perfusion of left lung was 44.7±4.9% (37.8-61.4). Five patients (16.6%) showed decreased perfusion of the left lung. Age, low weight, the length of the ductus arteriosus and the minimum and maximum diameter/length of the ductus arteriosus ratio were statistically significant in patients with abnormalities of lung perfusion. It was observed protrusion the device in 6 patients with a higher maximum flow rate in the left pulmonary artery. The left lung perfusion may be compromised after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder. The increased flow velocity in the origin of the left pulmonary artery can be a poor indicator of reduction in pulmonary perfusion and can occur in the absence of protrusion of the device. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...
A human lung xenograft mouse model of Nipah virus infection.
Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya; Goez, Yenny; Rockx, Barry
2014-04-01
Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7) TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.
Pneumonia Virus of Mice Severe Respiratory Virus Infection in a Natural Host
Rosenberg, Helene F.; Domachowske, Joseph B.
2008-01-01
Pneumonia virus of mice (PVM; family Paramyxoviridae, genus Pneumovirus) is a natural mouse pathogen that is closely related to the human and bovine respiratory syncytial viruses. Among the prominent features of this infection, robust replication of PVM takes place in bronchial epithelial cells in response to a minimal virus inoculum. Virus replication in situ results in local production of proinflammatory cytokines (MIP-1α, MIP-2, MCP-1 and IFNγ) and granulocyte recruitment to the lung. If left unchecked, PVM infection and the ensuing inflammatory response ultimately lead to pulmonary edema, respiratory compromise and death. In this review, we consider the recent studies using the PVM model that have provided important insights into the role of the inflammatory response in the pathogenesis of severe respiratory virus infection. We also highlight several works that have elucidated acquired immune responses to this pathogen, including T cell responses and the development of humoral immunity. Finally, we consider several immunomodulatory strategies that have been used successfully to reduce morbidity and mortality when administered to PVM infected, symptomatic mice, and thus hold promise as realistic therapeutic strategies for severe respiratory virus infections in human subjects. PMID:18471897
Photoionization sensors for non-invasive medical diagnostics
NASA Astrophysics Data System (ADS)
Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia
2016-09-01
The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.
Expression and function of human hemokinin-1 in human and guinea pig airways.
Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Risse, Paul-André; Sage, Edouard; Advenier, Charles; Devillier, Philippe
2010-10-07
Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.
Liu, Hongye; Kho, Alvin T; Kohane, Isaac S; Sun, Yao
2006-01-01
Background The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis—spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. Methods and Findings Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan–Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. Conclusions From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome. PMID:16800721
Ng-Blichfeldt, John-Poul; Alçada, Joana; Montero, M Angeles; Dean, Charlotte H; Griesenbach, Uta; Griffiths, Mark J; Hind, Matthew
2017-06-01
Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
A three-dimensional model of human lung development and disease from pluripotent stem cells.
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-05-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.
Boitano, Scott
2013-01-01
Paracrine ATP signaling in the lung epithelium participates in a variety of innate immune functions, including mucociliary clearance, bactericide production, and as an initiating signal in wound repair. We evaluated the effects of chronic low-dose arsenic relevant to U.S. drinking water standards (i.e., 10 ppb [130nM]) on airway epithelial cells. Immortalized human bronchial epithelial cells (16HBE14o-) were exposed to 0, 130, or 330nM arsenic (as Na-arsenite) for 4–5 weeks and examined for wound repair efficiency and ATP-mediated Ca2+ signaling. We found that chronic arsenic exposure at these low doses slows wound repair and reduces ATP-mediated Ca2+ signaling. We further show that arsenic compromises ATP-mediated Ca2+ signaling by altering both Ca2+ release from intracellular stores (via metabotropic P2Y receptors) and Ca2+ influx mechanisms (via ionotropic P2X receptors). To better model the effects of arsenic on ATP-mediated Ca2+ signaling under conditions of natural exposure, we cultured tracheal epithelial cells obtained from mice exposed to control or 50 ppb Na-arsenite supplemented drinking water for 4 weeks. Tracheal epithelial cells from arsenic-exposed mice displayed reduced ATP-mediated Ca2+ signaling dynamics similar to our in vitro chronic exposure. Our findings demonstrate that chronic arsenic exposure at levels that are commonly found in drinking water (i.e., 10–50 ppb) alters cellular mechanisms critical to airway innate immunity. PMID:23204110
Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases.
Krishnamoorthy, Nandini; Abdulnour, Raja-Elie E; Walker, Katherine H; Engstrom, Braden D; Levy, Bruce D
2018-07-01
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Interventions to prevent respiratory diseases - Nutrition and the developing world.
Karim, Tasneem; Muhit, Mohammad; Khandaker, Gulam
2017-03-01
Malnutrition is a major cause of morbidity and mortality in developing countries and nutrition plays a critical role in both acute and chronic respiratory conditions. Inadequacies in the nutritional requirements of a developing lung in utero and in early life can compromise the respiratory system integrity and result in poor lung function, reduced protection against infections, greater likelihood of acute illnesses in childhood and chronic illness in adulthood. Nutritional interventions harness great potential in reducing respiratory illness related morbidity and mortality in the developing world. In this review we have summarized the findings from published systematic reviews/meta-analysis, experimental and observational studies that looked into different nutritional interventions for preventing respiratory diseases in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, Heather S.; Duan, Susu; Morfouace, Marie
Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1more » and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.« less
Bylund, Johan; Burgess, Lee-Anna; Cescutti, Paola; Ernst, Robert K; Speert, David P
2006-02-03
Bacteria belonging to the Burkholderia cepacia complex are important opportunistic pathogens in compromised hosts, particularly patients with cystic fibrosis or chronic granulomatous disease. Isolates of B. cepacia complex may produce large amounts of exopolysaccharides (EPS) that endow the bacteria with a mucoid phenotype and appear to facilitate bacterial persistence during infection. We showed that EPS from a clinical B. cenocepacia isolate interfered with the function of human neutrophils in vitro; it inhibited chemotaxis and production of reactive oxygen species (ROS), both essential components of innate neutrophil-mediated host defenses. These inhibitory effects were not due to cytotoxicity or interference with intracellular calcium signaling. EPS also inhibited enzymatic generation of ROS in cell-free systems, indicating that it scavenges these bactericidal products. B. cenocepacia EPS is structurally distinct from Pseudomonas aeruginosa alginate, yet they share the capacity to scavenge ROS and inhibit chemotaxis. These properties could explain why the two bacterial species resist clearance from the infected cystic fibrosis lung.
Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities
Hohl, Tobias M.
2017-01-01
Purpose of review Invasive aspergillosis is a worldwide disease that primarily affects immune-compromised patients, agricultural workers with corneal abrasions, individuals with structural lung disease, and patients with primary immune deficiency. The critical function of the immune system is to prevent the germination of airborne conidia into tissue-invasive hyphae. This review covers recent advances that shape our understanding of anti-Aspergillus immunity at the molecular and cellular level. Recent findings Host defense against conidia and hyphae occurs via distinct molecular mechanisms that involve intracellular and extracellular killing pathways, as well as cooperation between different myeloid cell subsets. The strength and efficacy of the host response is shaped by the tissue microenvironment. In preclinical models of disease, host immune augmentation strategies have yielded benefits, yet translating these insights into therapeutic strategies in humans remains challenging. Summary Although advances in early diagnostic strategies and in antifungal drugs have ameliorated clinical outcomes of invasive aspergillosis, further improvements depend on gaining deeper insight into and translating advances in anti-Aspergillus immunity. PMID:28509673
Arsenic is Cytotoxic and Genotoxic to Primary Human Lung Cells
Xie, Hong; Huang, ShouPing; Martin, Sarah; Wise, John P.
2014-01-01
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24 h) or long (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells. PMID:24291234
There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-01-01
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung. DOI: http://dx.doi.org/10.7554/eLife.19732.001 PMID:27677847
Rosewall, Tara; Yan, Jing; Alasti, Hamideh; Cerase, Carla; Bayley, Andrew
2017-04-01
Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2 = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were -0.4 to 1.8 mm (LR), -1.2 to 5.2 mm (SI) and -1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer. © 2016 The Royal Australian and New Zealand College of Radiologists.
Zhao, Zhi-Hong; Wang, Sheng-Fa; Yu, Liang; Wang, Ju; Cong, De-Gang; Chang, Hao; Wang, Xue-Feng; Zhang, Tie-Wa; Zhang, Jian; Fu, Kai; Jiang, Jiu-Yang
2008-04-29
To investigate the correlation between Pokemon gene and cisplatin mechanism. Human lung adenocarcinoma cells of the lines A549 and AGZY83-a, human lung squamous carcinoma cells of the line HE-99, and human giant cell lung cancer cells of the line 95D were cultured and cisplatin was added into the medium. Other lung cancer cells of the above mentioned lines were cultured in the medium without cisplatin and were used as control groups. RT-PCR and Western blotting were used to detect the mRNA and protein expression of Pokemon. Pokemon mRNA and protein were expressed highly in all the 4 cell lines. The Pokemon gene expression did not changed significantly after cisplatin treatment groups. There were not significant differences in the mRNA and protein expression of Pokemon among the 4 experiment groups and the control groups (all P > 0.05). Cisplatin has no effect on the Pokemon gene expression of the human lung cancer cells.
HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.
Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F
2001-03-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.
Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.
2001-01-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043
LnPO 4 Nanoparticles Doped with Ac-225 and Sequestered Daughters for Targeted Alpha Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, Mark F.; Robertson, David; Pevsner, Paul H.
2014-02-01
For targeted alpha therapy (TAT) with 225Ac, daughter radioisotopes from the parent emissions should be controlled. We report on a second-generation layered nanoparticle (NP) with improved daughter retention that can mediate TAT of lung tumor colonies. NPs of La 3+, Gd 3+, and 225Ac 3+ ions were coated with additional layers of GdPO 4 and then coated with gold via citrate reduction of NaAuCl 4. MAb 201b, targeting thrombomodulin in lung endothelium, was added to a polyethylene glycol (dPEG)-COOH linker. Furthermore, we quantified the NPs:mAb ratio by labeling the mAb with 125I. NPs showed 30% injected dose/organ antibody-mediated uptake inmore » the lung, which increased to 47% in mice pretreated with clodronate liposomes to reduce phagocytosis. Retention of daughter 213Bi in lung tissue was more than 70% at one hour and about 90% at 24 hours postinjection. Treatment of mice with lung-targeted 225Ac NP reduced EMT-6 lung colonies relative to cold antibody competition for targeting or phosphate-buffered saline injected controls. Finally, we show that LnPO 4 NPs represent a viable solution to deliver the 225Ac as an in vivo α generator. The NPs successfully retain a large percentage of the daughter products without compromising the tumoricidal properties of the α-radiation.« less
Zazara, Dimitra E; Perani, Clara V; Solano, María E; Arck, Petra C
2018-02-01
Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention. Copyright © 2017 Elsevier B.V. All rights reserved.
Interplay between the lung microbiome and lung cancer.
Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong
2018-02-28
The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Morris, Alison; Paulson, Joseph N; Talukder, Hisham; Tipton, Laura; Kling, Heather; Cui, Lijia; Fitch, Adam; Pop, Mihai; Norris, Karen A; Ghedin, Elodie
2016-07-08
Longitudinal studies of the lung microbiome are challenging due to the invasive nature of sample collection. In addition, studies of the lung microbiome in human disease are usually performed after disease onset, limiting the ability to determine early events in the lung. We used a non-human primate model to assess lung microbiome alterations over time in response to an HIV-like immunosuppression and determined impact of the lung microbiome on development of obstructive lung disease. Cynomolgous macaques were infected with the SIV-HIV chimeric virus SHIV89.6P. Bronchoalveolar lavage fluid samples were collected pre-infection and every 4 weeks for 53 weeks post-infection. The microbiota was characterized at each time point by 16S ribosomal RNA (rRNA) sequencing. We observed individual variation in the composition of the lung microbiota with a proportion of the macaques having Tropheryma whipplei as the dominant organism in their lungs. Bacterial communities varied over time both within and between animals, but there did not appear to be a systematic alteration due to SHIV infection. Development of obstructive lung disease in the SHIV-infected animals was characterized by a relative increase in abundance of oral anaerobes. Network analysis further identified a difference in community composition that accompanied the development of obstructive disease with negative correlations between members of the obstructed and non-obstructed groups. This emphasizes how species shifts can impact multiple other species, potentially resulting in disease. This study is the first to investigate the dynamics of the lung microbiota over time and in response to immunosuppression in a non-human primate model. The persistence of oral bacteria in the lung and their association with obstruction suggest a potential role in pathogenesis. The lung microbiome in the non-human primate is a valuable tool for examining the impact of the lung microbiome in human health and disease.
A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis.
Bauer, Yasmina; Tedrow, John; de Bernard, Simon; Birker-Robaczewska, Magdalena; Gibson, Kevin F; Guardela, Brenda Juan; Hess, Patrick; Klenk, Axel; Lindell, Kathleen O; Poirey, Sylvie; Renault, Bérengère; Rey, Markus; Weber, Edgar; Nayler, Oliver; Kaminski, Naftali
2015-02-01
The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat-human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1-treated primary human lung fibroblasts and transforming growth factor-β1-treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model-human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease.
A Novel Genomic Signature with Translational Significance for Human Idiopathic Pulmonary Fibrosis
Tedrow, John; de Bernard, Simon; Birker-Robaczewska, Magdalena; Gibson, Kevin F.; Guardela, Brenda Juan; Hess, Patrick; Klenk, Axel; Lindell, Kathleen O.; Poirey, Sylvie; Renault, Bérengère; Rey, Markus; Weber, Edgar; Nayler, Oliver; Kaminski, Naftali
2015-01-01
The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat–human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1–treated primary human lung fibroblasts and transforming growth factor-β1–treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model–human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease. PMID:25029475
Jackman, David M; Zhang, Yichen; Dalby, Carole; Nguyen, Tom; Nagle, Julia; Lydon, Christine A; Rabin, Michael S; McNiff, Kristen K; Fraile, Belen; Jacobson, Joseph O
2017-04-01
Increasing costs and medical complexity are significant challenges in modern oncology. We explored the use of clinical pathways to support clinical decision making and manage resources prospectively across our network. We created customized lung cancer pathways and partnered with a commercial vendor to provide a Web-based platform for real-time decision support and post-treatment data aggregation. Dana-Farber Cancer Institute (DFCI) Pathways for non-small cell lung cancer (NSCLC) were introduced in January 2014. We identified all DFCI patients who were diagnosed and treated for stage IV NSCLC in 2012 (before pathways) and 2014 (after pathways). Costs of care were determined for 1 year from the time of diagnosis. Pre- and postpathway cohorts included 160 and 210 patients with stage IV NSCLC, respectively. The prepathway group had more women but was otherwise similarly matched for demographic and tumor characteristics. The total 12-month cost of care (adjusted for age, sex, race, distance to DFCI, clinical trial enrollment, and EGFR and ALK status) demonstrated a $15,013 savings after the implementation of pathways ($67,050 before pathways v $52,037 after pathways). Antineoplastics were the largest source of cost savings. Clinical outcomes were not compromised, with similar median overall survival times (10.7 months before v 11.2 months after pathways; P = .08). After introduction of a clinical pathway in metastatic NSCLC, cost of care decreased significantly, with no compromise in survival. In an era where comparative outcomes analysis and value assessment are increasingly important, the implementation of clinical pathways may provide a means to coalesce and disseminate institutional expertise and track and learn from care decisions.
MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A.; Günther, Andreas
2015-01-01
Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0–11; days 0–28) or during later stages (days 6–28 and 14–28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice. PMID:25820524
Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V
2016-08-15
Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1(-/+)) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1(-/-) Sgo1(-/+) double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1(-/+) or RAG1(-/-) mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1(-/-) and RAG1(-/-) Sgo1(-/+). The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1(-/+) mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1(-/+) mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung.
de Barros Mendes Lopes, Thais; Groth, Espen E; Veras, Mariana; Furuya, Tatiane K; de Souza Xavier Costa, Natalia; Ribeiro Júnior, Gabriel; Lopes, Fernanda Degobbi; de Almeida, Francine M; Cardoso, Wellington V; Saldiva, Paulo Hilario Nascimento; Chammas, Roger; Mauad, Thais
2018-06-04
Gestational exposure to air pollution is associated with negative outcomes in newborns and children. In a previous study, we demonstrated a synergistic negative effect of pre- and postnatal exposure to PM 2.5 on lung development in mice. However, the means by which air pollution affects development of the lung have not yet been identified. In this study, we exposed pregnant BALB/c mice and their offspring to concentrated urban PM 2.5 (from São Paulo, Brazil; target dose 600 μg/m 3 for 1 h daily). Exposure was started on embryonic day 5.5 (E5.5, time of placental implantation). Lung tissue of fetuses and offspring was submitted to stereological and transcriptomic analyses at E14.5 (pseudoglandular stage of lung development), E18.5 (saccular stage) and P40 (postnatal day 40, alveolarized lung). Additionally, lung function and cellularity of bronchoalveolar lavage (BAL) fluid were studied in offspring animals at P40. Compared to control animals that were exposed to filtered air throughout gestation and postnatal life, PM-exposed mice exhibited higher lung elastance and a lower alveolar number at P40 whilst the total lung volume and cellularity of BAL fluid were not affected. Glandular and saccular structures of fetal lungs were not altered upon gestational exposure; transcriptomic signatures, however, showed changes related to DNA damage and its regulation, inflammation and regulation of cell proliferation. A differential expression was validated at E14.5 for the candidates Sox8, Angptl4 and Gas1. Our data substantiate the in utero biomolecular effect of gestational exposure to air pollution and provide first-time stereological evidence that pre- and early life-postnatal exposure compromise lung development, leading to a reduced number of alveoli and an impairment of lung function in the adult mouse. Copyright © 2018 Elsevier Ltd. All rights reserved.
A three-dimensional model of human lung development and disease from pluripotent stem cells
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F.; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-01-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modeling, drug discovery and regenerative medicine1. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants2, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs3. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis4,5, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease. PMID:28436965
Napier, F. E.; Shearer, M. A.; Temple, D. M.
1990-01-01
1. The effects of nedocromil sodium on antigen-induced release of sulphidopeptide-leukotrienes and histamine from passively sensitized fragments of human lung, and on antigen-induced contraction of sensitized strips of human lung parenchyma and bronchus, have been studied. 2. Nedocromil sodium 0.1 and 1 microM inhibited leukotriene release from fragments of human lung by 30% and 38% respectively, and histamine release by 43% for both concentrations, but 10 microM was ineffective. The lung fragments, which were passively sensitized to house dust mite, Dermataphagoides pteronyssinus, in control experiments released leukotrienes (6.58 +/- 0.12 nmol equiv. leukotriene C4 per g, n = 6) and histamine (10.3 +/- 1.8 of total tissue histamine, n = 5) when challenged with house dust mite extract. 3. Isolated strips of human lung parenchyma, passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 40% of the maximal histamine response for each strip. Nedocromil sodium 0.1 and 1 microM inhibited these contractions by 50% and 70% of the control response, but 10 microM had no inhibitory effect. 4. Isolated rings from human bronchus, also passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 86% of the maximal histamine response. Nedocromil sodium 1 microM, but not 0.1 or 10 microM, inhibited contractions by 48% of the control response. 5. The therapeutic effects of nedocromil sodium in allergic asthma may depend, partly, on its inhibition of antigen-induced release of leukotrienes and histamine in human lung and its consequent inhibition of antigen-induced contractions of parenchymal and bronchial tissue. PMID:1696152
Legionnaire's Disease in Compromised Hosts.
Lanternier, Fanny; Ader, Florence; Pilmis, Benoit; Catherinot, Emilie; Jarraud, Sophie; Lortholary, Olivier
2017-03-01
Legionnaire's disease (LD) is mainly reported in apparently immunocompetent patients. Among them, risk factors include chronic lung disease and smoking. However, LD is also well reported among immunocompromised patients, particularly those treated with anti-tumor necrosis factor alpha therapy, patients with hematological malignancy, and transplant patients. This article discusses the available data on immunity against Legionella spp, epidemiology, clinical presentation, diagnosis, and treatment of LD in immunocompromised patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Goubau, S; Morck, D W; Buret, A
2000-01-01
The expression of the interleukin-8 (IL-8) gene was examined by in situ hybridization in lung tissues from calves experimentally infected with Mannheimia (Pasteurella) haemolytica and treated with tilmicosin. Interleukin-8 mRNA expression was detected in alveolar areas, particularly along interlobular septa, in the lumen, and in the epithelial cells of some bronchioles. In lesional lung tissues from animals that had received tilmicosin, we found large areas with limited inflammation. There was no staining for IL-8 mRNA in these areas. In contrast, in strongly inflamed areas, the same patterns and intensities of staining for IL-8 mRNA were detected in tilmicosin- and sham-treated animals. We conclude that tilmicosin does not affect the expression of IL-8 mRNA in tissue showing microscopic signs of inflammation. Together with previous reports, this supports the view that the pro-apoptotic properties of tilmicosin on neutrophils do not compromise the host defense mechanisms required to control the infection. Images Figure 1. PMID:11041503
Lin, Chuwen; Yao, Erica; Zhang, Kuan; Jiang, Xuan; Croll, Stacey; Thompson-Peer, Katherine; Chuang, Pao-Tien
2017-01-01
Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation. DOI: http://dx.doi.org/10.7554/eLife.21130.001 PMID:28323616
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-11-25
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-01-01
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841
Growth of alveoli during postnatal development in humans based on stereological estimation.
Herring, Matt J; Putney, Lei F; Wyatt, Gregory; Finkbeiner, Walter E; Hyde, Dallas M
2014-08-15
Alveolarization in humans and nonhuman primates begins during prenatal development. Advances in stereological counting techniques allow accurate assessment of alveolar number; however, these techniques have not been applied to the developing human lung. Based on the recent American Thoracic Society guidelines for stereology, lungs from human autopsies, ages 2 mo to 15 yr, were fractionated and isometric uniform randomly sampled to count the number of alveoli. The number of alveoli was compared with age, weight, and height as well as growth between right and left lungs. The number of alveoli in the human lung increased exponentially during the first 2 yr of life but continued to increase albeit at a reduced rate through adolescence. Alveolar numbers also correlated with the indirect radial alveolar count technique. Growth curves for human alveolarization were compared using historical data of nonhuman primates and rats. The alveolar growth rate in nonhuman primates was nearly identical to the human growth curve. Rats were significantly different, showing a more pronounced exponential growth during the first 20 days of life. This evidence indicates that the human lung may be more plastic than originally thought, with alveolarization occurring well into adolescence. The first 20 days of life in rats implies a growth curve that may relate more to prenatal growth in humans. The data suggest that nonhuman primates are a better laboratory model for studies of human postnatal lung growth than rats. Copyright © 2014 the American Physiological Society.
Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan
Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LCmore » cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship between cadmium and lung cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Kai, E-mail: gk161@163.com; Department of Respiration, 161th Hospital, PLA, Wuhan 430015; Jin, Faguang, E-mail: jinfag@fmmu.edu.cn
2015-09-25
The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5more » also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.« less
Liu, Y; Choudhury, P; Cabral, C M; Sifers, R N
1997-03-21
Protection of lung elastin fibers from proteolytic destruction is compromised by inefficient secretion of incompletely folded allelic variants of human alpha1-antitrypsin from hepatocytes. Pulse-chase radiolabeling with [35S]methionine and sucrose gradient sedimentation and coimmunoprecipitation techniques were employed to investigate quality control of human alpha1-antitrypsin secretion from stably transfected mouse hepatoma cells. The secretion-incompetent variant null(Hong Kong) (Sifers, R. N., Brashears-Macatee, S., Kidd, V. J., Muensch, H., and Woo, S. L. C. (1988) J. Biol. Chem. 263, 7330-7335) cannot fold into a functional conformation and was quantitatively associated with the molecular chaperone calnexin following biosynthesis. Assembly with calnexin required cotranslational trimming of glucose from asparagine-linked oligosaccharides. Intracellular disposal of pulse-radiolabeled molecules coincided with their release from calnexin. Released monomers and intracellular disposal were nonexistent in cells chased with cycloheximide, an inhibitor of protein synthesis. Post-translational trimming of asparagine-linked oligosaccharides and intracellular disposal were abrogated by 1-deoxymannojirimycin, an inhibitor of alpha-mannosidase activity, without affecting the monomer population. The data are consistent with a recently proposed quality control model (Hammond, C., Braakman, I., and Helenius, A. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 913-917) in which intracellular disposal requires dissociation from calnexin and post-translational trimming of mannose from asparagine-linked oligosaccharides.
MYCN induces neuroblastoma in primary neural crest cells.
Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W
2017-08-31
Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis.
Smoking, p53 Mutation, and Lung Cancer
Gibbons, Don L.; Byers, Lauren A.; Kurie, Jonathan M.
