Sample records for computational beam dynamics

  1. Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures

    NASA Astrophysics Data System (ADS)

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.

    2010-11-01

    A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.

  2. A computational procedure for the dynamics of flexible beams within multibody systems. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Downer, Janice Diane

    1990-01-01

    The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.

  3. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  4. The dynamic micro computed tomography at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.

    2018-05-01

    Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.

  5. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. A fully nonlinear continuum approach capable of accounting for both finite rotations and large deformations has been used to model a flexible beam component. The beam kinematics are referred directly to an inertial reference frame such that the degrees of freedom embody both the rigid and flexible deformation motions. As such, the beam inertia expression is identical to that of rigid body dynamics. The nonlinear coupling between gross body motion and elastic deformation is contained in the internal force expression. Numerical solution procedures for the integration of spatial kinematic systems can be directily applied to the generalized coordinates of both the rigid and flexible components. An accurate computation of the internal force term which is invariant to rigid motions is incorporated into the general solution procedure.

  6. Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways

    NASA Astrophysics Data System (ADS)

    Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia

    2018-06-01

    The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.

  7. Software package for modeling spin–orbit motion in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less

  8. Modeling of composite beams and plates for static and dynamic analysis

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Atilgan, Ali R.; Lee, Bok Woo

    1990-01-01

    A rigorous theory and corresponding computational algorithms was developed for a variety of problems regarding the analysis of composite beams and plates. The modeling approach is intended to be applicable to both static and dynamic analysis of generally anisotropic, nonhomogeneous beams and plates. Development of a theory for analysis of the local deformation of plates was the major focus. Some work was performed on global deformation of beams. Because of the strong parallel between beams and plates, the two were treated together as thin bodies, especially in cases where it will clarify the meaning of certain terminology and the motivation behind certain mathematical operations.

  9. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  10. Electron-beam dynamics for an advanced flash-radiography accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth frommore » beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.« less

  11. Verification of an improved computational design procedure for TWT-dynamic refocuser-MDC systems with secondary electron emission losses

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Force, D. A.; Palmer, R. W.; Dayton, J. A., Jr.; Kosmahl, H. G.

    1986-01-01

    A computational procedure for the design of TWT-refocuser-MDC systems was used to design a short 'dynamic' refocusing system and highly efficient four-stage depressed collector for a 200-W 8-18-GHz TWT. The computations were carried out with advanced multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semiquantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, thermal expansion characteristics, ease of machinability and vacuum properties. This MDC was tested at CW for more than 1000 h with negligible degradation in TWT and MDC performances.

  12. Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac

    NASA Astrophysics Data System (ADS)

    Méot, F.; Tsoupas, N.; Brooks, S.; Trbojevic, D.

    2018-07-01

    The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. This approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbach cell.

  13. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Weixing; Zhao Binghui; Conover, David

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow.more » From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.« less

  14. Self-consistent analysis of radiation and relativistic electron beam dynamics in a helical wiggler using Lienard-Wiechert fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecimer, M.; Elias, L.R.

    1995-12-31

    Lienard-Wiechert (LW) fields, which are exact solutions of the Wave Equation for a point charge in free space, are employed to formulate a self-consistent treatment of the electron beam dynamics and the evolution of the generated radiation in long undulators. In a relativistic electron beam the internal forces leading to the interaction of the electrons with each other can be computed by means of retarded LW fields. The resulting electron beam dynamics enables us to obtain three dimensional radiation fields starting from an initial incoherent spontaneous emission, without introducing a seed wave at start-up. Based on the formalism employed here,more » both the evolution of the multi-bucket electron phase space dynamics in the beam body as well as edges and the relative slippage of the radiation with respect to the electrons in the considered short bunch are naturally embedded into the simulation model. In this paper, we present electromagnetic radiation studies, including multi-bucket electron phase dynamics and angular distribution of radiation in the time and frequency domain produced by a relativistic short electron beam bunch interacting with a circularly polarized magnetic undulator.« less

  15. Verification of computer-aided designs of traveling-wave tubes utilizing novel dynamic refocusers and graphite electrodes for the multistage depressed collector

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Kosmahl, H. G.; Force, D. A.; Palmer, R. W.; Dayton, J. A., Jr.

    1985-01-01

    A computational procedure for the design of TWT-refocuser-MDC systems was used to design a short dynamic refocusing system and highly efficient four-stage depressed collector for a 200-W, 8- to 18-GHz, TWT. The computations were carried out with advanced, multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties. This MDC was tested (at CW) for more than 1000 hr with negligible degradation in TWT and MDC performances.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Gennady

    Typically the RFQs are designed using the Parmteq, DesRFQ and other similar specialized codes, which produces the files containing the field and geometrical parameters for every cell. The beam dynamic simulations with these analytical fields a re, of course, ideal realizations of the designed RFQs. The new advanced computing capabilities made it possible to simulate beam and even dark current in the realistic 3D electromagnetic fields in the RFQs that may reflect cavity tuning, presence of tune rs and couplers, RFQ segmentation etc. The paper describes the utilization of full 3D field distribution obtained with CST Studio Suite for beammore » dynamic simulations using both PIC solver of CST Particle Studio and the beam dynamic code TRACK.« less

  17. Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, Francois; Tsoupas, N.; Brooks, S.

    The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less

  18. Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac

    DOE PAGES

    Meot, Francois; Tsoupas, N.; Brooks, S.; ...

    2018-04-16

    The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. As a result, this approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbachmore » cell.« less

  19. Transverse and Quantum Effects in Light Control by Light; (A) Parallel Beams: Pump Dynamics for Three Level Superfluorescence; and (B) Counterflow Beams: An Algorithm for Transverse, Full Transient Effects in Optical Bi-Stability in a Fabryperot Cavity.

    DTIC Science & Technology

    1983-01-01

    The resolution of the compu- and also leads to an expression for "dz,"*. tational grid is thereby defined according to e the actual requirements of...computational economy are achieved simultaneously by redistributing the computational grid points according to the physical requirements of the problem...computational Eulerian grid points according to implemented using a two-dimensionl time- the physical requirements of the nonlinear dependent finite

  20. The role of nonlinear torsional contributions on the stability of flexural-torsional oscillations of open-cross section beams

    NASA Astrophysics Data System (ADS)

    Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio

    2015-12-01

    An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.

  1. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  2. Computer-Aided Engineering | Wind | NREL

    Science.gov Websites

    Computes coupled section properties of composite blades for beam-type models Inputs are the airfoil shape approach BModes Computes coupled mode shapes and frequencies of blades and towers Inputs are the boundary -Coordinate transformation Transforms the cumulative dynamics of spinning rotor blades into the non-rotating

  3. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.

  4. ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings

    NASA Astrophysics Data System (ADS)

    Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-12-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  5. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    NASA Astrophysics Data System (ADS)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  6. Vibration analysis of beams traversed by uniform partially distributed moving masses

    NASA Astrophysics Data System (ADS)

    Esmailzadeh, E.; Ghorashi, M.

    1995-07-01

    An investigation into the dynamic behavior of beams with simply supported boundary conditions, carrying either uniform partially distributed moving masses or forces, has been carried out. The present analysis in its general form may well be applied to beams with various boundary conditions. However, the results from the computer simulation model given in this paper are for beams with simply supported end conditions. Results from the numerical solutions of the differential equations of motion are shown graphically and their close agreement, in some extreme cases, with those published previously by the authors is demonstrated. It is shown that the inertial effect of the moving mass is of importance in the dynamic behavior of such structures. Moreover, when considering the maximum deflection for the mid-span of the beam, the critical speeds of the moving load have been evaluated. It is also verified that the length of the distributed moving mass affects the dynamic response considerably. These effects are shown to be of significant practical importance when designing beam-type structures such as long suspension and railway bridges.

  7. Numerical modeling of Gaussian beam propagation and diffraction in inhomogeneous media based on the complex eikonal equation

    NASA Astrophysics Data System (ADS)

    Huang, Xingguo; Sun, Hui

    2018-05-01

    Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.

  8. Symplectic modeling of beam loading in electromagnetic cavities

    DOE PAGES

    Abell, Dan T.; Cook, Nathan M.; Webb, Stephen D.

    2017-05-22

    Simulating beam loading in radio frequency accelerating structures is critical for understanding higher-order mode effects on beam dynamics, such as beam break-up instability in energy recovery linacs. Full wave simulations of beam loading in radio frequency structures are computationally expensive, and while reduced models can ignore essential physics, it can be difficult to generalize. Here, we present a self-consistent algorithm derived from the least-action principle which can model an arbitrary number of cavity eigenmodes and with a generic beam distribution. It has been implemented in our new Open Library for Investigating Vacuum Electronics (OLIVE).

  9. Optical fiber sensors and signal processing for intelligent structure monitoring

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel; Cox, Dave; Lindner, D. K.; Claus, R. O.

    1989-01-01

    Few mode optical fibers have been shown to produce predictable interference patterns when placed under strain. The use is described of a modal domain sensor in a vibration control experiment. An optical fiber is bonded along the length of a flexible beam. Output from the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed. This model is combined with the beam and actuator dynamics to produce a system suitable for control design. Computer simulations predict open and closed loop dynamic responses. An experimental apparatus is described and experimental results are presented.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelace, III, Henry H.

    In accelerator physics, models of a given machine are used to predict the behaviors of the beam, magnets, and radiofrequency cavities. The use of the computational model has become wide spread to ease the development period of the accelerator lattice. There are various programs that are used to create lattices and run simulations of both transverse and longitudinal beam dynamics. The programs include Methodical Accelerator Design(MAD) MAD8, MADX, Zgoubi, Polymorphic Tracking Code (PTC), and many others. In this discussion the BMAD (Baby Methodical Accelerator Design) is presented as an additional tool in creating and simulating accelerator lattices for the studymore » of beam dynamics in the Relativistic Heavy Ion Collider (RHIC).« less

  11. Development of an Aero-Optics Software Library and Integration into Structured Overset and Unstructured Computational Fluid Dynamics (CFD) Flow Solvers

    DTIC Science & Technology

    2011-04-01

    some similarities to the far- field (i.e. atmospheric ) propagation, but due to the interactions between turbulence length scales, beam wavelengths...equivalently, phase differences, have been used to characterize the beam distortion caused by the unsteady turbulent flow field. A Partially-Averaged Navier...A., Wang, M., and Moin, P., “Computational Study of Aero-Optical Distortion by Turbulent Wake,” AIAA Paper 2005-4655. [11] Mani, A., Wang, M., and

  12. Sweep excitation with order tracking: A new tactic for beam crack analysis

    NASA Astrophysics Data System (ADS)

    Wei, Dongdong; Wang, KeSheng; Zhang, Mian; Zuo, Ming J.

    2018-04-01

    Crack detection in beams and beam-like structures is an important issue in industry and has attracted numerous investigations. A local crack leads to global system dynamics changes and produce non-linear vibration responses. Many researchers have studied these non-linearities for beam crack diagnosis. However, most reported methods are based on impact excitation and constant frequency excitation. Few studies have focused on crack detection through external sweep excitation which unleashes abundant dynamic characteristics of the system. Together with a signal resampling technique inspired by Computed Order Tracking, this paper utilize vibration responses under sweep excitations to diagnose crack status of beams. A data driven method for crack depth evaluation is proposed and window based harmonics extracting approaches are studied. The effectiveness of sweep excitation and the proposed method is experimentally validated.

  13. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  14. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silbar, Richard R.

    1999-07-26

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavormore » of the look and feel of the presently available and upcoming modules.« less

  15. Simulation of Power Collection Dynamics for Simply Supported Power Rail

    DOT National Transportation Integrated Search

    1972-11-01

    The mathematical model of a sprung mass moving along a simply supported beam is used to analyze the dynamics of a power-collection system. A computer simulation of one-dimensional motion is used to demonstrate the phenomenon of collector-power rail i...

  16. Computational strategies in the dynamic simulation of constrained flexible MBS

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Xie, M.

    1993-01-01

    This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.

  17. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.

  18. Large deflections and vibrations of a tip pulled beam with variable transversal section

    NASA Astrophysics Data System (ADS)

    Kurka, P.; Izuka, J.; Gonzalez, P.; Teixeira, L. H.

    2016-10-01

    The use of long flexible probes in outdoors exploration vehicles, as opposed to short and rigid arms, is a convenient way to grant easier access to regions of scientific interest such as terrain slopes and cliff sides. Longer and taller arms can also provide information from a wider exploration horizon. The drawback of employing long and flexible exploration probes is the fact that its vibration is not easily controlled in real time operation by means of a simple analytic linear dynamic model. The numerical model required to describe the dynamics of a very long and flexible structure is often very large and of slow computational convergence. The present work proposes a simplified numerical model of a long flexible beam with variable cross section, which is statically deflected by a pulling cable. The paper compares the proposed simplified model with experimental data regarding the static and dynamic characteristics of a beam with variable cross section. The simulations show the effectiveness of the simplified dynamic model employed in an active control loop to suppress tip vibrations of the beam.

  19. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D [Santa Fe, NM; Claytor, Thomas N [White Rock, NM; Berry, Phillip C [Albuquerque, NM; Hills, Charles R [Los Alamos, NM

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoying; Rybarcyk, Larry

    HPSim is a GPU-accelerated online multi-particle beam dynamics simulation tool for ion linacs. It was originally developed for use on the Los Alamos 800-MeV proton linac. It is a “z-code” that contains typical linac beam transport elements. The linac RF-gap transformation utilizes transit-time-factors to calculate the beam acceleration therein. The space-charge effects are computed using the 2D SCHEFF (Space CHarge EFFect) algorithm, which calculates the radial and longitudinal space charge forces for cylindrically symmetric beam distributions. Other space- charge routines to be incorporated include the 3D PICNIC and a 3D Poisson solver. HPSim can simulate beam dynamics in drift tubemore » linacs (DTLs) and coupled cavity linacs (CCLs). Elliptical superconducting cavity (SC) structures will also be incorporated into the code. The computational core of the code is written in C++ and accelerated using the NVIDIA CUDA technology. Users access the core code, which is wrapped in Python/C APIs, via Pythons scripts that enable ease-of-use and automation of the simulations. The overall linac description including the EPICS PV machine control parameters is kept in an SQLite database that also contains calibration and conversion factors required to transform the machine set points into model values used in the simulation.« less

  1. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  2. Nonparaxial fractional Bessel and Bessel-Gauss auto-focusing light-sheet pincers and their higher-order spatial derivatives

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Nonparaxial fractional electromagnetic Bessel and Bessel-Gauss auto-focusing light-sheet solutions and their spatial derivatives are synthesized stemming from the angular spectrum decomposition in plane waves. The propagation characteristics of these transverse electric-polarized light-sheets are analyzed by computing the radiated component of the incident electric field. Tight bending of the beam along curved trajectories and slit openings are observed, which could offer unique features and potential applications in the development of improved methods and devices in light-sheet tweezers for particle manipulation applications and dynamics in opto-fluidics, particle sizing and imaging to name a few examples. Moreover, computations of the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solutions.

  3. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Andrew J.

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experimentsmore » investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.« less

  4. Inelastic seismic response of precast concrete frames with constructed plastic hinges

    NASA Astrophysics Data System (ADS)

    Sucuoglu, H.

    1995-07-01

    A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.

  5. CSM solutions of rotating blade dynamics using integrating matrices

    NASA Technical Reports Server (NTRS)

    Lakin, William D.

    1992-01-01

    The dynamic behavior of flexible rotating beams continues to receive considerable research attention as it constitutes a fundamental problem in applied mechanics. Further, beams comprise parts of many rotating structures of engineering significance. A topic of particular interest at the present time involves the development of techniques for obtaining the behavior in both space and time of a rotor acted upon by a simple airload loading. Most current work on problems of this type use solution techniques based on normal modes. It is certainly true that normal modes cannot be disregarded, as knowledge of natural blade frequencies is always important. However, the present work has considered a computational structural mechanics (CSM) approach to rotor blade dynamics problems in which the physical properties of the rotor blade provide input for a direct numerical solution of the relevant boundary-and-initial-value problem. Analysis of the dynamics of a given rotor system may require solution of the governing equations over a long time interval corresponding to many revolutions of the loaded flexible blade. For this reason, most of the common techniques in computational mechanics, which treat the space-time behavior concurrently, cannot be applied to the rotor dynamics problem without a large expenditure of computational resources. By contrast, the integrating matrix technique of computational mechanics has the ability to consistently incorporate boundary conditions and 'remove' dependence on a space variable. For problems involving both space and time, this feature of the integrating matrix approach thus can generate a 'splitting' which forms the basis of an efficient CSM method for numerical solution of rotor dynamics problems.

  6. A spectral-Tchebychev solution for three-dimensional dynamics of curved beams under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Aksoy, Serdar

    2018-01-01

    This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of curved beams/structures having variable and arbitrary cross-section under mixed boundary conditions. To accurately capture the vibrational behavior of curved structures, a three-dimensional (3D) solution approach is required since these structures generally exhibit coupled motions. In this study, the integral boundary value problem (IBVP) governing the dynamics of the curved structures is found using extended Hamilton's principle where the strain energy is expressed using 3D linear elasticity equation. To solve the IBVP numerically, the 3D spectral Tchebychev (3D-ST) approach is used. To evaluate the integral and derivative operations defined by the IBVP and to render the complex geometry into an equivalent straight beam with rectangular cross-section, a series of coordinate transformations are applied. To validate and assess the performance of the presented solution approach, two case studies are performed: (i) curved beam with rectangular cross-section, (ii) curved and pretwisted beam with airfoil cross-section. In both cases, the results (natural frequencies and mode shapes) are also found using a finite element (FE) solution approach. It is shown that the difference in predicted natural frequencies are less than 1%, and the mode shapes are in excellent agreement based on the modal assurance criteria (MAC) analyses; however, the presented spectral-Tchebychev solution approach significantly reduces the computational burden. Therefore, it can be concluded that the presented solution approach can capture the 3D vibrational behavior of curved beams as accurately as an FE solution, but for a fraction of the computational cost.

  7. Studies of dynamic processes related to active experiments in space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Neubert, Torsten

    1992-01-01

    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.

  8. Beam breakup in an advanced linear induction accelerator

    DOE PAGES

    Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent

    2016-07-01

    Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less

  9. Fast and precise processing of material by means of an intensive electron beam

    NASA Astrophysics Data System (ADS)

    Beisswenger, S.

    1984-07-01

    For engraving a picture carrying screen of cells into the copper-surface of gravure cylinders, an electron beam system was developed. Numerical computations of the power density in the image planes of the electron beam determined the design of the electron optical assembly. A highly stable electron beam of high power density is generated by a ribbon-like cathode. A system of magnetic lenses is used for fast control of the engraving processes and for dynamic changing of the electron optical demagnification. The electron beam engraving system is capable of engraving up to 150,000 gravure cells per sec.

  10. Electrostatic plasma lens for focusing negatively charged particle beams.

    PubMed

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  11. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K.

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentialsmore » are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.« less

  12. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    NASA Astrophysics Data System (ADS)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  13. Experimental validation of a numerical model predicting the charging characteristics of Teflon and Kapton under electron beam irradiation

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Yadlowsky, E. J.; Churchill, R. J.; Parker, L. W.; Sellers, B.

    1981-01-01

    The effect differential charging of spacecraft thermal control surfaces is assessed by studying the dynamics of the charging process. A program to experimentally validate a computer model of the charging process was established. Time resolved measurements of the surface potential were obtained for samples of Kapton and Teflon irradiated with a monoenergetic electron beam. Results indicate that the computer model and experimental measurements agree well and that for Teflon, secondary emission is the governing factor. Experimental data indicate that bulk conductivities play a significant role in the charging of Kapton.

  14. Beam rider for an Articulated Robot Manipulator (ARM) accurate positioning of long flexible manipulators

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.

    1990-01-01

    Laser beam positioning and beam rider modules were incorporated into the long hollow flexible segment of an articulated robot manipulator (ARM). Using a single laser beam, the system determined the position of the distal ARM endtip, with millimetric precision, in six degrees of freedom, at distances of up to 10 meters. Preliminary designs, using space rated technology for the critical systems, of a two segmented physical ARM, with a single and a dual degree of freedom articulation, were developed, prototyped, and tested. To control the positioning of the physical ARM, an indirect adaptive controller, which used the mismatch between the position of the laser beam under static and dynamic conditions, was devised. To predict the behavior of the system and test the concept, a computer simulation model was constructed. A hierarchical artificially intelligent real time ADA operating system program structure was created. The software was designed for implementation on a dedicated VME bus based Intel 80386 administered parallel processing multi-tasking computer system.

  15. Dynamic refractometer

    NASA Technical Reports Server (NTRS)

    Curley, Michael J. (Inventor); Sarkisov, Sergey S. (Inventor)

    2008-01-01

    A refractometer computer controls the rotation of a rotary plate upon which are mounted a prism optically coupled via an optical window to a spectroscopic cell holding a resin exhibiting a dynamic refractive index during photocuring. The computer system positions the prism and spectroscopic cell relative to a visible light laser which illuminates the prism-resin interface at selected incidence angles. A photodetector mounted on the plate generates a signal to the computer proportional to intensity of an internally reflected light beam. A curing light is selectively transmitted through the prism and into the photocurable resin. The refractometer determines the intensity of the internally reflected beam a selected incidence angles and determines the effective refractive index curve of the resin at an uncured state and, optionally, at a completely cured state. Next, an amount of uncured resin and selected optical components to be joined by the resin is placed in the spectroscopic cell and irradiated with the UV light. The refractometer is fixed at a selected incidence angle and measures the intensity of an internally reflected light beam of light throughout the cure cycle. The refractometer determines the resin's refractive index of the polymeric mixture by means of extrapolation of a horizontal shift in the effective refractive index curve of the resin from an uncured state to a selected point in the cure cycle.

  16. Hierarchic Extensions in the Static and Dynamic Analysis of Elastic Beams. Ph.D. Thesis, 1990 Final Report, May 1990

    NASA Technical Reports Server (NTRS)

    Watson, Robert A.

    1991-01-01

    Approximate solutions of static and dynamic beam problems by the p-version of the finite element method are investigated. Within a hierarchy of engineering beam idealizations, rigorous formulations of the strain and kinetic energies for straight and circular beam elements are presented. These formulations include rotating coordinate system effects and geometric nonlinearities to allow for the evaluation of vertical axis wind turbines, the motivating problem for this research. Hierarchic finite element spaces, based on extensions of the polynomial orders used to approximate the displacement variables, are constructed. The developed models are implemented into a general purpose computer program for evaluation. Quality control procedures are examined for a diverse set of sample problems. These procedures include estimating discretization errors in energy norm and natural frequencies, performing static and dynamic equilibrium checks, observing convergence for qualities of interest, and comparison with more exacting theories and experimental data. It is demonstrated that p-extensions produce exponential rates of convergence in the approximation of strain energy and natural frequencies for the class of problems investigated.

  17. Safety Engineering and Protective Technology in Support of Army Modernization Programs--Picatinny Arsenal Papers Presented at the 16th Annual Explosive Safety Seminar

    DTIC Science & Technology

    1975-08-01

    beams with diagonal bracing. The siding and roofing were constructed of corrugated aluminum panels connected to the girts and purlins by 1/4- inch...Fig 8) . Also con- tained in this report are static and dynamic properties of steel columns and beams ; as well as recommended types of steels and...both the beams and the columns . 3. The interaction between axial loads and displacements. The computer program input data includes the modulus of

  18. Simulation of a Canard in Fluid Flow Driven by a Piezoelectric Beam with a Software Control Loop

    DTIC Science & Technology

    2014-04-01

    The canard is actuated by a piezoelectric beam that bends as voltage is applied. The voltage is controlled by a software subroutine that measures...Dynamic system Modeling Co-simulation Simulation Abaqus Finite element analysis (FEA) Finite element method (FEM) Computational...is unlimited. i CONTENTS Page Introduction 1 Model Description 1 Fluid Model 2 Structural Model 3 Control Subroutine 4 Results 4

  19. NORTICA—a new code for cyclotron analysis

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-12-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.

  20. Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Qin, Datong; Lim, Teik C.