2014-01-01
This issue marks the 50th Anniversary of the release of the U.S. Surgeon General’s Report on Smoking and Health. Perhaps no other singular event has done more to highlight the effects of smoking on the development of cancer. Tobacco exposure is the leading cause of cancers involving the oral cavity, conductive airways and the lung. Owing to the many carcinogens in tobacco smoke, smoking-related malignancies have a high genome-wide burden of mutations, including in the gene encoding for p53. The p53 protein is the most frequently mutated tumor suppressor in cancer, responsible for a range of critical cellular functions that are compromised by the presence of a mutation. Herein we review the epidemiologic connection between tobacco exposure and cancer, the molecular basis of p53 mutation in lung cancer, and the normal molecular and cellular roles of p53 that are abrogated during lung tumor development and progression as defined by in vitro and in vivo studies. We also consider the therapeutic potential of targeting mutant p53 in a clinical setting based upon the cellular role of mutant p53 and data from genetic murine models. PMID:24442106
Henry, Frank S.
2015-01-01
The structure of the gas exchange region of the human lung (the pulmonary acinus) undergoes profound change in the first few years of life. In this paper, we investigate numerically how the change in alveolar shape with time affects the rate of nanoparticle deposition deep in the lung during postnatal development. As human infant data is unavailable, we use a rat model of lung development. The process of postnatal lung development in the rat is remarkably similar to that of the human, and the structure of the rat acinus is indistinguishable from that of the human acinus. The current numerical predictions support our group's recent in vivo findings, which were also obtained by using growing rat lung models, that nanoparticle deposition in infants is strongly affected by the change in the structure of the pulmonary acinus. In humans, this major structural change occurs over the first 2 yr of life. Our current predictions would suggest that human infants at the age of ∼2 yr might be most at risk to the harmful effects of air pollution. Our results also suggest that dose estimates for inhalation therapies using nanoparticles, based on fully developed adult lungs with simple body weight scaling, are likely to overestimate deposition by up to 55% for newborns and underestimate deposition by up to 17% for 2-yr-old infants. PMID:26494453
In vitro models to estimate drug penetration through the compromised stratum corneum barrier.
Engesland, André; Škalko-Basnet, Nataša; Flaten, Gøril Eide
2016-11-01
The phospholipid vesicle-based permeation assay (PVPA) is a recently established in vitro stratum corneum model to estimate the permeability of intact and healthy skin. The aim here was to further evolve this model to mimic the stratum corneum in a compromised skin barrier by reducing the barrier functions in a controlled manner. To mimic compromised skin barriers, PVPA barriers were prepared with explicitly defined reduced barrier function and compared with literature data from both human and animal skin with compromised barrier properties. Caffeine, diclofenac sodium, chloramphenicol and the hydrophilic marker calcein were tested to compare the PVPA models with established models. The established PVPA models mimicking the stratum corneum in healthy skin showed good correlation with biological barriers by ranking drugs similar to those ranked by the pig ear skin model and were comparable to literature data on permeation through healthy human skin. The PVPA models provided reproducible and consistent results with a distinction between the barriers mimicking compromised and healthy skin. The trends in increasing drug permeation with an increasing degree of compromised barriers for the model drugs were similar to the literature data from other in vivo and in vitro models. The PVPA models have the potential to provide permeation predictions when investigating drugs or cosmeceuticals intended for various compromised skin conditions and can thus possibly reduce the time and cost of testing as well as the use of animal testing in the early development of drug candidates, drugs and cosmeceuticals.
Williams, Jacqueline P.; Johnston, Carl J.; Finkelstein, Jacob N.
2010-01-01
Due to the radiosensitivity of the lung, toxic endpoints, in the form of radiation pneumonitis and pulmonary fibrosis, are relatively frequent outcomes following radiation treatment of thoracic neoplasms. Because of the potential lethal nature of these normal tissue reactions, they not only lead to quality-of-life issues in survivors, but also are deemed dose-limiting and thereby compromise treatment. The mitigation and treatment of lung normal tissue late effects has therefore been the goal of many investigations; however, the complexity of both the organ itself and its response to injury has resulted in little success. Nonetheless, current technology allows us to propose likely targets that are either currently being researched or should be considered in future studies. PMID:20583979
NASA Technical Reports Server (NTRS)
Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr
1993-01-01
The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Morphometric and histological analysis of the lungs of Syrian golden hamsters.
Kennedy, A R; Desrosiers, A; Terzaghi, M; Little, J B
1978-01-01
Hamster lung morphometry and histology have been studied in an attempt to determine differences between hamster and human lungs which may have relevance for lung carcinogenesis studies. Morphometric measurements were made on fresh lungs, lung casts, and histological sections. Cell type and frequency measurements were determined from frozen, paraffin, 1 micron plastic (glycol methacrylate) and electron microscopic sections. A standard terminology for hamster lung histology is established, and differences between hamster and human lung morphometry and histology are discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 PMID:640957
Xie, Hong; Holmes, Amie L.; Wise, Sandra S.; Young, Jamie L.; Wise, James T. F.; Wise, John Pierce
2015-01-01
Hexavalent chromium Cr(VI) is a known human lung carcinogen, with solubility playing an important role in its carcinogenic potency. Dermal exposure to Cr(VI) is common and has been associated with skin damage; however, no link between chromate exposure and skin cancer has been found. In this study, we compared the cytotoxic and clastogenic effects of Cr(VI) and its impacts on cell cycle progression in human lung and skin fibroblasts. We found human skin cells arrested earlier in their cell cycle and exhibit more cytotoxicity than human lung cells, despite taking up similar amounts of Cr. These outcomes are consistent with a hypothesis that different cellular and molecular responses underlie the differences in carcinogenic outcome in these two tissues. PMID:25805272
Odewumi, Caroline; Latinwo, Lekan M; Sinclair, Andre; Badisa, Veera L D; Abdullah, Ahkinyala; Badisa, Ramesh B
2015-11-01
Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)‑1α and IL‑10 cytokines at various concentrations and incubation durations were assessed in MRC‑9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme‑linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC‑9 lung cells. In the normal MRC‑9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC‑9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.
Elevated expression of WWP2 in human lung adenocarcinoma and its effect on migration and invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; He, Yao; Chen, Shanshan
Lung cancer has been a hot area of research because of its high incidence and mortality. In this study, WWP2, an E3 ubiquitin ligase, is proposed to be an oncoprotein contributing to lung tumorigenesis. We attempted to determine if WWP2 gene expression is correlated with the development of human lung adenocarcinoma. Real-time PCR and western blotting were used to detect the expression of WWP2 in 65 paired lung adenocarcinoma and adjacent normal lung tissues. We found that WWP2 expression was elevated in lung adenocarcinoma tissues and was correlated with the tumor differentiation stage, TNM stage and presence of lymph nodemore » metastasis. We performed CCK-8 and colony formation assays and found that down-regulation of WWP2 inhibited proliferation in A549 and SPC-A-1 cells. A wound healing assay and trans-well invasion assays showed that down-regulation of WWP2 inhibited the migration and invasion of lung adenocarcinoma cells. It could be predicted from these data that elevated expression of WWP2 may play a role in facilitating the development of lung adenocarcinoma. - Highlights: • Expression of WWP2 is firstly reported in human lung adenocarcinoma. • Function of WWP2 is firstly explored in lung adenocarcinoma cells.« less
Chauhan, Dhaval; Karanam, Ashwin B; Merlo, Aurelie; Tom Bozzay, P A; Zucker, Mark J; Seethamraju, Harish; Shariati, Nazly; Russo, Mark J
2016-05-01
Lung transplantation is a widely accepted treatment for patients with end-stage lung disease related to idiopathic pulmonary fibrosis (IPF). However, there are conflicting data on whether double lung transplant (DLT) or single lung transplant (SLT) is the superior therapy in these patients. The purpose of this study was to determine whether actuarial post-transplant graft survival among IPF patients concurrently listed for DLT and SLT is greater for recipients undergoing the former or the latter. The United Network for Organ Sharing provided de-identified patient-level data. Analysis included lung transplant candidates with IPF listed between January 1, 2001 and December 31, 2009 (n = 3,411). The study population included 1,001 (29.3%) lung transplant recipients concurrently listed for DLT and SLT, all ≥18 years of age. The primary outcome measure was actuarial post-transplant graft survival, expressed in years. Among the study population, 433 (43.26%) recipients underwent SLT and 568 (56.74%) recipients underwent DLT. The analysis included 2,722.5 years at risk, with median graft survival of 5.31 years. On univariate (p = 0.317) and multivariate (p = 0.415) regression analyses, there was no difference in graft survival between DLT and SLT. Among IPF recipients concurrently listed for DLT and SLT, there is no statistical difference in actuarial graft survival between recipients undergoing DLT vs SLT. This analysis suggests that increased use of SLT for IPF patients may increase the availability of organs to other candidates, and thus increase the net benefit of these organs, without measurably compromising outcomes. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Krawic, Casey; Luczak, Michal W; Zhitkovich, Anatoly
2017-09-18
Inhalation of soluble chromium(VI) is firmly linked with higher risks of lung cancer in humans. However, comparative studies in rats have found a high lung tumorigenicity for moderately soluble chromates but no tumors for highly soluble chromates. These major species differences remain unexplained. We investigated the impact of extracellular reducers on responses of human and rat lung epithelial cells to different Cr(VI) forms. Extracellular reduction of Cr(VI) is a detoxification process, and rat and human lung lining fluids contain different concentrations of ascorbate and glutathione. We found that reduction of chromate anions in simulated lung fluids was principally driven by ascorbate with only minimal contribution from glutathione. The addition of 500 μM ascorbate (∼rat lung fluid concentration) to culture media strongly inhibited cellular uptake of chromate anions and completely prevented their cytotoxicity even at otherwise lethal doses. While proportionally less effective, 50 μM extracellular ascorbate (∼human lung fluid concentration) also decreased uptake of chromate anions and their cytotoxicity. In comparison to chromate anions, uptake and cytotoxicity of respirable particles of moderately soluble CaCrO 4 and SrCrO 4 were much less sensitive to suppression by extracellular ascorbate, especially during early exposure times and in primary bronchial cells. In the absence of extracellular ascorbate, chromate anions and CaCrO 4 /SrCrO 4 particles produced overall similar levels of DNA double-stranded breaks, with less soluble particles exhibiting a slower rate of breakage. Our results indicate that a gradual extracellular dissolution and a rapid internalization of calcium chromate and strontium chromate particles makes them resistant to detoxification outside the cells, which is extremely effective for chromate anions in the rat lung fluid. The detoxification potential of the human lung fluid is significant but much lower and insufficient to provide a threshold-type dose dependence for soluble chromates.
HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways.
Wang, Gang; Jiao, Hao; Zheng, Jun-Nian; Sun, Xia
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease with unknown etiology. Recent studies have indicated that heat-shock protein 27 (HSP27) contributes to the pathogenesis of IPF through the regulation of epithelial-mesenchymal transition (EMT). However, the expression and role of HSP27 in fibroblasts during pulmonary fibrogenesis has not been investigated to date, at least to the best of our knowledge. In this study, we examined the expression of HSP27 in fibrotic lung tissue and fibroblasts from bleomycin (BLM)-challenged mice and human lung fibroblasts treated with transforming growth factor-β (TGF-β). The results revealed that the expression of HSP27 was significantly increased in fibrotic lung tissue and fibroblasts from BLM-challenged mice. In vitro, TGF-β stimulated HSP27 expression in and the differentiation of human lung fibroblasts. The knockdown of Smad3 expression or nuclear factor-κB p65 subunit attenuated the TGF-β-induced increase in HSP27 expression and the differentiation of human lung fibroblasts. In addition, the knockdown of HSP27 expression attenuated the TGF-β-induced activation of ERK and Smad3, and inhibited the differentiation of human lung fibroblasts. On the whole, the findings of our study demonstrate that HSP27 expression is upregulated in lung fibroblasts during pulmonary fibrosis, and subsequently, HSP27 modulates lung fibroblast differentiation through the Smad3 and ERK pathways.
Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.
Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A
2017-01-01
Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.
Judge, Eoin P; Hughes, J M Lynne; Egan, Jim J; Maguire, Michael; Molloy, Emer L; O'Dea, Shirley
2014-09-01
The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.
Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge
2006-04-01
Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.
Tyan, Yu-Chang; Wu, Hsin-Yi; Lai, Wu-Wei; Su, Wu-Chou; Liao, Pao-Chi
2005-01-01
Pleural effusion, an accumulation of pleural fluid, contains proteins originated from plasma filtrate and, especially when tissues are damaged, parenchyma interstitial spaces of lungs and/or other organs. This study details protein profiles in human pleural effusion from 43 lung adenocarcinoma patients by a two-dimensional nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (2D nano-HPLC-ESI-MS/MS) system. The experimental results revealed the identification of 1415 unique proteins from human pleural effusion. Among these 124 proteins identified with higher confidence levels, some proteins have not been reported in plasma and may represent proteins specifically present in pleural effusion. These proteins are valuable for mass identification of differentially expressed proteins involved in proteomics database and screening biomarker to further study in human lung adenocarcinoma. The significance of the use of proteomics analysis of human pleural fluid for the search of new lung cancer marker proteins, and for their simultaneous display and analysis in patients suffering from lung disorders has been examined.
Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A
1992-12-01
The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth.
Involvement of MicroRNAs in Lung Cancer Biology and Therapy
Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan
2011-01-01
MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030
Transpleural ventilation of explanted human lungs
Choong, Cliff K; Macklem, Peter T; Pierce, John A; Lefrak, Stephen S; Woods, Jason C; Conradi, Mark S; Yablonskiy, Dimitry A; Hogg, James C; Chino, Kimiaki; Cooper, Joel D
2007-01-01
Background The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow‐volume‐time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (3He) administered through either the airways or spiracles. Results In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non‐anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation. PMID:17412776
Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung.
Sava, Parid; Ramanathan, Anand; Dobronyi, Amelia; Peng, Xueyan; Sun, Huanxing; Ledesma-Mendoza, Adrian; Herzog, Erica L; Gonzalez, Anjelica L
2017-12-21
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.
Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.
2012-01-01
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667
Desch, A Nicole; Gibbings, Sophie L; Goyal, Rajni; Kolde, Raivo; Bednarek, Joe; Bruno, Tullia; Slansky, Jill E; Jacobelli, Jordan; Mason, Robert; Ito, Yoko; Messier, Elise; Randolph, Gwendalyn J; Prabagar, Miglena; Atif, Shaikh M; Segura, Elodie; Xavier, Ramnik J; Bratton, Donna L; Janssen, William J; Henson, Peter M; Jakubzick, Claudia V
2016-03-15
The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A
2016-11-01
Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.
Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.
2010-01-01
In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage. PMID:22461760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingappan, Krithika, E-mail: lingappa@bcm.edu; Jiang, Weiwu; Wang, Lihua
Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expressionmore » in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.« less
75 FR 66772 - National Heart, Lung, and Blood Institute; Notice of Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and..., Director, National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and... Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, National...
Accumulation of BDCA1⁺ dendritic cells in interstitial fibrotic lung diseases and Th2-high asthma.
Greer, Alexandra M; Matthay, Michael A; Kukreja, Jasleen; Bhakta, Nirav R; Nguyen, Christine P; Wolters, Paul J; Woodruff, Prescott G; Fahy, John V; Shin, Jeoung-Sook
2014-01-01
Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1⁺ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1⁺ DCs, we found that the numbers of BDCA1⁺ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1⁺ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation.
The triterpenoid CDDO-Me inhibits bleomycin-induced lung inflammation and fibrosis.
Kulkarni, Ajit A; Thatcher, Thomas H; Hsiao, Hsi-Min; Olsen, Keith C; Kottmann, Robert Matthew; Morrissette, Jason; Wright, Terry W; Phipps, Richard P; Sime, Patricia J
2013-01-01
Pulmonary Fibrosis (PF) is a devastating progressive disease in which normal lung structure and function is compromised by scarring. Lung fibrosis can be caused by thoracic radiation, injury from chemotherapy and systemic diseases such as rheumatoid arthritis that involve inflammatory responses. CDDO-Me (Methyl 2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate, Bardoxolone methyl) is a novel triterpenoid with anti-fibrotic and anti-inflammatory properties as shown by our in vitro studies. Based on this evidence, we hypothesized that CDDO-Me would reduce lung inflammation, fibrosis and lung function impairment in a bleomycin model of lung injury and fibrosis. To test this hypothesis, mice received bleomycin via oropharyngeal aspiration (OA) on day zero and CDDO-Me during the inflammatory phase from days -1 to 9 every other day. Bronchoalveolar lavage fluid (BALF) and lung tissue were harvested on day 7 to evaluate inflammation, while fibrosis and lung function were evaluated on day 21. On day 7, CDDO-Me reduced total BALF protein by 50%, alveolar macrophage infiltration by 40%, neutrophil infiltration by 90% (p≤0.01), inhibited production of the inflammatory cytokines KC and IL-6 by over 90% (p≤0.001), and excess production of the pro-fibrotic cytokine TGFβ by 50%. CDDO-Me also inhibited α-smooth muscle actin and fibronectin mRNA by 50% (p≤0.05). On day 21, CDDO-Me treatment reduced histological fibrosis, collagen deposition and αSMA production. Lung function was significantly improved at day 21 by treatment with CDDO-Me, as demonstrated by respiratory rate and dynamic compliance. These new findings reveal that CDDO-Me exhibits potent anti-fibrotic and anti-inflammatory properties in vivo. CDDO-Me is a potential new class of drugs to arrest inflammation and ameliorate fibrosis in patients who are predisposed to lung injury and fibrosis incited by cancer treatments (e.g. chemotherapy and radiation) and by systemic autoimmune diseases.
The Triterpenoid CDDO-Me Inhibits Bleomycin-Induced Lung Inflammation and Fibrosis
Kulkarni, Ajit A.; Thatcher, Thomas H.; Hsiao, Hsi-Min; Olsen, Keith C.; Kottmann, Robert Matthew; Morrissette, Jason; Wright, Terry W.; Phipps, Richard P.; Sime, Patricia J.
2013-01-01
Pulmonary Fibrosis (PF) is a devastating progressive disease in which normal lung structure and function is compromised by scarring. Lung fibrosis can be caused by thoracic radiation, injury from chemotherapy and systemic diseases such as rheumatoid arthritis that involve inflammatory responses. CDDO-Me (Methyl 2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate, Bardoxolone methyl) is a novel triterpenoid with anti-fibrotic and anti-inflammatory properties as shown by our in vitro studies. Based on this evidence, we hypothesized that CDDO-Me would reduce lung inflammation, fibrosis and lung function impairment in a bleomycin model of lung injury and fibrosis. To test this hypothesis, mice received bleomycin via oropharyngeal aspiration (OA) on day zero and CDDO-Me during the inflammatory phase from days -1 to 9 every other day. Bronchoalveolar lavage fluid (BALF) and lung tissue were harvested on day 7 to evaluate inflammation, while fibrosis and lung function were evaluated on day 21. On day 7, CDDO-Me reduced total BALF protein by 50%, alveolar macrophage infiltration by 40%, neutrophil infiltration by 90% (p≤0.01), inhibited production of the inflammatory cytokines KC and IL-6 by over 90% (p≤0.001), and excess production of the pro-fibrotic cytokine TGFβ by 50%. CDDO-Me also inhibited α-smooth muscle actin and fibronectin mRNA by 50% (p≤0.05). On day 21, CDDO-Me treatment reduced histological fibrosis, collagen deposition and αSMA production. Lung function was significantly improved at day 21 by treatment with CDDO-Me, as demonstrated by respiratory rate and dynamic compliance. These new findings reveal that CDDO-Me exhibits potent anti-fibrotic and anti-inflammatory properties in vivo. CDDO-Me is a potential new class of drugs to arrest inflammation and ameliorate fibrosis in patients who are predisposed to lung injury and fibrosis incited by cancer treatments (e.g. chemotherapy and radiation) and by systemic autoimmune diseases. PMID:23741300
Tiny Device Mimics Human Lung Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamedmore » “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.« less
LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.
Zhang, Hui; Sweezey, Neil B; Kaplan, Feige
2015-02-15
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development. Copyright © 2015 the American Physiological Society.
Ashmore, Joseph H; Luo, Shaman; Watson, Christy J W; Lazarus, Philip
2018-05-17
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of the present study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity. While (S)-NNAL was the major enantiomer of NNAL formed in incubations with NNK in lung cytosolic fractions, (R)-NNAL comprised ~60 and ~95% of the total NNAL formed in lung whole cell lysates and microsomes, respectively. In studies examining the role of individual recombinant reductase enzymes in lung NNAL enantiomer formation, AKR1C1, AKR1C2, AKR1C3, AKR1C4 and CBR1 all exhibited (S)-NNAL formation activity. To identify the microsomal enzymes responsible for (R)-NNAL formation, 28 microsomal reductase enzymes were screened for expression by real-time PCR in normal human lung. HSD17β6, HSD17β12, KDSR, NSDHL, RDH10, RDH11 and SDR16C5 were all expressed at levels >HSD11β1, the only previously reported microsomal reductase enzyme with NNK-reducing activity, with HSD17β12 the most highly expressed. Of these lung-expressing enzymes, only HSD17β12 exhibited activity against NNK, forming primarily (>95%) (R)-NNAL, a pattern consistent with that observed in lung microsomes. siRNA knockdown of HSD17β12 resulted in significant decreases in (R)-NNAL formation activity in HEK293 cells. These data suggest that both cytosolic and microsomal enzymes are active against NNK and that HSD17β12 is the major active microsomal reductase that contributes to (R)-NNAL formation in human lung.
Tiny Device Mimics Human Lung Function
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
2018-01-16
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. âWe breathe in and out thousands of times every day. And while we have control over what we eat or drink, we donât always have control over what we breathe in,â said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so weâre making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamed âPuLMoâ for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unitâjust like the human lung. The units are primarily made from various polymers and are connected by a microfluidic âcircuit boardâ that manages fluid and air flow. âWhen we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,â said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.
Lethal mechanisms in gastric volvulus.
Omond, Kimberley J; Byard, Roger W
2017-01-01
A 55-year-old wheelchair-bound woman with severe cerebral palsy was found at autopsy to have marked distention of the stomach due to a volvulus. The stomach was viable, and filled with air and fluid and had pushed the left dome of the diaphragm upwards causing marked compression of the left lung with a mediastinal shift to the right (including the heart). There was no evidence of gastric perforation, ischaemic necrosis or peritonitis. Removal of the organ block revealed marked kyphoscoliosis. Histology confirmed the viability of the stomach and biochemistry showed no dehydration. Death in cases of acute gastric volvulus usually occurs because of compromise of the gastric blood supply resulting in ischaemic necrosis with distention from swallowed air and fluid resulting in perforation with lethal peritonitis. Hypovolaemic shock may also occur. However, the current case demonstrates an alternative lethal mechanism, that of respiratory compromise due to marked thoracic organ compression.
Current pathophysiological concepts and management of pulmonary hypertension.
Lourenço, André P; Fontoura, Dulce; Henriques-Coelho, Tiago; Leite-Moreira, Adelino F
2012-03-22
Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Vivek-Ananth, R P; Mohanraj, Karthikeyan; Vandanashree, Muralidharan; Jhingran, Anupam; Craig, James P; Samal, Areejit
2018-04-26
Aspergillus fumigatus and multiple other Aspergillus species cause a wide range of lung infections, collectively termed aspergillosis. Aspergilli are ubiquitous in environment with healthy immune systems routinely eliminating inhaled conidia, however, Aspergilli can become an opportunistic pathogen in immune-compromised patients. The aspergillosis mortality rate and emergence of drug-resistance reveals an urgent need to identify novel targets. Secreted and cell membrane proteins play a critical role in fungal-host interactions and pathogenesis. Using a computational pipeline integrating data from high-throughput experiments and bioinformatic predictions, we have identified secreted and cell membrane proteins in ten Aspergillus species known to cause aspergillosis. Small secreted and effector-like proteins similar to agents of fungal-plant pathogenesis were also identified within each secretome. A comparison with humans revealed that at least 70% of Aspergillus secretomes have no sequence similarity with the human proteome. An analysis of antigenic qualities of Aspergillus proteins revealed that the secretome is significantly more antigenic than cell membrane proteins or the complete proteome. Finally, overlaying an expression dataset, four A. fumigatus proteins upregulated during infection and with available structures, were found to be structurally similar to known drug target proteins in other organisms, and were able to dock in silico with the respective drug.
Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.
Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata
2015-03-20
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Bombesin-like peptide receptors in human bronchial epithelial cells.
Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A
1996-01-01
Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.
De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu
2012-01-01
Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288
Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.
2013-01-01
Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756
[Normotensive scleroderma renal crisis].
Villaverde, Marcelo; González, Alejandra; Orellano, Pablo; Lafage, Matías
2003-01-01
A 60 year old male patient having systemic scleroderma and normotensive scleroderma renal crisis was admitted in our hospital. He presented polyarticular, esophagic, lung and skin compromise. Before admission he had been treated with high doses of corticosteroids. We believe corticosteroids led to the worsening of renal damage with renal failure, microangiopathic hemolytic anemia without high blood pressure. The 10% of these cases have normal blood pressure. The patient was treated with enalapril and hemodialysis. There was no favourable response to this treatment and he died seven days after admission.
This study provides descriptive statistical data on daily time spent in three locations of exposure assessment interest for two panel studies of health-compromised elderly individuals > 65 y old having multi-days of human activity data. The panel studies include individuals livi...
Learning Disabilities: A Neurobiological Perspective in Humans.
ERIC Educational Resources Information Center
Bonnet, Kenneth A.
1989-01-01
The mechanisms of both language-based and non-language-based learning disabilities are presented within the framework of central nervous system development and the compromises to that development that arise from genetic, hormonal, antibody, medication, and postnatal compromises. Also reviewed is the need for a taxonomy of learning disabilities.…
2013-01-01
Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely examined in vivo. There is no residual gas, which interferes with ultrasound. Pulmonary vessels and bronchi are clearly differentiated. Simulated lung lesions can easily be detected inside the lung lobe. Conclusions Lung flooding enables complete lung sonography and tumour detection. We have developed a novel method that efficiently uses ultrasound for guiding intraoperative interventions in open and endoscopic lung surgery. PMID:23841910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer
2012-01-01
Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.
Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M
2012-12-28
G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng
Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild typemore » of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells. • Overexpression of the Del-1 gene potentiates proliferation and invasion of lung carcinoma cells. • Del-1 may be used as a diagnostic or prognostic marker for lung cancer progression.« less
The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor.
Gill, Sharonjit K; Yao, Yiwen; Kay, Linda J; Bewley, Martin A; Marriott, Helen M; Peachell, Peter T
2016-11-01
PGE 2 inhibits cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE 2 has not been defined. The aim of this study was to identify the EP receptor by which PGE 2 inhibits cytokine generation from human lung macrophages. This was determined by using recently developed EP receptor ligands. The effects of PGE 2 and EP-selective agonists on LPS-induced generation of TNF-α and IL-6 from macrophages were evaluated. The effects of EP 2 -selective (PF-04852946, PF-04418948) and EP 4 -selective (L-161,982, CJ-042794) receptor antagonists on PGE 2 responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR. PGE 2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP 2 and EP 4 receptors. L-902,688 (EP 4 receptor-selective agonist) was considerably more potent than butaprost (EP 2 receptor-selective agonist) as an inhibitor of TNF-α generation from macrophages. EP 2 receptor-selective antagonists had marginal effects on the PGE 2 inhibition of TNF-α generation, whereas EP 4 receptor-selective antagonists caused rightward shifts in the PGE 2 concentration-response curves. These studies demonstrate that the EP 4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE 2 on human lung macrophages. This suggests that EP 4 receptor agonists could be effective anti-inflammatory agents in human lung disease. © 2016 The British Pharmacological Society.
Effects and molecular mechanisms of intrauterine infection/inflammation on lung development.
Pan, Jiarong; Zhan, Canyang; Yuan, Tianming; Wang, Weiyan; Shen, Ying; Sun, Yi; Wu, Tai; Gu, Weizhong; Chen, Lihua; Yu, Huimin
2018-05-10
Intrauterine infection/inflammation plays an important role in the development of lung injury and bronchopulmonary dysplasia (BPD) in preterm infants, While a multifactorial genesis is likely, mechanisms involved in BPD after intrauterine infection/inflammation are largely unknown. Recent studies have suggested microRNAs (miRNAs) are likely to play a role. Therefore, this study aimed to study the effects and mechanisms of intrauterine infection/inflammation on lung development, and to identify miRNAs related to lung injury and BPD. An animal model of intrauterine infection/inflammation was established with pregnant SD rats endocervically inoculated with E.coli. The fetal and neonatal rats were observed at embryonic day (E) 17, 19, 21 and postnatal day (P) 1, 3, 7, 14, respectively. Body weight, lung weight, the expression levels of NLRP3, TNF-α, IL-lβ, IL-6, VEGF, Collagen I, SP-A, SP-B and SP-C in the lung tissues of fetal and neonatal rats were measured. Expression profiles of 1218 kinds of miRNAs in the lungs of neonatal rats were detected by miRNA microarray technique. Target genes of the identified miRNAs were predicted through online software. Intrauterine infection/inflammation compromised not only weight development but also lung development of the fetal and neonatal rats. The results showed significantly increased expression of NLRP3, TNF-α, IL-1β, IL-6, Collagen I, and significantly decreased expression of VEGF, SP-A, SP-B and SP-C in the fetal and neonatal rat lung tissues in intrauterine infection group compared to the control group at different observation time point (P < 0.05). Forty-three miRNAs with significant differential expression were identified. Possible target genes regulated by the identified miRNAs are very rich. Intrauterine infection/inflammation results in lung histological changes which are very similar to those observed in BPD. Possible mechanisms may include NLRP3 inflammasome activation followed by inflammatory cytokines expression up-regulated, inhibiting the expression of pulmonary surfactant proteins, interfering with lung interstitial development. There are many identified miRNAs which target a wide range of genes and may play an important role in the processes of lung injury and BPD.
ROS-activated calcium signaling mechanisms regulating endothelial barrier function.
Di, Anke; Mehta, Dolly; Malik, Asrar B
2016-09-01
Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J
2017-06-01
Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.
A Simple Device for Measuring Static Compliance of Lung-Thorax Combine
ERIC Educational Resources Information Center
Sircar, Sabyasachi
2015-01-01
Explaining the concept of lung compliance remains a challenge to the physiology teacher because it cannot be demonstrated easily in human subjects and all attempts until now have used only simulation models. A simple device is described in the present article to measure the compliance of the "lung-thorax" combine in human subjects with…
NASA Astrophysics Data System (ADS)
Gonzalez, D.
2017-12-01
Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.
Kocher, Gregor J; Mauss, Karl; Carboni, Giovanni L; Hoksch, Beatrix; Kuster, Roland; Ott, Sebastian R; Schmid, Ralph A
2013-12-01
The issue of phrenic nerve preservation during pneumonectomy is still an unanswered question. So far, its direct effect on immediate postoperative pulmonary lung function has never been evaluated in a prospective trial. We conducted a prospective crossover study including 10 patients undergoing pneumonectomy for lung cancer between July 2011 and July 2012. After written informed consent, all consecutive patients who agreed to take part in the study and in whom preservation of the phrenic nerve during operation was possible, were included in the study. Upon completion of lung resection, a catheter was placed in the proximal paraphrenic tissue on the pericardial surface. After an initial phase of recovery of 5 days all patients underwent ultrasonographic assessment of diaphragmatic motion followed by lung function testing with and without induced phrenic nerve palsy. The controlled, temporary paralysis of the ipsilateral hemidiaphragm was achieved by local administration of lidocaine 1% at a rate of 3 mL/h (30 mg/h) via the above-mentioned catheter. Temporary phrenic nerve palsy was accomplished in all but 1 patient with suspected catheter dislocation. Spirometry showed a significant decrease in dynamic lung volumes (forced expiratory volume in 1 second and forced vital capacity; p < 0.05) with the paralyzed hemidiaphragm. Blood oxygen saturation levels did not change significantly. Our results show that phrenic nerve palsy causes a significant impairment of dynamic lung volumes during the early postoperative period after pneumonectomy. Therefore, in these already compromised patients, intraoperative phrenic nerve injury should be avoided whenever possible. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Marra, A; Hillejan, L; Ukena, D
2015-10-01
A lung abscess is an infectious pulmonary disease characterised by the presence of a pus-filled cavity within the lung parenchyma. The content of an abscess often drains into the airways spontaneously, leading to an air-fluid level visible on chest X-rays and CT scans. Primary lung abscesses occur in patients who are prone to aspiration or in otherwise healthy individuals; secondary lung abscesses typically develop in association with a stenosing lung neoplasm or a systemic disease that compromises immune defences, such as AIDS, or after organ transplantation. The organisms found in abscesses caused by aspiration pneumonia reflect the resident flora of the oropharynx. The most commonly isolated organisms are anaerobic bacteria (Prevotella, Bacteroides, Fusobacterium, Peptostreptococcus) or streptococci; in alcoholics with poor oral hygiene, the spectrum of pathogens includes Staphylococcus aureus, Streptococcus pyogenes and Actinomyces. Chest radiography and computed tomography (CT) are mandatory procedures in the diagnostic algorithm. Standard treatment for a lung abscess consists of systemic antibiotic therapy, which is based on the anticipated or proven bacterial spectrum of the abscess. In most cases, primary abscesses are successfully treated by calculated empiric antibiotic therapy, with an estimated lethality rate of less than 10 %. Secondary abscesses, despite targeted antimicrobial therapy, are associated with a poor prognosis, which depends on the patient's general condition and underlying disease; lethality is as high as 75 %. Negative prognostic factors are old age, severe comorbidities, immunosuppression, bronchial obstruction, and neoplasms. Surgical intervention due to failure of conservative treatment is required in only 10 % of patients, with a success rate of up to 90 % and postoperative mortality rates ranging between 0 and 33 %. Treatment success after endoscopic or percutaneous drainage is achieved in 73 to 100 % of cases, with an acceptable mortality rate (0-9 %). Georg Thieme Verlag KG Stuttgart · New York.
Willinger, Tim; Rongvaux, Anthony; Takizawa, Hitoshi; Yancopoulos, George D.; Valenzuela, David M.; Murphy, Andrew J.; Auerbach, Wojtek; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.
2011-01-01
Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34+ hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens. PMID:21262803
Chemically-induced Mouse Lung Tumors: Applications to ...
A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan
Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung
Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce; ...
2016-07-14
Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less
Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce
Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less
Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul; Lee, Young-Tae; Cho, Min-Kyoung; Kwon, Young-Man; Lee, Jong Seok; Plemper, Richard K.; Kang, Sang-Moo
2014-01-01
Respiratory syncytial virus (RSV) is one of the most important causes for viral lower respiratory tract disease in humans. There is no licensed RSV vaccine. Here, we generated recombinant influenza viruses (PR8/RSV.HA-G) carrying the chimeric constructs of hemagglutinin (HA) and central conserved-domains of the RSV G protein. PR8/RSV.HA-G virus showed lower pathogenicity without compromising immunogenicity in mice. Single intranasal inoculation of mice with PR8/RSV.HA-G induced IgG2a isotype dominant antibodies and RSV neutralizing activity. Mice with single intranasal inoculation of PR8/RSV.HA-G were protected against RSV infection as evidenced by significant reduction of lung viral loads to a detection limit upon RSV challenge. PR8/RSV.HA-G inoculation of mice did not induce pulmonary eosinophilia and inflammation upon RSV infection. These findings support a concept that recombinant influenza viruses carrying the RSV G conserved-domain can be developed as a promising RSV vaccine candidate without pulmonary disease. PMID:25553517
Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention
Smallwood, Heather S.; Duan, Susu; Morfouace, Marie; ...
2017-05-23
Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1more » and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.« less
The epidemiology, consequences and management of periodontal disease in older adults.
Boehm, Tobias K; Scannapieco, Frank A
2007-09-01
This review summarizes the literature on periodontal disease (PD) in older adults. The authors focused on significant sequelae of PD and therapy in this population. The authors conducted a search on PubMed for human studies using the terms "periodontal disease OR periodontitis" and "older adults." They retrieved 649 articles and excluded studies that had poor experimental design. For each topic of the review, they selected one to three of the most recent studies or reviews for inclusion and cited classic articles where appropriate. PD is a common oral chronic inflammatory disease often found in older adults. In older patients, PD may lead to root caries, impaired eating and socialization. It also may increase patients' risk of developing systemic diseases such as diabetes mellitus, lung disease, heart disease and stroke. Treatment is not limited by chronological age but depends on the patient's medical and emotional status and the availability of financial resources. General dentists usually can treat the majority of older people with mild or moderate PD. For older adults who are medically compromised and dependent, the literature supports treatment that prevents PD progression.
Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, Heather S.; Duan, Susu; Morfouace, Marie
Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1more » and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.« less
Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; White, Christopher W; Burhani, Mohamad S; Dromparis, Peter; Matsumura, Nobutoshi; Tian, Ganghong; Dyck, Jason R B; Mengel, Michael; Freed, Darren H; Nagendran, Jayan
2018-04-01
Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Andersson, Johan P A; Linér, Mats H; Jönsson, Henrik
2009-11-01
Many competitive breath-hold divers use 'glossopharyngeal insufflation', also called 'lung packing', to overfill their lungs above normal total lung capacity. This increases intrathoracic pressure, decreases venous return, compromises cardiac pumping, and reduces arterial blood pressure, possibly resulting in a syncope breath-hold divers call 'packing blackout'. We report a case with a breath-hold diver who inadvertently experienced a packing blackout. During the incident, an electrocardiogram (ECG) and blood pressure were recorded, and blood samples for determinations of biomarkers of cardiac muscle perturbation (creatine kinase-MB isoenzyme (CK-MB), cardiac troponin-T (TnT), and myoglobin) were collected. The ECG revealed short periods of asystole during the period of 'packing blackout', simultaneous with pronounced reductions in systolic, diastolic, and pulse pressures. Serum myoglobin concentration was elevated 40 and 150 min after the incident, whereas there were no changes in CK-MB or TnT. The ultimate cause of syncope in this diver probably was a decrease in cerebral perfusion following glossopharyngeal insufflation. The asystolic periods recorded in this diver could possibly indicate that susceptible individuals may be put at risk of a serious cardiac incident if the lungs are excessively overinflated by glossopharyngeal insufflation. This concern is further substantiated by the observed increase in serum myoglobin concentration after the event.
Ni, Ke; Liu, Ming; Zheng, Jian; Wen, Liyan; Chen, Qingyun; Xiang, Zheng; Lam, Kowk-Tai; Liu, Yinping; Chan, Godfrey Chi-Fung; Lau, Yu-Lung; Tu, Wenwei
2018-06-01
Pulmonary fibrosis is a chronic progressive lung disease with few treatments. Human mesenchymal stem cells (MSCs) have been shown to be beneficial in pulmonary fibrosis because they have immunomodulatory capacity. However, there is no reliable model to test the therapeutic effect of human MSCs in vivo. To mimic pulmonary fibrosis in humans, we established a novel bleomycin-induced pulmonary fibrosis model in humanized mice. With this model, the benefit of human MSCs in pulmonary fibrosis and the underlying mechanisms were investigated. In addition, the relevant parameters in patients with pulmonary fibrosis were examined. We demonstrate that human CD8 + T cells were critical for the induction of pulmonary fibrosis in humanized mice. Human MSCs could alleviate pulmonary fibrosis and improve lung function by suppressing bleomycin-induced human T-cell infiltration and proinflammatory cytokine production in the lungs of humanized mice. Importantly, alleviation of pulmonary fibrosis by human MSCs was mediated by the PD-1/programmed death-ligand 1 pathway. Moreover, abnormal PD-1 expression was found in circulating T cells and lung tissues of patients with pulmonary fibrosis. Our study supports the potential benefit of targeting the PD-1/programmed death-ligand 1 pathway in the treatment of pulmonary fibrosis.
Absorbed doses of lungs from radon retained in airway lumens of mice and rats.
Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro
2013-08-01
This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.
Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.
Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam
2015-07-01
DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.
Armstrong, Sylvia J.; Zuckerman, A. J.
1972-01-01
Retronecine pyrrole induces toxic changes both in human liver and lung cells. Lasiocarpine and retrorsine are toxic to liver cells but not to lung cells, which are unable to metabolize the pyrrolizidine alkaloids to pyrroles. The application of lasiocarpine to human liver cells in culture is followed by inhibition of DNA, RNA and protein synthesis; vacuolation of the cells, the prevention of mitosis and the formation of giant cells (“megalocytes”). PMID:5032089
Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer
Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...
2015-03-20
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less
Guo, Nancy L; Wan, Ying-Wooi; Denvir, James; Porter, Dale W; Pacurari, Maricica; Wolfarth, Michael G; Castranova, Vincent; Qian, Yong
2012-01-01
Concerns over the potential for multi-walled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n=160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 days post-exposure. By using pairwise-Statistical Analysis of Microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5 fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at day 56 post-exposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at day 56 post-exposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n=256) and test set (n=186). Furthermore, both gene signatures were associated with human lung cancer risk (n=164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. PMID:22891886
A reevaluation of CD22 expression in human lung cancer.
Pop, Laurentiu M; Barman, Stephen; Shao, Chunli; Poe, Jonathan C; Venturi, Guglielmo M; Shelton, John M; Pop, Iliodora V; Gerber, David E; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I; Richardson, James A; Minna, John D; Tedder, Thomas F; Vitetta, Ellen S
2014-01-01
CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins.
MYCN induces neuroblastoma in primary neural crest cells
Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W
2017-01-01
Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis. PMID:28459463
Kawamura, K. I.; Grabowski, D.; Weizer, K.; Bukowski, R.; Ganapathi, R.
1996-01-01
Cellular insensitivity to vinca alkaloids is suggested to be primarily due to drug efflux by P-glycoprotein (P-gp). The anti-epileptic phenytoin (DPH), which does not bind to P-gp, can selectively enhance vincristine (VCR) cytotoxicity in wild-type (WT) or multidrug-resistant (MDR) cells. We now demonstrate that the protein phosphatase inhibitor okadaic acid (OKA) can mimic the effect of DPH by selectively enhancing cytotoxicity of vinblastine (VBL), but not taxol and doxorubicin, in human leukaemia HL-60 cells. Both DPH and OKA potentiate the anti-mitotic effects of VBL by enhanced damage to the mitotic spindle, resulting in prolonged growth arrest. Also, unlike VBL alone, in human leukaemia or non-small-cell lung carcinoma cells treated with VBL plus DPH, recovery from damage to the mitotic spindle is compromised in drug-free medium and cell death by apoptosis in interphase ensues. Since protein phosphatases are involved with the regulation of metaphase to anaphase transit of cells during the mitotic cycle, enhanced VBL cytotoxicity in the presence of DPH or OKA may involve effects during metaphase on the mitotic spindle tubulin leading to growth arrest and apoptosis in interphase. These novel results suggest that DPH or OKA could be powerful tools to study cellular effects of vinca alkaloids and possibly for the development of novel therapeutic strategies. Images Figure 6 PMID:8546904
ACID AIR AND AEROBIOLOGY RELATED TO THE MATURING HUMAN LUNG
The effect of 'acid air' on human health was studied by considering the effects of hygroscopicity upon aerosol deposition in the lung as a function of human subject age. Children are a critical sub-population to be incorporated into health effects analyses following ambient expos...
EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON OZONE-INDUCED LUNG INJURY IN HUMAN SUBJECTS
Epidemiological, in vitro and animal studies suggest that dietary antioxidants can modulate the cellular and physiologic effects of ozone (O3) inhalation in humans. To determine whether antioxidants can influence human susceptibility to O3-induced changes in lung function and a...
Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L
2016-02-01
The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.
Toxicological impact of waterpipe smoking and flavorings in the oral cavity and respiratory system.
Javed, Fawad; ALHarthi, Shatha Subhi; BinShabaib, Munerah Saleh; Gajendra, Sangeeta; Romanos, Georgios E; Rahman, Irfan
2017-08-01
Waterpipe smoking (WS), an emerging trend has major health concerns. It is prevalent worldwide as a recreational activity both indoors and outdoors. The aim of this review was to assess the impact of waterpipe smoke on the oral and respiratory system (oral cavity and pulmonary tissues). A number of studies have shown that periodontal health status is compromised in waterpipe smokers when compared with nonsmokers. Some studies have associated WS with oral premalignant and malignant lesions; however, due to the poor quality of these studies, the presented outcomes should be interpreted with caution. Although cigarette smoking has been considered as a potential risk factor for dental caries; there are no studies in indexed literature that have shown an association to exist between dental caries and WS. Inhaled waterpipe smoke imposes oxidative stress and inflammatory responses and compromises the ventilatory capacity of the lungs and may lead to an increased risk of decline in lung function. WS may cause oral and pulmonary diseases, such as periodontal disease and chronic obstructive airway disease, respectively. The association between WS and development of dental caries and oral pre-cancer and their relationships with chronic airways disease requires investigations. This review discusses the current evidence of waterpipe smoke effects on the oral health and respiratory system based on basic and clinical science and provides future directions for research and regulatory science on how WS can affect the oral cavity and the respiratory/pulmonary system.
Sleep-Disordered Breathing in Neuromuscular Disease: Diagnostic and Therapeutic Challenges.
Aboussouan, Loutfi S; Mireles-Cabodevila, Eduardo
2017-10-01
Normal sleep-related rapid eye movement sleep atonia, reduced lung volumes, reduced chemosensitivity, and impaired airway dilator activity become significant vulnerabilities in the setting of neuromuscular disease. In that context, the compounding effects of respiratory muscle weakness and disease-specific features that promote upper airway collapse or cause dilated cardiomyopathy contribute to various sleep-disordered breathing events. The reduction in lung volumes with neuromuscular disease is further compromised by sleep and the supine position, exaggerating the tendency for upper airway collapse and desaturation with sleep-disordered breathing events. The most commonly identified events are diaphragmatic/pseudo-central, due to a decrease in the rib cage contribution to the tidal volume during phasic rapid eye movement sleep. Obstructive and central sleep apneas are also common. Noninvasive ventilation can improve survival and quality of sleep but should be used with caution in the context of dilated cardiomyopathy or significant bulbar symptoms. Noninvasive ventilation can also trigger sleep-disordered breathing events, including ineffective triggering, autotriggering, central sleep apnea, and glottic closure, which compromise the potential benefits of the intervention by increasing arousals, reducing adherence, and impairing sleep architecture. Polysomnography plays an important diagnostic and therapeutic role by correctly categorizing sleep-disordered events, identifying sleep-disordered breathing triggered by noninvasive ventilation, and improving noninvasive ventilation settings. Optimal management may require dedicated hypoventilation protocols and a technical staff well versed in the identification and troubleshooting of respiratory events. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Can Neglected Tropical Diseases Compromise Human Wellbeing in Sex-, Age-, and Trait-Specific Ways?
Geary, David C.
2016-01-01
Traits that facilitate competition for reproductive resources or that influence mate choice have evolved to signal resilience to infectious disease and other stressors. As a result, the dynamics of competition and choice can, in theory, be used to generate predictions about sex-, age-, and trait-specific vulnerabilities for any sexually reproducing species, including humans. These dynamics and associated vulnerabilities are reviewed for nonhuman species, focusing on traits that are compromised by exposure to parasites. Using the same approach, sex-, age-, and trait-specific vulnerabilities to parasitic disease are illustrated for children’s and adolescent’s physical growth and fitness. Suggestions are then provided for widening the assessment of human vulnerabilities to include age-appropriate measures of behavioral (e.g., children’s play) and cognitive (e.g., language fluency) traits. These are traits that are likely to be compromised by infection in age- and sex-specific ways. Inclusion of these types of measures in studies of neglected tropic diseases has the potential to provide a more nuanced understanding of how these diseases undermine human wellbeing and may provide a useful means to study the efficacy of associated treatments. PMID:27077746
The concept of 'protection' is possible only before something is lost, however, development of the built environment to meet human needs also compromises the environmental systems that sustain human life. Because maintaining an environment that is able to sustain human life re...
The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction
Weber, Daniel J.; Allette, Yohance M.; Wilkes, David S.
2015-01-01
Abstract Significance: Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. Recent Advances: Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). Critical Issues: Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. Future Directions: Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes. Antioxid. Redox Signal. 23, 1316–1328. PMID:25751601
Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon
2016-03-01
Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Occupational lung cancer. A comparison between humans and experimental animals].