    2010-08-01

    A mixed flexible-rigid multi-body mathematical model is applied to predict the dynamic performance of a wind turbine system. Since the tower and rotor are both flexible thin-walled structures, a consistent expression for their deformations is applied, which employs a successive series of transformations to locate any point on the blade and tower relative to an inertial coordinate system. The kinetic and potential energy terms of each flexible body and rigid body are derived for use in the Lagrange approach to formulate the wind turbine system's governing equation. The mode shapes are then obtained from the free vibration solution, while the distributions of dynamic stress and displacement of the tower and rotor are computed from the forced vibration response analysis. Using this dynamic model, the influence of the tower's stiffness on the blade tip deformation is studied. From the analysis, it is evident that the proposed model not only inherits the simplicity of the traditional 1-D beam element, but also able to provide detailed information about the tower and rotor response due to the incorporation of the flexible thin-walled beam theory.

  1. Summary and Findings of the ARL Dynamic Failure Forum

    DTIC Science & Technology

    2016-09-29

    short beam shear, quasi -static indentation, depth of penetration, and V50 limit velocity. o Experimental technique suggestions for improvement included...art in experimental , theoretical, and computational studies of dynamic failure. The forum also focused on identifying technologies and approaches...Army-specific problems. Experimental exploration of material behavior and an improved ability to parameterize material models is essential to improving

  2. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  3. Computer program determines vibration in three-dimensional space of hydraulic lines excited by forced displacements

    NASA Technical Reports Server (NTRS)

    Dodge, W. G.

    1968-01-01

    Computer program determines the forced vibration in three dimensional space of a multiple degree of freedom beam type structural system. Provision is made for the longitudinal axis of the analytical model to change orientation at any point along its length. This program is used by industries in which structural design dynamic analyses are performed.

  4. Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings

    NASA Astrophysics Data System (ADS)

    Cunha, Americo; Soize, Christian; Sampaio, Rubens

    2015-11-01

    This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.

  5. Free vibration of functionally graded beams and frameworks using the dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Banerjee, J. R.; Ananthapuvirajah, A.

    2018-05-01

    The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.

  6. Vehicle - Bridge interaction, comparison of two computing models

    NASA Astrophysics Data System (ADS)

    Melcer, Jozef; Kuchárová, Daniela

    2017-07-01

    The paper presents the calculation of the bridge response on the effect of moving vehicle moves along the bridge with various velocities. The multi-body plane computing model of vehicle is adopted. The bridge computing models are created in two variants. One computing model represents the bridge as the Bernoulli-Euler beam with continuously distributed mass and the second one represents the bridge as the lumped mass model with 1 degrees of freedom. The mid-span bridge dynamic deflections are calculated for both computing models. The results are mutually compared and quantitative evaluated.

  7. Long-term stable time integration scheme for dynamic analysis of planar geometrically exact Timoshenko beams

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Long; Sansour, Carlo; Hjiaj, Mohammed

    2017-05-01

    In this paper, an energy-momentum method for geometrically exact Timoshenko-type beam is proposed. The classical time integration schemes in dynamics are known to exhibit instability in the non-linear regime. The so-called Timoshenko-type beam with the use of rotational degree of freedom leads to simpler strain relations and simpler expressions of the inertial terms as compared to the well known Bernoulli-type model. The treatment of the Bernoulli-model has been recently addressed by the authors. In this present work, we extend our approach of using the strain rates to define the strain fields to in-plane geometrically exact Timoshenko-type beams. The large rotational degrees of freedom are exactly computed. The well-known enhanced strain method is used to avoid locking phenomena. Conservation of energy, momentum and angular momentum is proved formally and numerically. The excellent performance of the formulation will be demonstrated through a range of examples.

  8. TH-C-BRD-02: Analytical Modeling and Dose Calculation Method for Asymmetric Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelover, E; Wang, D; Hill, P

    2014-06-15

    Purpose: A dynamic collimation system (DCS), which consists of two pairs of orthogonal trimmer blades driven by linear motors has been proposed to decrease the lateral penumbra in pencil beam scanning proton therapy. The DCS reduces lateral penumbra by intercepting the proton pencil beam near the lateral boundary of the target in the beam's eye view. The resultant trimmed pencil beams are asymmetric and laterally shifted, and therefore existing pencil beam dose calculation algorithms are not capable of trimmed beam dose calculations. This work develops a method to model and compute dose from trimmed pencil beams when using the DCS.more » Methods: MCNPX simulations were used to determine the dose distributions expected from various trimmer configurations using the DCS. Using these data, the lateral distribution for individual beamlets was modeled with a 2D asymmetric Gaussian function. The integral depth dose (IDD) of each configuration was also modeled by combining the IDD of an untrimmed pencil beam with a linear correction factor. The convolution of these two terms, along with the Highland approximation to account for lateral growth of the beam along the depth direction, allows a trimmed pencil beam dose distribution to be analytically generated. The algorithm was validated by computing dose for a single energy layer 5×5 cm{sup 2} treatment field, defined by the trimmers, using both the proposed method and MCNPX beamlets. Results: The Gaussian modeled asymmetric lateral profiles along the principal axes match the MCNPX data very well (R{sup 2}≥0.95 at the depth of the Bragg peak). For the 5×5 cm{sup 2} treatment plan created with both the modeled and MCNPX pencil beams, the passing rate of the 3D gamma test was 98% using a standard threshold of 3%/3 mm. Conclusion: An analytical method capable of accurately computing asymmetric pencil beam dose when using the DCS has been developed.« less

  9. Chaotic dynamics in accelerator physics

    NASA Astrophysics Data System (ADS)

    Cary, J. R.

    1992-11-01

    Substantial progress was made in several areas of accelerator dynamics. We have completed a design of an FEL wiggler with adiabatic trapping and detrapping sections to develop an understanding of longitudinal adiabatic dynamics and to create efficiency enhancements for recirculating free-electron lasers. We developed a computer code for analyzing the critical KAM tori that binds the dynamic aperture in circular machines. Studies of modes that arise due to the interaction of coating beams with a narrow-spectrum impedance have begun. During this research educational and research ties with the accelerator community at large have been strengthened.

  10. Synergia: an accelerator modeling tool with 3-D space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, James F.; Spentzouris, P.; /Fermilab

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab boostermore » accelerator.« less

  11. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  12. Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amann, John; /SLAC; Arnold, Ray

    This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the currentmore » status, and also the issues still to be addressed.« less

  13. Simulation of radiation damping in rings, using stepwise ray-tracing methods

    DOE PAGES

    Meot, F.

    2015-06-26

    The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider projectmore » at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.« less

  14. Random access actuation of nanowire grid metamaterial

    NASA Astrophysics Data System (ADS)

    Cencillo-Abad, Pablo; Ou, Jun-Yu; Plum, Eric; Valente, João; Zheludev, Nikolay I.

    2016-12-01

    While metamaterials offer engineered static optical properties, future artificial media with dynamic random-access control over shape and position of meta-molecules will provide arbitrary control of light propagation. The simplest example of such a reconfigurable metamaterial is a nanowire grid metasurface with subwavelength wire spacing. Recently we demonstrated computationally that such a metadevice with individually controlled wire positions could be used as dynamic diffraction grating, beam steering module and tunable focusing element. Here we report on the nanomembrane realization of such a nanowire grid metasurface constructed from individually addressable plasmonic chevron nanowires with a 230 nm × 100 nm cross-section, which consist of gold and silicon nitride. The active structure of the metadevice consists of 15 nanowires each 18 μm long and is fabricated by a combination of electron beam lithography and ion beam milling. It is packaged as a microchip device where the nanowires can be individually actuated by control currents via differential thermal expansion.

  15. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications

    NASA Astrophysics Data System (ADS)

    Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.

    2017-10-01

    A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.

  16. United States Air Force High School Apprenticeship Program. 1990 Program Management Report. Volume 3

    DTIC Science & Technology

    1991-04-18

    User Guide Shelly Knupp 73 Computer-Aided Design (CAD) Area Christopher O’Dell 74 Electron Beam Lithography Suzette Yu 68 Flight Dynamics Laboratory 75...fabrication. I Mr. Ed Davis, for the background knowledge of device processes and I information on electron beam lithography . Captain Mike Cheney, for...researcher may write gates on to the wafer by a process called lithography . This is the most crucial and complex part of the process. Two types of proven

  17. A Lattice-Boltzmann model to simulate diffractive nonlinear ultrasound beam propagation in a dissipative fluid medium

    NASA Astrophysics Data System (ADS)

    Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan

    2012-12-01

    Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.

  18. Architectural Improvements and New Processing Tools for the Open XAL Online Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christopher K; Pelaia II, Tom; Freed, Jonathan M

    The online model is the component of Open XAL providing accelerator modeling, simulation, and dynamic synchronization to live hardware. Significant architectural changes and feature additions have been recently made in two separate areas: 1) the managing and processing of simulation data, and 2) the modeling of RF cavities. Simulation data and data processing have been completely decoupled. A single class manages all simulation data while standard tools were developed for processing the simulation results. RF accelerating cavities are now modeled as composite structures where parameter and dynamics computations are distributed. The beam and hardware models both maintain their relative phasemore » information, which allows for dynamic phase slip and elapsed time computation.« less

  19. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.

    PubMed

    Stenner, Philip; Schmidt, Bernhard; Allmendinger, Thomas; Flohr, Thomas; Kachelrie, Marc

    2010-06-01

    In cardiac perfusion examinations with computed tomography (CT) large concentrations of iodine in the ventricle and in the descending aorta cause beam hardening artifacts that can lead to incorrect perfusion parameters. The aim of this study is to reduce these artifacts by performing an iterative correction and by accounting for the 3 materials soft tissue, bone, and iodine. Beam hardening corrections are either implemented as simple precorrections which cannot account for higher order beam hardening effects, or as iterative approaches that are based on segmenting the original image into material distribution images. Conventional segmentation algorithms fail to clearly distinguish between iodine and bone. Our new algorithm, DIBHC, calculates the time-dependent iodine distribution by analyzing the voxel changes of a cardiac perfusion examination (typically N approximately 15 electrocardiogram-correlated scans distributed over a total scan time up to T approximately 30 s). These voxel dynamics are due to changes in contrast agent. This prior information allows to precisely distinguish between bone and iodine and is key to DIBHC where each iteration consists of a multimaterial (soft tissue, bone, iodine) polychromatic forward projection, a raw data comparison and a filtered backprojection. Simulations with a semi-anthropomorphic dynamic phantom and clinical scans using a dual source CT scanner with 2 x 128 slices, a tube voltage of 100 kV, a tube current of 180 mAs, and a rotation time of 0.28 seconds have been carried out. The uncorrected images suffer from beam hardening artifacts that appear as dark bands connecting large concentrations of iodine in the ventricle, aorta, and bony structures. The CT-values of the affected tissue are usually underestimated by roughly 20 HU although deviations of up to 61 HU have been observed. For a quantitative evaluation circular regions of interest have been analyzed. After application of DIBHC the mean values obtained deviate by only 1 HU for the simulations and the corrected values show an increase of up to 61 HU for the measurements. One iteration of DIBHC greatly reduces the beam hardening artifacts induced by the contrast agent dynamics (and those due to bone) now allowing for an improved assessment of contrast agent uptake in the myocardium which is essential for determining myocardial perfusion.

  20. Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions

    NASA Astrophysics Data System (ADS)

    Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.

    2018-03-01

    Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.

  1. Monochromatic-beam-based dynamic X-ray microtomography based on OSEM-TV algorithm.

    PubMed

    Xu, Liang; Chen, Rongchang; Yang, Yiming; Deng, Biao; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2017-01-01

    Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution. However, it has disadvantages of low image reconstruction quality using the traditional filtered back projection (FBP) algorithm. In this study, an iterative reconstruction method using an ordered subset expectation maximization-total variation (OSEM-TV) algorithm was employed to address and solve this problem. The simulated results demonstrated that normalized mean square error of the image slices reconstructed by the OSEM-TV algorithm was about 1/4 of that by FBP. Experimental results also demonstrated that the density resolution of OSEM-TV was high enough to resolve different materials with the number of projections less than 100. As a result, with the introduction of OSEM-TV, the monochromatic-beam-based dynamic X-ray microtomography is potentially practicable for the quantitative and non-destructive analysis to the evolution of microstructure with acceptable efficiency in data collection and reconstructed image quality.

  2. The fabrication of a customized occlusal splint based on the merging of dynamic jaw tracking records, cone beam computed tomography, and CAD-CAM digital impression.

    PubMed

    Aslanidou, Katerina; Kau, Chung How; Vlachos, Christos; Saleh, Tayem Abou

    2017-01-01

    The aim of this case report was to present the procedure of fabricating a customized occlusal splint, through a revolutionary software that combines cone beam computed tomography (CBCT) with jaw motion tracking (JMT) data and superimposes a digital impression. The case report was conducted on a 46-year-old female patient diagnosed with the temporomandibular disorder. A CBCT scan and an optical impression were obtained. The range of the patient's mandibular movements was captured with a JMT device. The data were combined in the SICAT software (SICAT, Sirona, Bonn, Germany). The software enabled the visualization of patient-specific mandibular movements and provided a real dynamic anatomical evaluation of the condylar position in the glenoid fossa. After the assessment of the range of movements during opening, protrusion, and lateral movements all the data were sent to SICAT and a customized occlusal splint was manufactured. The SICAT software provides a three-dimensional real-dynamic simulation of mandibular movements relative to the patient-specific anatomy of the jaw; thus, it opens new possibilities and potentials for the management of temporomandibular disorders.

  3. Instrument Design Optimization With Computational Methods

    NASA Astrophysics Data System (ADS)

    Moore, Michael H.

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density fluctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5.5° to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.

  4. Instrument design optimization with computational methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Michael H.

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density uctuations from the liquid hydrogen (LH2) target used in the Q weak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentummore » Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5:5 deg to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.« less

  5. Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, M.; Basaran, M. E.; Porfiri, M.

    2012-03-01

    In this paper, we study flexural vibrations of a cantilever beam with thin rectangular cross section submerged in a quiescent viscous fluid and undergoing oscillations whose amplitude is comparable with its width. The structure is modeled using Euler-Bernoulli beam theory and the distributed hydrodynamic loading is described by a single complex-valued hydrodynamic function which accounts for added mass and fluid damping experienced by the structure. We perform a parametric 2D computational fluid dynamics analysis of an oscillating rigid lamina, representative of a generic beam cross section, to understand the dependence of the hydrodynamic function on the governing flow parameters. We find that increasing the frequency and amplitude of the vibration elicits vortex shedding and convection phenomena which are, in turn, responsible for nonlinear hydrodynamic damping. We establish a manageable nonlinear correction to the classical hydrodynamic function developed for small amplitude vibration and we derive a computationally efficient reduced order modal model for the beam nonlinear oscillations. Numerical and theoretical results are validated by comparison with ad hoc designed experiments on tapered beams and multimodal vibrations and with data available in the literature. Findings from this work are expected to find applications in the design of slender structures of interest in marine applications, such as biomimetic propulsion systems and energy harvesting devices.

  6. Minimum Variance Distortionless Response Beamformer with Enhanced Nulling Level Control via Dynamic Mutated Artificial Immune System

    PubMed Central

    Kiong, Tiong Sieh; Salem, S. Balasem; Paw, Johnny Koh Siaw; Sankar, K. Prajindra

    2014-01-01

    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals. PMID:25003136

  7. Minimum variance distortionless response beamformer with enhanced nulling level control via dynamic mutated artificial immune system.

    PubMed

    Kiong, Tiong Sieh; Salem, S Balasem; Paw, Johnny Koh Siaw; Sankar, K Prajindra; Darzi, Soodabeh

    2014-01-01

    In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals.

  8. Identification of Vehicle Axle Loads from Bridge Dynamic Responses

    NASA Astrophysics Data System (ADS)

    ZHU, X. Q.; LAW, S. S.

    2000-09-01

    A method is presented to identify moving loads on a bridge deck modelled as an orthotropic rectangular plate. The dynamic behavior of the bridge deck under moving loads is analyzed using the orthotropic plate theory and modal superposition principle, and Tikhonov regularization procedure is applied to provide bounds to the identified forces in the time domain. The identified results using a beam model and a plate model of the bridge deck are compared, and the conditions under which the bridge deck can be simplified as an equivalent beam model are discussed. Computation simulation and laboratory tests show the effectiveness and the validity of the proposed method in identifying forces travelling along the central line or at an eccentric path on the bridge deck.

  9. Computational methods for the identification of spatially varying stiffness and damping in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1986-01-01

    A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.

  10. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  11. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE PAGES

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason; ...

    2017-03-14

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  12. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  13. Symplectic multi-particle tracking on GPUs

    NASA Astrophysics Data System (ADS)

    Liu, Zhicong; Qiang, Ji

    2018-05-01

    A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.

  14. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  15. Dynamic splitting of Gaussian pencil beams in heterogeneity-correction algorithms for radiotherapy with heavy charged particles.

    PubMed

    Kanematsu, Nobuyuki; Komori, Masataka; Yonai, Shunsuke; Ishizaki, Azusa

    2009-04-07

    The pencil-beam algorithm is valid only when elementary Gaussian beams are small enough compared to the lateral heterogeneity of a medium, which is not always true in actual radiotherapy with protons and ions. This work addresses a solution for the problem. We found approximate self-similarity of Gaussian distributions, with which Gaussian beams can split into narrower and deflecting daughter beams when their sizes have overreached lateral heterogeneity in the beam-transport calculation. The effectiveness was assessed in a carbon-ion beam experiment in the presence of steep range compensation, where the splitting calculation reproduced a detour effect amounting to about 10% in dose or as large as the lateral particle disequilibrium effect. The efficiency was analyzed in calculations for carbon-ion and proton radiations with a heterogeneous phantom model, where the beam splitting increased computing times by factors of 4.7 and 3.2. The present method generally improves the accuracy of the pencil-beam algorithm without severe inefficiency. It will therefore be useful for treatment planning and potentially other demanding applications.

  16. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. S., E-mail: kim@far-tech.com; Zhao, L., E-mail: kim@far-tech.com; Spencer, J. A., E-mail: kim@far-tech.com

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics.more » This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.« less

  17. Beam induced electron cloud resonances in dipole magnetic fields

    DOE PAGES

    Calvey, J. R.; Hartung, W.; Makita, J.; ...

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. Thesemore » measurements are supported by both analytical models and computer simulations.« less

  18. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  19. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  20. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  1. Constrained multi-objective optimization of storage ring lattices

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  2. Static and dynamic structural-sensitivity derivative calculations in the finite-element-based Engineering Analysis Language (EAL) system

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.; Adelman, H. M.

    1984-01-01

    The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.

  3. Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Oyadiji, S. Olutunde; Ding, Kang

    2008-04-01

    This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical simulation. For real cases, experimental noise is expected to corrupt the response data and, ultimately, the natural frequencies of beam-like structures. Therefore, the response data with a normally distributed random noise is also studied. Also, the effects of crack depth, auxiliary mass and damping ratios on the proposed method are investigated. From the simulated results, the efficiency and robustness of the proposed method is demonstrated. The results show that the proposed method has low computational cost and high precision.

  4. Interactive computer graphics and its role in control system design of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  5. Magnetic field errors tolerances of Nuclotron booster

    NASA Astrophysics Data System (ADS)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  6. Dynamic analysis using superelements for a large helicopter model

    NASA Technical Reports Server (NTRS)

    Patel, M. P.; Shah, L. C.

    1978-01-01

    Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.

  7. Active vibration control of a thin walled beam by neural networks and piezo-actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecce, L.; Sorrentino, A.; Concilio, A.

    1994-12-31

    In turboprop aircraft, vibration of the fuselage frame (typically a thin-walled beam) has been identified as the main cause of interior noise. Passive methods, based essentially on the use of DVA (Dynamic Vibration Absorbers) have been shown to be not entirely satisfactory, due to the significant weight increase. The use of active control systems based on piezoceramic sensors and actuators integrated into the frame seems to be a valid alternative to attenuate interior noise. In this paper, the use of a MIMO feedforward active control system with piezoceramic actuators is proposed, in order to reduce the vertical vibration levels ofmore » a rectified, typical fuselage frame. A numerical FEM model of the rectified frame has been experimentally validated and has been used in order to evaluate the dynamic response of the beam, both with regard to piezoceramic actuators and to a point force, representing the primary disturbance. A neural network (NN) controller has been used to simultaneously compute amplitudes and phases of the control force for the 6 piezo actuators, so as to minimize the accelerometric responses acquired in 30 points of the beam (6 at each of 5 different transversal sections).« less

  8. Efficient three-dimensional Poisson solvers in open rectangular conducting pipe

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2016-06-01

    Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.

  9. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    PubMed

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  10. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to amore » resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.« less

  11. Watching from a distance: A robotically controlled laser and real-time subject tracking software for the study of conditioned predator/prey-like interactions.

    PubMed

    Wilson, James C; Kesler, Mitch; Pelegrin, Sara-Lynn E; Kalvi, LeAnna; Gruber, Aaron; Steenland, Hendrik W

    2015-09-30

    The physical distance between predator and prey is a primary determinant of behavior, yet few paradigms exist to study this reliably in rodents. The utility of a robotically controlled laser for use in a predator-prey-like (PPL) paradigm was explored for use in rats. This involved the construction of a robotic two-dimensional gimbal to dynamically position a laser beam in a behavioral test chamber. Custom software was used to control the trajectory and final laser position in response to user input on a console. The software also detected the location of the laser beam and the rodent continuously so that the dynamics of the distance between them could be analyzed. When the animal or laser beam came within a fixed distance the animal would either be rewarded with electrical brain stimulation or shocked subcutaneously. Animals that received rewarding electrical brain stimulation could learn to chase the laser beam, while animals that received aversive subcutaneous shock learned to actively avoid the laser beam in the PPL paradigm. Mathematical computations are presented which describe the dynamic interaction of the laser and rodent. The robotic laser offers a neutral stimulus to train rodents in an open field and is the first device to be versatile enough to assess distance between predator and prey in real time. With ongoing behavioral testing this tool will permit the neurobiological investigation of predator/prey-like relationships in rodents, and may have future implications for prosthetic limb development through brain-machine interfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Aliasing errors in measurements of beam position and ellipticity

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  13. Dark optical lattice of ring traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Courtade, Emmanuel; Houde, Olivier; Clément, Jean-François; Verkerk, Philippe; Hennequin, Daniel

    2006-09-01

    We propose an optical lattice for cold atoms made of a one-dimensional stack of dark ring traps. It is obtained through the interference pattern of a standard Gaussian beam with a counterpropagating hollow beam obtained using a setup with two conical lenses. The traps of the resulting lattice are characterized by a high confinement and a filling rate much larger than unity, even if loaded with cold atoms from a magneto-optical trap. We have implemented this system experimentally, and demonstrated its feasibility. Applications in statistical physics, quantum computing, and Bose-Einstein condensate dynamics are conceivable.

  14. A time domain simulation of a beam control system

    NASA Astrophysics Data System (ADS)

    Mitchell, J. R.

    1981-02-01

    The Airborne Laser Laboratory (ALL) is being developed by the Air Force to investigate the integration and operation of high energy laser components in a dynamic airborne environment and to study the propagation of laser light from an airborne vehicle to an airborne target. The ALL is composed of several systems; among these are the Airborne Pointing and Tracking System (APT) and the Automatic Alignment System (AAS). This report presents the results of performing a time domain dynamic simulation for an integrated beam control system composed of the APT and AAS. The simulation is performed on a digital computer using the MIMIC language. It includes models of the dynamics of the system and of disturbances. Also presented in the report are the rationales and developments of these models. The data from the simulation code is summarized by several plots. In addition results from massaging the data with waveform analysis packages are presented. The results are discussed and conclusions are drawn.

  15. Computation of the spectrum of spatial Lyapunov exponents for the spatially extended beam-plasma systems and electron-wave devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.

    2012-08-15

    The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less

  16. Modeling of electron-specimen interaction in scanning electron microscope for e-beam metrology and inspection: challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Suzuki, Makoto; Kameda, Toshimasa; Doi, Ayumi; Borisov, Sergey; Babin, Sergey

    2018-03-01

    The interpretation of scanning electron microscopy (SEM) images of the latest semiconductor devices is not intuitive and requires comparison with computed images based on theoretical modeling and simulations. For quantitative image prediction and geometrical reconstruction of the specimen structure, the accuracy of the physical model is essential. In this paper, we review the current models of electron-solid interaction and discuss their accuracy. We perform the comparison of the simulated results with our experiments of SEM overlay of under-layer, grain imaging of copper interconnect, and hole bottom visualization by angular selective detectors, and show that our model well reproduces the experimental results. Remaining issues for quantitative simulation are also discussed, including the accuracy of the charge dynamics, treatment of beam skirt, and explosive increase in computing time.