Adachi, S; Takemoto, K
1987-09-01
Many epidemiological and experimental studies have suggested that the respiratory tract is one of the most sensitive organs to environmental carcinogens. Nevertheless there is little evidence to determine the relationship between a specific environmental carcinogen and a cell type of lung cancer, because the cell types of lung cancer and their relative frequencies are highly complex compared with those of other organs and tissues. In the present paper, occupational lung-cancer characteristics, which are the clearest in the relation between cause and effect in human lung cancers, were reviewed in comparison with the results of animal experiments concerned with occupational lung carcinogens. Through accumulation of histopathological examinations of the lung cancer cases, the following relationships between cause and cell type were conjectured: chromium and squamous cell carcinoma; asbestos and adenocarcinoma; nickel and squamous cell carcinoma; beryllium and small cell carcinoma; bis (chloromethyl) ether and small cell carcinoma; mustard gas and squamous cell or small cell carcinoma; vinyl chloride and large cell or adenocarcinoma; radionuclides and small cell carcinoma. The relation pertaining to arsenic, benzotrichloride and tar could not be conjectured because of insufficient cases and information in the histological diagnosis. On the other hand, the carcinogenicity of these substances in occupational exposure has been confirmed by animal experiments administered intratracheally or by inhalation studies under relatively higher concentration. As a result of recent refinements of inhalation study, all-day and life-span exposure to extremely low concentrations, such as microgram/m3 orders, of certain substances has been possible. The characteristics of lung tumors occurring in these animals are rather different from those of human. For example, in mouse, almost all of the malignant lung tumors developed by carcinogens are adenocarcinomas and it is rare to find the squamous cell carcinoma. Moreover, small cell carcinoma and large cell carcinoma have not known to occur in the lungs of rats and mice. Therefore, future research should focus elucidating the specific relationship between cause and cell type of human lung cancer by means of animal experiments on lung cancer that give attention to the specificities of each experimental animal and the origin of the resultant lung tumor.
Aizawa, Koichi; Liu, Chun; Veeramachaneni, Sudipta; Hu, Kang-Quan; Smith, Donald E; Wang, Xiang-Dong
2013-12-01
Development of new animal lung cancer models that are relevant to human lung carcino-genesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, NNK). In the present study, we investigated whether NNK treatment alone induces both preneoplastic and neoplastic lesions in the lungs of ferrets. We exposed ferrets to NNK by i.p. injection of NNK (50 mg/kg BW) once a month for four consecutive months and then followed up for 24, 26 and 32 weeks. The incidences of pulmonary pre-neoplastic and neoplastic lesions were assessed by histopathological examination. The expressions of 7 nicotinic acetylcholine receptor ( 7 nAChR, which has been shown to promote lung carcinogenesis)and its related molecular biomarkers in lungs were examined by immunohistochemistry and/or Western blotting analysis. Ferrets exposed to NNK alone developed both preneoplastic lesions (squamous metaplasia, dysplasia and atypical adenomatous hyperplasia) and tumors (squamous cell carcinoma, adenocarcinoma and adenosquamous carcinoma), which are commonly seen in humans. The incidence of tumor induced by NNK was time-dependent in the ferrets (16.7%, 40.0% and 66.7% for 24, 26 and 32 weeks, respectively). 7 nAChR is highly expressed in the ferret bronchial/bronchiolar epithelial cells, and alveolar macrophages in ferrets exposed to NNK, and in both squamous cell carcinoma and adenocarcinoma of the ferrets. In addition, we observed the tendency for an increase in phospho-ERK and cyclin D1 protein levels (p = 0.081 and 0.080, respectively) in the lungs of ferrets exposed to NNK. The development of both preneoplastic and neoplastic lesions in ferret lungs by injecting NNK alone provides a simple and highly relevant non-rodent model for studying biomarkers/molecular targets for the prevention, detection and treatment of lung carcinogenesis in humans.
miR-133 involves in lung adenocarcinoma cell metastasis by targeting FLOT2.
Wei, Guangxia; Xu, Yahuan; Peng, Tao; Yan, Jie
2018-03-01
Dysregulated microRNAs (miRNAs) reported to involve into the oncogenesis and progression in various human cancers. However, the roles and mechanism of miR-133 in lung adenocarcinoma remain largely unclear. In this study, qPCR assay and western blot were used to detect the expression levels of miR-133, Akt and FLOT2. Luciferase reporter assay was used to identify the target role of miR-133 on FLOT2. The cell invasion and the migration capability were performed using the transwell invasion assay and wound healing assay. We found that miR-133 expression levels were downregulated in human lung adenocarcinoma specimens and cell lines compared with the adjacent normal tissues and normal human bronchial epithelial cell. miR-133 significantly suppressed metastasis of lung adenocarcinoma cells in vitro. Furthermore, FLOT2 (flotillin-2) identified as a direct target of miR-133, and FLOT2 expression levels were inversely correlated with miR-133 expression levels in human lung adenocarcinoma specimens. And the restoration studies suggested FGF2 as a downstream effector of miR-133 which acted through Akt signalling pathway. Our study revealed the mechanism that miR-133 suppresses lung adenocarcinoma metastasis by targeting FLOT2 via Akt signalling pathway, implicating a potential prognostic biomarker and therapeutic target for lung adenocarcinoma treatment.
Nontypeable Haemophilus influenzae Induces Sustained Lung Oxidative Stress and Protease Expression
King, Paul T.; Sharma, Roleen; O’Sullivan, Kim; Selemidis, Stavros; Lim, Steven; Radhakrishna, Naghmeh; Lo, Camden; Prasad, Jyotika; Callaghan, Judy; McLaughlin, Peter; Farmer, Michael; Steinfort, Daniel; Jennings, Barton; Ngui, James; Broughton, Bradley R. S.; Thomas, Belinda; Essilfie, Ama-Tawiah; Hickey, Michael; Holmes, Peter W.; Hansbro, Philip; Bardin, Philip G.; Holdsworth, Stephen R.
2015-01-01
Nontypeable Haemophilus influenzae (NTHi) is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1), oxidative stress and 2), protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS) production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT) in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps. PMID:25793977
Weill, D; Torres, F; Hodges, T N; Olmos, J J; Zamora, M R
1999-11-01
Single-lung transplantation for emphysema may be complicated by acute native lung hyperinflation (ANLH) with hemodynamic and ventilatory compromise. Some groups advocate the routine use of independent lung ventilation, double-lung transplant, or right-lung transplant with or without contralateral lung volume reduction surgery in high-risk patients. The goal of this study was to determine the incidence of ANLH and identify its potential predictors. We reviewed 51 consecutive single-lung transplants for emphysema. Symptomatic ANLH was defined as mediastinal shift and diaphragmatic flattening on chest x-ray with hemodynamic or respiratory failure requiring cardiopressor agents or independent lung ventilation. Preoperative and postoperative physiologic and hemodynamic data were analyzed from both recipients and donors. Sixteen patients developed radiographic ANLH; 8 were symptomatic, 2 severely so. We could not identify high-risk patients before transplant by pulmonary function tests, predicted donor total lung capacity (TLC)/actual recipient TLC ratio, pulmonary artery pressures, or the side transplanted. There was a trend toward an increased incidence of symptomatic ANLH in patients with bullous emphysema on chest computed tomography, but this was accounted for primarily by patients with alpha1-antitrypsin deficiency (4/13 vs 4/38 with chronic obstructive pulmonary disease, P = 0.10). No patient required cardiopulmonary bypass or inhaled nitric oxide intraoperatively. Patients with acute native lung hyperinflation did not have increased reperfusion edema as measured by chest x-ray score or PaO2/F(I)O2 ratio. Compared to patients without ANLH, symptomatic patients had longer ventilator times (64.9+/-14.6 hours vs 40.4+/-3.9, P = 0.02, ANOVA) and longer lengths of stay (19.3+/-2.1 days vs 13.7+/-1.3, P = 0.07), but 30-day survival was 100%. Two symptomatic patients required independent lung ventilation or inhaled nitric oxide; the others were managed with decreased minute ventilation, early extubation, and cardiopressor agents. No patient required early lung volume reduction surgery or retransplantation. Acute native lung hyperinflation had no effect on FEV1 or 6-minute walk results at 1 year; survival at 1, 2, or 3 years; or the rate of acute rejection, infection, or bronchiolitis obliterans syndrome greater than grade 2. Acute native lung hyperinflation is common radiographically but is rarely clinically severe. Although there was a trend toward an increase in symptomatic ANLH in patients with bullous emphysema, a high-risk group could not be identified preoperatively. Our results do not support the routine use of bilateral lung transplant, the exclusive use of right single-lung transplant, simultaneous lung volume reduction surgery, or independent lung ventilation for patients with emphysema. Management strategies should be employed that limit overdistension of the native lung and lead to early extubation.
Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury
Moodley, Yuben; Atienza, Daniel; Manuelpillai, Ursula; Samuel, Chrishan S.; Tchongue, Jorge; Ilancheran, Sivakami; Boyd, Richard; Trounson, Alan
2009-01-01
Acute respiratory distress syndrome is characterized by loss of lung tissue as a result of inflammation and fibrosis. Augmenting tissue repair by the use of mesenchymal stem cells may be an important advance in treating this condition. We evaluated the role of term human umbilical cord cells derived from Wharton’s jelly with a phenotype consistent with mesenchymal stem cells (uMSCs) in the treatment of a bleomycin-induced mouse model of lung injury. uMSCs were administered systemically, and lungs were harvested at 7, 14, and 28 days post-bleomycin. Injected uMSCs were located in the lung 2 weeks later only in areas of inflammation and fibrosis but not in healthy lung tissue. The administration of uMSCs reduced inflammation and inhibited the expression of transforming growth factor-β, interferon-γ, and the proinflammatory cytokines macrophage migratory inhibitory factor and tumor necrosis factor-α. Collagen concentration in the lung was significantly reduced by uMSC treatment, which may have been a consequence of the simultaneous reduction in Smad2 phosphorylation (transforming growth factor-β activity). uMSCs also increased matrix metalloproteinase-2 levels and reduced their endogenous inhibitors, tissue inhibitors of matrix metalloproteinases, favoring a pro-degradative milieu following collagen deposition. Notably, injected human lung fibroblasts did not influence either collagen or matrix metalloproteinase levels in the lung. The results of this study suggest that uMSCs have antifibrotic properties and may augment lung repair if used to treat acute respiratory distress syndrome. PMID:19497992
Chemically-induced mouse lung tumors: applications to ...
A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism
Human papillomavirus 16/18 infections in lung cancer patients in Mexico.
Badillo-Almaraz, I; Zapata-Benavides, P; Saavedra-Alonso, S; Zamora-Avila, D; Reséndez-Pérez, D; Tamez-Guerra, R; Herrera-Esparza, R; Rodríguez-Padilla, C
2013-01-01
Human papillomavirus (HPV) is an epitheliotropic, double-stranded DNA virus, and its high-risk genotypes are associated with human cancer. HPV genome has been detected in lung carcinomas in certain places around the world, including Mexico; however, the prevalence of this is unclear. In this study, we examine the frequency of high-risk HPV 16/18 in lung cancer tissues from a Mexican population. 39 lung cancer specimens were analyzed by polymerase chain reaction (PCR) using HPV GP5+/GP6+ primers and then were genotyped using specific primers to HPV 16/18. Additionally, in situ hybridization (ISH) was performed using BIO-labeled oligonucleotide probes. Our results identified 15 positive cases (38.46%) for HPV 16 and 1 positive case (2.56%) for HPV 18 by PCR. ISH showed the presence of HPV DNA in 13 of 16 (81%) samples, in agreement with the PCR results. In this study, we detected HPV 16/18 gene sequences in lung cancer samples obtained from Mexican patients by PCR and ISH. We found the highest prevalence of HPV 16 infection in lung adenocarcinomas, suggesting that HPV infection may be associated with lung cancer. However, further studies are needed to elucidate the role of HPV in lung carcinogenesis. Copyright © 2013 S. Karger AG, Basel.
Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke
2015-11-01
Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.
Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma
Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar
2015-01-01
Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839
Testing lung cancer drugs and therapies in mice
National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Suspension and termination of collection action and compromise of claims for overpayment. 405.376 Section 405.376 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL HEALTH INSURANCE FOR THE AGED...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Suspension and termination of collection action and compromise of claims for overpayment. 405.376 Section 405.376 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM FEDERAL HEALTH INSURANCE FOR THE AGED...
Pulmonary hypoplasia in Jarcho-Levin syndrome.
Rodríguez, Luis M; García-García, Inés; Correa-Rivas, María S; García-Fragoso, Lourdes
2004-03-01
Jarcho-Levin syndrome, also known as spondylothoracic dysplasia and characterized by short trunk dwarfism, "crab-like" rib cage, with ribs and vertebral defects; it is not uncommon in Puerto Ricans. Many patients die in early infancy due to respiratory compromise associated to lung restriction and the reported cases emphasize mostly the skeletal malformations associated to the syndrome. We report the autopsy findings in a newborn with isolated Jarcho-Levin syndrome emphasizing pulmonary pathology. He was a pre-term male who died of respiratory failure at three hours old and, autopsy findings confirmed the clinical diagnosis. Internal examination showed hypoplastic lungs with normal lobation. The histological structure appeared normal and relatively mature; the diaphragm showed eventration and unilateral absence of musculature. This case shows the worst spectum of the Jarcho-Levin syndrome: pulmonary hypoplasia not compatible with extrauterine life. Since thoracic restriction is present during the fetal period, the degree of pulmonary hypoplasia probably defines survival beyond the neonatal period.
A Re-evaluation of CD22 Expression by Human Lung Cancer
Pop, Laurentiu M.; Barman, Stephen; Shao, Chunli; Poe, Jonathan C.; Venturi, Guglielmo M.; Shelton, John M.; Pop, Iliodora V.; Gerber, David E.; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I.; Richardson, James A.; Minna, John D.; Tedder, Thomas F.; Vitetta, Ellen S.
2014-01-01
CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B cell receptor and its co-receptor CD19. Recently it was reported that most human lung cancer cells and cell lines express CD22 making it an important new lung cancer therapeutic target (Can Res 72:5556, 2012). The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by qRT-PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200–60,000- fold lower than those observed in the human CD22+ Burkitt’s lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by CD22 antibodies or our highly potent anti-CD22 immunotoxin. By contrast, CD22+ Daudi cells expressed high levels of CD22 mRNA and protein and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from over 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells and that these cells can not be killed by anti-CD22 immunotoxins. PMID:24395821
Developmental Regulation of p66Shc Is Altered by Bronchopulmonary Dysplasia in Baboons and Humans
Lee, Matt K.; Pryhuber, Gloria S.; Schwarz, Margaret A.; Smith, Susan M.; Pavlova, Zdena; Sunday, Mary E.
2005-01-01
Rationale: The p66Shc adapter protein antagonizes mitogen-activated protein, or MAP, kinase, mediates oxidative stress, and is developmentally regulated in fetal mouse lungs. Objectives: To determine if p66Shc is similarly regulated in primates and in bronchopulmonary dysplasia (BPD), which results from oxidative injury to immature lungs. Methods: Normal and injured lungs from humans and baboons were evaluated by Western analysis and immunohistochemistry. Measurements and Main Results: In baboons, p66Shc decreased 80% between 125 and 175 days' gestation (p = 0.025), then doubled after term delivery at 185 days (p = 0.0013). In the hyperoxic 140-day fetal baboon BPD model, p66Shc expression persisted, and its localization shifted from the epithelium of gestational controls to the mesenchyme of diseased lungs, coincident with expression of proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase, a marker of apoptosis. Treatment with the antibombesin antibody 2A11 attenuated BPD, reduced cell proliferation, increased p66Shc expression 10.5-fold, and preserved epithelial p66Shc localization. p66Shc also decreased during normal human lung development, falling 87% between 18 and 24 weeks' gestation (p = 0.02). p66Shc was expressed throughout 18-week human lungs, became restricted to scattered epithelial cells by 24 weeks, and localized to isolated mesenchymal cells after term delivery. In contrast, p66Shc remained prominent in the epithelium of lungs with acute injury or mild BPD, and in the mesenchyme of lungs with severe disease. p66Shc localized to tissues expressing proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase. Conclusions: p66Shc expression, cell proliferation, and apoptosis are concomitantly altered during lung development and in BPD. PMID:15778491
Development Wthout Environmental Compromise
Disturbances to environmental structures and functions are among the greatest long term threats to human life. Some of thse disturbances are natural and beyond human control; whereas others are the product of land use change to meet human objectives. Although incrementally thes...
ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion
Long, Weiwen; Foulds, Charles E.; Qin, Jun; Liu, Jian; Ding, Chen; Lonard, David M.; Solis, Luisa M.; Wistuba, Ignacio I.; Qin, Jun; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.
2012-01-01
In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer. PMID:22505454
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
A Brave New World: The Lung Microbiota in an Era of Change
Blaser, Martin J.
2014-01-01
The development of culture-independent techniques has revolutionized our understanding of how our human cells interact with the even greater number of microbial inhabitants of our bodies. As part of this revolution, data are increasingly challenging the old dogma that in health, the lung mucosa is sterile. To understand how the lung microbiome may play a role in human health, we identified five major questions for lung microbiome research: (1) Is the lung sterile? (2) Is there a unique core microbiome in the lung? (3) How dynamic are the microbial populations? (4) How do pulmonary immune responses affect microbiome composition? and (5) Are the lungs influenced by the intestinal immune responses to the gut microbiome? From birth, we are exposed to continuous microbial challenges that shape our microbiome. In our changing environment, perturbation of the gut microbiome affects both human health and disease. With widespread antibiotic use, the ancient microbes that formerly resided within us are being lost, for example, Helicobacter pylori in the stomach. Animal models show that antibiotic exposure in early life has developmental consequences. Considering the potential effects of this altered microbiome on pulmonary responses will be critical for future investigations. PMID:24437400
Epimorphin expression in interstitial pneumonia
Terasaki, Yasuhiro; Fukuda, Yuh; Suga, Moritaka; Ikeguchi, Naoki; Takeya, Motohiro
2005-01-01
Epimorphin modulates epithelial morphogenesis in embryonic mouse organs. We previously suggested that epimorphin contributes to repair of bleomycin-induced pulmonary fibrosis in mice via epithelium-mesenchyme interactions. To clarify the role of epimorphin in human lungs, we evaluated epimorphin expression and localization in normal lungs, lungs with nonspecific interstitial pneumonia (NSIP), and lungs with usual interstitial pneumonia (UIP); we also studied the effect of recombinant epimorphin on cultured human alveolar epithelial cells in vitro. Northern and Western blotting analyses revealed that epimorphin expression in NSIP samples were significantly higher than those in control lungs and lungs with UIP. Immunohistochemistry showed strong epimorphin expression in mesenchymal cells of early fibrotic lesions and localization of epimorphin protein on mesenchymal cells and extracellular matrix of early fibrotic lesions in the nonspecific interstitial pneumonia group. Double-labeled fluorescent images revealed expression of matrix metalloproteinase 2 in re-epithelialized cells overlying epimorphin-positive early fibrotic lesions. Immunohistochemistry and metalloproteinase activity assay demonstrated augmented expression of metalloproteinase induced by recombinant epimorphin in human alveolar epithelial cells. These findings suggest that epimorphin contributes to repair of pulmonary fibrosis in nonspecific interstitial pneumonia, perhaps partly by inducing expression of matrix metalloproteinase 2, which is an important proteolytic factor in lung remodeling. PMID:15651999
Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yihua; Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031; Fang, Rong
2010-05-28
Lung cancer is one of the most devastating diseases worldwide. RGS17 is previously shown to be over-expressed in human lung adenocarcinomas and plays an important role in lung tumor growth. Here we have identified a miRNA, has-mir-182, involved in the regulation of RGS17 expression through two conserved sites located in its 3' UTR region. Consistently, endogenous RGS17 expression level is regulated by hsa-mir-182 in human lung cancer cell lines. Similar to the knockdown of RGS17, ectopic expression of hsa-mir-182 significantly inhibits lung cancer cell proliferation and anchorage-independent cell growth, which can be rescued by re-expression of RGS17. Taken together, thesemore » data have provided the first evidence of miRNA regulation of RGS17 expression in lung cancer.« less
Supercomputer description of human lung morphology for imaging analysis.
Martonen, T B; Hwang, D; Guan, X; Fleming, J S
1998-04-01
A supercomputer code that describes the three-dimensional branching structure of the human lung has been developed. The algorithm was written for the Cray C94. In our simulations, the human lung was divided into a matrix containing discrete volumes (voxels) so as to be compatible with analyses of SPECT images. The matrix has 3840 voxels. The matrix can be segmented into transverse, sagittal and coronal layers analogous to human subject examinations. The compositions of individual voxels were identified by the type and respective number of airways present. The code provides a mapping of the spatial positions of the almost 17 million airways in human lungs and unambiguously assigns each airway to a voxel. Thus, the clinician and research scientist in the medical arena have a powerful new tool to be used in imaging analyses. The code was designed to be integrated into diverse applications, including the interpretation of SPECT images, the design of inhalation exposure experiments and the targeted delivery of inhaled pharmacologic drugs.
Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway
2011-01-01
Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R.; Rosas, Ivan; Ai, Xingbin
2016-01-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca2+-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca2+ oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease. PMID:26550921
Is the appearance of macrophages in pulmonary tissue related to time of asphyxia?
Vacchiano, G; D'Armiento, F; Torino, R
2001-01-01
In order to connect the appearance of macrophages and giant cells in pulmonary tissue with the time of asphyxia the authors analyzed 50 asphyxiated human lungs paying their attention on the number of alveolar and interstitial macrophages and giant cells. They compared histological specimens of 25 asphixiated humans lungs following a slow asphyxia (30 min or more) with 25 histological specimens of asphyxiated human lungs following a rapid asphyxia (10-15 min). Alveolar and interstitial macrophages and giant cells per section, were considered and numbered. Controls were done on histological examination of traumatized lungs. In the pulmonary alveoli following on acute asphyxia there were 27.7+/-4.4 macrophages per section. Subjects dead after a slow asphyxiation showed 68.2+/-7.1 alveolar macrophages per section (p<0.001). Interstitial macrophages were also frequently present. No differences are detectable in the number of polynuclear giant cells between rapidly and slowly asphyxiated human lungs. The number of alveolar and interstitial macrophages per section can be considered as a further histological evidence of a slow asphyxia and can differentiate a slow asphyxia from an acute one.
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin
2016-05-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.
AMBIENT PARTICULATE MATTER DECREASED IN HUMAN ALVEOLAR MACHROPHAGE CYTOKINE RELEASE
Human exposure to ambient airborne particulate matter (PM) is associated with cardiopulmonary mortality and morbidity, including increased hospitalizations for lung infection. Normal lung immune responses to bacterial infection include alveolar macrophage cytokine production and...
de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo
2017-06-24
Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5 AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different mechanisms of action of AD-MSCs versus their EVs.
S-nitrosoglutathione reductase in human lung cancer.
Marozkina, Nadzeya V; Wei, Christina; Yemen, Sean; Wallrabe, Horst; Nagji, Alykhan S; Liu, Lei; Morozkina, Tatiana; Jones, David R; Gaston, Benjamin
2012-01-01
S-Nitrosoglutathione (GSNO) reductase regulates cell signaling pathways relevant to asthma and protects cells from nitrosative stress. Recent evidence suggests that this enzyme may prevent human hepatocellular carcinoma arising in the setting of chronic hepatitis. We hypothesized that GSNO reductase may also protect the lung against potentially carcinogenic reactions associated with nitrosative stress. We report that wild-type Ras is S-nitrosylated and activated by nitrosative stress and that it is denitrosylated by GSNO reductase. In human lung cancer, the activity and expression of GSNO reductase are decreased. Further, the distribution of the enzyme (including its colocalization with wild-type Ras) is abnormal. We conclude that decreased activity of GSNO reductase could leave the human lung vulnerable to the oncogenic effects of nitrosative stress, as is the case in the liver. This potential should be considered when developing therapies that inhibit pulmonary GSNO reductase to treat asthma and other conditions.
Creating clones, kids & chimera: liberal democratic compromise at the crossroads.
Adams, Nathan A
2004-01-01
The objective of this article is to find middle ground between the supporters and opponents of biotechnology by perpetuating the existing legal compromise pertaining to the complete range of health and welfare doctrines relevant to the biotechnological industry. The author aspires neither to add to nor detract from this liberal democratic consensus, but to preserve its constitutive balance between positivism and natural law and over-regulation and under-regulation in the hopes of stabilizing new political fault lines developing around the few biotechnological innovations already grabbing headlines. The most feasible solution is to extend the existing liberal democratic compromise with respect to equal protection, reproductive rights, the First Amendment, human subject experimentation, patent law, and parental rights. This includes banning or monopolizing certain biotechnologies and extending substantive special respect to the ex vivo living human embryo. Biotechnology must not be left to regulate itself.
76 FR 21387 - National Heart, Lung, and Blood Institute;
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
78 FR 42967 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special.../DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge [[Page 42968
ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS
Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...