  17. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    NASA Astrophysics Data System (ADS)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-01

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper. A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  18. Image calibration and registration in cone-beam computed tomogram for measuring the accuracy of computer-aided implant surgery

    NASA Astrophysics Data System (ADS)

    Lam, Walter Y. H.; Ngan, Henry Y. T.; Wat, Peter Y. P.; Luk, Henry W. K.; Goto, Tazuko K.; Pow, Edmond H. N.

    2015-02-01

    Medical radiography is the use of radiation to "see through" a human body without breaching its integrity (surface). With computed tomography (CT)/cone beam computed tomography (CBCT), three-dimensional (3D) imaging can be produced. These imagings not only facilitate disease diagnosis but also enable computer-aided surgical planning/navigation. In dentistry, the common method for transfer of the virtual surgical planning to the patient (reality) is the use of surgical stent either with a preloaded planning (static) like a channel or a real time surgical navigation (dynamic) after registration with fiducial markers (RF). This paper describes using the corner of a cube as a radiopaque fiducial marker on an acrylic (plastic) stent, this RF allows robust calibration and registration of Cartesian (x, y, z)- coordinates for linking up the patient (reality) and the imaging (virtuality) and hence the surgical planning can be transferred in either static or dynamic way. The accuracy of computer-aided implant surgery was measured with reference to coordinates. In our preliminary model surgery, a dental implant was planned virtually and placed with preloaded surgical guide. The deviation of the placed implant apex from the planning was x=+0.56mm [more right], y=- 0.05mm [deeper], z=-0.26mm [more lingual]) which was within clinically 2mm safety range. For comparison with the virtual planning, the physically placed implant was CT/CBCT scanned and errors may be introduced. The difference of the actual implant apex to the virtual apex was x=0.00mm, y=+0.21mm [shallower], z=-1.35mm [more lingual] and this should be brought in mind when interpret the results.

  19. The University of Maryland Electron Ring: A Model Recirculator for Intense Beam Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, S.; Li, H.; Cui, Y.

    2004-12-07

    The University of Maryland Electron Ring (UMER), designed for transport studies of space-charge dominated beams in a strong focusing lattice, is nearing completion. Low energy, high intensity electron beams provide an excellent model system for experimental studies with relevance to all areas that require high quality, intense charged-particle beams. In addition, UMER constitutes an important tool for benchmarking of computer codes. When completed, the UMER lattice will consist of 36 alternating-focusing (FODO) periods over an 11.5-m circumference. Current studies in UMER over about 2/3 of the ring include beam-envelope matching, halo formation, asymmetrical focusing, and longitudinal dynamics (beam bunch erosionmore » and wave propagation.) Near future, multi-turn operation of the ring will allow us to address important additional issues such as resonance-traversal, energy spread and others. The main diagnostics are phosphor screens and capacitive beam position monitors placed at the center of each 200 bending section. In addition, pepper-pot and slit-wire emittance meters are in operation. The range of beam currents used corresponds to space charge tune depressions from 0.2 to 0.8, which is unprecedented for a circular machine.« less

  20. Performance of computer-designed small-size multistage depressed collectors for a high-perveance traveling wave tube

    NASA Technical Reports Server (NTRS)

    Ramins, P.

    1984-01-01

    Computer designed axisymmetric 2.4-cm-diameter three-, four-, and five-stage depressed collectors were evaluated in conjunction with an octave bandwidth, high-perveance, and high-electronic-efficiency, griddled-gun traveling wave tube (TWT). Spent-beam refocusing was used to condition the beam for optimum entry into the depressed collectors. Both the TWT and multistage depressed collector (MDC) efficiencies were measured, as well as the MDC current, dissipated thermal power, and DC input power distributions, for the TWT operating both at saturation over its bandwidth and over its full dynamic range. Relatively high collector efficiencies were obtained, leading to a very substantial improvement in the overall TWT efficiency. In spite of large fixed TWT body losses (due largely to the 6 to 8 percent beam interception), average overall efficiencies of 45 to 47 percent (for three to five collector stages) were obtained at saturation across the 2.5-, to 5.5-GHz operating band. For operation below saturation the collector efficiencies improved steadily, leading to reasonable ( 20 percent) overall efficiencies as far as 6 dB below saturation.

  1. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    NASA Astrophysics Data System (ADS)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of reaction products because the reaction probabilities were in the diffusion dominant regime. The molecular beam data at different surface temperatures was then used to build a finite rate model. Each reaction mechanism and all rate parameters of the new model were determined individually based on the molecular beam data. Despite the experiments being performed at near vacuum conditions, the finite rate model developed using the data could be used at pressures and temperatures relevant to hypersonic conditions. The new model was implemented in a computational fluid dynamics (CFD) solver and flow over a hypersonic vehicle was simulated. The new model predicted similar overall mass loss rates compared to existing models, however, the individual species production rates were completely different. The most notable difference was that the new model (based on molecular beam data) predicts CO as the oxidation reaction product with virtually no CO2 production, whereas existing models predict the exact opposite trend. CO being the dominant oxidation product is consistent with recent high enthalpy wind tunnel experiments. The discovery that measurements taken in molecular beam facilities are able to determine individual reaction mechanisms, including dependence on surface coverage, opens up an entirely new way of constructing ablation models.

  2. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    NASA Astrophysics Data System (ADS)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  3. The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics

    NASA Technical Reports Server (NTRS)

    Fedele, Renato; Miele, G.

    1994-01-01

    We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.

  4. Impedance computations and beam-based measurements: A problem of discrepancy

    NASA Astrophysics Data System (ADS)

    Smaluk, Victor

    2018-04-01

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.

  5. Robust failure detection filters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sanmartin, A. M.

    1985-01-01

    The robustness of detection filters applied to the detection of actuator failures on a free-free beam is analyzed. This analysis is based on computer simulation tests of the detection filters in the presence of different types of model mismatch, and on frequency response functions of the transfers corresponding to the model mismatch. The robustness of detection filters based on a model of the beam containing a large number of structural modes varied dramatically with the placement of some of the filter poles. The dynamics of these filters were very hard to analyze. The design of detection filters with a number of modes equal to the number of sensors was trivial. They can be configured to detect any number of actuator failure events. The dynamics of these filters were very easy to analyze and their robustness properties were much improved. A change of the output transformation allowed the filter to perform satisfactorily with realistic levels of model mismatch.

  6. Comparison of the quasi-static method and the dynamic method for simulating fracture processes in concrete

    NASA Astrophysics Data System (ADS)

    Liu, J. X.; Deng, S. C.; Liang, N. G.

    2008-02-01

    Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.

  7. Dynamics of elastic nonlinear rotating composite beams with embedded actuators

    NASA Astrophysics Data System (ADS)

    Ghorashi, Mehrdaad

    2009-08-01

    A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.

  8. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device.

    PubMed

    Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De

    2015-09-20

    Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.

  9. Tongue posture improvement and pharyngeal airway enlargement as secondary effects of rapid maxillary expansion: a cone-beam computed tomography study.

    PubMed

    Iwasaki, Tomonori; Saitoh, Issei; Takemoto, Yoshihiko; Inada, Emi; Kakuno, Eriko; Kanomi, Ryuzo; Hayasaki, Haruaki; Yamasaki, Youichi

    2013-02-01

    Rapid maxillary expansion (RME) is known to improve nasal airway ventilation. Recent evidence suggests that RME is an effective treatment for obstructive sleep apnea in children with maxillary constriction. However, the effect of RME on tongue posture and pharyngeal airway volume in children with nasal airway obstruction is not clear. In this study, we evaluated these effects using cone-beam computed tomography. Twenty-eight treatment subjects (mean age 9.96 ± 1.21 years) who required RME treatment had cone-beam computed tomography images taken before and after RME. Twenty control subjects (mean age 9.68 ± 1.02 years) received regular orthodontic treatment. Nasal airway ventilation was analyzed by using computational fluid dynamics, and intraoral airway (the low tongue space between tongue and palate) and pharyngeal airway volumes were measured. Intraoral airway volume decreased significantly in the RME group from 1212.9 ± 1370.9 mm(3) before RME to 279.7 ± 472.0 mm(3) after RME. Nasal airway ventilation was significantly correlated with intraoral airway volume. The increase of pharyngeal airway volume in the control group (1226.3 ± 1782.5 mm(3)) was only 41% that of the RME group (3015.4 ± 1297.6 mm(3)). In children with nasal obstruction, RME not only reduces nasal obstruction but also raises tongue posture and enlarges the pharyngeal airway. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  11. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    NASA Astrophysics Data System (ADS)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  12. SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K; Kim, D; Kim, T

    2015-06-15

    Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array whichmore » have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  13. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  14. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE PAGES

    Smaluk, Victor

    2018-04-21

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  15. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaluk, Victor

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  16. Improved Gaussian Beam-Scattering Algorithm

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1995-01-01

    The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.

  17. Longitudinal dynamics of an intense electron beam

    NASA Astrophysics Data System (ADS)

    Harris, John Richardson

    2005-11-01

    The dynamics of charged particle beams are governed by the particles' thermal velocities, external focusing forces, and Coulomb forces. Beams in which Coulomb forces play the dominant role are known as space charge dominated, or intense. Intense beams are of great interest for heavy ion fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams of interest are dominated by space charge forces when they are first created, so an understanding of space charge effects is critical to explain the later evolution of any beam. Historically, more attention has been paid to the transverse dynamics of beams. However, many interesting and important effects in beams occur along their length. These longitudinal effects can be limiting factors in many systems. For example, modulation or structure applied to the beam at low energy will evolve under space charge forces. Depending on the intended use of the beam and the nature of the modulation, this may result in improved or degraded performance. To study longitudinal dynamics in intense beams, experiments were conducted using the University of Maryland Electron Ring, a 10 keV, 100 mA electron transport system. These experiments concentrated on space charge driven changes in beam length in parabolic and rectangular beams, beam density and velocity modulation, and space charge wave propagation. Coupling between the transverse and longitudinal dynamics was also investigated. These experiments involved operating the UMER gun in space charge limited, temperature limited, triode amplification, photon limited, and hybrid modes. Results of these experiments are presented here, along with a theoretical framework for understanding the longitudinal dynamics of intense beams.

  18. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Computationally efficient description of relativistic electron beam transport in dense plasma

    NASA Astrophysics Data System (ADS)

    Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady

    2006-10-01

    A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.

  20. Damage assessment in PRC and RC beams by dynamic tests

    NASA Astrophysics Data System (ADS)

    Capozucca, R.

    2011-07-01

    The present paper reports on damaged prestressed reinforced concrete (PRC) beams and reinforced concrete (RC) beams experimentally investigated through dynamic testing in order to verify damage degree due to reinforcement corrosion or cracking correlated to loading. The experimental program foresaw that PRC beams were subjected to artificial reinforcement corrosion and static loading while RC beams were damaged by increasing applied loads to produce bending cracking. Dynamic investigation was developed both on undamaged and damaged PRC and RC beams measuring natural frequencies and evaluating vibration mode shapes. Dynamic testing allowed the recording of frequency response variations at different vibration modes. The experimental results are compared with theoretical results and discussed.

  1. On improving the algorithm efficiency in the particle-particle force calculations

    NASA Astrophysics Data System (ADS)

    Kozynchenko, Alexander I.; Kozynchenko, Sergey A.

    2016-09-01

    The problem of calculating inter-particle forces in the particle-particle (PP) simulation models takes an important place in scientific computing. Such simulation models are used in diverse scientific applications arising in astrophysics, plasma physics, particle accelerators, etc., where the long-range forces are considered. The inverse-square laws such as Coulomb's law of electrostatic forces and Newton's law of universal gravitation are the examples of laws pertaining to the long-range forces. The standard naïve PP method outlined, for example, by Hockney and Eastwood [1] is straightforward, processing all pairs of particles in a double nested loop. The PP algorithm provides the best accuracy of all possible methods, but its computational complexity is O (Np2), where Np is a total number of particles involved. Too low efficiency of the PP algorithm seems to be the challenging issue in some cases where the high accuracy is required. An example can be taken from the charged particle beam dynamics where, under computing the own space charge of the beam, so-called macro-particles are used (see e.g., Humphries Jr. [2], Kozynchenko and Svistunov [3]).

  2. Stochastic collective dynamics of charged-particle beams in the stability regime

    NASA Astrophysics Data System (ADS)

    Petroni, Nicola Cufaro; de Martino, Salvatore; de Siena, Silvio; Illuminati, Fabrizio

    2001-01-01

    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time-reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by λcN, where N is the number of particles in the beam and λc the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schrödinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so-called ``quantum-like approaches'' to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the beam, either together or independently.

  3. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    NASA Astrophysics Data System (ADS)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  4. Physics Computing '92: Proceedings of the 4th International Conference

    NASA Astrophysics Data System (ADS)

    de Groot, Robert A.; Nadrchal, Jaroslav

    1993-04-01

    The Table of Contents for the book is as follows: * Preface * INVITED PAPERS * Ab Initio Theoretical Approaches to the Structural, Electronic and Vibrational Properties of Small Clusters and Fullerenes: The State of the Art * Neural Multigrid Methods for Gauge Theories and Other Disordered Systems * Multicanonical Monte Carlo Simulations * On the Use of the Symbolic Language Maple in Physics and Chemistry: Several Examples * Nonequilibrium Phase Transitions in Catalysis and Population Models * Computer Algebra, Symmetry Analysis and Integrability of Nonlinear Evolution Equations * The Path-Integral Quantum Simulation of Hydrogen in Metals * Digital Optical Computing: A New Approach of Systolic Arrays Based on Coherence Modulation of Light and Integrated Optics Technology * Molecular Dynamics Simulations of Granular Materials * Numerical Implementation of a K.A.M. Algorithm * Quasi-Monte Carlo, Quasi-Random Numbers and Quasi-Error Estimates * What Can We Learn from QMC Simulations * Physics of Fluctuating Membranes * Plato, Apollonius, and Klein: Playing with Spheres * Steady States in Nonequilibrium Lattice Systems * CONVODE: A REDUCE Package for Differential Equations * Chaos in Coupled Rotators * Symplectic Numerical Methods for Hamiltonian Problems * Computer Simulations of Surfactant Self Assembly * High-dimensional and Very Large Cellular Automata for Immunological Shape Space * A Review of the Lattice Boltzmann Method * Electronic Structure of Solids in the Self-interaction Corrected Local-spin-density Approximation * Dedicated Computers for Lattice Gauge Theory Simulations * Physics Education: A Survey of Problems and Possible Solutions * Parallel Computing and Electronic-Structure Theory * High Precision Simulation Techniques for Lattice Field Theory * CONTRIBUTED PAPERS * Case Study of Microscale Hydrodynamics Using Molecular Dynamics and Lattice Gas Methods * Computer Modelling of the Structural and Electronic Properties of the Supported Metal Catalysis * Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on Transputer Arrays * Distribution of Ions Reflected on Rough Surfaces * The Study of Step Density Distribution During Molecular Beam Epitaxy Growth: Monte Carlo Computer Simulation * Towards a Formal Approach to the Construction of Large-scale Scientific Applications Software * Correlated Random Walk and Discrete Modelling of Propagation through Inhomogeneous Media * Teaching Plasma Physics Simulation * A Theoretical Determination of the Au-Ni Phase Diagram * Boson and Fermion Kinetics in One-dimensional Lattices * Computational Physics Course on the Technical University * Symbolic Computations in Simulation Code Development and Femtosecond-pulse Laser-plasma Interaction Studies * Computer Algebra and Integrated Computing Systems in Education of Physical Sciences * Coordinated System of Programs for Undergraduate Physics Instruction * Program Package MIRIAM and Atomic Physics of Extreme Systems * High Energy Physics Simulation on the T_Node * The Chapman-Kolmogorov Equation as Representation of Huygens' Principle and the Monolithic Self-consistent Numerical Modelling of Lasers * Authoring System for Simulation Developments * Molecular Dynamics Study of Ion Charge Effects in the Structure of Ionic Crystals * A Computational Physics Introductory Course * Computer Calculation of Substrate Temperature Field in MBE System * Multimagnetical Simulation of the Ising Model in Two and Three Dimensions * Failure of the CTRW Treatment of the Quasicoherent Excitation Transfer * Implementation of a Parallel Conjugate Gradient Method for Simulation of Elastic Light Scattering * Algorithms for Study of Thin Film Growth * Algorithms and Programs for Physics Teaching in Romanian Technical Universities * Multicanonical Simulation of 1st order Transitions: Interface Tension of the 2D 7-State Potts Model * Two Numerical Methods for the Calculation of Periodic Orbits in Hamiltonian Systems * Chaotic Behavior in a Probabilistic Cellular Automata? * Wave Optics Computing by a Networked-based Vector Wave Automaton * Tensor Manipulation Package in REDUCE * Propagation of Electromagnetic Pulses in Stratified Media * The Simple Molecular Dynamics Model for the Study of Thermalization of the Hot Nucleon Gas * Electron Spin Polarization in PdCo Alloys Calculated by KKR-CPA-LSD Method * Simulation Studies of Microscopic Droplet Spreading * A Vectorizable Algorithm for the Multicolor Successive Overrelaxation Method * Tetragonality of the CuAu I Lattice and Its Relation to Electronic Specific Heat and Spin Susceptibility * Computer Simulation of the Formation of Metallic Aggregates Produced by Chemical Reactions in Aqueous Solution * Scaling in Growth Models with Diffusion: A Monte Carlo Study * The Nucleus as the Mesoscopic System * Neural Network Computation as Dynamic System Simulation * First-principles Theory of Surface Segregation in Binary Alloys * Data Smooth Approximation Algorithm for Estimating the Temperature Dependence of the Ice Nucleation Rate * Genetic Algorithms in Optical Design * Application of 2D-FFT in the Study of Molecular Exchange Processes by NMR * Advanced Mobility Model for Electron Transport in P-Si Inversion Layers * Computer Simulation for Film Surfaces and its Fractal Dimension * Parallel Computation Techniques and the Structure of Catalyst Surfaces * Educational SW to Teach Digital Electronics and the Corresponding Text Book * Primitive Trinomials (Mod 2) Whose Degree is a Mersenne Exponent * Stochastic Modelisation and Parallel Computing * Remarks on the Hybrid Monte Carlo Algorithm for the ∫4 Model * An Experimental Computer Assisted Workbench for Physics Teaching * A Fully Implicit Code to Model Tokamak Plasma Edge Transport * EXPFIT: An Interactive Program for Automatic Beam-foil Decay Curve Analysis * Mapping Technique for Solving General, 1-D Hamiltonian Systems * Freeway Traffic, Cellular Automata, and Some (Self-Organizing) Criticality * Photonuclear Yield Analysis by Dynamic Programming * Incremental Representation of the Simply Connected Planar Curves * Self-convergence in Monte Carlo Methods * Adaptive Mesh Technique for Shock Wave Propagation * Simulation of Supersonic Coronal Streams and Their Interaction with the Solar Wind * The Nature of Chaos in Two Systems of Ordinary Nonlinear Differential Equations * Considerations of a Window-shopper * Interpretation of Data Obtained by RTP 4-Channel Pulsed Radar Reflectometer Using a Multi Layer Perceptron * Statistics of Lattice Bosons for Finite Systems * Fractal Based Image Compression with Affine Transformations * Algorithmic Studies on Simulation Codes for Heavy-ion Reactions * An Energy-Wise Computer Simulation of DNA-Ion-Water Interactions Explains the Abnormal Structure of Poly[d(A)]:Poly[d(T)] * Computer Simulation Study of Kosterlitz-Thouless-Like Transitions * Problem-oriented Software Package GUN-EBT for Computer Simulation of Beam Formation and Transport in Technological Electron-Optical Systems * Parallelization of a Boundary Value Solver and its Application in Nonlinear Dynamics * The Symbolic Classification of Real Four-dimensional Lie Algebras * Short, Singular Pulses Generation by a Dye Laser at Two Wavelengths Simultaneously * Quantum Monte Carlo Simulations of the Apex-Oxygen-Model * Approximation Procedures for the Axial Symmetric Static Einstein-Maxwell-Higgs Theory * Crystallization on a Sphere: Parallel Simulation on a Transputer Network * FAMULUS: A Software Product (also) for Physics Education * MathCAD vs. FAMULUS -- A Brief Comparison * First-principles Dynamics Used to Study Dissociative Chemisorption * A Computer Controlled System for Crystal Growth from Melt * A Time Resolved Spectroscopic Method for Short Pulsed Particle Emission * Green's Function Computation in Radiative Transfer Theory * Random Search Optimization Technique for One-criteria and Multi-criteria Problems * Hartley Transform Applications to Thermal Drift Elimination in Scanning Tunneling Microscopy * Algorithms of Measuring, Processing and Interpretation of Experimental Data Obtained with Scanning Tunneling Microscope * Time-dependent Atom-surface Interactions * Local and Global Minima on Molecular Potential Energy Surfaces: An Example of N3 Radical * Computation of Bifurcation Surfaces * Symbolic Computations in Quantum Mechanics: Energies in Next-to-solvable Systems * A Tool for RTP Reactor and Lamp Field Design * Modelling of Particle Spectra for the Analysis of Solid State Surface * List of Participants

  5. Sobol method application in dimensional sensitivity analyses of different AFM cantilevers for biological particles

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Taheri, M.; Ghahnaviyeh, S. D.

    2015-08-01

    Due to the more delicate nature of biological micro/nanoparticles, it is necessary to compute the critical force of manipulation. The modeling and simulation of reactions and nanomanipulator dynamics in a precise manipulation process require an exact modeling of cantilevers stiffness, especially the stiffness of dagger cantilevers because the previous model is not useful for this investigation. The stiffness values for V-shaped cantilevers can be obtained through several methods. One of them is the PBA method. In another approach, the cantilever is divided into two sections: a triangular head section and two slanted rectangular beams. Then, deformations along different directions are computed and used to obtain the stiffness values in different directions. The stiffness formulations of dagger cantilever are needed for this sensitivity analyses so the formulations have been driven first and then sensitivity analyses has been started. In examining the stiffness of the dagger-shaped cantilever, the micro-beam has been divided into two triangular and rectangular sections and by computing the displacements along different directions and using the existing relations, the stiffness values for dagger cantilever have been obtained. In this paper, after investigating the stiffness of common types of cantilevers, Sobol sensitivity analyses of the effects of various geometric parameters on the stiffness of these types of cantilevers have been carried out. Also, the effects of different cantilevers on the dynamic behavior of nanoparticles have been studied and the dagger-shaped cantilever has been deemed more suitable for the manipulation of biological particles.

  6. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  7. Design of superconducting corrector magnets for LHC

    NASA Astrophysics Data System (ADS)

    Baynham, D. E.; Coombs, R. C.; Ijspeert, A.; Perin, R.

    1994-07-01

    The Large Hadron Collider (LHC) will require a range of superconducting corrector magnets. This paper presents the design of sextupole and decapole corrector coils which will be included as spool pieces adjacent to each main ring dipole. The paper gives detailed 3D field computations of the coil configurations to meet LHC beam dynamics requirements. Coil protection within a long string environment is addressed and mechanical design outlines are presented.

  8. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  9. Remote measurement of material properties from radiation force induced vibration of an embedded sphere.

    PubMed

    Chen, Shigao; Fatemi, Mostafa; Greenleaf, James F

    2002-09-01

    A quantitative model is presented for a sphere vibrated by two ultrasound beams of frequency omega1 and omega2. Due to the interference of two sound beams, the radiation force has a dynamic component of frequency omega2-omega1. The radiation impedance and mechanical impedance of the sphere are then used to compute the vibration speed of the sphere. Vibration speed versus vibration frequency is measured by laser vibrometer on several spheres, both in water and in gel phantom. These experimental results are used to verify the model. This method can be used to estimate the material properties of the medium (e.g., shear modulus) surrounding the sphere.

  10. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    NASA Astrophysics Data System (ADS)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  11. Dynamic response of composite beams with induced-strain actuators

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh

    1994-05-01

    This paper presents an analytical-experimental study on dynamic response of open-section composite beams with actuation by piezoelectric devices. The analysis includes the essential features of open-section composite beam modeling, such as constrained warping and transverse shear deformation. A general plate segment of the beam with and without piezoelectric ply is modeled using laminated plate theory and the forces and displacement relations of this plate segment are then reduced to the force and displacement of the one-dimensional beam. The dynamic response of bending-torsion coupled composite beams excited by piezoelectric devices is predicted. In order to validate the analysis, kevlar-epoxy and graphite-epoxy beams with surface mounted pieziceramic actuators are tested for their dynamic response. The response was measured using accelerometer. Good correlation between analysis and experiment is achieved.