Nayak, Deepak K; Zhou, Fangyu; Xu, Min; Huang, Jing; Tsuji, Moriya; Yu, Jinsheng; Hachem, Ramsey; Gelman, Andrew E; Bremner, Ross M; Smith, Michael A; Mohanakumar, Thalachallour
2017-07-12
Chronic rejection significantly limits long-term success of solid organ transplantation. De novo donor-specific antibodies (DSAs) to mismatched donor human leukocyte antigen after human lung transplantation predispose lung grafts to chronic rejection. We sought to delineate mediators and mechanisms of DSA pathogenesis and to define early inflammatory events that trigger chronic rejection in lung transplant recipients and obliterative airway disease, a correlate of human chronic rejection, in mouse. Induction of transcription factor zinc finger and BTB domain containing protein 7a (Zbtb7a) was an early response critical in the DSA-induced chronic rejection. A cohort of human lung transplant recipients who developed DSA and chronic rejection demonstrated greater Zbtb7a expression long before clinical diagnosis of chronic rejection compared to nonrejecting lung transplant recipients with stable pulmonary function. Expression of DSA-induced Zbtb7a was restricted to alveolar macrophages (AMs), and selective disruption of Zbtb7a in AMs resulted in less bronchiolar occlusion, low immune responses to lung-restricted self-antigens, and high protection from chronic rejection in mice. Additionally, in an allogeneic cell transfer protocol, antigen presentation by AMs was Zbtb7a-dependent where AMs deficient in Zbtb7a failed to induce antibody and T cell responses. Collectively, we demonstrate that AMs play an essential role in antibody-induced pathogenesis of chronic rejection by regulating early inflammation and lung-restricted humoral and cellular autoimmunity. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Armstrong, Susan M.; Wang, Changsen; Tigdi, Jayesh; Si, Xiaoe; Dumpit, Carlo; Charles, Steffany; Gamage, Asela; Moraes, Theo J.; Lee, Warren L.
2012-01-01
Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza. PMID:23115643
Walsh, D A; Salmon, M; Featherstone, R; Wharton, J; Church, M K; Polak, J M
1994-01-01
1. The distribution and characteristics of tachykinin NK1 binding sites have been compared in human and guinea pig lung using quantitative in vitro receptor autoradiography with [125I]-Bolton Hunter-labelled substance P ([125I]-BH-SP). In addition, the effects on these sites of ovalbumin sensitization and challenge have been determined in guinea pig lung. 2. [125I]-BH-SP bound specifically and with high affinity to microvascular endothelium in both human and guinea pig lung, but to bronchial smooth muscle and pulmonary artery media in only guinea pig lung. 3. Specific binding of [125I]-BH-SP to guinea pig bronchial smooth muscle was positively correlated with airway diameter in the range 150-800 microns and was less dense in trachea than in main bronchi. 4. [125I]-BH-SP binding was inhibited by tachykinins with rank orders of affinity of SP > NKA > NKB (human microvessels) and SP > NKA = NKB (guinea pig bronchi and pulmonary arteries). NKA displayed a higher affinity for [125I]-BH-SP binding sites in human microvessels than in guinea pig tissues (P < 0.0001), indicating differences in selectivity for tachykinins between human and guinea pig NK1 receptors. 5. In both human and guinea pig lung, [125I]-BH-SP binding was inhibited by the specific tachykinin receptor antagonists FK888 (NK1 selective antagonist) and FK224 (mixed NK1/NK2 antagonist), with FK888 displaying equal affinity to SP and > 500 times higher affinity than FK224. SP, NKA, NKB and FK888 exhibited similar affinities for [125I]-BH-SP binding sites in both guinea pig arteries and bronchi.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 PMID:7534186
Modeling pressure relationships of inspired air into the human lung bifurcations through simulations
NASA Astrophysics Data System (ADS)
Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana
2018-03-01
Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.
Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou
2018-01-08
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.
Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection
Nguyen, Bao-Ngoc H.; Azimzadeh, Agnes M.; Schroeder, Carsten; Buddensick, Thomas; Zhang, Tianshu; Laaris, Amal; Cochrane, Megan; Schuurman, Henk-Jan; Sachs, David H.; Allan, James S.; Pierson, Richard N.
2012-01-01
Background Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. Methods We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF+/+) pig lungs. Results GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF+/+ lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF+/+ lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF+/+ lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. Conclusions In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms. PMID:21496117
Genetic Modification of the Lung Directed Toward Treatment of Human Disease.
Sondhi, Dolan; Stiles, Katie M; De, Bishnu P; Crystal, Ronald G
2017-01-01
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Chang, Yun Sil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Oh, Wonil; Yang, Yoon Sun; Park, Won Soon
2011-01-01
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this preclinical translation study was to optimize the dose of human UCB-derived MSCs in attenuating hyperoxia-induced lung injury in newborn rats. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (95% oxygen) or normoxia after birth for 14 days. Three different doses of human UCB-derived MSCs, 5 × 10(3) (HT1), 5 × 10(4) (HT2), and 5 × 10(5) (HT3), were delivered intratracheally at postnatal day (P) 5. At P14, lungs were harvested for analyses including morphometry for alveolarization, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining, myeoloperoxidase activity, mRNA level of tumor necross factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and transforming growth factor-β (TGF-β), human glyceradehyde-3-phosphate dehydrogenase (GAPDH), and p47(phox), and collagen levels. Increases in TUNEL-positive cells were attenuated in all transplantation groups. However, hyperoxia-induced lung injuries, such as reduced alveolarization, as evidenced by increased mean linear intercept and mean alveolar volume, and increased collagen levels were significantly attenuated in both HT2 and HT3, but not in HT1, with better attenuation in HT3 than in HT2. Dose-dependent human GAPDH expression, indicative of the presence of human RNA in lung tissue, was observed only in the transplantation groups, with higher expression in HT3 than in HT2, and higher expression in HT2 than in HT1. Hyperoxia-induced inflammatory responses such as increased myeloperoxidase acitivity, mRNA levels of TNF-α, IL-1β, IL-6, and TGF-β of the lung tissue, and upregulation of both cytosolic and membrane p47(phox), indicative of oxidative stress, were significantly attenuated in both HT2 and HT3 but not in HT1. These results demonstrate that intratracheal transplantation of human UCB-derived MSCs with appropriate doses may attenuate hyperoxia-induced lung injury through active involvement of these cells in modulating host inflammatory responses and oxidative stress in neonatal rats.
76 FR 16631 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... of Committee: National Heart, Lung, and Blood Institute Special Emphasis Panel; Severe Asthma... Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7186...
75 FR 4092 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Scientific Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge...
76 FR 30372 - National Heart, Lung, and Blood Institute; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review... Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7190, Bethesda, MD...
76 FR 1186 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Heart, Lung, and Blood Institute Special Emphasis Panel, Research Project In Organ Failure. Date...
78 FR 12767 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood....D., Scientific Review Officer, Office of Scientific Review/DERA, National, Heart, Lung, and Blood...
76 FR 30371 - National Heart, Lung, and Blood Institute; Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...: Shelley S. Sehnert, PhD, Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung...
77 FR 18252 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
77 FR 9670 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...., Scientific Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge...
77 FR 16843 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
SEGEL: A Web Server for Visualization of Smoking Effects on Human Lung Gene Expression.
Xu, Yan; Hu, Brian; Alnajm, Sammy S; Lu, Yin; Huang, Yangxin; Allen-Gipson, Diane; Cheng, Feng
2015-01-01
Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information for drug development against smoking-related diseases. The SEGEL web server is available online at http://www.chengfeng.info/smoking_database.html.
Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R
2014-01-01
The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.
Hauschild, Daniela Barbieri; Barbosa, Eliana; Moreira, Emilia Addison Machado; Ludwig Neto, Norberto; Platt, Vanessa Borges; Piacentini Filho, Eduardo; Wazlawik, Elisabeth; Moreno, Yara Maria Franco
2016-06-01
(1) To compare nutrition and hydration status between a group of children/adolescents with cystic fibrosis (CFG; n = 46; median age, 8.5 years) and a control group without cystic fibrosis (CG). (2) To examine the association of nutrition and hydration status with lung function in the CFG. A cross-sectional study. Nutrition screening, anthropometric parameters, and bioelectrical impedance analysis (BIA) were assessed. The z scores for body mass index for age, height for age, mid upper arm circumference, triceps and subscapular skinfold thickness, mid upper arm muscle area, resistance/height, and reactance/height were calculated. Bioelectrical impedance vector analysis was conducted. Forced expiratory volume in 1 second <80% was considered lung function impairment. An adjusted logistic regression was applied (P < .05). In the CFG, lung function impairment was observed in 51.1%. All anthropometric parameters were lower, and the mean z-resistance/height and z-reactance/height were higher in the CFG (P < .05) compared with the CG. In the CFG, 43% were severely/mildly dehydrated, while none were in the CG (P = .007). In the CFG, there was an association between high nutrition risk-via nutrition screening (odds ratio [OR], 22.28; P < .05), lower values of anthropometric parameters, higher z-resistance/height (OR, 2.23; P < .05) and z-reactance/height (OR, 1.81; P < .05), and dehydration (OR, 4.94; P < .05)-and lung function impairment. The CFG exhibited a compromised nutrition status assessed by anthropometric and BIA parameters. Nutrition screening, anthropometric and BIA parameters, and hydration status were associated with lung function. © 2016 American Society for Parenteral and Enteral Nutrition.
Woodford, Katrina; Panettieri, Vanessa; Ruben, Jeremy D; Senthi, Sashendra
2016-05-01
Intensity modulated radiotherapy (IMRT) is routinely utilized in the treatment of locally advanced non-small cell lung cancer (NSCLC). RTOG 0617 found that overall survival was impacted by increased low (5 Gy) and intermediate (30 Gy) cardiac doses. We evaluated the impact of esophageal-sparing IMRT on cardiac doses with and without the heart considered in the planning process and predicted toxicity compared to 3D-conventional radiotherapy (3DCRT). Ten consecutive patients with N2 Stage III NSCLC treated to 60 Gy in 30 fractions, between February 2012 and September 2014, were evaluated. For each patient, 3DCRT and esophageal-sparing IMRT plans were generated. IMRT plans were then created with and without the heart considered in the optimization process. To compare plans, the dose delivered to 95% and 99% of the target (D95% and D99%), and doses to the esophagus, lung and heart were compared by determining the volume receiving X dose (VXGy) and the normal tissue complication probability (NTCP) calculated. IMRT reduced maximum esophagus dose to below 60 Gy in all patients and produced significant reductions to V50Gy, V40Gy and esophageal NTCP. The cost of this reduction was a non-statistically, non-clinically significant increase in low dose (5 Gy) lung exposure that did not worsen lung NTCP. IMRT plans produced significant cardiac sparing, with the amount of improvement correlating to the amount of heart overlapping with the target. When included in plan optimization, for selected patients further sparing of the heart and improvement in heart NTCP was possible. Esophageal-sparing IMRT can significantly spare the heart even if it is not considered in the optimization process. Further sparing can be achieved if plan optimization constrains low and intermediate heart doses, without compromising lung doses.
Aspergillosis and the role of mucins in cystic fibrosis.
Cowley, Abigail C; Thornton, David J; Denning, David W; Horsley, Alexander
2017-04-01
The prevalence of aspergillosis in CF patients has until recently been underestimated, but increasing evidence suggests that it may play an important role in the progression of CF lung disease. In healthy airways, Aspergillus fumigatus can be efficiently removed from the lung by mechanisms such as mucociliary clearance and cough. However, these mechanisms are defective in CF, allowing pathogens such as A. fumigatus to germinate and establish chronic infections within the airways. The precise means by which A. fumigatus contributes to CF lung disease remain largely unclear. As the first point of contact within the lung, and an important component of the innate immune system, it is likely that the mucus barrier plays an important role in this process. Study of the functional interplay between this vital protective barrier, and in particular its principal structural components, the polymeric gel-forming mucins, and CF pathogens such as A. fumigatus, is at an early stage. A. fumigatus protease activity has been shown to upregulate mucus production by inducing mucin mRNA and protein expression, and A. fumigatus proteases and glycosidases are able to degrade mucins. This may allow A. fumigatus to alter mucus barrier properties to promote fungal colonization of the airways and/or utilize mucins as a nutrient source. Moreover, conidial surface lectin binding to mucin glycans is a key aspect of clearance of Aspergillus from the lung in health but may be an important aspect of colonization, where mucociliary clearance is compromised, as in the CF lung. Here we discuss the nature of the mucus barrier and its mucin components in CF, and how they may be implicated in A. fumigatus infection. Pediatr Pulmonol 2017;52:548-555. © 2016 The Authors. Pediatric Pulmonology. Published by Wiley Periodicals, Inc. © 2016 The Authors. Pediatric Pulmonology Published by Wiley Periodicals, Inc.
Aspergillosis and the role of mucins in cystic fibrosis
Cowley, Abigail C.; Thornton, David J.; Denning, David W.
2016-01-01
Summary The prevalence of aspergillosis in CF patients has until recently been underestimated, but increasing evidence suggests that it may play an important role in the progression of CF lung disease. In healthy airways, Aspergillus fumigatus can be efficiently removed from the lung by mechanisms such as mucociliary clearance and cough. However, these mechanisms are defective in CF, allowing pathogens such as A. fumigatus to germinate and establish chronic infections within the airways. The precise means by which A. fumigatus contributes to CF lung disease remain largely unclear. As the first point of contact within the lung, and an important component of the innate immune system, it is likely that the mucus barrier plays an important role in this process. Study of the functional interplay between this vital protective barrier, and in particular its principal structural components, the polymeric gel‐forming mucins, and CF pathogens such as A. fumigatus, is at an early stage. A. fumigatus protease activity has been shown to upregulate mucus production by inducing mucin mRNA and protein expression, and A. fumigatus proteases and glycosidases are able to degrade mucins. This may allow A. fumigatus to alter mucus barrier properties to promote fungal colonization of the airways and/or utilize mucins as a nutrient source. Moreover, conidial surface lectin binding to mucin glycans is a key aspect of clearance of Aspergillus from the lung in health but may be an important aspect of colonization, where mucociliary clearance is compromised, as in the CF lung. Here we discuss the nature of the mucus barrier and its mucin components in CF, and how they may be implicated in A. fumigatus infection. Pediatr Pulmonol 2017;52:548–555. © 2016 The Authors. Pediatric Pulmonology. Published by Wiley Periodicals, Inc. PMID:27870227
Baltrusaitis, Jonas; Powers, Linda S.; Borcherding, Jennifer A.; Caraballo, Juan C.; Mudunkotuwa, Imali; Peate, David W.; Walters, Katherine; Thompson, Jay M.; Grassian, Vicki H.; Gudmundsson, Gunnar; Comellas, Alejandro P.
2013-01-01
Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals. PMID:23478268
Monick, Martha M; Baltrusaitis, Jonas; Powers, Linda S; Borcherding, Jennifer A; Caraballo, Juan C; Mudunkotuwa, Imali; Peate, David W; Walters, Katherine; Thompson, Jay M; Grassian, Vicki H; Gudmundsson, Gunnar; Comellas, Alejandro P
2013-06-01
On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20-100 µg/cm(2)), primary rat and human alveolar macrophages (5-20 µg/cm(2)), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals.
Medical waste tissues - breathing life back into respiratory research.
BéruBé, Kelly A
2013-12-01
With the advent of biobanks to store human lung cells and tissues from patient donations and from the procurement of medical waste tissues, it is now possible to integrate (both spatially and temporally) cells into anatomically-correct and physiologically-functional tissues. Modern inhalation toxicology relies on human data on exposure and adverse effects, to determine the most appropriate risk assessments and mitigations for beneficial respiratory health. A point in case is the recapitulation of airway tissue, such as the bronchial epithelium, to investigate the impact of air pollution on human respiratory health. The bronchi are the first point of contact for inhaled substances that bypass defences in the upper respiratory tract. Animal models have been used to resolve such inhalation toxicology hazards. However, the access to medical waste tissues has enabled the Lung Particle Research Group to tissue-engineer the Micro-Lung (TM) and Metabo-Lung(TM) cell culture models, as alternatives to animals in basic research and in the safety testing of aerosolised consumer goods. The former model favours investigations focused on lung injury and repair mechanisms, and the latter model provides the element of metabolism, through the co-culturing of lung and liver (hepatocyte) cells. These innovations represent examples of the animal-free alternatives advocated by the 21st century toxicology paradigm, whereby human-derived cell/tissue data will lead to more-accurate and more-reliable public health risk assessments and therapeutic mitigations (e.g. exposure to ambient air pollutants and adverse drug reactions) for lung disease. 2013 FRAME.
Wang, Yunshan; Zhang, Pengju; Liu, Ziming; ...
2014-11-21
CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpressionmore » of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.« less
Oudni-M'rad, Myriam; Cabaret, Jacques; M'rad, Selim; Chaâbane-Banaoues, Raja; Mekki, Mongi; Zmantar, Sofien; Nouri, Abdellatif; Mezhoud, Habib; Babba, Hamouda
2016-10-01
G1 genotype of Echinococcus granulosus sensu stricto is the major cause of hydatidosis in Northern Africa, Tunisia included. The genetic relationship between lung and liver localization were studied in ovine, bovine and human hydatid cysts in Tunisia. Allozyme variation and single strand conformation polymorphism were used for genetic differentiation. The first cause of genetic differentiation was the host species and the second was the localization (lung or liver). The reticulated genetic relationship between the liver or the lung human isolates and isolates from bovine lung, is indicative of recombination (sexual reproduction) or lateral genetic transfer. The idea of two specialized populations (one for the lung one for the liver) that are more or less successful according to host susceptibility is thus proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo
2018-04-01
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.
Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang
2014-01-01
Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.
Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang
2014-01-01
Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis. PMID:24897301
The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.
Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville
2006-01-01
Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.
Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M
2014-01-01
Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.
Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.
Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim
2008-05-01
Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.
2012-01-01
Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391
Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K
2013-05-01
Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.
2013-05-01
Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less
Glasser, S W; Korfhagen, T R; Wert, S E; Bruno, M D; McWilliams, K M; Vorbroker, D K; Whitsett, J A
1991-10-01
Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.
Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells
Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Olive Ngalame, Ntube N.; Waalkes, Michael P.
2013-01-01
Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell’s ability to adapt to chronic cadmium exposure. PMID:23811327
Malondialdehyde-acetaldehyde (MAA) adducted protein inhalation causes lung injury
Wyatt, T. A.; Kharbanda, K. K.; McCaskill, M. L.; Tuma, D. J.; Yanov, D.; DeVasure, J.; Sisson, J. H.
2011-01-01
In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 via the activation of protein kinase C epsilon (PKCε). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30 µL of 50 µg/mL BSA-MAA, or unadducted BSA for up to 3 wk. Likewise, human lung surfactant proteins A and D (SPA, SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCε activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in un-adducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 wk, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, KC, which is a functional homologue to human interleukin-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCε. These data support that MAA-adducted protein induces a pro-inflammatory response in the lungs and that lung surfactant protein is a biologically relevant target for malondialdehyde and acetaldehyde adduction. These data further implicate MAA-adduct formation as a potential mechanism for smoke and alcohol induced lung injury. PMID:21958604
76 FR 31617 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... Emphasis Panel, Utilization of a Human Lung Tissue Resource for Vascular Research. Date: June 23, 2011... Research; 93.838, Lung Diseases Research; 93.839, Blood Diseases and Resources Research, National... Sunnarborg, PhD, Scientific Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute...
77 FR 14024 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
76 FR 29772 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7192, Bethesda...
77 FR 24973 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, National Institutes...
77 FR 48526 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
78 FR 69432 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
77 FR 28612 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee National Heart, Lung, and Blood... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
76 FR 47218 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
78 FR 69431 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Lung, and Blood Institute, 6701 Rockledge Drive, Room 7186, Bethesda, MD 20892-7924, 301-594-7947...
78 FR 20670 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
77 FR 63844 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
78 FR 69431 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Ph.D., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood...
78 FR 37836 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
78 FR 60299 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
77 FR 71428 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special..., Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room...
78 FR 63994 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7200, Bethesda, MD 20892, 301-496-9659...
77 FR 69870 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group... Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7196, Bethesda, MD...
78 FR 63995 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Scientific Review/DERA, National Heart, Lung, and Blood Institute, National Institutes of Health, 6701...
76 FR 2128 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special..., Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room...
78 FR 57866 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7200, Bethesda, MD 20892, 301-496-9659...
75 FR 65498 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Johnson, PhD, Scientific Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute...
77 FR 24728 - National Heart, Lung, and Blood Institute Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Review Officer, Office of Scientific Review/DERA, National, Heart, Lung, and Blood Institute, 6701...
78 FR 66031 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Pintucci, Ph.D., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and...
75 FR 5090 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room...
78 FR 2680 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special Emphasis Panel; K23... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
77 FR 10538 - National Heart, Lung, and Blood Institute Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
78 FR 22272 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
77 FR 6809 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
78 FR 7792 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7184, Bethesda, MD 20892-7924, 301...
77 FR 31863 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
78 FR 32408 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group NHLBI... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
78 FR 66025 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
77 FR 31863 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7198, Bethesda, MD 20892, 301-435-0297...
77 FR 13134 - National Heart, Lung, and Blood Institute: Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Goltry, Ph.D., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and...
78 FR 60299 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group..., Office of Scientific Review/DERA National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room...
78 FR 7795 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special..., National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7206, Bethesda, MD 20892-7924, 301...
76 FR 78285 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...: Kristin Goltry, Ph.D., Scientific Review Officer, Review Branch, DERA, National Heart, Lung, and Blood...
76 FR 40923 - National Heart, Lung, and Blood Institute Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Sleep Disorders Research; 93.837, Heart and Vascular Diseases Research; 93.838, Lung Diseases Research...
75 FR 80831 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7182, Bethesda, MD 20892-7924, 301-435-0277...
76 FR 57062 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood.../DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7200, Bethesda, MD 20892...
77 FR 38849 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and... Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7190, Bethesda, MD 20892-7924, 301-435-2222...
78 FR 29375 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood.../DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7202, Bethesda, MD 20892...
76 FR 11253 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
77 FR 60705 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
78 FR 31952 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7198, Bethesda, MD 20892, 301-435...
76 FR 12362 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Ph.D., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood...
77 FR 69639 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood.... Johnson, Ph.D., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and...
76 FR 19103 - National Heart, Lung, and Blood Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and..., Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, 6701... Assistance Program Nos. 93.233, National Center for Sleep Disorders Research; 93.837, Heart and [[Page 19104...
78 FR 12073 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
78 FR 27411 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7202, Bethesda, MD 20892, 301-435...
77 FR 61421 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special..., National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7196, Bethesda, MD 20892, 301-435...
77 FR 32651 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group.../DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7190, Bethesda, MD 20892...
75 FR 71450 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., PhD, Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood...
77 FR 59939 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special..., Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room...
78 FR 7791 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7206, Bethesda, MD...
75 FR 48979 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7182, Bethesda...
77 FR 33473 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
78 FR 12766 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Scientific Review/DERA, National, Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7182, Bethesda...
77 FR 30542 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Nagelin, Ph.D., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and...
77 FR 59939 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group... Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7190, Bethesda, MD 20892-7924, 301-435-2222...
77 FR 12602 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special..., National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7180, Bethesda, MD 20892-7924, 301...
78 FR 60299 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... of Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7186...
76 FR 42718 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7184, Bethesda...
78 FR 42970 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special... Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive...
75 FR 4829 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group.../DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7190, Bethesda, MD 20892...
78 FR 33428 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review.../DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7190, Bethesda, MD 20892...
77 FR 36565 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special..., Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room...
77 FR 73037 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
..., Heart and Vascular Diseases Research; 93.838, Lung Diseases Research; 93.839, Blood Diseases and... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...
77 FR 3479 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... Sleep Disorders Research; 93.837, Heart and Vascular Diseases Research; 93.838, Lung Diseases Research... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farías, R. O.; Trivillin, V. A.; Portu, A. M.
Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Twomore » kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. Conclusions: This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.« less
Farías, R O; Garabalino, M A; Ferraris, S; Santa María, J; Rovati, O; Lange, F; Trivillin, V A; Monti Hughes, A; Pozzi, E C C; Thorp, S I; Curotto, P; Miller, M E; Santa Cruz, G A; Bortolussi, S; Altieri, S; Portu, A M; Saint Martin, G; Schwint, A E; González, S J
2015-07-01
Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (l)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.
BIOMARKERS OF HEALTH EFFECTS IN THE HUMAN LUNG
Little information exists about retained particle/metal burden in human lung and associated biomarkers of internal dose/indicators of health effects. We have shown that anatomical remodeling of the terminal and respiratory bronchioles occur at sites of particle deposition. We ext...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, M.; McLeod, R.; Young, Q.