  12. Finite element based N-Port model for preliminary design of multibody systems

    NASA Astrophysics Data System (ADS)

    Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice

    2018-02-01

    This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.

  13. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  14. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  15. Dynamical calculations for RHEED intensity oscillations

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2005-03-01

    A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction from the molecular beam epitaxy growing surface. The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. The results of the calculations are presented in the form of rocking curves to illustrate how the diffracted beam intensities depend on the glancing angle of the incident beam. Program summaryTitle of program: RHEED Catalogue identifier:ADUY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the program has been tested: Windows 9x, XP, NT, Linux Programming language used: Borland C++ Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Distribution format:tar.gz Number of lines in distributed program, including test data, etc.:982 Number of bytes in distributed program, including test data, etc.: 126 051 Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). Nowadays, RHEED is used in many laboratories all over the world where researchers deal with the growth of materials by MBE. The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. In most cases the interpretation of experimental results is based on the use of dynamical diffraction approaches. Such approaches are said to be quite useful in qualitative and quantitative analysis of RHEED experimental data. Method of solution: RHEED intensities are calculated within the framework of the general matrix formulation of Peng and Whelan [Surf. Sci. Lett. 238 (1990) L446] under the one-beam condition. The dynamical diffraction calculations presented in this paper utilize the systematic reflection case in RHEED, in which the atomic potential in the planes parallel to the surface are projected on the surface normal, so that the results are insensitive to the atomic arrangement in the layers parallel to the surface. This model shows a systematic approximation in calculating dynamical RHEED intensities, and only a layer coverage factor for the nth layer was taken into account in calculating the interaction potential between the fast electron and that layer. Typical running time: The typical running time is machine and user-parameters dependent. Unusual features of the program: The program is presented in the form of a basic unit RHEED.cpp and should be compiled using C++ compilers, including C++ Builder and g++.

  16. High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feiz Zarrin Ghalam, Ali

    Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the transverse tune shift of the beam at CERN Super Proton Synchrotron (SPS) ring. The force from the electron cloud image charges on the beam cancels the force due to cloud compression formed on the beam axis and therefore the tune shift is mainly due to the uniform electron cloud density. (Abstract shortened by UMI.)

  17. An Adiabatic Phase-Matching Accelerator

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  18. Synchronous acceleration with tapered dielectric-lined waveguides

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    Here, we present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  19. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  20. Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio

    2012-06-01

    In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.

  1. An Adiabatic Phase-Matching Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  2. Airborne platform effects on lasers and warning sensors

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Eisele, Christian; Seiffer, Dirk; Sjöqvist, Lars; Togna, Fabio; Velluet, Marie-Thérèse

    2017-10-01

    Airborne platform effects on lasers and warning sensors (ALWS) has been a European collaborative research project to investigate the effects of platform-related turbulence on optical countermeasure systems, especially missile approach warning systems (MAWS) and directed infrared countermeasures (DIRCM). Field trials have been carried out to study the turbulence effects around a hovering helicopter and behind a turboprop aircraft with engines running on the ground. In addition different methods for modelling the effects have been investigated. In the helicopter trials significant beam wander, scintillations and beam broadening were experienced by narrow divergence laser beams when passing through the down-wash of the hot engine exhaust gases. The measured effects considerably exceed the effects of atmospheric turbulence. Extraction of turbulence parameters for modelling of DIRCM-relevant scenarios show that in most cases the reduction of jamming power and distortion of jamming waveform can be expected to be small. The reduction of effects of turbulence is mainly related to the larger beam divergence and shorter Rayleigh length of DIRCM lasers compared to the experimental probe beams. Measurements using the turboprop platform confirm that tolerable effects on laser beam properties are found when the laser beam passes through the exhaust 15 m behind the outlet where the exhaust gases are starting to cool down. Modelling efforts have shown that time-resolved computational fluid dynamics (CFD) calculations can be used to study properties of beam propagation in engine exhaust-related turbulence. Because of computational cost and the problem of validating the CFD results the use for system performance simulations is however difficult. The hot exhaust gases emitted from aircraft engines create extreme optical turbulence in a local region. The effects on countermeasure system performance depend both on the system parameters and on the threat characteristics. With present-day DIRCM systems, the effects of even severe turbulence are often tolerable.

  3. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study.

    PubMed

    Ning, Ruola; Tang, Xiangyang; Conover, David; Yu, Rongfeng

    2003-07-01

    Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using different phantoms mainly in the central plane of the cone beam reconstruction. Finally, the reconstruction accuracy of using the circle-plus-two-arcs orbit and its related filtered backprojection cone beam volume CT reconstruction algorithm was evaluated with a specially designed disk phantom. The results obtained using the new cone beam acquisition orbit and the related reconstruction algorithm were compared to those obtained using a single-circle cone beam geometry and Feldkamp's algorithm in terms of reconstruction accuracy. The results of the study demonstrate that the circle-plus-two-arcs cone beam orbit is achievable in practice. Also, the reconstruction accuracy of cone beam reconstruction is significantly improved with the circle-plus-two-arcs orbit and its related exact CB-FPB algorithm, as compared to using a single circle cone beam orbit and Feldkamp's algorithm.

  4. Modeling and design of Galfenol unimorph energy harvesters

    NASA Astrophysics Data System (ADS)

    Deng, Zhangxian; Dapino, Marcelo J.

    2015-12-01

    This article investigates the modeling and design of vibration energy harvesters that utilize iron-gallium (Galfenol) as a magnetoelastic transducer. Galfenol unimorphs are of particular interest; however, advanced models and design tools are lacking for these devices. Experimental measurements are presented for various unimorph beam geometries. A maximum average power density of 24.4 {mW} {{cm}}-3 and peak power density of 63.6 {mW} {{cm}}-3 are observed. A modeling framework with fully coupled magnetoelastic dynamics, formulated as a 2D finite element model, and lumped-parameter electrical dynamics is presented and validated. A comprehensive parametric study considering pickup coil dimensions, beam thickness ratio, tip mass, bias magnet location, and remanent flux density (supplied by bias magnets) is developed for a 200 Hz, 9.8 {{m}} {{{s}}}-2 amplitude harmonic base excitation. For the set of optimal parameters, the maximum average power density and peak power density computed by the model are 28.1 and 97.6 {mW} {{cm}}-3, respectively.

  5. A precise integration method for solving coupled vehicle-track dynamics with nonlinear wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gao, Q.; Tan, S. J.; Zhong, W. X.

    2012-10-01

    A new method is proposed as a solution for the large-scale coupled vehicle-track dynamic model with nonlinear wheel-rail contact. The vehicle is simplified as a multi-rigid-body model, and the track is treated as a three-layer beam model. In the track model, the rail is assumed to be an Euler-Bernoulli beam supported by discrete sleepers. The vehicle model and the track model are coupled using Hertzian nonlinear contact theory, and the contact forces of the vehicle subsystem and the track subsystem are approximated by the Lagrange interpolation polynomial. The response of the large-scale coupled vehicle-track model is calculated using the precise integration method. A more efficient algorithm based on the periodic property of the track is applied to calculate the exponential matrix and certain matrices related to the solution of the track subsystem. Numerical examples demonstrate the computational accuracy and efficiency of the proposed method.

  6. Milestones in Rotorcraft Aeromechanics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2011-01-01

    The subject of this paper is milestones in rotorcraft aeromechanics. Aeromechanics covers much of what the engineer needs: performance, loads, vibration, stability, flight dynamics, noise. These topics cover many of the key performance attributes, and many of the often-encountered problems in rotorcraft designs. A milestone is a critical achievement, a turning point, an event marking a significant change or stage in development. The milestones identified and discussed include the beginnings of aeromechanics with autogyro analysis, ground resonance, aeromechanics books, unsteady aerodynamics and airloads, nonuniform inflow and wakes, beams and dynamics, comprehensive analysis, computational fluid dynamics, and rotor airloads tests. The focus on milestones limits the scope of the history, but allows the author to acknowledge his choices for key steps in the development of the science and engineering of rotorcraft.

  7. Cone beam computed tomography in the diagnosis of dental disease.

    PubMed

    Tetradis, Sotirios; Anstey, Paul; Graff-Radford, Steven

    2011-07-01

    Conventional radiographs provide important information for dental disease diagnosis. However, they represent 2-D images of 3-D objects with significant structure superimposition and unpredictable magnification. Cone beam computed tomography, however, allows true 3-D visualization of the dentoalveolar structures, avoiding major limitations of conventional radiographs. Cone beam computed tomography images offer great advantages in disease detection for selected patients. The authors discuss cone beam computed tomography applications in dental disease diagnosis, reviewing the pertinent literature when available.

  8. About improving efficiency of the P3 M algorithms when computing the inter-particle forces in beam dynamics

    NASA Astrophysics Data System (ADS)

    Kozynchenko, Alexander I.; Kozynchenko, Sergey A.

    2017-03-01

    In the paper, a problem of improving efficiency of the particle-particle- particle-mesh (P3M) algorithm in computing the inter-particle electrostatic forces is considered. The particle-mesh (PM) part of the algorithm is modified in such a way that the space field equation is solved by the direct method of summation of potentials over the ensemble of particles lying not too close to a reference particle. For this purpose, a specific matrix "pattern" is introduced to describe the spatial field distribution of a single point charge, so the "pattern" contains pre-calculated potential values. This approach allows to reduce a set of arithmetic operations performed at the innermost of nested loops down to an addition and assignment operators and, therefore, to decrease the running time substantially. The simulation model developed in C++ substantiates this view, showing the descent accuracy acceptable in particle beam calculations together with the improved speed performance.

  9. Plasma Wakefield Acceleration of an Intense Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions made by the 3-D PIC code. The work presented in this dissertation will show that plasma wakefield accelerators are an attractive technology for future particle accelerators.« less

  10. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    PubMed

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  11. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  12. Simulation of laser beam reflection at the sea surface modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2013-06-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for the pre-calculation of images for cameras operating in different spectral wavebands (visible, short wave infrared) for a bistatic configuration of laser source and receiver for different atmospheric conditions. In the visible waveband the calculated detected total power of reflected laser light from a 660nm laser source is compared with data collected in a field trial. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser beam reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the view of a camera the sea surface radiance must be calculated for the specific waveband. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). Validation of simulation results is prerequisite before applying the computer simulation to maritime laser applications. For validation purposes data (images and meteorological data) were selected from field measurements, using a 660nm cw-laser diode to produce laser beam reflection at the water surface and recording images by a TV camera. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam.

  13. On finding the analytic dependencies of the external field potential on the control function when optimizing the beam dynamics

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.

    2017-12-01

    When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.

  14. Investigations on KONUS beam dynamics using the pre-stripper drift tube linac at GSI

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Du, X. N.; Groening, L.

    2018-04-01

    Interdigital H-mode (IH) drift tube linacs (DTLs) based on KONUS beam dynamics are very sensitive to the rf-phases and voltages at the gaps between tubes. In order to design these DTLs, a deep understanding of the underlying longitudinal beam dynamics is mandatory. The report presents tracking simulations along an IH-DTL using the PARTRAN and BEAMPATH codes together with MATHCAD and CST. Simulation results illustrate that the beam dynamics design of the pre-stripper IH-DTL at GSI is sensitive to slight deviations of rf-phase and gap voltages with impact to the mean beam energy at the DTL exit. Applying the existing geometrical design, rf-voltages, and rf-phases of the DTL were re-adjusted. In simulations this re-optimized design can provide for more than 90% of transmission of an intense 15 emA beam keeping the reduction of beam brilliance below 25%.

  15. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    PubMed

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  16. Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.

    2016-01-01

    In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.

  17. Morphological computation of multi-gaited robot locomotion based on free vibration.

    PubMed

    Reis, Murat; Yu, Xiaoxiang; Maheshwari, Nandan; Iida, Fumiya

    2013-01-01

    In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.

  18. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    NASA Astrophysics Data System (ADS)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  19. Combined state and parameter identification of nonlinear structural dynamical systems based on Rao-Blackwellization and Markov chain Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Abhinav, S.; Manohar, C. S.

    2018-03-01

    The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, R. P.; Rizzato, F. B.

    This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations.

  1. Single-shot digital holography by use of the fractional Talbot effect.

    PubMed

    Martínez-León, Lluís; Araiza-E, María; Javidi, Bahram; Andrés, Pedro; Climent, Vicent; Lancis, Jesús; Tajahuerce, Enrique

    2009-07-20

    We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally reconstructed from the digital hologram. Both computer simulations and experimental results are presented.

  2. Remote measurement of material properties from radiation force induced vibration of an embedded sphere

    NASA Astrophysics Data System (ADS)

    Chen, Shigao; Fatemi, Mostafa; Greenleaf, James F.

    2002-09-01

    A quantitative model is presented for a sphere vibrated by two ultrasound beams of frequency omega1 and omega2. Due to the interference of two sound beams, the radiation force has a dynamic component of frequency omega]2-[omega1. The radiation impedance and mechanical impedance of the sphere are then used to compute the vibration speed of the sphere. Vibration speed versus vibration frequency is measured by laser vibrometer on several spheres, both in water and in gel phantom. These experimental results are used to verify the model. This method can be used to estimate the material properties of the medium (e.g., shear modulus) surrounding the sphere. copyright 2002 Acoustical Society of America.

  3. Computer simulation studies of the growth of strained layers by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Faux, D. A.; Gaynor, G.; Carson, C. L.; Hall, C. K.; Bernholc, J.

    1990-08-01

    Two new types of discrete-space Monte Carlo computer simulation are presented for the modeling of the early stages of strained-layer growth by molecular-beam epitaxy. The simulations are more economical on computer resources than continuous-space Monte Carlo or molecular dynamics. Each model is applied to the study of growth onto a substrate in two dimensions with use of Lennard-Jones interatomic potentials. Up to seven layers are deposited for a variety of lattice mismatches, temperatures, and growth rates. Both simulations give similar results. At small lattice mismatches (<~4%) the growth is in registry with the substrate, while at high mismatches (>~6%) the growth is incommensurate with the substrate. At intermediate mismatches, a transition from registered to incommensurate growth is observed which commences at the top of the crystal and propagates down to the first layer. Faster growth rates are seen to inhibit this transition. The growth mode is van der Merwe (layer-by-layer) at 2% lattice mismatch, but at larger mismatches Volmer-Weber (island) growth is preferred. The Monte Carlo simulations are assessed in the light of these results and the ease at which they can be extended to three dimensions and to more sophisticated potentials is discussed.

  4. Elementary Green function as an integral superposition of Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Červený, Vlastislav; Pšenčík, Ivan

    2017-08-01

    Integral superposition of Gaussian beams is a useful generalization of the standard ray theory. It removes some of the deficiencies of the ray theory like its failure to describe properly behaviour of waves in caustic regions. It also leads to a more efficient computation of seismic wavefields since it does not require the time-consuming two-point ray tracing. We present the formula for a high-frequency elementary Green function expressed in terms of the integral superposition of Gaussian beams for inhomogeneous, isotropic or anisotropic, layered structures, based on the dynamic ray tracing (DRT) in Cartesian coordinates. For the evaluation of the superposition formula, it is sufficient to solve the DRT in Cartesian coordinates just for the point-source initial conditions. Moreover, instead of seeking 3 × 3 paraxial matrices in Cartesian coordinates, it is sufficient to seek just 3 × 2 parts of these matrices. The presented formulae can be used for the computation of the elementary Green function corresponding to an arbitrary direct, multiply reflected/transmitted, unconverted or converted, independently propagating elementary wave of any of the three modes, P, S1 and S2. Receivers distributed along or in a vicinity of a target surface may be situated at an arbitrary part of the medium, including ray-theory shadow regions. The elementary Green function formula can be used as a basis for the computation of wavefields generated by various types of point sources (explosive, moment tensor).

  5. Diaphragm motion quantification in megavoltage cone-beam CT projection images.

    PubMed

    Chen, Mingqing; Siochi, R Alfredo

    2010-05-01

    To quantify diaphragm motion in megavoltage (MV) cone-beam computed tomography (CBCT) projections. User identified ipsilateral hemidiaphragm apex (IHDA) positions in two full exhale and inhale frames were used to create bounding rectangles in all other frames of a CBCT scan. The bounding rectangle was enlarged to create a region of interest (ROI). ROI pixels were associated with a cost function: The product of image gradients and a gradient direction matching function for an ideal hemidiaphragm determined from 40 training sets. A dynamic Hough transform (DHT) models a hemidiaphragm as a contour made of two parabola segments with a common vertex (the IHDA). The images within the ROIs are transformed into Hough space where a contour's Hough value is the sum of the cost function over all contour pixels. Dynamic programming finds the optimal trajectory of the common vertex in Hough space subject to motion constraints between frames, and an active contour model further refines the result. Interpolated ray tracing converts the positions to room coordinates. Root-mean-square (RMS) distances between these positions and those resulting from an expert's identification of the IHDA were determined for 21 Siemens MV CBCT scans. Computation time on a 2.66 GHz CPU was 30 s. The average craniocaudal RMS error was 1.38 +/- 0.67 mm. While much larger errors occurred in a few near-sagittal frames on one patient's scans, adjustments to algorithm constraints corrected them. The DHT based algorithm can compute IHDA trajectories immediately prior to radiation therapy on a daily basis using localization MVCBCT projection data. This has potential for calibrating external motion surrogates against diaphragm motion.

  6. Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Bane, Karl; Ding, Yuantao; ...

    2015-01-30

    In this study, electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (~100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugationmore » size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a field matching program to obtain the wakes. Based on the numerical calculations, we fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  7. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less

  8. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    NASA Astrophysics Data System (ADS)

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  9. Beam Dynamics for ARIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  10. Influence of foundation mass and surface roughness on dynamic response of beam on dynamic foundation subjected to the moving load

    NASA Astrophysics Data System (ADS)

    Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai

    2018-04-01

    In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.

  11. (Proceedings) 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (QABP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    2002-10-25

    The 18th Advanced ICFA Beam Dynamics Workshop on ''Quantum Aspects of Beam Physics'' was held from October 15 to 20, 2000, in Capri, Italy. This was the second workshop under the same title. The first one was held in Monterey, California, in January, 1998. Following the footstep of the first meeting, the second one in Capri was again a tremendous success, both scientifically and socially. About 70 colleagues from astrophysics, atomic physics, beam physics, condensed matter physics, particle physics, and general relativity gathered to update and further explore the topics covered in the Monterey workshop. Namely, the following topics weremore » actively discussed: (1) Quantum Fluctuations in Beam Dynamics; (2) Photon-Electron Interaction in Beam handling; (3) Physics of Condensed Beams; (4) Beam Phenomena under Strong Fields; (5) Quantum Methodologies in Beam Physics. In addition, there was a newly introduced subject on Astro-Beam Physics and Laboratory Astrophysics.« less

  12. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  13. Design of a secondary ionization target for direct production of a C- beam from CO2 pulses for online AMS.

    PubMed

    Salazar, Gary; Ognibene, Ted

    2013-01-01

    We designed and optimized a novel device "target" that directs a CO 2 gas pulse onto a Ti surface where a Cs + beam generates C - from the CO 2 . This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO 2 in the negative mode to measure 14 C/ 12 C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO 2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of 12 C - produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs + beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.

  14. Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2017-02-01

    The utilization of membrane deformable mirrors has raised its importance in laser materials processing since they enable the generation of highly spatial and temporal dynamic intensity distributions for a wide field of applications. To take full advantage of these devices for beam shaping, the huge amount of degrees of freedom has to be considered and optimized already within the early stage of the optical design. Since the functionality of commercial available ray-tracing software has been mainly specialized on geometric dependencies and their optimization within constraints, the complex system characteristics of deformable mirrors cannot be sufficiently taken into account yet. The main reasons are the electromechanical interdependencies of electrostatic membrane deformable mirrors, namely saturation and mechanical clamping, that result in non-linear deformation. This motivates the development of an integrative design methodology. The functionality of the ray-tracing program ZEMAX is extended with a model of an electrostatic membrane mirror. This model is based on experimentally determined influence functions. Furthermore, software routines are derived and integrated that allow for the compilation of optimization criteria for the most relevant analytically describable beam shaping problems. In this way, internal optimization routines can be applied for computing the appropriate membrane deflection of the deformable mirror as well as for the parametrization of static optical components. The experimental verification of simulated intensity distributions demonstrates that the beam shaping properties can be predicted with a high degree of reliability and precision.

  15. Analysis of SSEM Sensor Data Using BEAM

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Park, Han; James, Mark

    2004-01-01

    A report describes analysis of space shuttle main engine (SSME) sensor data using Beacon-based Exception Analysis for Multimissions (BEAM) [NASA Tech Briefs articles, the two most relevant being Beacon-Based Exception Analysis for Multimissions (NPO- 20827), Vol. 26, No.9 (September 2002), page 32 and Integrated Formulation of Beacon-Based Exception Analysis for Multimissions (NPO- 21126), Vol. 27, No. 3 (March 2003), page 74] for automated detection of anomalies. A specific implementation of BEAM, using the Dynamical Invariant Anomaly Detector (DIAD), is used to find anomalies commonly encountered during SSME ground test firings. The DIAD detects anomalies by computing coefficients of an autoregressive model and comparing them to expected values extracted from previous training data. The DIAD was trained using nominal SSME test-firing data. DIAD detected all the major anomalies including blade failures, frozen sense lines, and deactivated sensors. The DIAD was particularly sensitive to anomalies caused by faulty sensors and unexpected transients. The system offers a way to reduce SSME analysis time and cost by automatically indicating specific time periods, signals, and features contributing to each anomaly. The software described here executes on a standard workstation and delivers analyses in seconds, a computing time comparable to or faster than the test duration itself, offering potential for real-time analysis.

  16. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm.

    PubMed

    Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.

  17. Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm

    PubMed Central

    Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859

  18. Mitigation of beam fluctuation due to atmospheric turbulence and prediction of control quality using intelligent decision-making tools.

    PubMed

    Raj, A Arockia Bazil; Selvi, J Arputha Vijaya; Kumar, D; Sivakumaran, N

    2014-06-10

    In free-space optical link (FSOL), atmospheric turbulence causes fluctuations in both intensity and phase of the received beam and impairing link performance. The beam motion is one of the main causes for major power loss. This paper presents an investigation on the performance of two types of controller designed for aiming a laser beam to be at a particular spot under dynamic disturbances. The multiple experiment observability nonlinear input-output data mapping is used as the principal components for controllers design. The first design is based on the Taguchi method while the second is artificial neural network method. These controllers process the beam location information from a static linear map of 2D plane: optoelectronic position detector, as observer, and then generate the necessary outputs to steer the beam with a microelectromechanical mirror: fast steering mirror. The beam centroid is computed using monopulse algorithm. Evidence of suitability and effectiveness of the proposed controllers are comprehensively assessed and quantitatively measured in terms of coefficient of correlation, correction speed, control exactness, centroid displacement, and stability of the receiver signal through the experimental results from the FSO link setup established for the horizontal range of 0.5 km at an altitude of 15.25 m. The test field type is open flat terrain, grass, and few isolated obstacles.

  19. Molecular Dynamics Simulation of the Three-Dimensional Ordered State in Laser-Cooled Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke

    A molecular dynamics simulation is performed to study the formation of three-dimensional ordered beams by laser cooling in a cooler storage ring. Ultralow-temperature heavy-ion beams are generated by transverse cooling with displaced Gaussian lasers and resonant coupling. A three-dimensional ordered state of the ion beam is attained at a high line density. The ordered beam exhibits several unique characteristics different from those of an ideal crystalline beam.

  20. Complex amplitude reconstruction for dynamic beam quality M2 factor measurement with self-referencing interferometer wavefront sensor.

    PubMed

    Du, Yongzhao; Fu, Yuqing; Zheng, Lixin

    2016-12-20

    A real-time complex amplitude reconstruction method for determining the dynamic beam quality M2 factor based on a Mach-Zehnder self-referencing interferometer wavefront sensor is developed. By using the proposed complex amplitude reconstruction method, full characterization of the laser beam, including amplitude (intensity profile) and phase information, can be reconstructed from a single interference pattern with the Fourier fringe pattern analysis method in a one-shot measurement. With the reconstructed complex amplitude, the beam fields at any position z along its propagation direction can be obtained by first utilizing the diffraction integral theory. Then the beam quality M2 factor of the dynamic beam is calculated according to the specified method of the Standard ISO11146. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment, including the static and dynamic beam process. The experimental method is simple, fast, and operates without movable parts and is allowed in order to investigate the laser beam in inaccessible conditions using existing methods.

  1. Particle based plasma simulation for an ion engine discharge chamber

    NASA Astrophysics Data System (ADS)

    Mahalingam, Sudhakar

    Design of the next generation of ion engines can benefit from detailed computer simulations of the plasma in the discharge chamber. In this work a complete particle based approach has been taken to model the discharge chamber plasma. This is the first time that simplifying continuum assumptions on the particle motion have not been made in a discharge chamber model. Because of the long mean free paths of the particles in the discharge chamber continuum models are questionable. The PIC-MCC model developed in this work tracks following particles: neutrals, singly charged ions, doubly charged ions, secondary electrons, and primary electrons. The trajectories of these particles are determined using the Newton-Lorentz's equation of motion including the effects of magnetic and electric fields. Particle collisions are determined using an MCC statistical technique. A large number of collision processes and particle wall interactions are included in the model. The magnetic fields produced by the permanent magnets are determined using Maxwell's equations. The electric fields are determined using an approximate input electric field coupled with a dynamic determination of the electric fields caused by the charged particles. In this work inclusion of the dynamic electric field calculation is made possible by using an inflated plasma permittivity value in the Poisson solver. This allows dynamic electric field calculation with minimal computational requirements in terms of both computer memory and run time. In addition, a number of other numerical procedures such as parallel processing have been implemented to shorten the computational time. The primary results are those modeling the discharge chamber of NASA's NSTAR ion engine at its full operating power. Convergence of numerical results such as total number of particles inside the discharge chamber, average energy of the plasma particles, discharge current, beam current and beam efficiency are obtained. Steady state results for the particle number density distributions and particle loss rates to the walls are presented. Comparisons of numerical results with experimental measurements such as currents and the particle number density distributions are made. Results from a parametric study and from an alternative magnetic field design are also given.

  2. Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction.

    PubMed

    Jaeger, Michael; Frenz, Martin

    2015-09-01

    Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck. Copyright © 2015. Published by Elsevier B.V.

  3. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  4. A simplified computer solution for the flexibility matrix of contacting teeth for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Hsu, C. Y.; Cheng, H. S.

    1987-01-01

    A computer code, FLEXM, was developed to calculate the flexibility matrices of contacting teeth for spiral bevel gears using a simplified analysis based on the elementary beam theory for the deformation of gear and shaft. The simplified theory requires a computer time at least one order of magnitude less than that needed for the complete finite element method analysis reported earlier by H. Chao, and it is much easier to apply for different gear and shaft geometries. Results were obtained for a set of spiral bevel gears. The teeth deflections due to torsion, bending moment, shearing strain and axial force were found to be in the order 10(-5), 10(-6), 10(-7), and 10(-8) respectively. Thus, the torsional deformation was the most predominant factor. In the analysis of dynamic load, response frequencies were found to be larger when the mass or moment of inertia was smaller or the stiffness was larger. The change in damping coefficient had little influence on the resonance frequency, but has a marked influence on the dynamic load at the resonant frequencies.

  5. Crashworthiness of light aircraft fuselage structures: A numerical and experimental investigation

    NASA Technical Reports Server (NTRS)

    Nanyaro, A. P.; Tennyson, R. C.; Hansen, J. S.

    1984-01-01

    The dynamic behavior of aircraft fuselage structures subject to various impact conditions was investigated. An analytical model was developed based on a self-consistent finite element (CFE) formulation utilizing shell, curved beam, and stringer type elements. Equations of motion were formulated and linearized (i.e., for small displacements), although material nonlinearity was retained to treat local plastic deformation. The equations were solved using the implicit Newmark-Beta method with a frontal solver routine. Stiffened aluminum fuselage models were also tested in free flight using the UTIAS pendulum crash test facility. Data were obtained on dynamic strains, g-loads, and transient deformations (using high speed photography in the latter case) during the impact process. Correlations between tests and predicted results are presented, together with computer graphics, based on the CFE model. These results include level and oblique angle impacts as well as the free-flight crash test. Comparisons with a hybrid, lumped mass finite element computer model demonstrate that the CFE formulation provides the test overall agreement with impact test data for comparable computing costs.

  6. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  7. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-10-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps.

  8. Physical-geometric optics method for large size faceted particles.

    PubMed

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Zhang, Xiaodong

    2017-10-02

    A new physical-geometric optics method is developed to compute the single-scattering properties of faceted particles. It incorporates a general absorption vector to accurately account for inhomogeneous wave effects, and subsequently yields the relevant analytical formulas effective and computationally efficient for absorptive scattering particles. A bundle of rays incident on a certain facet can be traced as a single beam. For a beam incident on multiple facets, a systematic beam-splitting technique based on computer graphics is used to split the original beam into several sub-beams so that each sub-beam is incident only on an individual facet. The new beam-splitting technique significantly reduces the computational burden. The present physical-geometric optics method can be generalized to arbitrary faceted particles with either convex or concave shapes and with a homogeneous or an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared to their counterparts from two other methods including a numerically rigorous method.

  9. Beam transport program for FEL project

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masayoshi; Takao, Masaru

    1992-07-01

    A beam transport program is developed to design the beam transport line of the free electron laser system at JAERI and to assist the beam diagnosis. The program traces a beam matrix through the elements in the beam transport line and the accelerators. The graphical user interface is employed to access the parameters and to represent the results. The basic computational method is based on the LANL-TRACE program and it is rewritten for personal computers in Pascal.

  10. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung Shingyu, E-mail: masyleung@ust.h; Qian Jianliang, E-mail: qian@math.msu.ed

    2010-11-20

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying themore » FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.« less

  11. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Leung, Shingyu; Qian, Jianliang

    2010-11-01

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schrödinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in [12]. In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  12. Investigation of propagation dynamics of truncated vector vortex beams.

    PubMed

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  13. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    PubMed

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  14. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-01-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps. 12 refs., 8 figs.

  15. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  16. Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity

    NASA Astrophysics Data System (ADS)

    Hellert, Thorsten; Dohlus, Martin; Decking, Winfried

    2017-10-01

    FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intra-bunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.

  17. Characterization of high explosive particles using cluster secondary ion mass spectrometry.

    PubMed

    Gillen, Greg; Mahoney, Christine; Wight, Scott; Lareau, Richard

    2006-01-01

    The use of secondary ion mass spectrometry (SIMS) for the detection and spatially resolved analysis of individual high explosive particles is described. A C(8) (-) carbon cluster primary ion beam was used in a commercial SIMS instrument to analyze samples of high explosives dispersed as particles on silicon substrates. In comparison with monatomic primary ion bombardment, the carbon cluster primary ion beam was found to greatly enhance characteristic secondary ion signals from the explosive compounds while causing minimal beam-induced degradation. The resistance of these compounds to degradation under ion bombardment allows explosive particles to be analyzed under high primary ion dose bombardment (dynamic SIMS) conditions, facilitating the rapid acquisition of spatially resolved molecular information. The use of cluster SIMS combined with computer control of the sample stage position allows for the automated identification and counting of explosive particle distributions on silicon surfaces. This will be useful for characterizing the efficiency of transfer of particulates in trace explosive detection portal collectors and/or swipes utilized for ion mobility spectrometry applications.

  18. RF transient analysis and stabilization of the phase and energy of the proposed PIP-II LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.

    This paper describes a recent effort to develop and benchmark a simulation tool for the analysis of RF transients and their compensation in an H- linear accelerator. Existing tools in this area either focus on electron LINACs or lack fundamental details about the LLRF system that are necessary to provide realistic performance estimates. In our paper we begin with a discussion of our computational models followed by benchmarking with existing beam-dynamics codes and measured data. We then analyze the effect of RF transients and their compensation in the PIP-II LINAC, followed by an analysis of calibration errors and how amore » Newton’s Method based feedback scheme can be used to regulate the beam energy to within the specified limits.« less

  19. Moving Force Identification: a Time Domain Method

    NASA Astrophysics Data System (ADS)

    Law, S. S.; Chan, T. H. T.; Zeng, Q. H.

    1997-03-01

    The solution for the vertical dynamic interaction forces between a moving vehicle and the bridge deck is analytically derived and experimentally verified. The deck is modelled as a simply supported beam with viscous damping, and the vehicle/bridge interaction force is modelled as one-point or two-point loads with fixed axle spacing, moving at constant speed. The method is based on modal superposition and is developed to identify the forces in the time domain. Both cases of one-point and two-point forces moving on a simply supported beam are simulated. Results of laboratory tests on the identification of the vehicle/bridge interaction forces are presented. Computation simulations and laboratory tests show that the method is effective, and acceptable results can be obtained by combining the use of bending moment and acceleration measurements.

  20. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  1. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  2. Cantilever-beam dynamic modulus for wood composite products. Part 1, apparatus

    Treesearch

    Chris Turk; John F. Hunt; David J. Marr

    2008-01-01

    A cantilever-beam vibration-testing apparatus has been developed to provide a means of dynamic and non-destructive evaluation of modulus of elasticity for small samples of wood or wood-composite material. The apparatus applies a known displacement to a cantilever beam and then releases the beam into its natural first-mode vibration and records displacement as a...

  3. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre

    PubMed Central

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-01-01

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011

  4. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre.

    PubMed

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-12-23

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C 2 H 2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C 2 H 2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C 2 H 2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.

  5. On the dimension of complex responses in nonlinear structural vibrations

    NASA Astrophysics Data System (ADS)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to model.

  6. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beammore » which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.« less

  7. Accelerators (4/5)

    ScienceCinema

    Metral, Elias

    2017-12-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  8. Accelerators (5/5)

    ScienceCinema

    None

    2018-05-16

    1a) Introduction and motivation; 1b) History and accelerator types; 2) Transverse beam dynamics; 3a) Longitudinal beam dynamics; 3b) Figure of merit of a synchrotron/collider; 3c) Beam control; 4) Main limiting factors; 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  9. Beam-dynamics codes used at DARHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Jr., Carl August

    Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.

  10. Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass

    NASA Astrophysics Data System (ADS)

    Zupan, E.; Zupan, D.

    2018-01-01

    In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.

  11. Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect

    NASA Astrophysics Data System (ADS)

    Guha, K.; Laskar, N. M.; Gogoi, H. J.; Borah, A. K.; Baishnab, K. L.; Baishya, S.

    2017-11-01

    This paper presents a new method for the design, modelling and optimization of a uniform serpentine meander based MEMS shunt capacitive switch with perforation on upper beam. The new approach is proposed to improve the Pull-in Voltage performance in a MEMS switch. First a new analytical model of the Pull-in Voltage is proposed using the modified Mejis-Fokkema capacitance model taking care of the nonlinear electrostatic force, the fringing field effect due to beam thickness and etched holes on the beam simultaneously followed by the validation of same with the simulated results of benchmark full 3D FEM solver CoventorWare in a wide range of structural parameter variations. It shows a good agreement with the simulated results. Secondly, an optimization method is presented to determine the optimum configuration of switch for achieving minimum Pull-in voltage considering the proposed analytical mode as objective function. Some high performance Evolutionary Optimization Algorithms have been utilized to obtain the optimum dimensions with less computational cost and complexity. Upon comparing the applied algorithms between each other, the Dragonfly Algorithm is found to be most suitable in terms of minimum Pull-in voltage and higher convergence speed. Optimized values are validated against the simulated results of CoventorWare which shows a very satisfactory results with a small deviation of 0.223 V. In addition to these, the paper proposes, for the first time, a novel algorithmic approach for uniform arrangement of square holes in a given beam area of RF MEMS switch for perforation. The algorithm dynamically accommodates all the square holes within a given beam area such that the maximum space is utilized. This automated arrangement of perforation holes will further improve the computational complexity and design accuracy of the complex design of perforated MEMS switch.

  12. Respirator triggering of electron beam computed tomography (EBCT): evaluation of dynamic changes during mechanical expiration in the traumatized patient

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Hatschenberger, Robert; Knapp, Rudolf; zur Nedden, Dieter; Hoermann, Christoph

    1999-05-01

    The purpose of this project is to evaluate the dynamic changes during expiration at different levels of positive end- expiratory pressure (PEEP) in the ventilated patient. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (1) with normal lung function; (2) ARDS). We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm. The table position remained unchanged. An electronic trigger was developed, that utilizes the respirators synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU/-500HU), poorly- aerated (-500HU/-100HU) and non-aerated (-100HU/+100HU). Pathological and normal lung function showed different dynamic changes (FIG.4-12). The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only a very limited number of patients, respirator triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in the mechanically ventilated patient.

  13. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.

    PubMed

    Tang, Chao; Zhu, Luoding; Akingba, George; Lu, Xi-Yun

    2015-07-16

    Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dynamic laser beam shaping for material processing using hybrid holograms

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Yutao; Zhai, Zhongsheng; Fang, Zheng; Tao, Qing; Perrie, Walter; Edwarson, Stuart P.; Dearden, Geoff

    2018-06-01

    A high quality, dynamic laser beam shaping method is demonstrated by displaying a series of hybrid holograms onto a spatial light modulator (SLM), while each one of the holograms consists of a binary grating and a geometric mask. A diffraction effect around the shaped beam has been significantly reduced. Beam profiles of arbitrary shape, such as square, ring, triangle, pentagon and hexagon, can be conveniently obtained by loading the corresponding holograms on the SLM. The shaped beam can be reconstructed in the range of 0.5 mm at the image plane. Ablation on a polished stainless steel sample at the image plane are consistent with the beam shape at the diffraction near-field. The ±1st order and higher order beams can be completely removed when the grating period is smaller than 160 μm. The local energy ratio of the shaped beam observed by the CCD camera is up to 77.67%. Dynamic processing at 25 Hz using different shapes has also been achieved.

  15. Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Priyanka; Purohit, Gunjan, E-mail: gunjan75@gmail.com; Gauniyal, Rakhi

    A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of amore » ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.« less

  16. The matrix exponential in transient structural analysis

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1987-01-01

    The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.

  17. Final project report for NEET pulsed ion beam project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, S. O.

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less

  18. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  19. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  20. POD Model Reconstruction for Gray-Box Fault Detection

    NASA Technical Reports Server (NTRS)

    Park, Han; Zak, Michail

    2007-01-01

    Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.

  1. Longitudinal density modulation and energy conversion in intense beams.

    PubMed

    Harris, J R; Neumann, J G; Tian, K; O'Shea, P G

    2007-08-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  2. Real-time moving horizon estimation for a vibrating active cantilever

    NASA Astrophysics Data System (ADS)

    Abdollahpouri, Mohammad; Takács, Gergely; Rohaľ-Ilkiv, Boris

    2017-03-01

    Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.

  3. Cone beam tomographic study of facial structures characteristics at rest and wide smile, and their correlation with the facial types.

    PubMed

    Martins, Luciana Flaquer; Vigorito, Julio Wilson

    2013-01-01

    To determine the characteristics of facial soft tissues at rest and wide smile, and their possible relation to the facial type. We analyzed a sample of forty-eight young female adults, aged between 19.10 and 40 years old, with a mean age of 30.9 years, who had balanced profile and passive lip seal. Cone beam computed tomographies were performed at rest and wide smile postures on the entire sample which was divided into three groups according to individual facial types. Soft tissue features analysis of the lips, nose, zygoma and chin were done in sagittal, axial and frontal axis tomographic views. No differences were observed in any of the facial type variables for the static analysis of facial structures at both rest and wide smile postures. Dynamic analysis showed that brachifacial types are more sensitive to movement, presenting greater sagittal lip contraction. However, the lip movement produced by this type of face results in a narrow smile, with smaller tooth exposure area when compared with other facial types. Findings pointed out that the position of the upper lip should be ahead of the lower lip, and the latter, ahead of the pogonion. It was also found that the facial type does not impact the positioning of these structures. Additionally, the use of cone beam computed tomography may be a valuable method to study craniofacial features.

  4. Effect of nonlinearity on lesion formation for high-intensity focused ultrasound (HIFU) exposures

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Vecchio, Christopher J.

    2004-05-01

    This study examined the effects of nonlinear propagation phenomena on two types of HIFU transducers (5 MHz) being used for thermal treatments of disease. The first transducer is a 5-element annular array. The second is a transducer with a 5-strip electrode; its multilobed focused beam is designed to efficiently produce broad, paddle-shaped lesions. The beam patterns of these transducers were computed using a variety of excitation patterns for electronic focusing of the annular array and variation of lesion size for the strip-electrode transducer. A range of intensities was studied to determine how nonlinear propagation affects the beam shape, constituent frequency content, grating lobes, etc. These 3D computations used a finite-amplitude beam propagation model that combined the angular spectrum method and Burger's equation to compute the diffraction and nonlinear effects, respectively. Computed beam patterns were compared with hydrophone measurements for each transducer. The linear and nonlinear beam patterns were used to compute the absorbed thermal dose, and the bioheat equation was evaluated to calculate 3D temperature rises and geometry of induced lesions. Computed lesion sizes and shapes were compared to in vitro lesions created by each HIFU transducer. [Work supported by NCI and NHLBI Grant 5R01 CA84588.

  5. The dynamics and control of large flexible space structures. Part B: Development of continuum model and computer simulation

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.; James, P. K.

    1978-01-01

    The equations of motion of an arbitrary flexible body in orbit were derived. The model includes the effects of gravity with all its higher harmonics. As a specific example, the motion of a long, slender, uniform beam in circular orbit was modelled. The example considers both the inplane and three dimensional motion of the beam in orbit. In the case of planar motion with only flexible vibrations, the pitch motion is not influenced by the elastic motion of the beam. For large values of the square of the ratio of the structural modal frequency to the orbital angular rate the elastic motion was decoupled from the pitch motion. However, for small values of the ratio and small amplitude pitch motion, the elastic motion was governed by a Hill's 3 term equation. Numerical simulation of the equation indicates the possibilities of instability for very low values of the square of the ratio of the modal frequency to the orbit angular rate. Also numerical simulations of the first order nonlinear equations of motion for a long flexible beam in orbit were performed. The effect of varying the initial conditions and the number of modes was demonstrated.

  6. Damage location and quantification of a pretensioned concrete beam using stochastic subspace identification

    NASA Astrophysics Data System (ADS)

    Cancelli, Alessandro; Micheli, Laura; Laflamme, Simon; Alipour, Alice; Sritharan, Sri; Ubertini, Filippo

    2017-04-01

    Stochastic subspace identification (SSID) is a first-order linear system identification technique enabling modal analysis through the time domain. Research in the field of structural health monitoring has demonstrated that SSID can be used to successfully retrieve modal properties, including modal damping ratios, using output-only measurements. In this paper, the utilization of SSID for indirectly retrieving structures' stiffness matrix was investigated, through the study of a simply supported reinforced concrete beam subjected to dynamic loads. Hence, by introducing a physical model of the structure, a second-order identification method is achieved. The reconstruction is based on system condensation methods, which enables calculation of reduced order stiffness, damping, and mass matrices for the structural system. The methods compute the reduced order matrices directly from the modal properties, obtained through the use of SSID. Lastly, the reduced properties of the system are used to reconstruct the stiffness matrix of the beam. The proposed approach is first verified through numerical simulations and then validated using experimental data obtained from a full-scale reinforced concrete beam that experienced progressive damage. Results show that the SSID technique can be used to diagnose, locate, and quantify damage through the reconstruction of the stiffness matrix.

  7. Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery.

    PubMed

    Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong

    2017-06-01

    The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were <0.4 mm in the translational directions and <0.5° in the rotational directions. ExacTrac X-ray image registration is comparable to TrueBeam cone-beam computed tomography image registration in intracranial treatments.

  8. Test and control computer user's guide for a digital beam former test system

    NASA Technical Reports Server (NTRS)

    Alexovich, Robert E.; Mallasch, Paul G.

    1992-01-01

    A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.

  9. Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons.

    PubMed

    Cerfon, Antoine J

    2016-04-29

    We show that the space-charge dynamics of high-intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam breakup behavior observed in experiments and in simulations. Specifically, we demonstrate that beam breakup is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.

  10. Beam dynamics simulation of a double pass proton linear accelerator

    DOE PAGES

    Hwang, Kilean; Qiang, Ji

    2017-04-03

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less

  12. The effect of statistical noise on IMRT plan quality and convergence for MC-based and MC-correction-based optimized treatment plans.

    PubMed

    Siebers, Jeffrey V

    2008-04-04

    Monte Carlo (MC) is rarely used for IMRT plan optimization outside of research centres due to the extensive computational resources or long computation times required to complete the process. Time can be reduced by degrading the statistical precision of the MC dose calculation used within the optimization loop. However, this eventually introduces optimization convergence errors (OCEs). This study determines the statistical noise levels tolerated during MC-IMRT optimization under the condition that the optimized plan has OCEs <100 cGy (1.5% of the prescription dose) for MC-optimized IMRT treatment plans.Seven-field prostate IMRT treatment plans for 10 prostate patients are used in this study. Pre-optimization is performed for deliverable beams with a pencil-beam (PB) dose algorithm. Further deliverable-based optimization proceeds using: (1) MC-based optimization, where dose is recomputed with MC after each intensity update or (2) a once-corrected (OC) MC-hybrid optimization, where a MC dose computation defines beam-by-beam dose correction matrices that are used during a PB-based optimization. Optimizations are performed with nominal per beam MC statistical precisions of 2, 5, 8, 10, 15, and 20%. Following optimizer convergence, beams are re-computed with MC using 2% per beam nominal statistical precision and the 2 PTV and 10 OAR dose indices used in the optimization objective function are tallied. For both the MC-optimization and OC-optimization methods, statistical equivalence tests found that OCEs are less than 1.5% of the prescription dose for plans optimized with nominal statistical uncertainties of up to 10% per beam. The achieved statistical uncertainty in the patient for the 10% per beam simulations from the combination of the 7 beams is ~3% with respect to maximum dose for voxels with D>0.5D(max). The MC dose computation time for the OC-optimization is only 6.2 minutes on a single 3 Ghz processor with results clinically equivalent to high precision MC computations.

  13. A numerical scheme for the identification of hybrid systems describing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    A cubic spline based Galerkin-like method is developed for the identification of a class of hybrid systems which describe the transverse vibration to flexible beams with attached tip bodies. The identification problem is formulated as a least squares fit to data subject to the system dynamics given by a coupled system of ordnary and partial differential equations recast as an abstract evolution equation (AEE) in an appropriate infinite dimensional Hilbert space. Projecting the AEE into spline-based subspaces leads naturally to a sequence of approximating finite dimensional identification problems. The solutions to these problems are shown to exist, are relatively easily computed, and are shown to, in some sense, converge to solutions to the original identification problem. Numerical results for a variety of examples are discussed.

  14. Synchronous acceleration with tapered dielectric-lined waveguides

    NASA Astrophysics Data System (ADS)

    Lemery, F.; Floettmann, K.; Piot, P.; Kärtner, F. X.; Aßmann, R.

    2018-05-01

    We present a general concept to accelerate nonrelativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program astra and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100 MV /m . Numerical simulations indicate that a ˜200 -keV electron beam can be accelerated to an energy of ˜10 MeV over ˜10 cm with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  15. Properties of dark solitons under SBS in focused beams

    NASA Astrophysics Data System (ADS)

    Bel'dyugin, Igor'M.; Erokhin, A. I.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.

    2012-12-01

    Using the method of four-wave probing of the waist of the laser beam focused into the bulk of a short active medium (L ll τc, where L is the length of the active medium, τ is the pulse duration, and c is the speed of light), we have studied the dynamics of the behaviour of a dark soliton, appearing upon a jump of the input Stokes signal phase by about π under SBS. The computer simulation has shown that when spontaneous noises with the gain increment Γ, exceeding the self-reflection threshold by 2 - 3 times, are generated, the dark soliton propagates along the interaction region for the time t ≈ T2Γth/2, where T2 is the the lifetime of acoustic phonons, and Γth = 25 - 30 is the stationary threshold gain increment.