Pneumocystis pneumonia presented in a homosexual with fever, a normal chest radiograph, and pulmonary gallium uptake. Bronchial washings yielded Mycobaterium tuberculosis, but despite antituberculosis therapy he remained febrile, and gallium uptake in the lung increased. Subsequently, silver stain of transbronchial lung biopsy obtained 2 months earlier at the time that tuberculosis was diagnosed showed many Pneumocystis cysts in alveolar spaces. In contrast to Pneumocystis cysts in infected lung tissue from other humans, our patient's Pneumocystis cysts reacted more avidly with antiserum to rat Pneumocystis than with antiserum to human pneumocystis, raising the possibility that organisms that infect humans may havemore » varied surface antigenic properties.« less
Liu, Shan-Lu; Halbert, Christine L.; Miller, A. Dusty
2004-01-01
Jaagsiekte sheep retrovirus (JSRV) infects lung epithelial cells in sheep, and oncoretroviral vectors bearing JSRV Env can mediate transduction of human cells, suggesting that such vectors might be useful for lung-directed gene therapy. Here we show that JSRV Env can also efficiently pseudotype a human immunodeficiency virus type 1-based lentiviral vector, a more suitable vector for transduction of slowly dividing lung epithelial cells. We created several chimeric Env proteins that, unlike the parental Env, do not transform rodent fibroblasts but are still capable of pseudotyping lentiviral and oncoretroviral vectors. PMID:14963173
Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Caillibotte, Georges
2016-01-01
A quantitative description of the morphology of lung structure is essential prior to any form of predictive modeling of ventilation or aerosol deposition implemented within the lung. The human lung is a very complex organ, with airway structures that span two orders of magnitude and having a multitude of interfaces between air, tissue and blood. As such, current medical imaging protocols cannot provide medical practitioners and researchers with in-vivo knowledge of deeper lung structures. In this work a detailed algorithm for the generation of an individualized 3D deterministic model of the conducting part of the human tracheo-bronchial tree is described. Distinct initial conditions were obtained from the high-resolution computed tomography (HRCT) images of seven healthy volunteers. The algorithm developed is fractal in nature and is implemented as a self-similar space sub-division procedure. The expansion process utilizes physiologically realistic relationships and thresholds to produce an anatomically consistent human airway tree. The model was validated through extensive statistical analysis of the results and comparison of the most common morphological features with previously published morphometric studies and other equivalent models. The resulting trees were shown to be in good agreement with published human lung geometric characteristics and can be used to study, among other things, structure-function relationships in simulation studies.
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-01-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587
2014-10-01
AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b
21 CFR 900.22 - Standards for certification agencies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... facility has been compromised and may present a serious risk to human health. (g) Patient notification... extent that it may present a serious risk to human health. (h) Electronic data transmission. There shall...
21 CFR 900.22 - Standards for certification agencies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... facility has been compromised and may present a serious risk to human health. (g) Patient notification... extent that it may present a serious risk to human health. (h) Electronic data transmission. There shall...
21 CFR 900.22 - Standards for certification agencies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... facility has been compromised and may present a serious risk to human health. (g) Patient notification... extent that it may present a serious risk to human health. (h) Electronic data transmission. There shall...
Time-and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells
2007-07-01
lectin, ricin communis agglutinin, which is not directly cytotoxic but does have an affinity for red blood cells and can lead to agglutination and...Time- and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells Sharmaine Ramasamy and David Proll Human...Disease Control (CDC) Select Agent List. Using human small airway epithelial cells , this is the first study to investigate the time- and dose-dependent
Lung function indices of children exposed to wood smoke in a fishing port in South-South Nigeria.
Oloyede, Iso P; Ekrikpo, Udeme E; Ekanem, Emmanuel E
2013-10-01
Children in the warm rain forest are at risk of having their lung function compromised by a variety of factors, including smoke from wood fires. A total of 358 children from a fishing port and 400 children living in a farm settlement were tested to determine their peak expiratory flow rate (PEFR), forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), forced expiratory volume in 1 s per cent and forced expiratory flow between 25 and 75%. The values for the PEFR, FVC, FEV1, forced expiratory volume in 1 s per cent and forced expiratory flow between 25 and 75% of the subjects were significantly lower than those of the controls (P value for males = <0.001, 0.01, 0.002, 0.01 and <0.001, respectively, whereas for their female counterparts = <0.001, 0.003, 0.001, 0.04 and <0.001, respectively). These deficits were observed to be more with increasing duration of exposure to wood smoke for PEFR, FVC and FEV1. Chronic exposure to fish drying using firewood can impair lung function in children. There is a need for alternative methods of fish preservation for those engaged in fish drying.
Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis.
Kato, Kosuke; Zemskova, Marina A; Hanss, Alec D; Kim, Marianne M; Summer, Ross; Kim, Kwang Chul
2017-11-25
MUC1 (MUC in human and Muc in animals) is a membrane-tethered mucin expressed on the apical surface of lung epithelial cells. However, in the lungs of patients with interstitial lung disease, MUC1 is aberrantly expressed in hyperplastic alveolar type II epithelial (ATII) cells and alveolar macrophages (AM), and elevated levels of extracellular MUC1 are found in bronchoalveolar lavage (BAL) fluid and the serum of these patients. While pro-fibrotic effects of extracellular MUC1 have recently been described in cultured fibroblasts, the contribution of MUC1 to the pathobiology of pulmonary fibrosis is unknown. In this study, we hypothesized that MUC1 deficiency would reduce susceptibility to pulmonary fibrosis in a mouse model of silicosis. We employed human MUC1 transgenic mice, Muc1 deficient mice and wild-type mice on C57BL/6 background in these studies. Some mice received a one-time dose of crystalline silica instilled into their oropharynx in order to induce pulmonary fibrosis and assess the effects of Muc1 deficiency on fibrotic and inflammatory responses in the lung. As previously described in other mouse models of pulmonary fibrosis, we found that extracellular MUC1 levels were markedly increased in whole lung tissues, BALF and serum of human MUC1 transgenic mice after silica. We also detected an increase in total MUC1 levels in the lungs of these mice, indicating that production as well as release contributed to elevated levels after lung injury. Immunohistochemical staining revealed that increased MUC1 expression was mostly confined to ATII cells and AMs in areas of fibrotic remodeling, illustrating a pattern similar to the expression of MUC1 in human fibrotic lung tissues. However, contrary to our hypothesis, we found that Muc1 deficiency resulted in a worsening of fibrotic remodeling in the mouse lung as judged by an increase in number of silicotic nodules, an increase in lung collagen deposition and an increase in the severity of pulmonary inflammation. Altogether, our results indicate that Muc1 has anti-fibrotic properties in the mouse lung and suggest that elevated levels of MUC1 in patients with interstitial lung disease may serve a protective role, which aims to limit the severity of tissue remodeling in the lung. Copyright © 2017. Published by Elsevier Inc.
HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG
2016-01-01
The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273
Lung cancer exosomes as drivers of epithelial mesenchymal transition
Rahman, Mohammad A.; Barger, Jennifer F.; Lovat, Francesca; Gao, Min; Otterson, Gregory A.; Nana-Sinkam, Patrick
2016-01-01
Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells. PMID:27363026
Lung cancer exosomes as drivers of epithelial mesenchymal transition.
Rahman, Mohammad A; Barger, Jennifer F; Lovat, Francesca; Gao, Min; Otterson, Gregory A; Nana-Sinkam, Patrick
2016-08-23
Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells.
Diesel engine exhaust and lung cancer: an unproven association.
Muscat, J E; Wynder, E L
1995-01-01
The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant associations. It can be concluded that short-term exposure to diesel engine exhaust (< 20 years) does not have a causative role in human lung cancer. There is statistical but not causal evidence that long-term exposure to diesel exhaust (> 20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. Images p812-a PMID:7498093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu-wen Tan; Ying Jin; Hui Yu
2013-10-31
We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less
Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli
2017-08-01
Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.
Viral Infection of Human Lung Macrophages Increases PDL1 Expression via IFNβ
Staples, Karl J.; Nicholas, Ben; McKendry, Richard T.; Spalluto, C. Mirella; Wallington, Joshua C.; Bragg, Craig W.; Robinson, Emily C.; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M. A.
2015-01-01
Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production. PMID:25775126
Viral infection of human lung macrophages increases PDL1 expression via IFNβ.
Staples, Karl J; Nicholas, Ben; McKendry, Richard T; Spalluto, C Mirella; Wallington, Joshua C; Bragg, Craig W; Robinson, Emily C; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M A
2015-01-01
Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.
Ahn, So Yoon; Chang, Yun Sil; Kim, Soo Yoon; Sung, Dong Kyung; Kim, Eun Sun; Rime, So Yub; Yu, Wook Joon; Choi, Soo Jin; Oh, Won Il; Park, Won Soon
2013-03-01
This study was performed to evaluate the long-term effects and safety of intratracheal (IT) transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in neonatal hyperoxic lung injury at postnatal day (P)70 in a rat model. Newborn Sprague Dawley rat pups were subjected to 14 days of hyperoxia (90% oxygen) within 10 hours after birth and allowed to recover at room air until sacrificed at P70. In the transplantation groups, hUCB-MSCs (5×10⁵) were administered intratracheally at P5. At P70, various organs including the heart, lung, liver, and spleen were histologically examined, and the harvested lungs were assessed for morphometric analyses of alveolarization. ED-1, von Willebrand factor, and human-specific nuclear mitotic apparatus protein (NuMA) staining in the lungs and the hematologic profile of blood were evaluated. Impaired alveolar and vascular growth, which evidenced by an increased mean linear intercept and decreased amount of von Willebrand factor, respectively, and the hyperoxia-induced inflammatory responses, as evidenced by inflammatory foci and ED-1 positive alveolar macrophages, were attenuated in the P70 rat lungs by IT transplantation of hUCB-MSCs. Although rare, donor cells with human specific NuMA staining were persistently present in the P70 rat lungs. There were no gross or microscopic abnormal findings in the heart, liver, or spleen, related to the MSCs transplantation. The protective and beneficial effects of IT transplantation of hUCB-MSCs in neonatal hyperoxic lung injuries were sustained for a prolonged recovery period without any long-term adverse effects up to P70.
Kvist Reimer, Martina; Brange, Charlotte; Rosendahl, Alexander
2011-01-01
CCR8 immunity is generally associated with Th2 responses in allergic diseases. In this study, we demonstrate for the first time a pronounced attenuated influx of macrophages in ovalbumin (OVA)-challenged CCR8 knockout mice. To explore whether macrophages in human inflamed lung tissue also were CCR8 positive, human lung tissue from patients with chronic obstructive pulmonary disease (COPD) was evaluated. Indeed, CCR8 expression was pronounced in invading monocytes/macrophages from lungs of patients with Global Initiative for Obstructive Lung Disease (GOLD) stage IV COPD. Given this expression pattern, the functional role of CCR8 on human macrophages was evaluated in vitro. Human peripheral blood monocytes expressed low levels of CCR8, while macrophage colony-stimulating factor (M-CSF)-derived human macrophages expressed significantly elevated surface levels of CCR8. Importantly, CCL1 directly regulated the expression of CD18 and CD49b and hence influenced the adhesion capacity of human macrophages. CCL1 drives chemotaxis in M-CSF-derived macrophages, and this could be completely inhibited by lipopolysaccharide (LPS). Whereas both CCL1 and LPS monotreatment inhibited spontaneous superoxide release in macrophages, CCL1 significantly induced superoxide release in the presence of LPS in a dose-dependent manner. Finally, CCL1 induced production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and could inhibit LPS-induced cytokine production in a dose-dependent manner. Our data demonstrate, for the first time, the presence of CCR8 on inflammatory macrophages in human COPD lung tissue. Importantly, the functional data from human macrophages suggest a potential cross talk between the CCR8 and the Toll-like receptor 4 (TLR4) pathways, both of which are present in COPD patients. PMID:21976223
Reimer, Martina Kvist; Brange, Charlotte; Rosendahl, Alexander
2011-12-01
CCR8 immunity is generally associated with Th2 responses in allergic diseases. In this study, we demonstrate for the first time a pronounced attenuated influx of macrophages in ovalbumin (OVA)-challenged CCR8 knockout mice. To explore whether macrophages in human inflamed lung tissue also were CCR8 positive, human lung tissue from patients with chronic obstructive pulmonary disease (COPD) was evaluated. Indeed, CCR8 expression was pronounced in invading monocytes/macrophages from lungs of patients with Global Initiative for Obstructive Lung Disease (GOLD) stage IV COPD. Given this expression pattern, the functional role of CCR8 on human macrophages was evaluated in vitro. Human peripheral blood monocytes expressed low levels of CCR8, while macrophage colony-stimulating factor (M-CSF)-derived human macrophages expressed significantly elevated surface levels of CCR8. Importantly, CCL1 directly regulated the expression of CD18 and CD49b and hence influenced the adhesion capacity of human macrophages. CCL1 drives chemotaxis in M-CSF-derived macrophages, and this could be completely inhibited by lipopolysaccharide (LPS). Whereas both CCL1 and LPS monotreatment inhibited spontaneous superoxide release in macrophages, CCL1 significantly induced superoxide release in the presence of LPS in a dose-dependent manner. Finally, CCL1 induced production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and could inhibit LPS-induced cytokine production in a dose-dependent manner. Our data demonstrate, for the first time, the presence of CCR8 on inflammatory macrophages in human COPD lung tissue. Importantly, the functional data from human macrophages suggest a potential cross talk between the CCR8 and the Toll-like receptor 4 (TLR4) pathways, both of which are present in COPD patients.
2011-01-01
Background Lung cancers consist of four major types that and for clinical-pathological reasons are often divided into two broad categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). All major histological types of lung cancer are associated with smoking, although the association is stronger for SCLC and squamous cell carcinoma than adenocarcinoma. To date, epidemiological studies have identified several environmental, genetic, hormonal and viral factors associated with lung cancer risk. It has been estimated that 15-25% of human cancers may have a viral etiology. The human papillomavirus (HPV) is a proven cause of most human cervical cancers, and might have a role in other malignancies including vulva, skin, oesophagus, head and neck cancer. HPV has also been speculated to have a role in the pathogenesis of lung cancer. To validate the hypothesis of HPV involvement in small cell lung cancer pathogenesis we performed a gene expression profile of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins. Methods Gene expression profile of SCLC has been performed using Agilent whole mouse genome (4 × 44k) representing ~ 41000 genes and mouse transcripts. Samples were obtained from two HPV16-E6/E7 transgenic mouse models and from littermate's normal lung. Data analyses were performed using GeneSpring 10 and the functional classification of deregulated genes was performed using Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com). Results Analysis of deregulated genes induced by the expression of E6/E7 oncoproteins supports the hypothesis of a linkage between HPV infection and SCLC development. As a matter of fact, comparison of deregulated genes in our system and those in human SCLC showed that many of them are located in the Aryl Hydrocarbon Receptor Signal transduction pathway. Conclusions In this study, the global gene expression of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins led us to identification of several genes involved in SCLC tumor development. Furthermore, our study reveled that the Aryl Hydrocarbon Receptor Signaling is the primarily affected pathway by the E6/E7 oncoproteins expression and that this pathway is also deregulated in human SCLC. Our results provide the basis for the development of new therapeutic approaches against human SCLC. PMID:21205295
Zhang, Qi-cheng; Pan, Zhen-hua; Liu, Bo-ning; Meng, Zhao-wei; Wu, Xiang; Zhou, Qing-hua; Xu, Ke
2017-01-01
Isothiocyanates, such as allyl isothiocya¬nate (AITC), benzyl isothiocyanate (BITC), phenethyl isothio¬cyanate (PEITC) and sulforaphane (SFN), are natural compounds abundant in cruciferous vegetables, which have substantial chemopreventive activities against various human malignancies. However, the mechanisms underlying the inhibition of tumor cell growth by isothiocyanates are not fully understood. Since autophagy has dual functions in cancer, in the present study we investigated the effects of BITC on autophagy induction in human lung cancer cells in vitro and in vivo. BITC (1–100 μmol/L) dose-dependently inhibited the growth of 3 different human lung cancer cell lines A549 (adenocarcinoma), H661 (large cell carcinoma) and SK-MES-1 (squamous cell carcinoma) with IC50 values of 30.7±0.14, 15.9±0.22 and 23.4±0.11 μmol/L, respectively. BITC (10–40 μmol/L) induced autophagy in the lung cancer cells, evidenced by the formation of acidic vesicular organelles (AVOs), the accumulation of LC3-II, the punctate pattern of LC3, and the expression of Atg5. Pretreatment with the autophagy inhibitor 3-MA (5 mmol/L) significantly enhanced the BITC-caused growth inhibition in the lung cancer cells. Furthermore, BITC (20–40 μmol/L) activated ER stress, as shown by the increased cytosolic Ca2+ level and the phosphorylation of the ER stress marker proteins PERK and eIF2α in the lung cancer cells. Pretreatment with the ER stress inhibitor 4-PBA (5 mmol/L) attenuated the autophagy induction and potentiated the BITC-induced cell growth inhibition. In nude mice bearing A549 xenografts, administration of BITC (100 mg·kg-1·d-1, ip) for 8 weeks markedly suppressed the lung tumor growth, and significantly enhanced both autophagy and ER stress in the tumor tissues. Our results demonstrate that BITC inhibits human lung cancer cell growth in vitro and in vivo. In addition, BITC induces autophagy in the lung cancer cells, which protects the cancer cells against the inhibitory action of BITC; the autophagy induction is mediated by the ER stress response. PMID:28112178
I Vivo Characterization of Ultrasonic Backscattering from Normal and Abnormal Lungs.
NASA Astrophysics Data System (ADS)
Jafari, Farhad
The primary goal of this project has been to characterize the lung tissue in its in vivo ultrasonic backscattering properties in normal human subjects, and study the changes in the lung echo characteristics under various pathological conditions. Such a characterization procedure is used to estimate the potential of ultrasound for providing useful diagnostic information about the superficial region of the lung. The results of this study may be divided into three categories: (1) This work has resulted in the ultrasonic characterization of lung tissue, in vivo, and has investigated the various statistical features of the lung echo properties in normal human subjects. The echo properties of the lungs are characterized with respect to the mean echo amplitude relative to a perfect reflector and the mean autocorrelation of normalized echo signals. (2) A theoretical model is developed to simulate the ultrasonic backscattering properties of the lung under normal and various simulated abnormal conditions. This model has been tested on various phantoms simulating the strong acoustic interactions of the lung. When applied to the lung this model has shown excellent agreement to experimental data gathered on a population of normal human subjects. By varying a few of the model parameters, the effect of changes in the lung structural parameters on the detected ultrasonic echoes is investigated. It is found that alveoli size changes of about 50 percent and concentration changes of 40 percent may produce spectral changes exceeding the variability exhibited by normal lungs. (3) Ultrasonic echoes from the lungs of 4 groups of patients were studied. The groups included patients with edema, emphysema, pneumothorax, and patients undergoing radiation therapy for treatment of lung cancer. Significant deviations from normal lung echo characteristics is observed in more than 80 percent of the patients studied. These deviations are intercompared and some qualitative associations between the echo characteristics on each patient group and their pulmonary pathology is made. It is concluded that the technique may provide a potential tool in detecting pulmonary abnormalities. More controlled patient studies, however, are indicated as necessary to determine the sensitivity of the ultrasound technique.
Trotta, Brian M; Stolin, Alexander V; Williams, Mark B; Gay, Spencer B; Brody, Alan S; Altes, Talissa A
2007-06-01
The purpose of this study was to assess the compromise between CT technical parameters and the accuracy of CT quantification of lung attenuation. Materials that simulate water (0 H), healthy lung (-650 H), borderline emphysematous lung (-820 H), and severely emphysematous lung (-1,000 H) were placed at both the base and the apex of the lung of an anthropomorphic phantom and outside the phantom. Transaxial CT images through the samples were obtained while the effective tube current was varied from 440 to 10 mAs, kilovoltage from 140 to 80 kVp, and slice thickness from 0.625 to 10 mm. Mean +/- SD attenuation within the samples and the standard quantitative chest CT measurements, the percentage of pixels with attenuation less than -910 H and 15th percentile of attenuation, were computed. Outside the phantom, variations in CT parameters produced less than 2.0% error in all measurements. Within the anthropomorphic phantom at 30 mAs, error in measurements was much larger, ranging from zero to 200%. Below approximately 80 mAs, mean attenuation became increasingly biased. The effects were most pronounced at the apex of the lungs. Mean attenuation of the borderline emphysematous sample of apex decreased 55 H as the tube current was decreased from 300 to 30 mAs. Both the 15th percentile of attenuation and percentage of pixels with less than -910 H attenuation were more sensitive to variations in effective tube current than was mean attenuation. For example, the -820 H sample should have 0% of pixels less than -910 H, which was true at 400 mA. At 30 mA in the lung apex, however, the measurement was highly inaccurate, 51% of pixels being below this value. Decreased kilovoltage and slice thickness had analogous, but lesser, effects. The accuracy of quantitative chest CT is determined by the CT acquisition parameters. There can be significant decreases in accuracy at less than 80 mAs for thin slices in an anthropomorphic phantom, the most pronounced effects occurring in the lung apex.
Moreno, Paula; Alvarez, Antonio; Illana, Jennifer; Espinosa, Dionisio; Baamonde, Carlos; Cerezo, Francisco; Algar, Francisco Javier; Salvatierra, Angel
2013-06-01
To determine whether lung retrieval from traumatic donors performed within 24 h of brain death has a negative impact on early graft function and survival after lung transplantation (LT), when compared with those retrieved after 24 h. Review of lung transplants performed from traumatic donors over a 17-year period. Recipients were distributed into two groups: transplants from traumatic donor lungs retrieved within 24 h of brain death (Group A), and transplants from traumatic donor lungs retrieved after 24 h of brain death (Group B). Demographic data of donors and recipients, early graft function, perioperative complications and mortality were compared between both groups. Among 356 lung transplants performed at our institution, 132 were from traumatic donors (70% male, 30% female). Group A: 73 (55%); Group B: 59 (45%). There were 53 single, 77 double, and 2 combined LT. Indications were emphysema in 41 (31%), pulmonary fibrosis in 31 (23%), cystic fibrosis in 38 (29%), bronchiectasis in 9 (7%) and other indications in 13 patients (10%). Donor and recipient demographic data, need or cardiopulmonary bypass, postoperative complications and Intensive Care Unit and hospital stay did not differ between groups. Primary graft dysfunction (A vs B): 9 (16%) vs 13 (26%) P = 0.17. PaO2/FiO2 24 h post-transplant (A vs B): 303 mmHg vs 288 mmHg (P = 0.57). Number of acute rejection episodes (A vs B): 0.93 vs 1.49 (P = 0.01). Postoperative intubation time (A vs B): 99 vs 100 h (P = 0.99). 30-day mortality (A vs B): 7 (10%) vs 2 (3.5%) (P = 0.13). Freedom from bronchiolitis obliterans syndrome (A vs B): 82, 72, 37, 22 vs 78, 68, 42, 15%, at 3, 5, 10 and 15 years, respectively (P = 0.889). Survival (A vs B): 65, 54, 46, 42 and 27 vs 60, 50, 45, 43 and 29% at 3, 5, 7, 10 and 15 years, respectively (P = 0.937). In our experience, early lung retrieval after brain death from traumatic donors does not adversely affect early and long-term outcomes after LT.
Yamamoto, Tokihiro; Kabus, Sven; Bal, Matthieu; Bzdusek, Karl; Keall, Paul J; Wright, Cari; Benedict, Stanley H; Daly, Megan E
2018-05-04
Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic image-guided planning for patients showing tumor regression and changes in regional ventilation during RT. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, N; D'Souza, W; Sornsen de Koste, J
2014-06-01
Purpose: Recently, there has been an interest in incorporating functional information in treatment planning especially in thoracic tumors. The rationale is that healthy lung regions need to be spared from radiation if possible to help achieve better control on toxicity. However, it is still unclear whether high functioning regions need to be spared or have more capacity to deal with the excessive radiation as compared to the compromised regions of the lung. Our goal with this work is to establish the tools by which we can establish a relationship between pre-treatment lung function, dose, and radiographic outcomes of lung toxicity.more » Methods: Treatment planning was performed using a single phase of a 4DCT scan, and follow-up anatomical CT scans were performed every 3 months for most patients. In this study, we developed the pipeline of tools needed to analyze such a large dataset, while trying to establish a relationship between function, dose, and outcome. Pre-treatment lung function was evaluated using a recently published technique that evaluates Fractional Regional Ventilation (FRV). All images including the FRV map and the individual follow-up anatomical CT images were all spatially matched to the planning CT using a diffusion based Demons image registration algorithm. Change in HU value was used as a metric to capture the effects of lung toxicity. To validate the findings, a radiologist evaluated the follow-up anatomical CT images and scored lung toxicity. Results: Initial experience in 1 patient shows a relationship between the pre-treatment lung function, dose and toxicity outcome. The results are also correlated to the findings by the radiologist who was blinded to the analysis or dose. Conclusion: The pipeline we have established to study this enables future studies in large retrospective studies. However, the tools are dependent on the fidelity of 4DCT reconstruction for accurate evaluation of regional ventilation. Patent Pending for the technique presented in this work to evaluate FRV incorporating mass correction.« less
Soundararajan, Ramani; Stearns, Timothy M.; Griswold, Anthony J.; Mehta, Arpit; Czachor, Alexander; Fukumoto, Jutaro; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah
2015-01-01
RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3′ untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3′ UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states. PMID:26486088
Soundararajan, Ramani; Stearns, Timothy M; Griswold, Anthony L; Mehta, Arpit; Czachor, Alexander; Fukumoto, Jutaro; Lockey, Richard F; King, Benjamin L; Kolliputi, Narasaiah
2015-11-03
RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3' untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3' UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states.