  16. SU-F-BRB-16: A Spreadsheet Based Automatic Trajectory GEnerator (SAGE): An Open Source Tool for Automatic Creation of TrueBeam Developer Mode Robotic Trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etmektzoglou, A; Mishra, P; Svatos, M

    Purpose: To automate creation and delivery of robotic linac trajectories with TrueBeam Developer Mode, an open source spreadsheet-based trajectory generation tool has been developed, tested and made freely available. The computing power inherent in a spreadsheet environment plus additional functions programmed into the tool insulate users from the underlying schema tedium and allow easy calculation, parameterization, graphical visualization, validation and finally automatic generation of Developer Mode XML scripts which are directly loadable on a TrueBeam linac. Methods: The robotic control system platform that allows total coordination of potentially all linac moving axes with beam (continuous, step-and-shoot, or combination thereof) becomesmore » available in TrueBeam Developer Mode. Many complex trajectories are either geometric or can be described in analytical form, making the computational power, graphing and programmability available in a spreadsheet environment an easy and ideal vehicle for automatic trajectory generation. The spreadsheet environment allows also for parameterization of trajectories thus enabling the creation of entire families of trajectories using only a few variables. Standard spreadsheet functionality has been extended for powerful movie-like dynamic graphic visualization of the gantry, table, MLC, room, lasers, 3D observer placement and beam centerline all as a function of MU or time, for analysis of the motions before requiring actual linac time. Results: We used the tool to generate and deliver extended SAD “virtual isocenter” trajectories of various shapes such as parameterized circles and ellipses. We also demonstrated use of the tool in generating linac couch motions that simulate respiratory motion using analytical parameterized functions. Conclusion: The SAGE tool is a valuable resource to experiment with families of complex geometric trajectories for a TrueBeam Linac. It makes Developer Mode more accessible as a vehicle to quickly translate research ideas into machine readable scripts without programming knowledge. As an open source initiative, it also enables researcher collaboration on future developments. I am a full time employee at Varian Medical Systems, Palo Alto, California.« less

  17. Flap-lag-torsional dynamics of extensional and inextensional rotor blades in hover and in forward flight

    NASA Technical Reports Server (NTRS)

    Dasilva, C.

    1982-01-01

    The reduction of the O(cu epsilon) integro differential equations to ordinary differential equations using a set of orthogonal functions is described. Attention was focused on the hover flight condition. The set of Galerkin integrals that appear in the reduced equations was evaluated by making use of nonrotating beam modes. Although a large amount of computer time was needed to accomplish this task, the Galerkin integrals so evaluated were stored on tape on a permanent basis. Several of the coefficients were also obtained in closed form in order to check the accuracy of the numerical computations. The equilibrium solution to the set of 3n equations obtained was determined as the solution to a minimization problem.

  18. Proposal for Microwave Boson Sampling.

    PubMed

    Peropadre, Borja; Guerreschi, Gian Giacomo; Huh, Joonsuk; Aspuru-Guzik, Alán

    2016-09-30

    Boson sampling, the task of sampling the probability distribution of photons at the output of a photonic network, is believed to be hard for any classical device. Unlike other models of quantum computation that require thousands of qubits to outperform classical computers, boson sampling requires only a handful of single photons. However, a scalable implementation of boson sampling is missing. Here, we show how superconducting circuits provide such platform. Our proposal differs radically from traditional quantum-optical implementations: rather than injecting photons in waveguides, making them pass through optical elements like phase shifters and beam splitters, and finally detecting their output mode, we prepare the required multiphoton input state in a superconducting resonator array, control its dynamics via tunable and dispersive interactions, and measure it with nondemolition techniques.

  19. Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams.

    PubMed

    Porras, Miguel A; Ramos, Francisco

    2017-09-01

    The applications of vortex solitons are severely limited by the diffraction and self-defocusing spreading of the background beam where they are nested. Nonlinear Bessel beams in self-defocusing media are nondiffracting, flattop beams where the nested vortex solitons can survive for propagation distances that are one order of magnitude larger than in the Gaussian or super-Gaussian beams. The dynamics of the vortex solitons is studied numerically and found to approach that in the ideal, uniform background, preventing vortex spiraling and decay, which eases vortex steering for applications.

  20. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohsen, O.; Gonin, I.; Kephart, R.

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less

  1. Long-wave model for strongly anisotropic growth of a crystal step.

    PubMed

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  2. The Modelling of Axially Translating Flexible Beams

    NASA Astrophysics Data System (ADS)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  3. High frequency, multi-axis dynamic stiffness analysis of a fractionally damped elastomeric isolator using continuous system theory

    NASA Astrophysics Data System (ADS)

    Fredette, Luke; Singh, Rajendra

    2017-02-01

    A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.

  4. Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.

    PubMed

    Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K

    2018-04-06

    Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.

  5. Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1985-01-01

    Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.

  6. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    PubMed

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, James; Lau, Stephen; Heinemann, Klaus

    Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiationmore » in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused on invariant spin fields (ISFs) and amplitude dependent spin tunes (ADSTs), which are essential for estimating beam polarization. Several algorithms have been developed since the 1980s for computing the ISF, among them the Heinemann- Hoffstaetter method of stroboscopic averaging (SA) which is implemented in the code SPRINT. SA, which computes the ISF by using spin tracking data, can find the ISF to computer precision if it exists and thus can give evidence for existence of the ISF. Central to our work is resolving the ISF conjecture, which says that, off orbital resonance, an ISF exists. Thus Heinemann developed, in his 2010 PhD thesis, a new framework which unifies and generalizes the notions of ISF and ADST by using bundle theory. This lead to a long paper which was a major collaborative effort during the recent cycle. In a nutshell, our bundle approach elegantly unifies the dynamics of spin-1/2 and spin-1 particles, e.g., protons and deuterons. In fact it is well known that these two kinds of dynamics are driven by the same spin transfer matrix and in our approach one sees the deeper reason for this: the spin transfer matrix carries the natural dynamics of a principal bundle whereas the difference between the spin-1/2 and spin-1 dynamics lies in their different geometrical situation, i.e., different underlying associated bundles. Thus one arrives at new results for polarized beams, among them the Invariant Reduction Theorem (IRT) and the Cross Section Theorem (CST). The IRT gives a necessary and sufficient condition for the ISF to exist. The SA technique revealed, 20 years ago, that each ISF can be viewed as a complex agglomerate of spin tracking data. The bundle approach goes one step further by using the IRT and the CST to glue spin tracking data into agglomerates which are candidates for ISFs. We gain insight because the “good” agglomerates, in the presence of an ISF, are very different from the “bad” ones. Finally we mention that the bundle approach has analogies to the approach used in geometrical Yang-Mills theory. Third, we studied X-Ray Free Electron Lasers (FELs), which are electron accelerators producing coherent undulator radiation over a wide range of frequencies from microwaves to x-rays. The photon beams produced in FEL undulators are used to study material samples in biology, material science etc. We developed a mathematical analysis, based on the 6D Lorentz system, of energetic electrons moving through a planar undulator excited by a Maxwell traveling wave field of wavelength λ. Our Method of Averaging perturbation analysis yields non-resonant and near-to-resonant normal form approximations as a function of λ, which we present in two averaging theorems. We prove the theorems in detail, error bounds and giving a tutorial on mathematically rigorous perturbation theory in a context where proofs are easily understood. To our knowledge the planar problem has not been analyzed with the generality here nor has the standard FEL pendulum system, which appears on resonance, been derived with error bounds. In addition to the domains of validity of the normal forms we obtain new insights that require further study, including a more general low gain theory. With a firm foundation in the non-collective case above we are studying the 3D collective case from start up from noise to high gain and saturation. We have formulated the noise start up as a problem of going from the microscopic Klimontovich-Maxwell to the macroscopic Vlasov-Maxwell with a Vlasov correction term. In the 1D setting, we seek an alternative to the phenomenological Vlasov approach which models shot noise by a perturbation on an initial “smooth” density. The 1D wave equation with a Klimontovich source is often the starting point for the 1D FEL high gain theory. We have a new representation of solutions which may lead to new insights.« less

  8. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    NASA Astrophysics Data System (ADS)

    Tarkeshian, R.; Vay, J. L.; Lehe, R.; Schroeder, C. B.; Esarey, E. H.; Feurer, T.; Leemans, W. P.

    2018-04-01

    Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today's free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  9. Wholefield displacement measurements using speckle image processing techniques for crash tests

    NASA Astrophysics Data System (ADS)

    Sriram, P.; Hanagud, S.; Ranson, W. F.

    The digital correlation scheme of Peters et al. (1983) was extended to measure out-of-plane deformations, using a white light projection speckle technique. A simple ray optic theory and the digital correlation scheme are outlined. The technique was applied successfully to measure out-of-plane displacements of initially flat rotorcraft structures (an acrylic circular plate and a steel cantilever beam), using a low cost video camera and a desktop computer. The technique can be extended to measurements of three-dimensional deformations and dynamic deformations.

  10. (QC Themes) Type-Two Quantum Computing in PBG-Based Cavities for Efficient Simulation of Lattice Gas Dynamics

    DTIC Science & Technology

    2008-04-26

    substrate Si3N4 Diameter : 540 nm Pitch : 760 nm Diamond Holes in Diamond (HID) Pillars of Diamond (POD) POD with Electrooptic Polymer at Center 3D ...Diamond film : 2 um Si- substrate Al : 0.2 um PMMA : 0.5um 1. Deposit UNCD film 2. Deposit Al metal 3. Deposit PMMA on Al 4. E-beam Lithography 5...band-gap (PBG) based cavities. The cavities are etched directly on to the diamond substrate . The set of coupled qubits in each spot represents an

  11. Compensation Techniques in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Twomore » problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.« less

  12. Computers and the design of ion beam optical systems

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  13. Quantum walks and wavepacket dynamics on a lattice with twisted photons.

    PubMed

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W; Marrucci, Lorenzo

    2015-03-01

    The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

  14. Quantum walks and wavepacket dynamics on a lattice with twisted photons

    PubMed Central

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W.; Marrucci, Lorenzo

    2015-01-01

    The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations. PMID:26601157

  15. Self-Organization of Metal Nanoparticles in Light: Electrodynamics-Molecular Dynamics Simulations and Optical Binding Experiments.

    PubMed

    McCormack, Patrick; Han, Fei; Yan, Zijie

    2018-02-01

    Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.

  16. Engineering science and mechanics; Proceedings of the International Symposium, Tainan, Republic of China, December 29-31, 1981. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.

    1983-07-01

    The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061

  17. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  18. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  19. Modeling and analysis of the DSS-14 antenna control system

    NASA Technical Reports Server (NTRS)

    Gawronski, W.; Bartos, R.

    1996-01-01

    An improvement of pointing precision of the DSS-14 antenna is planned for the near future. In order to analyze the improvement limits and to design new controllers, a precise model of the antenna and the servo is developed, including a finite element model of the antenna structure and detailed models of the hydraulic drives and electronic parts. The DSS-14 antenna control system has two modes of operation: computer mode and precision mode. The principal goal of this investigation is to develop the model of the computer mode and to evaluate its performance. The DSS-14 antenna computer model consists of the antenna structure and drives in azimuth and elevation. For this model, the position servo loop is derived, and simulations of the closed-loop antenna dynamics are presented. The model is significantly different from that for the 34-m beam-waveguide antennas.

  20. Efficient storage, computation, and exposure of computer-generated holograms by electron-beam lithography.

    PubMed

    Newman, D M; Hawley, R W; Goeckel, D L; Crawford, R D; Abraham, S; Gallagher, N C

    1993-05-10

    An efficient storage format was developed for computer-generated holograms for use in electron-beam lithography. This method employs run-length encoding and Lempel-Ziv-Welch compression and succeeds in exposing holograms that were previously infeasible owing to the hologram's tremendous pattern-data file size. These holograms also require significant computation; thus the algorithm was implemented on a parallel computer, which improved performance by 2 orders of magnitude. The decompression algorithm was integrated into the Cambridge electron-beam machine's front-end processor.Although this provides much-needed ability, some hardware enhancements will be required in the future to overcome inadequacies in the current front-end processor that result in a lengthy exposure time.

  1. Evaluation of 3D airway imaging of obstructive sleep apnea with cone-beam computed tomography.

    PubMed

    Ogawa, Takumi; Enciso, Reyes; Memon, Ahmed; Mah, James K; Clark, Glenn T

    2005-01-01

    This study evaluates the use of cone-beam Computer Tomography (CT) for imaging the upper airway structure of Obstructive Sleep Apnea (OSA) patients. The total airway volume and the anteroposterior dimension of oropharyngeal airway showed significant group differences between OSA and gender-matched controls, so if we increase sample size these measurements may distinguish the two groups. We demonstrate the utility of diagnosis of anatomy with the 3D airway imaging with cone-beam Computed Tomography.

  2. Discrete and continuous dynamics modeling of a mass moving on a flexible structure

    NASA Technical Reports Server (NTRS)

    Herman, Deborah Ann

    1992-01-01

    A general discrete methodology for modeling the dynamics of a mass that moves on the surface of a flexible structure is developed. This problem was motivated by the Space Station/Mobile Transporter system. A model reduction approach is developed to make the methodology applicable to large structural systems. To validate the discrete methodology, continuous formulations are also developed. Three different systems are examined: (1) simply-supported beam, (2) free-free beam, and (3) free-free beam with two points of contact between the mass and the flexible beam. In addition to validating the methodology, parametric studies were performed to examine how the system's physical properties affect its dynamics.

  3. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  4. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    DOE PAGES

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

  5. Investigation of multiple scattering effects in aerosols

    NASA Astrophysics Data System (ADS)

    Deepak, A.

    1980-05-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  6. Hybrid simulation of fishbone instabilities in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Fu, Guoyong; Wang, Feng; Xu, Liqing; Li, Guoqiang; Liu, Chengyue; EAST Team

    2017-10-01

    Hybrid simulations with the global kinetic- MHD code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in EAST experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. The results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a BAE with much higher frequency. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. For the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11605245 and 11505022, and the CASHIPS Director's Fund under Grant No. YZJJ201510, and the Department of Energy Scientific Discovery through Advanced Computing (SciDAC) under Grant No. DE-AC02-09CH11466.

  7. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow.

    PubMed

    Demori, Marco; Ferrari, Marco; Bonzanini, Arianna; Poesio, Pietro; Ferrari, Vittorio

    2017-09-13

    In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s.

  8. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow

    PubMed Central

    Bonzanini, Arianna; Poesio, Pietro

    2017-01-01

    In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s. PMID:28902139

  9. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  10. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  11. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim

    2007-04-15

    X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less

  12. On the non-linear spectroscopy including saturated absorption and four-wave mixing in two and multi-level atoms: a computational study

    NASA Astrophysics Data System (ADS)

    Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.

    2017-10-01

    In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.

  13. Analysis of warping deformation modes using higher order ANCF beam element

    NASA Astrophysics Data System (ADS)

    Orzechowski, Grzegorz; Shabana, Ahmed A.

    2016-02-01

    Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.

  14. Production of confluent hypergeometric beam by computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Chen, Jiannong; Wang, Gang; Xu, Qinfeng

    2011-02-01

    Because of their spiral wave front, phase singularity, zero-intensity center and orbital angular momentum, dark hollow vortex beams have been found many applications in the field of atom optics such as atom cooling, atom transport and atom guiding. In this paper, a method for generating confluent hypergeometric beam by computer-generated hologram displayed on the spatial light modulator is presented. The hologram is formed by interference between a single ring Laguerre-Gaussian beam and a plane wave. The far-field Fraunhofer diffraction of this optical field transmitted from the hologram is the confluent hypergeometric beam. This beam is a circular symmetric beam which has a phase singularity, spiral wave front, zero-intensity center, and intrinsic orbital angular momentum. It is a new dark hollow vortex beam.

  15. [Diagnostic possibilities of digital volume tomography].

    PubMed

    Lemkamp, Michael; Filippi, Andreas; Berndt, Dorothea; Lambrecht, J Thomas

    2006-01-01

    Cone beam computed tomography allows high quality 3D images of cranio-facial structures. Although detail resolution is increased, x-ray exposition is reduced compared to classic computer tomography. The volume is analysed in three orthogonal plains, which can be rotated independently without quality loss. Cone beam computed tomography seems to be a less expensive and less x-ray exposing alternative to classic computer tomography.

  16. Dynamic characterization of a damaged beam using empirical mode decomposition and Hilbert spectrum method

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chen; Poon, Chun-Wing

    2004-07-01

    Recently, the empirical mode decomposition (EMD) in combination with the Hilbert spectrum method has been proposed to identify the dynamic characteristics of linear structures. In this study, this EMD and Hilbert spectrum method is used to analyze the dynamic characteristics of a damaged reinforced concrete (RC) beam in the laboratory. The RC beam is 4m long with a cross section of 200mm X 250mm. The beam is sequentially subjected to a concentrated load of different magnitudes at the mid-span to produce different degrees of damage. An impact load is applied around the mid-span to excite the beam. Responses of the beam are recorded by four accelerometers. Results indicate that the EMD and Hilbert spectrum method can reveal the variation of the dynamic characteristics in the time domain. These results are also compared with those obtained using the Fourier analysis. In general, it is found that the two sets of results correlate quite well in terms of mode counts and frequency values. Some differences, however, can be seen in the damping values, which perhaps can be attributed to the linear assumption of the Fourier transform.

  17. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  18. High speed Infrared imaging method for observation of the fast varying temperature phenomena

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong

    With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.

  19. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    NASA Astrophysics Data System (ADS)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  20. Cone Beam Computed Tomography Analysis in 3D Position of Maxillary Denture

    PubMed Central

    Jia, Ying; Yang, Hua; Li, Ping; Xiong, Jiangyan; Chen, Bo

    2017-01-01

    Abstract The dynamic correlation between teeth and denture morphology as well as the morphological positions needs to be explored. Methodology 63 adult patients with skeletal class III malocclusions that met the inclusion criteria were enrolled and imaged with Cone Beam Computed Tomography (CBCT), and Digital Imaging and Communications in Medicine (DICOM) data were collected. The torque angle and axial inclination were measured and analyzed for the corona, root, and entire body of every tooth on the maxilla. Results There is a statistically significant difference between the coronal axial inclination/coronal torque angle for the skeletal class III malocclusion cases and Andrew’s six keys of occlusion. On the sagittal plane of the maxillary denture (except that the secondary molar is inclined medial-distally), the remaining teeth are inclined towards the labia with slightly larger angles compared to the normal occlusion. In the coronal direction, the maxillary anterior teeth tend to have a corona that inclines medial-distally, whereas the posterior teeth have a buccal inclination compared to the normal occlusion. Conclusion Sagittal and transversal compensations prevail in maxillary dentures; for the camouflaged treatment design for skeletal class III, there is limited scope of sagittal and transversal movements on the maxillary denture. PMID:29104942

  1. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less

  2. Computer simulations of the energy dissipation rate in a fluorescence-activated cell sorter: Implications to cells.

    PubMed

    Mollet, Mike; Godoy-Silva, Ruben; Berdugo, Claudia; Chalmers, Jeffrey J

    2008-06-01

    Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.

  3. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  4. Systems and methods of varying charged particle beam spot size

    DOEpatents

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  5. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  6. Current capabilities for simulating the extreme distortion of thin structures subjected to severe impacts

    NASA Technical Reports Server (NTRS)

    Key, Samuel W.

    1993-01-01

    The explicit transient dynamics technology in use today for simulating the impact and subsequent transient dynamic response of a structure has its origins in the 'hydrocodes' dating back to the late 1940's. The growth in capability in explicit transient dynamics technology parallels the growth in speed and size of digital computers. Computer software for simulating the explicit transient dynamic response of a structure is characterized by algorithms that use a large number of small steps. In explicit transient dynamics software there is a significant emphasis on speed and simplicity. The finite element technology used to generate the spatial discretization of a structure is based on a compromise between completeness of the representation for the physical processes modelled and speed in execution. That is, since it is expected in every calculation that the deformation will be finite and the material will be strained beyond the elastic range, the geometry and the associated gradient operators must be reconstructed, as well as complex stress-strain models evaluated at every time step. As a result, finite elements derived for explicit transient dynamics software use the simplest and barest constructions possible for computational efficiency while retaining an essential representation of the physical behavior. The best example of this technology is the four-node bending quadrilateral derived by Belytschko, Lin and Tsay. Today, the speed, memory capacity and availability of computer hardware allows a number of the previously used algorithms to be 'improved.' That is, it is possible with today's computing hardware to modify many of the standard algorithms to improve their representation of the physical process at the expense of added complexity and computational effort. The purpose is to review a number of these algorithms and identify the improvements possible. In many instances, both the older, faster version of the algorithm and the improved and somewhat slower version of the algorithm are found implemented together in software. Specifically, the following seven algorithmic items are examined: the invariant time derivatives of stress used in material models expressed in rate form; incremental objectivity and strain used in the numerical integration of the material models; the use of one-point element integration versus mean quadrature; shell elements used to represent the behavior of thin structural components; beam elements based on stress-resultant plasticity versus cross-section integration; the fidelity of elastic-plastic material models in their representation of ductile metals; and the use of Courant subcycling to reduce computational effort.

  7. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation of the framework. Gust responses of the Flying-Wing configuration subject to stall effects are investigated. A bilinear torsional stiffness model is introduced to study the skin wrinkling due to large bending curvature of the Flying-Wing. The numerical studies illustrate the improvements of the existing reduced-order formulation with new capabilities of both structural modeling and coupled aeroelastic and flight dynamic analysis of fully flexible aircraft.

  8. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less

  9. Beam-dynamics driven design of the LHeC energy-recovery linac

    NASA Astrophysics Data System (ADS)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  10. Experimental investigation and damage assessment in a post tensioned concrete beam

    NASA Astrophysics Data System (ADS)

    Limongelli, Maria; Siegert, Dominique; Merliot, Erick; Waeytens, Julien; Bourquin, Frederic; Vidal, Roland; Le Corvec, Veronique; Guegen, Ivan; Cottineau, Louis-Marie

    2017-04-01

    This paper presents the results of an experimental campaign carried out on a prestressed concrete beam in the realm of the project SIPRIS (Systèmes Intelligents pour la Prévention des Risques Structurels), aimed to develop intelligent systems for the prevention of structural risk related to the aging of large infrastructures. The specimen was tested in several configurations aimed to re-produce several different phases of the 'life' of the beam: in the original undamaged state, under an increasing loss of tension in the cables, during and after cracking induced by a point load, after a strengthening intervention, after new cracking of the 'repaired' beam. Damage was introduced in a controlled way by means of three-point static bending tests. The transverse point loads were ap-plied at several different sections along the beam axis. Before and after each static test, the dy-namical response of the beam was measured under sine-sweep and impact tests by an extensive set of accelerometers deployed along the beam axis. The availability of both static and dynamic tests allows to investigate and compare their effectiveness to detect damages in the tensioned beam and to reliably identify the evolution of damage. The paper discusses the tests program and some results relevant to the dynamic characterization of the beam in the different phases.

  11. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting.

    PubMed

    Heinl, Peter; Müller, Lenka; Körner, Carolin; Singer, Robert F; Müller, Frank A

    2008-09-01

    Selective electron beam melting (SEBM) was successfully used to fabricate novel cellular Ti-6Al-4V structures for orthopaedic applications. Micro computer tomography (microCT) analysis demonstrated the capability to fabricate three-dimensional structures with an interconnected porosity and pore sizes suitable for tissue ingrowth and vascularization. Mechanical properties, such as compressive strength and elastic modulus, of the tested structures were similar to those of human bone. Thus, stress-shielding effects after implantation might be avoided due to a reduced stiffness mismatch between implant and bone. A chemical surface modification using HCl and NaOH induced apatite formation during in vitro bioactivity tests in simulated body fluid under dynamic conditions. The modified bioactive surface is expected to enhance the fixation of the implant in the surrounding bone as well as to improve its long-term stability.