Cruzan, G; Bus, J; Hotchkiss, J; Sura, R; Moore, C; Yost, G; Banton, M; Sarang, S
2013-06-01
Styrene (S) is lung tumorigenic in mice but not in rats. S and its alkene-oxidized metabolite styrene oxide (SO) were not lung toxic in CYP2F2(-/-) [knockout] mice, indicating S-induced mouse lung tumors are mediated through mouse-specific CYP2F2-generated ring-oxidized metabolite(s) in lung bronchioles. The human relevance of the CYP2F MOA was assessed by insertion of a human CYP2F1, 2A13, 2B6 transgene into CYP2F2(-/-) mice; CYP2F1 expression and activity were confirmed in the transgenic (TG) mice. No evidence of cytotoxicity or increased cell proliferation (BrdU labeling) was seen in TG mice treated with either S or SO (200mg/kg/day ip for 5days). In contrast to S and SO, 4HS (105mg/kg/day ip for 5days) increased BrdU labeling 5-10-fold in WT mice, <3-fold increase in KO mice and 2-4-fold in TG mice. The limited response of 4HS in KO and TG mice may result from intrinsic toxicity or from further metabolism; regardless of the MOA, these findings indicate that the CYP2F-mediated tumorigenic MOA in WT mice is not operative for S, SO, or for 4HS putatively derived from metabolism of S by CYP2F1 in humans, and thus S-induced mouse lung tumors are unlikely to be relevant to human risk. Copyright © 2013. Published by Elsevier Inc.
Towards in vivo bacterial detection in human lung(Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhary, Tushar R.; Bradley, Mark; Duncan, Rory R.; Dhaliwal, Kevin
2017-04-01
Antibiotic resistance is a serious global concern. One way to tackle this problem is to develop new and sensitive approaches to diagnose bacterial infections and prevent unnecessary antibiotic use. With recent developments in optical molecular imaging, we are one step closer to in situ rapid detection of bacterial infections. We present here bespoke fluorescent probes for bacterial detection in ex vivo human lung tissue using fluorescence lifetime imaging microscopy (FLIM). Two in-house synthesised bespoke probes were used in this study to detect and differentiate between Gram positive and Gram negative bacterial strain using their fluorescence lifetime in the ex vivo human lung tissue. The average fluorescence lifetime of Gram positive probe (n=12) was 2.40 ± 0.25 ns and Gram negative (n=12) was 6.73 ± 0.49 ns. The human lung tissue (n=12) average fluorescence lifetime value was found to be 3.43 ± 0.19 ns. Furthermore we were also able to distinguish between dead or alive bacteria in ex vivo lung tissue based on difference in their lifetime. We have developped Fibre-FLIM methods to enable clinical translation within the Proteus Project (www.proteus.ac.uk).
NASA Astrophysics Data System (ADS)
Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; Leawoods, Jason C.; Gierada, David S.; Bretthorst, G. Larry; Lefrak, Stephen S.; Cooper, Joel D.; Conradi, Mark S.
2002-03-01
The study of lung emphysema dates back to the beginning of the 17th century. Nevertheless, a number of important questions remain unanswered because a quantitative localized characterization of emphysema requires knowledge of lung structure at the alveolar level in the intact living lung. This information is not available from traditional imaging modalities and pulmonary function tests. Herein, we report the first in vivo measurements of lung geometrical parameters at the alveolar level obtained with 3He diffusion MRI in healthy human subjects and patients with severe emphysema. We also provide the first experimental data demonstrating that 3He gas diffusivity in the acinus of human lung is highly anisotropic. A theory of anisotropic diffusion is presented. Our results clearly demonstrate substantial differences between healthy and emphysematous lung at the acinar level and may provide new insights into emphysema progression. The technique offers promise as a clinical tool for early diagnosis of emphysema.
Using Attributes of Natural Systems to Plan the Built Environment
The concept of 'protection' is possible only before something is lost, however, development of the built environment to meet human needs also compromises the environmental systems that sustain human life. Because maintaining an environment that is able to sustain human life requi...
Yu, Chun I; Becker, Christian; Wang, Yuanyuan; Marches, Florentina; Helft, Julie; Leboeuf, Marylene; Anguiano, Esperanza; Pourpe, Stephane; Goller, Kristina; Pascual, Virginia; Banchereau, Jacques; Merad, Miriam; Palucka, Karolina
2013-01-01
Summary In comparison to murine dendritic cells (DCs), less is known about the function of human DCs in tissues. Here, we analyzed, using lung tissues from humans and humanized mice, the role of human CD1c+ and CD141+ DCs in determining the type of CD8+ T cell immunity generated to live-attenuated influenza virus (LAIV) vaccine. We found that both lung DC subsets acquired influenza antigens in vivo and expanded specific cytotoxic CD8+ T cells in vitro. However, lung-tissue-resident CD1c+ DCs but not CD141+ DCs were able to drive CD103 expression on CD8+ T cells and promoted CD8+ T cell accumulation in lung epithelia in vitro and in vivo. CD1c+ DCs induction of CD103 expression was dependent on membrane-bound cytokine TGF-β1. Thus, CD1c+ and CD141+ DCs generate CD8+ T cells with different properties, and CD1c+ DCs specialize in the regulation of mucosal CD8+ T cells. PMID:23562160
Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.
Abdullah, Mahdi; Goldmann, Torsten
2012-11-20
Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.
Connolly, Desmond M; D'Oyly, Timothy J; McGown, Amanda S; Lee, Vivienne M
2013-06-01
Rapid decompressions (RD) to 60,000 ft (18,288 m) were undertaken by six subjects to provide evidence of satisfactory performance of a contemporary, partial pressure assembly life support system for the purposes of flight clearance. A total of 12 3-s RDs were conducted with subjects breathing 56% oxygen (balance nitrogen) at the base (simulated cabin) altitude of 22,500 ft (6858 m), switching to 100% oxygen under 72 mmHg (9.6 kPa) of positive pressure at the final (simulated aircraft) altitude. Respiratory pressures, flows, and gas compositions were monitored continuously throughout. All RDs were completed safely, but one subject experienced significant hypoxia during the minute at final altitude, associated with severe hemoglobin desaturation to a low of 53%. Accurate data on subjects' lung volumes were obtained and individual responses post-RD were reviewed in relation to patterns of pulmonary ventilation. The occurrence of severe hypoxia is explained by hypoventilation in conjunction with unusually large lung volumes (total lung capacity 10.18 L). Subjects' lung volumes and patterns of pulmonary ventilation are critical, but idiosyncratic, determinants of alveolar oxygenation and severity of hypoxia following RD to 60,000 ft (18,288 m). At such extreme altitudes even vaporization of water condensate in the oxygen mask may compromise oxygen delivery. An altitude ceiling of 60,000 ft (18,288 m) is the likely threshold for reliable protection using partial pressure assemblies and aircrew should be instructed to take two deep 'clearing' breaths immediately following RD at such extreme pressure breathing altitudes.
Pierce, John P; Messer, Karen; White, Martha M; Kealey, Sheila; Cowling, David W
2010-11-01
Declining lung cancer rates in California have been attributed to the California Tobacco Control Program, but may reflect earlier declines in smoking. Using state-taxed sales and three survey series, we assessed trends in smoking behavior for California and the rest of the nation from 1960 to 2008 and compared these with lung cancer mortality rates. We tested the validity of recent trends in state-taxed sales by projecting results from a model of the 1960 to 2002 data. From 1960 to 2002, the state-taxed sales and survey data are consistent. Californians initially smoked more than the rest of the nation, but cigarette consumption declined earlier, dropping lower in 1971 with an ever widening gap over time. Lung cancer mortality follows a similar pattern, after a lag of 16 years. Introduction of the California Tobacco Control Program doubled the rate of decline in cigarette consumption. From 2002 to 2008, differences in enforcement and tax evasion may compromise the validity of the taxed sales data. In 2010, smoking prevalence is estimated to be 9.3% in California and 17.8% in the rest of the nation. However, in 2008, for the first time, both cigarette price and tobacco control expenditures were lower in California than the rest of the nation, suggesting that the gap in smoking behavior will start to narrow. An effective Tobacco Control Program means that California will have faster declines in lung cancer than the rest of the nation for the next 2 decades, but possibly not beyond. Tobacco control interventions need further dissemination. ©2010 AACR.
21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs... deep portions of the lungs of users. The lung is an organ, like skin, subject to the development of granulomas. Unlike the skin, the lung will not reveal the presence of granulomatous changes until they have...
77 FR 2739 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special Emphasis Panel; Genetics of Heart, Lung and Blood Diseases Review. Date: February 8, 2012. Time: 12 p.m. to...
77 FR 30541 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group; Heart, Lung, and Blood Program Project Review Committee. Date: June 15, 2012. Time: 8 a.m. to 5 p.m...
76 FR 58523 - National Heart, Lung, and Blood Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... amended (5 U.S.C. App.), notice is hereby given of a meeting of the National Heart, Lung, and Blood... personal privacy. Name of Committee: National Heart, Lung, and Blood Advisory Council. [[Page 58524
76 FR 10912 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group, Heart, Lung, and Blood Program Project Review Committee. Date: March 18, 2011. Time: 8 a.m. to 5 p.m...
77 FR 12599 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review Group, Heart, Lung, and Blood Program Project Review Committee. Date: March 23, 2012. Time: 8 a.m. to 2 p.m...
Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span
Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali
2017-01-01
Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385
Design and validation of a clinical-scale bioreactor for long-term isolated lung culture.
Charest, Jonathan M; Okamoto, Tatsuya; Kitano, Kentaro; Yasuda, Atsushi; Gilpin, Sarah E; Mathisen, Douglas J; Ott, Harald C
2015-06-01
The primary treatment for end-stage lung disease is lung transplantation. However, donor organ shortage remains a major barrier for many patients. In recent years, techniques for maintaining lungs ex vivo for evaluation and short-term (<12 h) resuscitation have come into more widespread use in an attempt to expand the donor pool. In parallel, progress in whole organ engineering has provided the potential perspective of patient derived grafts grown on demand. As both of these strategies advance to more complex interventions for lung repair and regeneration, the need for a long-term organ culture system becomes apparent. Herein we describe a novel clinical scale bioreactor capable of maintaining functional porcine and human lungs for at least 72 h in isolated lung culture (ILC). The fully automated, computer controlled, sterile, closed circuit system enables physiologic pulsatile perfusion and negative pressure ventilation, while gas exchange function, and metabolism can be evaluated. Creation of this stable, biomimetic long-term culture environment will enable advanced interventions in both donor lungs and engineered grafts of human scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
PPARGC1A is upregulated and facilitates lung cancer metastasis.
Li, Jin-Dong; Feng, Qing-Chuan; Qi, Yu; Cui, Guanghui; Zhao, Song
2017-10-15
Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence it is imperative to determine reliable biomarkers for lung cancer prognosis. We performed quantitative real-time PCR (qRT-PCR) analysis to explore epithelial-mesenchymal transition (EMT) inducers that regulate EMT process in three patients with advanced lung cancer disease. Peroxisome proliferator-activated receptor gamma (PPARGC1A) was uniformly the topmost overexpressed gene in all three human non-small cell lung cancer (NSCLC) patient samples. Further evaluation in human normal lung and metastatic lung cancer cell lines revealed that the expression of PPARGC1A was upregulated in metastatic lung cancer cell lines. Metagenomic analysis revealed direct correlation among PPARGC1A, zinc-finger transcription factor snail homolog 1 (SNAI1), and metastatic lung disease. Upregulation of PPARGC1A transcript expression was independent of a differential upregulation of the upstream AMP-dependent protein kinase (AMPK) activation or steady state expression of the silent mating type information regulation 2 homolog 1 (SIRT1). Xenograft tail vein colonization assays proved that the high expression of PPARGC1A was a prerequisite for metastatic progression of lung cancer to brain. Our results indicate that PPARGC1A might be a potential biomarker for lung cancer prognosis. Copyright © 2017. Published by Elsevier Inc.
Li, Yan; Wang, Pengcheng; Hu, Chuanlin; Wang, Kun; Chang, Qing; Liu, Lieju; Han, Zhenggang; Shao, Yang; Zhai, Ying; Zuo, Zhengyu; Mak, Michael; Gong, Zhiyong; Wu, Yang
2018-01-31
Exposure to PM2.5 has become one of the most important factors affecting public health in the world. Both clinical and research studies have suggested that PM2.5 inhalation is associated with impaired lung function. In this study, material characterization identified the existence of nanoscale particulate matter (NPM) in airborne PM2.5 samples. When coming into contact with protein-rich fluids, the NPM becomes covered by a protein layer that forms a "protein corona". Based on a 3D organotypic cell culture, the protein corona was shown to mitigate NPM cytotoxicity and further stimulate the proliferation of human lung fibroblasts (HLFs). ROS-activated alpha-smooth muscle actin (α-SMA) is considered to be one of the proliferation pathways. In this research, 3D cell cultures exhibited more tissue-like properties compared with the growth in 2D models. Animal models have been widely used in toxicological research. However, species differences make it impossible to directly translate discoveries from animals to humans. In this research, the 3D HLF model could partly simulate the biological responses of NPM-protein corona-induced aberrant HLF proliferation in the human lung. Our 3D cellular results provide auxiliary support for an animal model in research on PM2.5-induced impaired lung function, particularly in lung fibrosis.
Lescoat, Alain; Ballerie, Alice; Augagneur, Yu; Morzadec, Claudie; Vernhet, Laurent; Fardel, Olivier; Jégo, Patrick; Jouneau, Stéphane; Lecureur, Valérie
2018-03-17
Macrophages play a central role in the pathogenesis of inflammatory and fibrotic lung diseases. However, alveolar macrophages (AM) are poorly available in humans to perform in vitro studies due to a limited access to broncho-alveolar lavage (BAL). In this study, to identify the best alternative in vitro model for human AM, we compared the phenotype of AM obtained from BAL of patients suffering from three lung diseases (lung cancers, sarcoidosis and Systemic Sclerosis (SSc)-associated interstitial lung disease) to human blood monocyte-derived macrophages (MDMs) differentiated with M-CSF or GM-CSF. The expression of eight membrane markers was evaluated by flow cytometry. Globally, AM phenotype was closer to GM-CSF MDMs. However, the expression levels of CD163, CD169, CD204, CD64 and CD36 were significantly higher in SSc-ILD than in lung cancers. Considering the expression of CD204 and CD36, the phenotype of SSc-AM was closer to MDMs, from healthy donors or SSc patients, differentiated by M-CSF rather than GM-CSF. The comparative secretion of IL-6 by SSc-MDMs and SSc-AM is concordant with these phenotypic considerations. Altogether, these results support the M-CSF MDM model as a relevant in vitro alternative to simulate AM in fibrotic disorders such as SSc.
Holt, P G; Robinson, B W; Reid, M; Kees, U R; Warton, A; Dawson, V H; Rose, A; Schon-Hegrad, M; Papadimitriou, J M
1986-01-01
The inflammatory and immune cell populations of the human lung parenchyma have not been characterized in detail. This report describes a novel and efficient procedure for their extraction. Histologically normal human lung tissue samples from pneumonectomy specimens were sliced to 0.5 mm, and digested in collagenase/DNAse. Viable mononuclear cell yields ranged from 15-48 X 10(6)/g, and were markedly in excess of reported methods employing mechanical tissue disruption, which normally yield populations containing almost exclusively macrophages. The lung digest population was examined by flow cytometry using monoclonal antibodies against cell surface receptors, and found to comprise up to 40% T lymphocytes, 10% B lymphocytes and 30% macrophages, contaminated by less than 1% peripheral blood cells. Based upon these figures, the recoverable lung parenchymal lymphoid cell pool appears considerably larger than previously recognized, being of the same order as the peripheral blood pool. Initial functional studies suggest that such cellular activities as antigen-specific T cell proliferation, antigen-presentation, interleukin 1 production and natural killer cell activity survive the extraction process, and controlled enzymatic digestion experiments with peripheral blood cells indicate that the degree of enzyme-mediated damage to these functions and to cell-surface structures, was minimal. The extraction method thus appears suitable for studying the types and functions of human parenchymal lung cells in health and disease. Images Fig. 2 p195-a PMID:3026698
Hyperpolarized 129Xe MRI of the Human Lung
Mugler, John P.; Altes, Talissa A.
2012-01-01
By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432
Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng
2017-04-01
Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.
Developing Physiologic Models for Emergency Medical Procedures Under Microgravity
NASA Technical Reports Server (NTRS)
Parker, Nigel; O'Quinn, Veronica
2012-01-01
Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI s patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.
Developing Physiologic Models for Emergency Medical Procedures Under Microgravity
NASA Technical Reports Server (NTRS)
Parker, Nigel; OQuinn, Veronica
2012-01-01
Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI's patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.
NASA Astrophysics Data System (ADS)
Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T. C.
2017-10-01
Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.
EGFR and Ras regulate DDX59 during lung cancer development.
Yang, Lin; Zhang, Hanyin; Chen, Dan; Ding, Peikun; Yuan, Yunchang; Zhang, Yandong
2018-02-05
Oncogenes EGFR and ras are frequently mutated and activated in human lung cancers. In this report, we found that both EGFR and Ras signaling can upregulate RNA helicase DDX59 in lung cancer cells. DDX59 can be induced through the mitogen activated protein kinase (MAPK) pathway after EGFR or Ras activation. Inhibitors for Ras/Raf/MAP pathway significantly decreased DDX59 expression at both protein and mRNA levels. Through immunohistochemistry, we found that DDX59 protein expression correlated with Ras and EGFR mutation status in human lung adenocarcinoma. Finally, through a xenograft nude mice model, we demonstrated that DDX59 is pivotal for EGFR mutated lung cancer cell growth in vivo. Our study identified a novel protein downstream of Ras and EGFR, which may serve as a potential therapeutic drug target for lung cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Clinical potentials of human pluripotent stem cells in lung diseases
2014-01-01
Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future. PMID:24995122
Kurthkoti, Krishna; Amin, Hamel; Marakalala, Mohlopheni J; Ghanny, Saleena; Subbian, Selvakumar; Sakatos, Alexandra; Livny, Jonathan; Fortune, Sarah M; Berney, Michael; Rodriguez, G Marcela
2017-08-15
This study was conducted to investigate the role of iron deprivation in the persistence of Mycobacterium tuberculosis We present evidence of iron restriction in human necrotic granulomas and demonstrate that under iron starvation M. tuberculosis persists, refractive to antibiotics and capable of restarting replication when iron is made available. Transcriptomics and metabolomic analyses indicated that the persistence of M. tuberculosis under iron starvation is dependent on strict control of endogenous Fe utilization and is associated with upregulation of pathogenicity and intrinsic antibiotic resistance determinants. M. tuberculosis mutants compromised in their ability to survive Fe starvation were identified. The findings of this study advance the understanding of the physiological settings that may underpin the chronicity of human tuberculosis (TB) and are relevant to the design of effective antitubercular therapies. IMPORTANCE One-third of the world population may harbor persistent M. tuberculosis , causing an asymptomatic infection that is refractory to treatment and can reactivate to become potentially lethal tuberculosis disease. However, little is known about the factors that trigger and maintain M. tuberculosis persistence in infected individuals. Iron is an essential nutrient for M. tuberculosis growth. In this study, we show, first, that in human granulomas the immune defense creates microenvironments in which M. tuberculosis likely experiences drastic Fe deprivation and, second, that Fe-starved M. tuberculosis is capable of long-term persistence without growth. Together, these observations suggest that Fe deprivation in the lung might trigger a state of persistence in M. tuberculosis and promote chronic TB. We also identified vulnerabilities of iron-restricted persistent M. tuberculosis , which can be exploited for the design of new antitubercular therapies. Copyright © 2017 Kurthkoti et al.
Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.
Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H
1997-08-01
A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.
Research of transport and deposition of aerosol in human airway replica
NASA Astrophysics Data System (ADS)
Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav
2012-04-01
Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.
Epidemiologic and occupational studies demonstrate that ambient PM and DEP have deleterious effects on human cardiopulmonary health including exacerbation of pre-existing lung disease and development of respiratory infections. The effects of ambient PM on lung cell responsivenes...
MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS
MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711
Partic...
DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.
DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...
Residual oil fly ash (ROFA) is a particulate pollutant produced during the combustion of fuel oil. ROFA exposure causes adverse respiratory effects in humans and induces lung inflammation in animals and inflammatory mediator expression in cultured human airway epithelial cells....
MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES
We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...
NASA Astrophysics Data System (ADS)
Koujalagi, V.; Ramesh, S. L.; Gunarathne, G. P. P.; Semple, S.; Ayres, J. G.
2009-02-01
This study presents the work carried out in developing a precision bolus injection system in order to understand the regional deposition of nanoparticles (NP) in human lung. A real-time control system has been developed that is capable of storing graphite NP, assessing human breathing pattern and delivering a bolus of the stored NP at a pre-determined instance of the inhalation phase of breathing. This will form the basis for further development of a system to deliver radioactive nanoparticles to enable 3-dimensional lung imaging using techniques such as positron emission tomography (PET). The system may then be used to better understand the actual regional deposition in human lung, which could validate or challenge the current computational lung models such as that published by the International Commission for Radiation Protection (ICRP-1994). A dose related response to inhaled PM can possibly be shown, which can be used to review the current workplace exposure limits (WELs).
NASA Astrophysics Data System (ADS)
Roth, Steven; Oakes, Jessica; Shadden, Shawn
2015-11-01
Particle deposition in the human lungs can occur with every breathe. Airbourne particles can range from toxic constituents (e.g. tobacco smoke and air pollution) to aerosolized particles designed for drug treatment (e.g. insulin to treat diabetes). The effect of various realistic airway geometries on complex flow structures, and thus particle deposition sites, has yet to be extensively investigated using computational fluid dynamics (CFD). In this work, we created an image-based geometric airway model of the human lung and performed CFD simulations by employing multi-domain methods. Following the flow simulations, Lagrangian particle tracking was used to study the effect of cross-sectional shape on deposition sites in the conducting airways. From a single human lung model, the cross-sectional ellipticity (the ratio of major and minor diameters) of the left and right main bronchi was varied systematically from 2:1 to 1:1. The influence of the airway ellipticity on the surrounding flow field and particle deposition was determined.
Teroxirone motivates apoptotic death in tumorspheres of human lung cancer cells.
Ni, Yu-Ling; Hsieh, Chang-Heng; Wang, Jing-Ping; Fang, Kang
2018-06-13
Therapy by targeting cancer stem cells (CSCs) is an eligible method to eradicate malignant human tumors. A synthetic triepoxide derivative, teroxirone, was reported effective against growth of human lung cancer cells by injuring cellular mitochondria functions. And yet it remains unclear if the residual but malicious CSCs can be effectively dissipated as a result of treatment. The current study further affirmed that teroxirone inhibited propagation of CSCs as enriched from NSCLC cells by inducing p53 that lead to ultimate apoptosis. More evidence supported that the reduced stemness of the spheroids was associated with apoptotic death. The results consolidate the notion that teroxirone is a viable and effective therapeutic agent for eradicating human lung cancer. Copyright © 2018. Published by Elsevier B.V.
Alphonse, Rajesh S; Vadivel, Arul; Fung, Moses; Shelley, William Chris; Critser, Paul John; Ionescu, Lavinia; O'Reilly, Megan; Ohls, Robin K; McConaghy, Suzanne; Eaton, Farah; Zhong, Shumei; Yoder, Merv; Thébaud, Bernard
2014-05-27
Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage. © 2014 American Heart Association, Inc.
Stunting and the Prediction of Lung Volumes Among Tibetan Children and Adolescents at High Altitude.
Weitz, Charles A; Garruto, Ralph M
2015-12-01
This study examines the extent to which stunting (height-for-age Z-scores ≤ -2) compromises the use of low altitude prediction equations to gauge the general increase in lung volumes during growth among high altitude populations. The forced vital capacity (FVC) and forced expiratory volume (FEV1) of 208 stunted and 365 non-stunted high-altitude Tibetan children and adolescents between the ages of 6 and 20 years are predicted using the Third National Health and Nutrition Examination Survey (NHANESIII) and the Global Lung Function Initiative (GLF) equations, and compared to observed lung volumes. Stunted Tibetan children show smaller positive deviations from both NHANESIII and GLF prediction equations at most ages than non-stunted children. Deviations from predictions do not correspond to differences in body proportions (sitting heights and chest circumferences relative to stature) between stunted and non-stunted children; but appear compatible with the effects of retarded growth and lung maturation that are likely to exist among stunted children. These results indicate that, before low altitude standards can be used to evaluate the effects of hypoxia, or before high altitude populations can be compared to any other group, it is necessary to assess the relative proportion of stunted children in the samples. If the proportion of stunted children in a high altitude population differs significantly from the proportion in the comparison group, lung function comparisons are unlikely to yield an accurate assessment of the hypoxia effect. The best solution to this problem is to (1) use stature and lung function standards based on the same low altitude population; and (2) assess the hypoxic effect by comparing observed and predicted values among high altitude children whose statures are most like those of children on whom the low altitude spirometric standard is based-preferably high altitude children with HAZ-scores ≥ -1.