  12. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less

  13. TH-AB-202-03: A Novel Tool for Computing Deliverable Doses in Dynamic MLC Tracking Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, M; Kamerling, C; Menten, M

    2016-06-15

    Purpose: In tracked dynamic multi-leaf collimator (MLC) treatments, segments are continuously adapted to the target centroid motion in beams-eye-view. On-the-fly segment adaptation, however, potentially induces dosimetric errors due to the finite MLC leaf width and non-rigid target motion. In this study, we outline a novel tool for computing the 4d dose of lung SBRT plans delivered with MLC tracking. Methods: The following automated workflow was developed: A) centroid tracking, where the initial segments are morphed to each 4dCT phase based on the beams-eye-view GTV shift (followed by a dose calculation on each phase); B) re-optimized tracking, in which all morphedmore » initial plans from (A) are further optimised (“warm-started”) in each 4dCT phase using the initial optimisation parameters but phase-specific volume definitions. Finally, both dose sets are accumulated to the reference phase using deformable image registration. Initial plans were generated according to the RTOG-1021 guideline (54Gy, 3-Fx, equidistant 9-beam IMRT) on the peak-exhale (reference) phase of a phase-binned 4dCT. Treatment planning and delivery simulations were performed in RayStation (research v4.6) using our in-house segment-morphing algorithm, which directly links to RayStation through a native C++ interface. Results: Computing the tracking plans and 4d dose distributions via the in-house interface takes 5 and 8 minutes respectively for centroid and re-optimized tracking. For a sample lung SBRT patient with 14mm peak-to-peak motion in sup-inf direction, mainly perpendicular leaf motion (0-collimator) resulted in small dose changes for PTV-D95 (−13cGy) and GTV-D98 (+18cGy) for the centroid tracking case compared to the initial plan. Modest reductions of OAR doses (e.g. spinal cord D2: −11cGy) were achieved in the idealized tracking case. Conclusion: This study presents an automated “1-click” workflow for computing deliverable MLC tracking doses in RayStation. Adding a non-deliverable re-optimized tracking scenario is expected to help quantify plan robustness for more challenging patients with anatomy deformations. We acknowledge support of the MLC tracking research from Elekta AB. MFF is supported by Cancer Research UK under Programme C33589/A19908. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR.« less

  14. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    PubMed Central

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40° to approximately 90° horizontally and from approximately 45° to more than 90° vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals. PMID:20643943

  15. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit.

    PubMed

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-08-03

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40 degrees to approximately 90 degrees horizontally and from approximately 45 degrees to more than 90 degrees vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals.

  16. Brain perfusion imaging using a Reconstruction-of-Difference (RoD) approach for cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Mow, M.; Zbijewski, W.; Sisniega, A.; Xu, J.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Koliatsos, V.; Aygun, N.; Siewerdsen, J. H.

    2017-03-01

    Purpose: To improve the timely detection and treatment of intracranial hemorrhage or ischemic stroke, recent efforts include the development of cone-beam CT (CBCT) systems for perfusion imaging and new approaches to estimate perfusion parameters despite slow rotation speeds compared to multi-detector CT (MDCT) systems. This work describes development of a brain perfusion CBCT method using a reconstruction of difference (RoD) approach to enable perfusion imaging on a newly developed CBCT head scanner prototype. Methods: A new reconstruction approach using RoD with a penalized-likelihood framework was developed to image the temporal dynamics of vascular enhancement. A digital perfusion simulation was developed to give a realistic representation of brain anatomy, artifacts, noise, scanner characteristics, and hemo-dynamic properties. This simulation includes a digital brain phantom, time-attenuation curves and noise parameters, a novel forward projection method for improved computational efficiency, and perfusion parameter calculation. Results: Our results show the feasibility of estimating perfusion parameters from a set of images reconstructed from slow scans, sparse data sets, and arc length scans as short as 60 degrees. The RoD framework significantly reduces noise and time-varying artifacts from inconsistent projections. Proper regularization and the use of overlapping reconstructed arcs can potentially further decrease bias and increase temporal resolution, respectively. Conclusions: A digital brain perfusion simulation with RoD imaging approach has been developed and supports the feasibility of using a CBCT head scanner for perfusion imaging. Future work will include testing with data acquired using a 3D-printed perfusion phantom currently and translation to preclinical and clinical studies.

  17. Dynamic responses of graphite/epoxy laminated beam to impact of elastic spheres

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Wang, T.

    1982-01-01

    Wave propagation in 90/45/90/-45/902s and 0/45/0/-45/02s laminates of a graphite/epoxy composite due to impact of a steel ball was investigated experimentally and also by using a high order beam finite element. Dynamic strain responses at several locations were obtained using strain gages. The finite element program which incorporated statically determined contact laws was employed to calculate the contact force history as well as the target beam dynamic deformation. The comparison of the finite element solutions with the experimental data indicated that the static contact laws for loading and unloading (developed under this grant) are adequate for the dynamic impact analysis. It was found that for the 0/45/0/-45/02s laminate which has a much larger longitudinal bending rigidity, the use of beam finite elements is not suitable and plate finite element should be used instead.

  18. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  19. Beam dynamics studies at DAΦNE: from ideas to experimental results

    NASA Astrophysics Data System (ADS)

    Zobov, M.; DAΦNE Team

    2017-12-01

    DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.

  20. Beam dynamics in heavy ion induction LINACS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  1. Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.

    1991-01-01

    The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.

  2. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  3. Contours identification of elements in a cone beam computed tomography for investigating maxillary cysts

    NASA Astrophysics Data System (ADS)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.

  4. Oxygen transport properties estimation by DSMC-CT simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy ofmore » the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.« less

  5. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  6. A computer vision-based approach for structural displacement measurement

    NASA Astrophysics Data System (ADS)

    Ji, Yunfeng

    2010-04-01

    Along with the incessant advancement in optics, electronics and computer technologies during the last three decades, commercial digital video cameras have experienced a remarkable evolution, and can now be employed to measure complex motions of objects with sufficient accuracy, which render great assistance to structural displacement measurement in civil engineering. This paper proposes a computer vision-based approach for dynamic measurement of structures. One digital camera is used to capture image sequences of planar targets mounted on vibrating structures. The mathematical relationship between image plane and real space is established based on computer vision theory. Then, the structural dynamic displacement at the target locations can be quantified using point reconstruction rules. Compared with other tradition displacement measurement methods using sensors, such as accelerometers, linear-variable-differential-transducers (LVDTs) and global position system (GPS), the proposed approach gives the main advantages of great flexibility, a non-contact working mode and ease of increasing measurement points. To validate, four tests of sinusoidal motion of a point, free vibration of a cantilever beam, wind tunnel test of a cross-section bridge model, and field test of bridge displacement measurement, are performed. Results show that the proposed approach can attain excellent accuracy compared with the analytical ones or the measurements using conventional transducers, and proves to deliver an innovative and low cost solution to structural displacement measurement.

  7. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  8. Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals

    DOE R&D Accomplishments Database

    Lee, Y. T.

    1973-09-01

    The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.

  9. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, Sergei O.

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both ofmore » these milestones have been met.« less

  10. Pbar Beam Stacking in the Recycler by Longitudinal Phase-space Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, C. M.

    2013-08-06

    Barrier rf buckets have brought about new challenges in longitudinal beam dynamics of charged particle beams in synchrotrons and at the same time led to many new remarkable prospects in beam handling. In this paper, I describe a novel beam stacking scheme for synchrotrons using barrier buckets without any emittance dilution to the beam. First I discuss the general principle of the method, called longitudinal phase-space coating. Multi-particle beam dynamics simulations of the scheme applied to the Recycler, convincingly validates the concepts and feasibility of the method. Then I demonstrate the technique experimentally in the Recycler and also use itmore » in operation. A spin-off of this scheme is its usefulness in mapping the incoherent synchrotron tune spectrum of the beam particles in barrier buckets and producing a clean hollow beam in longitudinal phase space. Both of which are described here in detail with illustrations. The beam stacking scheme presented here is the first of its kind.« less

  11. Beam and Plasma Physics Research

    DTIC Science & Technology

    1990-06-01

    La di~raDy in high power microwave computations and thi-ory and high energy plasma computations and theory. The HPM computations concentrated on...2.1 REPORT INDEX 7 2.2 TASK AREA 2: HIGH-POWER RF EMISSION AND CHARGED- PARTICLE BEAM PHYSICS COMPUTATION , MODELING AND THEORY 10 2.2.1 Subtask 02-01...Vulnerability of Space Assets 22 2.2.6 Subtask 02-06, Microwave Computer Program Enhancements 22 2.2.7 Subtask 02-07, High-Power Microwave Transvertron Design 23

  12. Qweak Data Analysis for Target Modeling Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Moore, Michael; Covrig, Silviu

    2015-04-01

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target met the design goals of < 1 % luminosity reduction and < 5 % contribution to the total asymmetry width (the Qweak target achieved 2 % or 55 ppm). State of the art time dependent CFD simulations are being developed to improve the predictions of target noise on the time scale of the electron beam helicity period. These predictions will be bench-marked with the Qweak target data. This work is an essential ingredient in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  13. Predicting the Noise of High Power Fluid Targets Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Moore, Michael; Covrig Dusa, Silviu

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target satisfied the design goals of < 1 % luminosity reduction and < 5 % contribution to the total asymmetry width (the Qweak target achieved 2 % or 55ppm). State of the art time dependent CFD simulations are being developed to improve the predictions of target noise on the time scale of the electron beam helicity period. These predictions will be bench-marked with the Qweak target data. This work is an essential component in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  14. The LATDYN user's manual

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Mcgowan, P. E.; Abrahamson, A. L.; Powell, M. G.

    1986-01-01

    The LATDYN User's Manual presents the capabilities and instructions for the LATDYN (Large Angle Transient DYNamics) computer program. The LATDYN program is a tool for analyzing the controlled or uncontrolled dynamic transient behavior of interconnected deformable multi-body systems which can undergo large angular motions of each body relative other bodies. The program accommodates large structural deformation as well as large rigid body rotations and is applicable, but not limited to, the following areas: (1) development of large flexible space structures; (2) slewing of large space structure components; (3) mechanisms with rigid or elastic components; and (4) robotic manipulations of beam members. Presently the program is limited to two dimensional problems, but in many cases, three dimensional problems can be exactly or approximately reduced to two dimensions. The program uses convected finite elements to affect the large angular motions involved in the analysis. General geometry is permitted. Detailed user input and output specifications are provided and discussed with example runstreams. To date, LATDYN has been configured for CDC/NOS and DEC VAX/VMS machines. All coding is in ANSII-77 FORTRAN. Detailed instructions regarding interfaces with particular computer operating systems and file structures are provided.

  15. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposedmore » electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where "two-fluid" refers to modeling independent dynamics of electron and ion species without full kinetic effects. In collaboration with scientist Ping Zhu, who received separate support, it was found that the rule-of-thumb criteria on stabilizing interchange has caveats that depend on the plasma density and temperature profiles. This work was published in [Zhu, Schnack, Ebrahimi, et al., Phys. Rev. Lett. 101, 085005 (2008)]. An investigation of general nonlinear relaxation with fluid models was partially supported by the TDTFS study and led to the publication [Khalzov, Ebrahimi, Schnack, and Mirnov, Phys. Plasmas 19, 012111 (2012)]. Work specific to the RFP included an investigation of interchange at large plasma pressure and support for applications [for example, Scheffel, Schnack, and Mirza, Nucl. Fusion 53, 113007 (2013)] of the DEBS code [Schnack, Barnes, Mikic, Harned, and Caramana, J. Comput. Phys. 70, 330 (1987)]. Finally, the principal investigator over most of the award period, Dalton Schnack, supervised a numerical study of modeling magnetic island suppression [Jenkins, Kruger, Hegna, Schnack, and Sovinec, Phys. Plasmas 17, 12502 (2010)].« less

  16. Establishing Information Security Systems via Optical Imaging

    DTIC Science & Technology

    2015-08-11

    SLM, spatial light modulator; BSC, non - polarizing beam splitter cube; CCD, charge-coupled device. In computational ghost imaging, a series of...Laser Object Computer Fig. 5. A schematic setup for the proposed method using holography: BSC, Beam splitter cube; CCD, Charge-coupled device. The...interference between reference and object beams . (a) (e) (d) (c) (b) Distribution Code A: Approved for public release, distribution is unlimited

  17. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    PubMed

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.

  18. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  19. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall

    NASA Astrophysics Data System (ADS)

    Won, Hong-In; Chung, Jintai

    2018-04-01

    This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.

  20. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Heng; Li Yupeng; Zhang Xiaodong

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove themore » principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and/or total deliver time was also established.« less

  1. Condition assessment of reinforced concrete beams using dynamic data measured with distributed long-gage macro-strain sensors

    NASA Astrophysics Data System (ADS)

    Hong, W.; Wu, Z. S.; Yang, C. Q.; Wan, C. F.; Wu, G.; Zhang, Y. F.

    2012-06-01

    A new condition assessment strategy of reinforced concrete (RC) beams is proposed in this paper. This strategy is based on frequency analysis of the dynamic data measured with distributed long-gage macro-stain sensors. After extracting modal macro-strain, the reference-based damage index is theoretically deducted in which the variations of modal flexural rigidity and modal neutral axis height are considered. The reference-free damage index is also presented for comparison. Both finite element simulation and experiment investigations were carried out to verify the proposed method. The manufacturing procedure of long-gage fiber Bragg grating (FBG) sensor chosen in the experiment is firstly presented, followed by an experimental study on the essential sensing properties of the long-gage macro-strain sensors and the results verify the excellent sensing properties, in particular the measurement accuracy and dynamic measuring capacity. Modal analysis results of a concrete beam show that the damage appearing in the beam can be well identified by the damage index while the vibration testing results of a RC beam show that the proposed method can not only capture small crack initiation but its propagation. It can be concluded that distributed long-gage dynamic macro-strain sensing technique has great potential for the condition assessment of RC structures subjected to dynamic loading.

  2. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    NASA Astrophysics Data System (ADS)

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-01

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  3. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization

    NASA Astrophysics Data System (ADS)

    Hillert, Wolfgang; Balling, Andreas; Boldt, Oliver; Dieckmann, Andreas; Eberhardt, Maren; Frommberger, Frank; Heiliger, Dominik; Heurich, Nikolas; Koop, Rebecca; Klarner, Fabian; Preisner, Oliver; Proft, Dennis; Pusch, Thorsten; Roth, André; Sauerland, Dennis; Schedler, Manuel; Schmidt, Jan Felix; Switka, Michael; Thiry, Jens-Peter; Wittschen, Jürgen; Zander, Sven

    2017-01-01

    The electron accelerator facility ELSA has been operated for almost 30 years serving nuclear physics experiments investigating the sub-nuclear structure of matter. Within the 12 years funding period of the collaborative research center SFB/TR 16, linearly and circularly polarized photon beams with energies up to more than 3 GeV were successfully delivered to photoproduction experiments. In order to fulfill the increasing demands on beam polarization and intensity, a comprehensive research and upgrade program has been carried out. Beam and spin dynamics have been studied theoretically and experimentally, and sophisticated new devices have been developed and installed. The improvements led to a significant increase of the available beam polarization and intensity. A further increase of beam energy seems feasible with the implementation of superconducting cavities.

  4. Topological transformation of fractional optical vortex beams using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Maji, Satyajit; Brundavanam, Maruthi M.

    2018-04-01

    Optical vortex beams with fractional topological charges (TCs) are generated by the diffraction of a Gaussian beam using computer generated holograms embedded with mixed screw-edge dislocations. When the input Gaussian beam has a finite wave-front curvature, the generated fractional vortex beams show distinct topological transformations in comparison to the integer charge optical vortices. The topological transformations at different fractional TCs are investigated through the birth and evolution of the points of phase singularity, the azimuthal momentum transformation, occurrence of critical points in the transverse momentum and the vorticity around the singular points. This study is helpful to achieve better control in optical micro-manipulation applications.

  5. A Projection Quality-Driven Tube Current Modulation Method in Cone-Beam CT for IGRT: Proof of Concept.

    PubMed

    Men, Kuo; Dai, Jianrong

    2017-12-01

    To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.

  6. On the interplay effects with proton scanning beams in stage III lung cancer.

    PubMed

    Li, Yupeng; Kardar, Laleh; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong

    2014-02-01

    To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Despite the presence of interplay effect, the delivered dose may be reliably estimated using the 4D composite dose. In general the interplay effect may not be a primary concern with IMPT for lung cancers for the authors' institution. The described interplay analysis tool may be used to provide additional confidence in treatment delivery.

  7. The effect of rotatory inertia on the natural frequencies of composite beams

    NASA Astrophysics Data System (ADS)

    Auclair, Samuel C.; Sorelli, Luca; Salenikovich, Alexander; Fafard, Mario

    2016-03-01

    This paper focuses on the dynamic behaviour of two-layer composite beams, which is an important aspect of performance of structures, such as a concrete slab on a girder in residential floors or bridges. After briefly reviewing the composite beam theory based on Euler-Bernoulli hypothesis, the dynamic formulation is extended by including the effect of the relative longitudinal motion of the layers in the rotatory inertia, which can be particularly important for timber-concrete composite beams. The governing equation and the finite element model are derived in detail and validated by comparing the natural frequency predictions against other methods. A parametric analysis shows the key factors, which affect the rotatory inertia and its influence on the frequency of a single-span composite beam with different boundary conditions. The effect of the rotatory inertia on the first natural frequency of the composite beam appears below 5 percent; however, the effect on the higher natural frequencies becomes more important and not negligible in a full dynamics analysis. Finally, a simplified equation is proposed to account for the effect of the rotatory inertia on the calculation of the frequency of a composite beam for design purpose.

  8. Influence of pharyngeal airway respiration pressure on Class II mandibular retrusion in children: A computational fluid dynamics study of inspiration and expiration.

    PubMed

    Iwasaki, T; Sato, H; Suga, H; Takemoto, Y; Inada, E; Saitoh, I; Kakuno, K; Kanomi, R; Yamasaki, Y

    2017-05-01

    To examine the influence of negative pressure of the pharyngeal airway on mandibular retraction during inspiration in children with nasal obstruction using the computational fluid dynamics (CFD) method. Sixty-two children were divided into Classes I, II (mandibular retrusion) and III (mandibular protrusion) malocclusion groups. Cone-beam computed tomography data were used to reconstruct three-dimensional shapes of the nasal and pharyngeal airways. Airflow pressure was simulated using CFD to calculate nasal resistance and pharyngeal airway pressure during inspiration and expiration. Nasal resistance of the Class II group was significantly higher than that of the other two groups, and oropharyngeal airway inspiration pressure in the Class II (-247.64 Pa) group was larger than that in the Class I (-43.51 Pa) and Class III (-31.81 Pa) groups (P<.001). The oropharyngeal airway inspiration-expiration pressure difference in the Class II (-27.38 Pa) group was larger than that in the Class I (-5.17 Pa) and Class III (0.68 Pa) groups (P=.006). Large negative inspiratory pharyngeal airway pressure due to nasal obstruction in children with Class II malocclusion may be related to their retrognathia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Modeling of static and flowing-gas diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman

    2016-03-01

    Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.

  10. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    PubMed

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  11. Beam dynamics issues in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1989-06-01

    The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effectsmore » of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.« less

  12. Coherent and dynamic beam splitting based on light storage in cold atoms

    PubMed Central

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  13. The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*

    NASA Astrophysics Data System (ADS)

    Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok

    2017-09-01

    Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.

  14. Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space.

    PubMed

    Zhao, Peng; Zhao, Ji-Cheng; Weaver, Richard

    2013-05-01

    The surface displacement response to a distributed thermal expansion source is solved using the reciprocity principle. By convolving the strain Green's function with the thermal stress field created by an ultrafast laser illumination, the complete surface displacement on an anisotropic half space induced by laser absorption is calculated in the time domain. This solution applies to the near field surface displacement due to pulse laser absorption. The solution is validated by performing ultrafast laser pump-probe measurements and showing very good agreement between the measured time-dependent probe beam deflection and the computed surface displacement.

  15. European Society of Endodontology position statement: the use of CBCT in endodontics.

    PubMed

    Patel, S; Durack, C; Abella, F; Roig, M; Shemesh, H; Lambrechts, P; Lemberg, K

    2014-06-01

    This Position Statement represents a consensus of an expert committee convened by the European Society of Endodontology (ESE) on the use of Cone Beam Computed Tomography (CBCT). The statement is based on the current scientific evidence, and provides the clinician with evidence-based criteria on when to use CBCT in Endodontics. Given the dynamic and changing nature of research, development of new devices and clinical practice relating to CBCT, this Position Statement will be updated within 3 years, or before that time should new evidence become available. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    PubMed

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  17. Particle-In-Cell simulations of electron beam microbunching instability in three dimensions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.

    2013-10-01

    Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.

  18. Beam-dynamic effects at the CMS BRIL van der Meer scans

    NASA Astrophysics Data System (ADS)

    Babaev, A.

    2018-03-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.

  19. Computer simulation of electron flow in linear-beam microwave tubes

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit

    1990-12-01

    The computer simulation of electron flow in linear-beam microwave tubes, such as a travelling-wave tube (TWT) and klystron, is used for designing and optimising the electron gun and collector and for analysing the large-signal beam-wave interaction phenomenon. Major aspects of simulation of electron flow in static and rf fields present in such tubes are discussed. Some advancements made in this respect and results obtained from computer programs developed by the research group at CEERI for a gridded electron gun, depressed collector, and large-signal analysis of TWT and klystron are presented.

  20. General rigid motion correction for computed tomography imaging based on locally linear embedding

    NASA Astrophysics Data System (ADS)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  1. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    PubMed

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Poster — Thur Eve — 31: Dosimetric Effect of Respiratory Motion on RapidArc Lung SBRT Treatment Delivered by TrueBeam Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Runqing; Zhan, Lixin; Osei, Ernest

    2014-08-15

    Volumetric modulated arc therapy (VMAT) allows fast delivery of stereotactic radiotherapy. However, the discrepancies between the calculated and delivered dose distributions due to respiratory motion and dynamic multileaf collimators (MLCs) interplay are not avoidable. The purpose of this study is to investigate RapidArc lung SBRT treatment delivered by the flattening filter-free (FFF) beam and flattened beam with Varian TrueBeam machine. CIRS Dynamic Thorax Phantom with in-house made lung tumor insertion was CT scanned both in free breathing and 4DCT. 4DCT was used to determine the internal target volume. The free breathing CT scan was used for treatment planning. A 5more » mm margin was given to ITV to generate a planning target volume. Varian Eclipse treatment planning was used to generate RapidArc plans based on the 6 MV flattened beam and 6MV FFF beam. The prescription dose was 48 Gy in 4 fractions. At least 95% of PTV was covered by the prescribed dose. The RapidArc plans with 6 MV flattened beam and 6MV FFF beam were delivered with Varian TrueBeam machine. The dosimetric measurements were performed with Gafchromic XR-RV3 film, which was placed in the lung tumor insertion. The interplay between the dynamic MLC-based delivery of VMAT and the respiratory motion of the tumor degraded target coverage and created undesired hot or cold dose spots inside the lung tumor. Lung SBRT RapidArc treatments delivered by the FFF beam of TrueBeam linear accelerator is superior to the flattened beam. Further investigation will be performed by Monte Carlo simulation.« less

  3. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  4. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  5. Scaling effects in the static and dynamic response of graphite-epoxy beam-columns. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.

    1990-01-01

    Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.

  6. Rapid Structural Design Change Evaluation with AN Experiment Based FEM

    NASA Astrophysics Data System (ADS)

    Chu, C.-H.; Trethewey, M. W.

    1998-04-01

    The work in this paper proposes a dynamic structural design model that can be developed in a rapid fashion. The approach endeavours to produce a simplified FEM developed in conjunction with an experimental modal database. The FEM is formulated directly from the geometry and connectivity used in an experimental modal test using beam/frame elements. The model sacrifices fine detail for a rapid development time. The FEM is updated at the element level so the dynamic response replicates the experimental results closely. The physical attributes of the model are retained, making it well suited to evaluate the effect of potential design changes. The capabilities are evaluated in a series of computational and laboratory tests. First, a study is performed with a simulated cantilever beam with a variable mass and stiffness distribution. The modal characteristics serve as the updating target with random noise added to simulate experimental uncertainty. A uniformly distributed FEM is developed and updated. The results show excellent results, all natural frequencies are within 0·001% with MAC values above 0·99. Next, the method is applied to predict the dynamic changes of a hardware portal frame structure for a radical design change. Natural frequency predictions from the original FEM differ by as much as almost 18% with reasonable MAC values. The results predicted from the updated model produce excellent results when compared to the actual hardware changes, the first five modal natural frequency difference is around 5% and the corresponding mode shapes producing MAC values above 0·98.

  7. Dynamic Structural Flexible-Beam Response to a Moving Barge Train Impact Force Time-History Using Impact_Beam

    DTIC Science & Technology

    2011-08-01

    concrete box beams . Each pier is constructed of two drilled shafts with cast-in-place concrete cap beams to support the precast concrete wall beams ...and nose cell. The hollow, rectangular beams have an outside dimension of 10 feet by 10 feet. The weight of each of the precast beams is...a concrete-filled sheet-pile nose cell, which support five precast concrete beams . An example of this flexible impact beam is shown in Figures 1.5

  8. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  9. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  10. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.