Hartmann, C M; Steinhoff-Lankes, D; Maya-Pelzer, P
1999-09-09
Uncompromised lung function is essential for fitness to fly. Under hypobaric conditions there is an increased risk of hypoxemia. G-forces, positive pressure breathing and anti-G maneuvers cause physical stress to the lung tissue and altered pulmonary blood flow. Breathing with pure oxygen, dry cabin air and ozone can cause airway irritation. Chemically and physically by irritating agents may be present. Emergencies such as smoke in the cockpit or inhalation of tear gas can rapidly compromise the pulmonary system in susceptible persons. Sudden incapacitation may occur. Trapped gases may cause overinflation and lung rupture in rapid decompression. Applicants for military duty have to pass basic lung function tests routinely. Preselection of aircrew candidates tends to be even stricter. Asthma and obstructive lung disease are disqualifying. Trained aircrew with late onset of pulmonary problems can be waived under certain restrictions in many cases. Some national regulations exclude even applicants with allergies. Due to aeromedical experience we should always be aware of the latent unspecific bronchial hyperresponsiveness (BHR). BHR is one of the characteristics of asthma bronchiale. If BHR exists there is an increased risk of later development of asthma bronchiale, especially together with perennial allergies such as against house dust mite. Under certain conditions BHR can become symptomatic and aeromedically relevant. In some cases we saw an exacerbation under medication, mostly under beta-receptor-blockers. In one case even under betablocker-containing eye drops. In the Gulf War 1991 a number of allied military personnel had to be withdrawn because of bronchospastic symptoms. This can be explained among others by medication with physostigmine. Physostigmine is a systemically active cholinergic drug which is prophylactically used under threat of chemically warfare agents. In individuals with latent BHR physostigmine will lower the threshold for bronchial reactions considerably and even cause manifest bronchospasm. We recommend an unspecific bronchial challenge test in the selection of personnel for duties where uncompromised lung function under all environmental conditions is essential.
Gallagher, Harry M; Sarwar, Ghulam; Tse, Tracy; Sladden, Timothy M; Hii, Esmond; Yerkovich, Stephanie T; Hopkins, Peter M; Chambers, Daniel C
2015-11-01
Erratic tacrolimus blood levels are associated with liver and kidney graft failure. We hypothesized that erratic tacrolimus exposure would similarly compromise lung transplant outcomes. This study assessed the effect of tacrolimus mean and standard deviation (SD) levels on the risk of chronic lung allograft dysfunction (CLAD) and death after lung transplantation. We retrospectively reviewed 110 lung transplant recipients who received tacrolimus-based immunosuppression. Cox proportional hazard modeling was used to investigate the effect of tacrolimus mean and SD levels on survival and CLAD. At census, 48 patients (44%) had developed CLAD and 37 (34%) had died. Tacrolimus SD was highest for the first 6 post-transplant months (median, 4.01; interquartile range [IQR], 3.04-4.98 months) before stabilizing at 2.84 μg/liter (IQR, 2.16-4.13 μg/liter) between 6 and 12 months. The SD then remained the same (median, 2.85; IQR, 2.00-3.77 μg/liter) between 12 and 24 months. A high mean tacrolimus level 6 to 12 months post-transplant independently reduced the risk of CLAD (hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.63-0.86; p < 0.001) but not death (HR, 0.96; 95% CI, 0.83-1.12; p = 0.65). In contrast, a high tacrolimus SD between 6 and 12 months independently increased the risk of CLAD (HR, 1.46; 95% CI, 1.23-1.73; p < 0.001) and death (HR, 1.27; 95% CI, 1.08-1.51; p = 0.005). Erratic tacrolimus levels are a risk factor for poor lung transplant outcomes. Identifying and modifying factors that contribute to this variability may significantly improve outcomes. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna
2015-01-01
ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The results reveal that the combination and levels of α-toxin and PVL correlate with tissue pathology and clinical outcome associated with pneumonia. PMID:26398950
Koh, Jaemoon; Chung, Doo Hyun
2016-01-01
Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines. Pellino-1 overexpression in human lung cancer cells, A549 and H1299 cells, increased the survival and colony forming ability. Pellino-1 overexpression in these cells also conferred resistance to cisplatin- or paclitaxel-induced apoptosis. In contrast, depletion of Pellino-1 decreased the survival of A549 and H1299 cells and sensitized these cells to cisplatin- and paclitaxel-induced apoptosis. Pellino-1 overexpression in A549 and H1299 cells upregulated the expression of inhibitor of apoptosis (IAP) proteins, including cIAP1 and cIAP2, while Pellino-1 depletion downregulated these molecules. Notably, Pellino-1 directly interacted with cIAP2 and stabilized cIAP2 through lysine63-mediated polyubiquitination via its E3 ligase activity. Pellino-1-mediated chemoresistance in lung cancer cells was dependent on the induction of cIAP2. Moreover, a strong positive correlation between Pellino-1 and the cIAP2 expression was observed in human lung adenocarcinoma tissues. Taken together, these results demonstrate that Pellino-1 contributes to lung oncogenesis through the overexpression of cIAP2 and promotion of cell survival and chemoresistance. Pellino-1 might be a novel oncogene and potential therapeutic target in lung cancer. PMID:27248820
Jahani, Nariman; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A.
2015-01-01
This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512
Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.
2012-01-01
Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m−3 there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid. PMID:22942874
Noninvasive assessment of peroxidative lung damage by HIPDM lung scanning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miniati, M.; Borrelli, E.; Monti, S.
1991-03-15
The basic compound iodobenzyl-propanediamine (HIPDM), when given intravenously, is extracted by the lungs whence it is effluxed at a slow exponential rate. In humans (normal non smokers), the mean residence time ({bar t}) of 123I-HIPDM, assessed by external detection, averages 7.2 {plus minus} 1.1 hrs. Persistence of HIPDM in lungs is significantly increased in asymptomatic smokers and, to a greater extent, in patients with ARDS. Since production of free oxygen radicals reportedly occurs as a consequence of smoke exposure and in the course of acute lung injury, the authors hypothesized that the prolonged persistence of HIPDM in the lungs ofmore » smokers and of patients with ARDS might reflect a peroxidative damage of lung tissue. They tested this hypothesis in rabbits since their baseline HIPDM lung clearance is similar to that of nonsmoking humans. In rabbits, acute lung injury was induced by phorbol myristate acetate. Three hrs after PMA administration, the animals received an i.v. bolus of {sup 131}I-HIPDM. Radioactivity over the chest was recorded for 2 hrs by gamma camera and HIPDM mean residence time in the lungs was computed. Thereafter, the animals were sacrificed and their lungs were removed to measure wet/dry weight ratio as index of lung edema and malondialdehyde (MDA) content as index of lipid peroxidation. HIPDM mean residence time was positively correlated with MDA level in lung tissue, but not with wet/dry weight ratio. Noninvasive assessment of HIPDM lung kinetics may then serve as specific in vivo marker of peroxidative lung injury.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.
The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibroticmore » scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.« less
Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo
2018-01-01
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis. PMID:29541243
Manorak, Wichayapha; Idahosa, Chizobam; Gupta, Kshitij; Roy, Saptarshi; Panettieri, Reynold; Ali, Hydar
2018-01-03
Hemokinin-1 (HK-1) is a novel neuropeptide produced by human bronchial cells and macrophages and causes contraction of human bronchi ex vivo. It is also generated by antigen/IgE-activated murine mast cells (MCs) and contributes to experimental chronic allergic airway inflammation via the activation of the neurokinin receptor-1 (NK-1R) expressed on murine MCs. We found elevated MC numbers in the lungs of individuals who died from asthma (asthma) when compared to lungs of individuals who died from other causes (non-asthma). Mas-related G Protein coupled receptor X2 (MRGPRX2) is a novel G-protein coupled receptor (GPCR) that is expressed predominantly on human MCs. We detected low level of MRGPRX2 in non-asthma lung MCs but its expression was significantly upregulated in asthma lung MCs. HK-1 caused degranulation in a human MC line (LAD2) and RBL-2H3 cells stably expressing MRGPRX2 and this response was resistant to inhibition by an NK-1R antagonist. However, knockdown of MRGPRX2 in LAD2 cells resulted in substantial inhibition of HK-1-induced degranulation. These findings suggest that while HK-1 contributes to the development of experimental asthma in mice via NK-1R on murine MCs the effect of this neuropeptide on human bronchoconstriction likely reflects the activation of MRGPRX2 on lung MCs. Thus, development of selective MRGPRX2 antagonists could serve as novel target for the modulation of asthma.
Aspiration lung disorders in bovines: a case report and review.
Shakespeare, Anthony S
2012-11-01
Lung aspiration disorders in bovines are invariably diagnosed as infectious aspiration pneumonias. There is a distinct differentiation between aspiration pneumonia and aspiration pneumonitis in humans that can be applied to bovines. The nature and quantity of the aspirate can result in differing pathogeneses which can require differing therapeutic approaches. Whilst blood gases were important in detecting and prognosticating lung problems, changes in barometric pressure with altitude have to be considered when interpreting partial pressures of oxygen. Anatomical differences in the lungs of bovines can explain why this species is more prone to certain pneumonic problems. Pulmonary physiotherapy is important in treating lung disorders in humans and should be considered as an adjunct therapy in bovine respiratory conditions. A case work-up was used to highlight some of the points discussed in this article.
Nielsen, G D; Koponen, I K
2018-04-01
The typical insulation rock, slag and glass wool fibers are high volume materials. Current exposure levels in industry (generally ≤ 1 fiber/cm 3 with a median diameter ∼1 μm and length ≥10 μm) are not considered carcinogenic or causing other types of severe lung effects. However, epidemiological studies are not informative on effects in humans at fiber levels >1 fiber/cm 3 . Effects may be inferred from valid rat studies, conducted with rat respirable fibers (diameter ≤ 1.5 μm). Therefore, we estimate delivery and deposition in human and rat airways of the industrial fibers. The deposition fractions in humans head regions by nasal (∼0.20) and by mouth breathing (≤0.08) are lower than in rats (0.50). The delivered dose into the lungs per unit lung surface area during a 1-day exposure at a similar air concentration is estimated to be about two times higher in humans than in rats. The deposition fractions in human lungs by nasal (∼0.20) and by mouth breathing (∼0.40) are higher than in rats (∼0.04). The human lung deposition may be up to three times by nasal breathing and up to six times higher by oral breathing than in rats, qualifying assessment factor setting for deposition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei
2014-01-01
The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.
[Brain emboli in the lungs of cattle].
Horlacher, Sabine; Lücker, E; Eigenbrodt, E; Wenisch, Sabine
2002-01-01
There is no information whether the BSE agent is introduced into the human food chain through contamination of the lungs of cattle with central nervous system tissue (CNS). Studies in the United Kingdom and in the USA showed that CNS tissue could contaminate the lungs after using pneumatic powered air injection stunners (e.g. "The Knocker") or after pithing. Thus, pithing was forbidden in the European Union since January 2001. In German abattoirs conventional cartridge-fired stunners (e.g. model by Schermer) are usually applied. Pithing was used up to December 2000 in approx. 75% of the German abattoirs. In the present study 323 lungs of cattle were analysed for CNS. The lungs were derived from cattle exclusive stunned by use of the knocker from Schermer. 60% of the lungs contained emboli which were tested with immuno chemistry as well as immuno histochemistry to detect CNS. Two of 108 pooled samples showed a faint immuno reaction in the anti-NSE and anti-GFAP immunoblot. Further two particles showed a faint reaction for NSE and GFAP in immuno histochemistry, thus suggesting the presence of CNS. Even though CNS tissue could not be shown in the histological investigation, we used our findings to estimate the worst case scenario for human BSE exposure risk (HER) by lung contaminated by CNS emboli. The content of CNS in the samples was estimated to be about 0.11% when the respective immuno reactions were calibrated against standards containing known brain concentrations. Under the assumption that only one lung in the pooled samples was contaminated with BSE-infected central nervous tissue, the HER was calculated to reach a maximum of 2.2 x 10(-5) CoID50/consumer after consumption of a sausage with a portion of 10% lung. The results of our study suggest that the contamination of the lung with CNS after using a conventional cartridge-fired stunner cannot be excluded, however, the incidence appears to be very low. In addition, presumed CNS emboli, if at all, are microscopically small. Furthermore the incidence of BSE in Germany is very low and lungs of cattle are usually not consumed. Thus we can judge the potential for human oral exposure after consumption of lungs of cattle which were stunned in Germany to be extremely low. A final assessment, however, is impossible as there is no knowledge about the minimum infectious dose for humans.
Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background
Sukstanskii, A.L.; Yablonskiy, D.A.
2011-01-01
The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985
The immune system in space, including Earth-based benefits of space-based research.
Sonnenfeld, Gerald
2005-08-01
Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.
RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES
Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)
Effect of Human and Sheep Lung Orientation on Primary Blast Injury Induced by Single Blast
2010-09-01
may be injured by m ore than one of these mechanisms in any given event. Primary blast in juries ( PBI ) are exclusively caused by the blast...overpressure. A PBI usually affects air-containing organs such as t he lung, ears and gastrointestinal tract. Secon dary blast injuries are caused by...orientation on blast injuries predicted in human and sheep models. From th is study, it is predicted that the greatest reduction in lung PBI may be
Clearance of chrysotile asbestos from human lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churg, A.; DePaoli, L.
1988-01-01
In contrast to amphibole asbestos, chrysotile asbestos fails to accumulate in human lungs. The reason for this phenomenon is not known. To examine this problem, we extracted chrysotile and tremolite fibers from the lungs of 11 chrysotile miners and millers whose last exposure was within 2 years of death and 12 chrysotile miners and millers whose last exposure was greater than 12 years (7 with last exposure 12-15 years and 5 with last exposure 22-25 years) before death. Fibers were extracted by bleach digestion, and concentrations, compositions, and sizes were determined by analytical electron microscopy. Native UICC Canadian chrysotile wasmore » used as a composition standard. Compared to the standard, there was minor loss of magnesium at 2 years and additional very slight loss after 12 years. The ratio of chrysotile to tremolite concentration did not change with time. There was also no evidence of increasing fiber length with time from last exposure. These data indicate that accumulation of amphibole compared to chrysotile in human lungs does not reflect either long-term dissolution of chrysotile or long-term preferential clearance of chrysotile compared to amphibole. Contrary to results of animal studies, fiber length in humans does not increase with time since last exposure. These findings imply that the failure of chrysotile to accumulate in human lungs reflects events that occur early after exposure rather than long-term clearance mechanisms.« less
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-09-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.
NASA Astrophysics Data System (ADS)
Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.
1981-11-01
Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.
Neglecting legumes has compromised human health and sustainable food production.
Foyer, Christine H; Lam, Hon-Ming; Nguyen, Henry T; Siddique, Kadambot H M; Varshney, Rajeev K; Colmer, Timothy D; Cowling, Wallace; Bramley, Helen; Mori, Trevor A; Hodgson, Jonathan M; Cooper, James W; Miller, Anthony J; Kunert, Karl; Vorster, Juan; Cullis, Christopher; Ozga, Jocelyn A; Wahlqvist, Mark L; Liang, Yan; Shou, Huixia; Shi, Kai; Yu, Jingquan; Fodor, Nandor; Kaiser, Brent N; Wong, Fuk-Ling; Valliyodan, Babu; Considine, Michael J
2016-08-02
The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner 'nutritious seeds for a sustainable future'. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets, and legume crops are greatly under-used. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.
78 FR 50427 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... Act, as amended (5 U.S.C. App.), notice is hereby given of a meeting of the National Heart, Lung, and... Committee: National Heart, Lung, and Blood Advisory Council Date: September 11, 2013. Time: 1:00 p.m. to 3...
76 FR 23827 - National Heart, Lung, and Blood Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
... Committee: National Heart, Lung, and Blood Advisory Council. Date: June 15, 2011. Open: 8 a.m. to 12 p.m... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... amended (5 U.S.C. App.), notice is hereby given of a meeting of the National Heart, Lung, and Blood...
Overexpression of TRIM25 in Lung Cancer Regulates Tumor Cell Progression.
Qin, Ying; Cui, He; Zhang, Hua
2016-10-01
Lung cancer is one of the most common causes of cancer-related deaths worldwide. Although great efforts and progressions have been made in the study of the lung cancer in the recent decades, the mechanism of lung cancer formation remains elusive. To establish effective therapeutic methods, new targets implied in lung cancer processes have to be identified. Tripartite motif-containing 25 has been associated with ovarian and breast cancer and is thought to positively promote cell growth by targeting the cell cycle. However, whether tripartite motif-containing 25 has a function in lung cancer development remains unknown. In this study, we found that tripartite motif-containing 25 was overexpressed in human lung cancer tissues. Expression of tripartite motif-containing 25 in lung cancer cells is important for cell proliferation and migration. Knockdown of tripartite motif-containing 25 markedly reduced proliferation of lung cancer cells both in vitro and in vivo and reduced migration of lung cancer cells in vitro Meanwhile, tripartite motif-containing 25 silencing also increased the sensitivity of doxorubicin and significantly increased death and apoptosis of lung cancer cells by doxorubicin were achieved with knockdown of tripartite motif-containing 25. We also observed that tripartite motif-containing 25 formed a complex with p53 and mouse double minute 2 homolog (MDM2) in both human lung cancer tissues and in lung cancer cells and tripartite motif-containing 25 silencing increased the expression of p53. These results provide evidence that tripartite motif-containing 25 contributes to the pathogenesis of lung cancer probably by promoting proliferation and migration of lung cancer cells. Therefore, targeting tripartite motif-containing 25 may provide a potential therapeutic intervention for lung cancer. © The Author(s) 2015.
Application of a neutral community model to assess structuring of the human lung microbiome.
Venkataraman, Arvind; Bassis, Christine M; Beck, James M; Young, Vincent B; Curtis, Jeffrey L; Huffnagle, Gary B; Schmidt, Thomas M
2015-01-20
DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples. Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health. Copyright © 2015 Venkataraman et al.
Bacillus Calmette-Guérin Vaccination Using a Microneedle Patch
Hiraishi, Yasuhiro; Nandakumar, Subhadra; Choi, Seong-O; Lee, Jeong Woo; Kim, Yeu-Chun; Posey, James E.; Sable, Suraj B.; Prausnitz, Mark R.
2011-01-01
Tuberculosis (TB) caused by Mycobacterium tuberculosis continues to be a leading cause of mortality among bacterial diseases, and the bacillus Calmette-Guerin (BCG) is the only licensed vaccine for human use against this disease. TB prevention and control would benefit from an improved method of BCG vaccination that simplifies logistics and eliminates dangers posed by hypodermic needles without compromising immunogenicity. Here, we report the design and engineering of a BCG-coated microneedle vaccine patch for a simple and improved intradermal delivery of the vaccine. The microneedle vaccine patch induced a robust cell-mediated immune response in both the lungs and spleen of guinea pigs. The response was comparable to the traditional hypodermic needle based intradermal BCG vaccination and was characterized by a strong antigen specific lymphocyte proliferation and IFN-γ levels with high frequencies of CD4+IFN-γ+, CD4+TNF-α+ and CD4+IFN-γ+TNF-α+ T cells. The BCG-coated microneedle vaccine patch was highly immunogenic in guinea pigs and supports further exploration of this new technology as a simpler, safer, and compliant vaccination that could facilitate increased coverage, especially in developing countries that lack adequate healthcare infrastructure. PMID:21277407
Inhalation exposure to methylene chloride does not induce systemic immunotoxicity in rats.
Warbrick, E V; Kilgour, J D; Dearman, R J; Kimber, I; Dugard, P H
2003-07-11
Methylene chloride (dichloromethane) is used in a variety of industrial applications. To date, there has been no formal assessment of immunotoxicity attributed to methylene chloride. Studies were undertaken to examine whether methylene chloride has any potential to influence the integrity of immune function. For this purpose, Sprague-Dawley rats of both genders were exposed by inhalation to a single high dose (5000 ppm) of methylene chloride for 6 h/d, 5 d/wk for 28 d. This was considered the relevant route of administration, as not only is inhalation a primary route for human exposure to methylene chloride, but, also, the chemical is absorbed rapidly via the lungs. Under these conditions of exposure, methylene chloride failed to influence absolute or relative thymus weights in either gender and produced a significant reduction in relative, but not absolute, spleen weight in female rats only. Immunocompetence was measured as a function of the ability of treated animals to mount immunoglobulin M (IgM) antibody responses to sheep red blood cells (SRBC) as determined by enzyme-linked immunosorbent assay (ELISA). Exposure to methylene chloride did not affect antibody production. Evidence indicates that under these conditions of exposure, methylene chloride did not compromise immune function.
Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K
2017-02-01
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Lung cells support osteosarcoma cell migration and survival.
Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard
2017-01-25
Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p <0.05). Lung cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline phosphatase staining. Lung endothelial HULEC-5a cells are attractants for OS cell migration, proliferation, and survival. The SJSA-1 osteosarcoma cell line demonstrated greater metastatic potential than Saos-2 and U-2 cells. ALDH appears to be involved in the interaction between lung and OS cells, and ALP may be a valuable biomarker for monitoring functional OS changes during metastasis.
SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.
Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi
2013-08-01
Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of small lung tumors using (111)In-DOTA-c(RGDfK), SPECT with (111)In-DOTA-c(RGDfK) might be a useful non-invasive imaging approach for evaluating the characteristics of lung tumors in mice, thus showing potential for use in humans.
Koskinen, Kaisa; Pausan, Manuela R.; Perras, Alexandra K.; Beck, Michael; Bang, Corinna; Mora, Maximilian; Schilhabel, Anke; Schmitz, Ruth
2017-01-01
ABSTRACT Human-associated archaea remain understudied in the field of microbiome research, although in particular methanogenic archaea were found to be regular commensals of the human gut, where they represent keystone species in metabolic processes. Knowledge on the abundance and diversity of human-associated archaea is extremely limited, and little is known about their function(s), their overall role in human health, or their association with parts of the human body other than the gastrointestinal tract and oral cavity. Currently, methodological issues impede the full assessment of the human archaeome, as bacteria-targeting protocols are unsuitable for characterization of the full spectrum of Archaea. The goal of this study was to establish conservative protocols based on specifically archaea-targeting, PCR-based methods to retrieve first insights into the archaeomes of the human gastrointestinal tract, lung, nose, and skin. Detection of Archaea was highly dependent on primer selection and the sequence processing pipeline used. Our results enabled us to retrieve a novel picture of the human archaeome, as we found for the first time Methanobacterium and Woesearchaeota (DPANN superphylum) to be associated with the human gastrointestinal tract and the human lung, respectively. Similar to bacteria, human-associated archaeal communities were found to group biogeographically, forming (i) the thaumarchaeal skin landscape, (ii) the (methano)euryarchaeal gastrointestinal tract, (iii) a mixed skin-gastrointestinal tract landscape for the nose, and (iv) a woesearchaeal lung landscape. On the basis of the protocols we used, we were able to detect unexpectedly high diversity of archaea associated with different body parts. PMID:29138298
Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors
Kalra, Sean; Cleaver, Timothy G.; Merrick, Daniel; Wang, Xiao-Jing; Malkoski, Stephen P.
2015-01-01
Non-small cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer, however, the consequences of Smad4 loss in lung cancer are largely unknown. We evaluated Smad4 expression in human NSCLC samples and examined Smad4 alterations in large NSCLC datasets and found that reduced Smad4 expression is common in human NSCLC and occurs through a variety of mechanisms including mutation, homozygous deletion, and heterozygous loss. We modeled Smad4 loss in lung cancer by deleting Smad4 in airway epithelial cells and found that Smad4 deletion both initiates and promotes lung tumor development. Interestingly, both Smad4−/− mouse tumors and human NSCLC samples with reduced Smad4 expression demonstrated increased DNA damage while Smad4 knockdown in lung cancer cells reduced DNA repair and increased apoptosis after DNA damage. In addition, Smad4 deficient NSCLC cells demonstrated increased sensitivity to both chemotherapeutics that inhibit DNA topoisomerase and drugs that block double strand DNA break repair by non-homologous end joining. In sum, these studies establish Smad4 as a lung tumor suppressor and suggest that the defective DNA repair phenotype of Smad4 deficient tumors can be exploited by specific therapeutic strategies. PMID:25893305
Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A
2012-12-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.