    2015-12-15

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less

  11. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-01

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  12. Respirator triggering of electron-beam computed tomography (EBCT): differences in dynamic changes between augmented ventilation and controlled mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter

    2000-04-01

    The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.

  13. Nonlocal continuous models for forced vibration analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2014-06-01

    Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.

  14. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventturini, M.; Corlett, J.; Emma, P.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  15. Anomalous resistivity effect on multiple ion beam emission and hard x-ray generation in a Mather type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behbahani, R. A.; Aghamir, F. M.

    Multi ion beam and hard x-ray emissions were detected in a high inductance (more than 100 nH) Mather type plasma focus (PF) device at different filling gas pressures and charging voltages. The signal analysis was performed through the current trace, as it is the fundamental signal from which all of the phenomena in a PF device can be extracted. Two different fitting processes were carried out according to Lee's computational (snow-plow) model. In the first process, only plasma dynamics and classical (Spitzer) resistances were considered as energy consumer parameters for plasma. This led to an unsuccessful fitting and did notmore » answer the energy transfer mechanism into plasma. A second fitting process was considered through the addition of anomalous resistance, which provided the best fit. Anomalous resistance was the source of long decrease in current trace, and multi dips and multi peaks of high voltage probe. Multi-peak features were interpreted considering the second fitting process along with the mechanisms for ion beam production and hard x-ray emission. To show the important role of the anomalous resistance, the duration of the current drop was discussed.« less

  16. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  17. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.

    2016-02-15

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less

  18. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHOU,W.; WEI,J.

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensitymore » proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.« less

  19. Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads

    NASA Astrophysics Data System (ADS)

    Xu, Tengfei; Castel, Arnaud

    2016-04-01

    In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.

  20. Trapping photons on the line: controllable dynamics of a quantum walk

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao

    2014-04-01

    Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.

  1. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu

    2015-05-15

    Purpose: To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. Methods: In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimatedmore » field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm{sup 2} were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R{sub 100}, R{sub 50}, R{sub p}, and R{sub p+} for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Results: Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R{sub 100}, R{sub 50}, and R{sub p} were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. Conclusions: We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm{sup 2} were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.« less

  2. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    PubMed

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm(2) were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.

  3. Beaming Your School into the 21st Century.

    ERIC Educational Resources Information Center

    Pfeifer, R. Scott; Robb, Rick

    2001-01-01

    Mindsurf Networks--a partnership involving a suburban Baltimore high school, Sylvan Ventures, and Aether Systems--provides a cutting-edge, reasonably priced, networked mobile computing platform for learning. Handheld computers help students solve problems and beam information to teachers and each other. Partnership initiation strategies for…

  4. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  5. Holographic otoscope for nano-displacement measurements of surfaces under dynamic excitation

    PubMed Central

    Flores-Moreno, J. M.; Furlong, Cosme; Rosowski, John J.; Harrington, Ellery; Cheng, Jeffrey T.; Scarpino, C.; Santoyo, F. Mendoza

    2011-01-01

    Summary We describe a novel holographic otoscope system for measuring nano-displacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane (TM). PMID:21898459

  6. Observation of electron cloud instabilities and emittance dilution at the Cornell electron-positron Storage ring Test Accelerator

    DOE PAGES

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...

    2016-04-11

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less

  7. Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator

    NASA Astrophysics Data System (ADS)

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.

    2016-04-01

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.

  8. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  9. A Computer Program for Mapping Satellite-borne Narrow-Beam Antenna Footprints on Earth. Memorandum Number 72/3.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; Singh, Jai P.

    Written primarily to define the area of the earth covered by a narrow-beam antenna carried on a synchronous satellite in circular, near equatorial orbits, a computer program has been developed that computes the locus of intersection of a quadric cone and a sphere. The program, which outputs a list of the longitude and latitude coordinates of the…

  10. Lossless crossing of a resonance stopband during tune modulation by synchrotron oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. M.; Shaftan, T.; Smaluk, V.

    Modern high performance circular accelerators require sophisticated corrections of nonlinear lattices. The beam betatron tune footprint may cross many resonances, reducing dynamic aperture and causing particle loss. But, if particles cross a resonance reasonably fast, the beam deterioration may be minimized. This paper describes the experiments with the beam passing through a half-integer resonance stopband via tune modulation by exciting synchrotron oscillations. This is the first time that beam dynamics have been kept under precise control while the beam crosses a half-integer resonance. These results convincingly demonstrate that particles can cross the half-integer resonance without being lost if the passagemore » is reasonably fast and the resonance stopband is sufficiently narrow.« less

  11. Lossless crossing of a resonance stopband during tune modulation by synchrotron oscillations

    DOE PAGES

    Wang, G. M.; Shaftan, T.; Smaluk, V.; ...

    2017-09-14

    Modern high performance circular accelerators require sophisticated corrections of nonlinear lattices. The beam betatron tune footprint may cross many resonances, reducing dynamic aperture and causing particle loss. But, if particles cross a resonance reasonably fast, the beam deterioration may be minimized. This paper describes the experiments with the beam passing through a half-integer resonance stopband via tune modulation by exciting synchrotron oscillations. This is the first time that beam dynamics have been kept under precise control while the beam crosses a half-integer resonance. These results convincingly demonstrate that particles can cross the half-integer resonance without being lost if the passagemore » is reasonably fast and the resonance stopband is sufficiently narrow.« less

  12. Hybrid Large Eddy Simulation / Reynolds Averaged Navier-Stokes Modeling in Directed Energy Applications

    NASA Astrophysics Data System (ADS)

    Zilberter, Ilya Alexandrovich

    In this work, a hybrid Large Eddy Simulation / Reynolds-Averaged Navier Stokes (LES/RANS) turbulence model is applied to simulate two flows relevant to directed energy applications. The flow solver blends the Menter Baseline turbulence closure near solid boundaries with a Lenormand-type subgrid model in the free-stream with a blending function that employs the ratio of estimated inner and outer turbulent length scales. A Mach 2.2 mixing nozzle/diffuser system representative of a gas laser is simulated under a range of exit pressures to assess the ability of the model to predict the dynamics of the shock train. The simulation captures the location of the shock train responsible for pressure recovery but under-predicts the rate of pressure increase. Predicted turbulence production at the wall is found to be highly sensitive to the behavior of the RANS turbulence model. A Mach 2.3, high-Reynolds number, three-dimensional cavity flow is also simulated in order to compute the wavefront aberrations of an optical beam passing thorough the cavity. The cavity geometry is modeled using an immersed boundary method, and an auxiliary flat plate simulation is performed to replicate the effects of the wind-tunnel boundary layer on the computed optical path difference. Pressure spectra extracted on the cavity walls agree with empirical predictions based on Rossiter's formula. Proper orthogonal modes of the wavefront aberrations in a beam originating from the cavity center agree well with experimental data despite uncertainty about in flow turbulence levels and boundary layer thicknesses over the wind tunnel window. Dynamic mode decomposition of a planar wavefront spanning the cavity reveals that wavefront distortions are driven by shear layer oscillations at the Rossiter frequencies; these disturbances create eddy shocklets that propagate into the free-stream, creating additional optical wavefront distortion.

  13. Computational issues in the simulation of two-dimensional discrete dislocation mechanics

    NASA Astrophysics Data System (ADS)

    Segurado, J.; LLorca, J.; Romero, I.

    2007-06-01

    The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.

  14. Combined multi-spectrum and orthogonal Laplacianfaces for fast CB-XLCT imaging with single-view data

    NASA Astrophysics Data System (ADS)

    Zhang, Haibo; Geng, Guohua; Chen, Yanrong; Qu, Xuan; Zhao, Fengjun; Hou, Yuqing; Yi, Huangjian; He, Xiaowei

    2017-12-01

    Cone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, which has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. Single-view data reconstruction as a key issue of CB-XLCT imaging promotes the effective study of dynamic XLCT imaging. However, it suffers from serious ill-posedness in the inverse problem. In this paper, a multi-spectrum strategy is adopted to relieve the ill-posedness of reconstruction. The strategy is based on the third-order simplified spherical harmonic approximation model. Then, an orthogonal Laplacianfaces-based method is proposed to reduce the large computational burden without degrading the imaging quality. Both simulated data and in vivo experimental data were used to evaluate the efficiency and robustness of the proposed method. The results are satisfactory in terms of both location and quantitative recovering with computational efficiency, indicating that the proposed method is practical and promising for single-view CB-XLCT imaging.

  15. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  16. Cone-beam computed tomography-based diagnosis and treatment simulation for a patient with a protrusive profile and a gummy smile

    PubMed Central

    Imamura, Toshihiro; Kokai, Satoshi; Ono, Takashi

    2018-01-01

    For patients with bimaxillary protrusion, significant retraction and intrusion of the anterior teeth are sometimes essential to improve the facial profile. However, severe root resorption of the maxillary incisors occasionally occurs after treatment because of various factors. For instance, it has been reported that approximation or invasion of the incisive canal by the anterior tooth roots during retraction may cause apical root damage. Thus, determination of the position of the maxillary incisors is key for orthodontic diagnosis and treatment planning in such cases. Cone-beam computed tomography (CBCT) may be useful for simulating the post-treatment position of the maxillary incisors and surrounding structures in order to ensure safe teeth movement. Here, we present a case of Class II malocclusion with bimaxillary protrusion, wherein apical root damage due to treatment was minimized by pretreatment evaluation of the anatomical structures and simulation of the maxillary central incisor movement using CBCT. Considerable retraction and intrusion of the maxillary incisors, which resulted in a significant improvement in the facial profile and smile, were achieved without severe root resorption. Our findings suggest that CBCT-based diagnosis and treatment simulation may facilitate safe and dynamic orthodontic tooth movement, particularly in patients requiring maximum anterior tooth retraction. PMID:29732305

  17. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    PubMed

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  18. Mathematical model for predicting human vertebral fracture

    NASA Technical Reports Server (NTRS)

    Benedict, J. V.

    1973-01-01

    Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.

  19. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Kamesh

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less

  20. An Investigation of the Dynamic Response of Spur Gear Teeth with Moving Loads

    NASA Technical Reports Server (NTRS)

    Passerello, C. E.; Shuey, L. W.

    1987-01-01

    Two concepts relating to gear dynamics were studied. The first phase of the analysis involved the study of the effect of the speed of a moving load on the dynamic deflections of a gear tooth. A single spur gear tooth modelled using finite elements was subjected to moving loads with variable velocities. The tooth tip deflection time histories were plotted, from which it was seen that the tooth tip deflection consisted of a quasistatic response with an oscillatory response superimposed on it whose amplitude was dependent on the type of load engagement. Including the rim in the analysis added flexibility to the model but did not change the general behavior of the system. The second part of the analysis involved an investigation to determine the effect on the dynamic response of the inertia of the gear tooth. A simplified analysis using meshing cantilever beams was used. In one case, the beams were assumed massless. In the other, the mass (inertia) of the beams was included. From this analysis it was found that the inertia of the tooth did not affect the dynamic response of meshing cantilever beams.

  1. On the dynamic stability of shear deformable beams under a tensile load

    NASA Astrophysics Data System (ADS)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  2. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    DOE PAGES

    Capatina, D.; D’Amico, K.; Nudell, J.; ...

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm 2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm 2. Finally, a new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  3. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capatina, D., E-mail: capatina@aps.anl.gov; D’Amico, K., E-mail: kdamico@aps.anl.gov; Nudell, J., E-mail: jnudell@aps.anl.gov

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm{sup 2}. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm{sup 2}. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  4. DCS - A High Flux Beamline for Time Resolved Dynamic Compression Science – Design Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capatina, D.; D'Amico, Kevin L.; Nudell, J.

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures.more » Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm2. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.« less

  5. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    NASA Astrophysics Data System (ADS)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the dynamics of cable bridges.

  6. SU-F-T-242: A Method for Collision Avoidance in External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Cormack, R

    2016-06-15

    Purpose: We proposed a method for collision avoidance (CA) in external beam radiation therapy (EBRT). The method encompasses the analysis of all positions of the moving components of the beam delivery system such as the treatment table and gantry, including patient specific information obtained from the CT images. This method eliminates the need for time-consuming dry-runs prior to the actual treatments. Methods: The QA procedure for EBRT requires that the collision should be checked prior to treatment. We developed a system capable of a rigorous computer simulation of all moving components including positions of the couch and gantry during themore » delivery, position of the patients, and imaging equipment. By running this treatment simulation it is possible to quantify and graphically represent all positions and corresponding trajectories of all points of the moving parts during the treatment delivery. The development of the workflow for implementation of the CA includes several steps: a) derivation of combined dynamic equation of motion of the EBRT delivery systems, b) developing the simulation model capable of drawing the motion trajectories of the specific points, c) developing the interface between the model and the treatment plan parameters such as couch and gantry parameters for each field. Results: The patient CT images were registered to the treatment couch so the patient dimensions were included into the simulation. The treatment field parameters were structured in the xml-file which was used as the input into the dynamic equations. The trajectories of the moving components were plotted on the same graph using the dynamic equations. If the trajectories intersect that was the signal that collision exists. Conclusion: This CA method was proved to be effective in the simulation of treatment delivery. The proper implementation of this system can potentially improve the QA program and increase the efficacy in the clinical setup.« less

  7. Nonlinear Dynamic Polarization Force on a Relativistic Test Particle in a Nonequilibrium Beam-Plasma System.

    DTIC Science & Technology

    1983-09-01

    AD-Ai36 768 NONLINEAR DYNAMIC POLARIZATION FORCE ON A RELATIVISTIC i / i TEST PARTICLE IN A NONEDUILIBRIUM BEAM-PLASMA SYSTEM (U) HARRY DIAMOND LABS...longer needed. Do not return I to the orgiatr A prellmiiary version of this report was Issued as HDL-PRL82-6 in May I D82...conditions for the occurrence of radiative instability in relativistic beam-plasma systems. DD FmOA 43 MTION OF I Nov 5s OBSOETE- IIS -- - 1 UNCLASSIFIED

  8. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  9. Dynamical stability of slip-stacking particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  10. BEAM DYNAMICS SIMULATIONS FOR A DC GUN BASED INJECTOR FOR PERL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHOU,F.; BEN-ZVI,I.; WANG,X.J.

    2001-06-18

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) is considering an upgrade based on the Photoinjected Energy Recovering Linac (PERL). The various injector schemes for this machine are being extensively investigated at BNL. One of the possible options is photocathode DC gun. The schematic layout of a PERL DC gun based injector and its preliminary beam dynamics are presented in this paper. The transverse and longitudinal emittance of photo-electron beam were optimized for a DC field 500 kV.

  11. Direct estimation of human trabecular bone stiffness using cone beam computed tomography.

    PubMed

    Klintström, Eva; Klintström, Benjamin; Pahr, Dieter; Brismar, Torkel B; Smedby, Örjan; Moreno, Rodrigo

    2018-04-10

    The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. NewTom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 (J. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner (J. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    NASA Astrophysics Data System (ADS)

    Marchand, A.; El Hdiy, A.; Troyon, M.; Amiard, G.; Ronda, A.; Berbezier, I.

    2012-04-01

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope—tip in contact mode at a fixed position away from the beam spot of about 0.5 µm. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Kilean; Qiang, Ji

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  14. A method to incorporate the effect of beam quality on image noise in a digitally reconstructed radiograph (DRR) based computer simulation for optimisation of digital radiography

    NASA Astrophysics Data System (ADS)

    Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.

    2017-09-01

    The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.

  15. Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.

    PubMed

    Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-10-26

    Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.

  16. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  17. Proton beam induced dynamics of tungsten granules

    NASA Astrophysics Data System (ADS)

    Caretta, O.; Loveridge, P.; O'Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Guinchard, M.; Lacny, L. J.; Lindstrom, B.

    2018-03-01

    This paper reports the results from single-pulse experiments of a 440 GeV /c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ˜45 μ m diameter spheres (not compacted) reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45 μ m grain results and with a previous experiment carried out with sub-250 μ m mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014), 10.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  18. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  19. Simulating the influence of scatter and beam hardening in dimensional computed tomography

    NASA Astrophysics Data System (ADS)

    Lifton, J. J.; Carmignato, S.

    2017-10-01

    Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.

  20. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). Results: For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. Conclusions: The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.« less

  1. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    PubMed

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.

  2. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  3. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses

    NASA Astrophysics Data System (ADS)

    Hoi, Yiemeng; Ionita, Ciprian N.; Tranquebar, Rekha V.; Hoffmann, Kenneth R.; Woodward, Scott H.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2006-03-01

    An asymmetric stent with low porosity patch across the intracranial aneurysm neck and high porosity elsewhere is designed to modify the flow to result in thrombogenesis and occlusion of the aneurysm and yet to reduce the possibility of also occluding adjacent perforator vessels. The purposes of this study are to evaluate the flow field induced by an asymmetric stent using both numerical and digital subtraction angiography (DSA) methods and to quantify the flow dynamics of an asymmetric stent in an in vivo aneurysm model. We created a vein-pouch aneurysm model on the canine carotid artery. An asymmetric stent was implanted at the aneurysm, with 25% porosity across the aneurysm neck and 80% porosity elsewhere. The aneurysm geometry, before and after stent implantation, was acquired using cone beam CT and reconstructed for computational fluid dynamics (CFD) analysis. Both steady-state and pulsatile flow conditions using the measured waveforms from the aneurysm model were studied. To reduce computational costs, we modeled the asymmetric stent effect by specifying a pressure drop over the layer across the aneurysm orifice where the low porosity patch was located. From the CFD results, we found the asymmetric stent reduced the inflow into the aneurysm by 51%, and appeared to create a stasis-like environment which favors thrombus formation. The DSA sequences also showed substantial flow reduction into the aneurysm. Asymmetric stents may be a viable image guided intervention for treating intracranial aneurysms with desired flow modification features.

  4. Online dose reconstruction for tracked volumetric arc therapy: Real-time implementation and offline quality assurance for prostate SBRT.

    PubMed

    Kamerling, Cornelis Ph; Fast, Martin F; Ziegenhein, Peter; Menten, Martin J; Nill, Simeon; Oelfke, Uwe

    2017-11-01

    Firstly, this study provides a real-time implementation of online dose reconstruction for tracked volumetric arc therapy (VMAT). Secondly, this study describes a novel offline quality assurance tool, based on commercial dose calculation algorithms. Online dose reconstruction for VMAT is a computationally challenging task in terms of computer memory usage and calculation speed. To potentially reduce the amount of memory used, we analyzed the impact of beam angle sampling for dose calculation on the accuracy of the dose distribution. To establish the performance of the method, we planned two single-arc VMAT prostate stereotactic body radiation therapy cases for delivery with dynamic MLC tracking. For quality assurance of our online dose reconstruction method we have also developed a stand-alone offline dose reconstruction tool, which utilizes the RayStation treatment planning system to calculate dose. For the online reconstructed dose distributions of the tracked deliveries, we could establish strong resemblance for 72 and 36 beam co-planar equidistant beam samples with less than 1.2% deviation for the assessed dose-volume indicators (clinical target volume D98 and D2, and rectum D2). We could achieve average runtimes of 28-31 ms per reported MLC aperture for both dose computation and accumulation, meeting our real-time requirement. To cross-validate the offline tool, we have compared the planned dose to the offline reconstructed dose for static deliveries and found excellent agreement (3%/3 mm global gamma passing rates of 99.8%-100%). Being able to reconstruct dose during delivery enables online quality assurance and online replanning strategies for VMAT. The offline quality assurance tool provides the means to validate novel online dose reconstruction applications using a commercial dose calculation engine. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  6. Epicyclic helical channels for parametric resonance ionization cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johson, Rolland Paul; Derbenev, Yaroslav

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parametermore » range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.« less

  7. Dynamics of optically levitated microparticles in vacuum placed in 2D and 3D optical potentials possessing orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Mazilu, Michael; Chen, Mingzhou; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    We demonstrate the transfer of orbital angular momentum to optically levitated microparticles in vacuum [1]. We prepare two-dimensional and three-dimensional optical potentials. In the former case the microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present. This effect was predicted theoretically [2] and can be understood considering the underlying dynamics arising from the link between the magnitude of the azimuthal index and the beam radius [3]. Whilst a Laguerre-Gaussian beam scales in size with azimuthal index `, recently we have created a "perfect" vortex beam whose radial intensity profile and radius are both independent of topological charge [4, 5]. As the Fourier transform of a perfect vortex yields a Bessel beam. Imaging a perfect vortex, with its subsequent propagation thus realises a complex three dimensional optical field. In this scenario we load individual silica microparticles into this field and observe their trajectories. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle, including the rotational degrees of freedom. As a result the trapped microparticle exhibits a complex three dimensional motion that includes a periodic orbital motion between the Bessel and the perfect vortex beam. We are able to determine the three dimensional optical potential in situ by tracking the particle. This first demonstration of trapping microparticles within a complex three dimensional optical potential in vacuum opens up new possibilities for fundamental studies of many-body dynamics, mesoscopic entanglement [6, 7], and optical binding [8, 9].

  8. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  9. Dynamic Pattern Formation in Electron-Beam-Induced Etching [Emergent formation of dynamic topographic patterns in electron beam induced etching

    DOE PAGES

    Martin, Aiden A.; Bahm, Alan; Bishop, James; ...

    2015-12-15

    Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.

  10. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  11. Multipulsed dynamic moire interferometer

    DOEpatents

    Deason, Vance A.

    1991-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  12. Retroperitoneal tumour radiotherapy: clinical improvements using kilovoltage cone beam computed tomography.

    PubMed

    Juan-Senabre, Xavier J; Ferrer-Albiach, Carlos; Rodríguez-Cordón, Marta; Santos-Serra, Agustín; López-Tarjuelo, Juan; Calzada-Feliu, Salvador

    2009-04-01

    We present a clinical case of a patient diagnosed with a retroperitoneal sarcoma, which received preoperative treatment with daily verification via computed tomography obtained with kilovoltage cone beam. We compare the benefit of this treatment compared to other conventional treatment without image guiding, reporting quantitative results.

  13. Start-to-end simulations for beam dynamics in the injector system of the KHIMA heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Yumi; Kim, Eun-San; Kim, Chanmi; Bahng, Jungbae; Li, Zhihui; Hahn, Garam

    2017-07-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) project has been developed for cancer therapy. The injector system consists of a low energy beam transport (LEBT) line, a radio-frequency quadrupole, a drift tube linac with two tanks, and a medium energy beam transport (MEBT) line with a charge stripper section. The injector system transports and accelerates the 12C4+ beam that is produced from electron cyclotron resonance ion source up to 7 MeV/u, respectively. The 12C6+ beam, which is transformed by a charge stripper from the 12C4+ beam, is injected into a synchrotron and accelerated up to 430 MeV/u. The lattice for the injector system was designed to optimize the beam parameters and to meet beam requirements for the synchrotron. We performed start-to-end simulations from the LEBT line to the MEBT line to confirm that the required design goals of the beam and injector system were met. Our simulation results indicate that our design achieves the required performance and a good transmission efficiency of 90%. We present the lattice design and beam dynamics for the injector system in the KHIMA project.

  14. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface.

    PubMed

    Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang

    2017-02-08

    Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements "00", "01", "10", and "11", respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source.

  15. Electron beam interaction with space plasmas.

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Bolokitin, A. S.

    1999-12-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.

  16. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface

    PubMed Central

    Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang

    2017-01-01

    Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements “00”, “01”, “10”, and “11”, respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source. PMID:28176870

  17. Dynamic Control of Collapse in a Vortex Airy Beam

    PubMed Central

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  18. Development of an aeroelastic methodology for surface morphing rotors

    NASA Astrophysics Data System (ADS)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.

  19. Model Reduction in Biomechanics

    NASA Astrophysics Data System (ADS)

    Feng, Yan

    The mechanical characteristic of the cell is primarily performed by the cytoskeleton. Microtubules, actin, and intermediate filaments are the three main cytoskeletal polymers. Of these, microtubules are the stiffest and have multiple functions within a cell that include: providing tracks for intracellular transport, transmitting the mechanical force necessary for cell division during mitosis, and providing sufficient stiffness for propulsion in flagella and cilia. Microtubule mechanics has been studied by a variety of methods: detailed molecular dynamics (MD), coarse-grained models, engineering type models, and elastic continuum models. In principle, atomistic MD simulations should be able to predict all desired mechanical properties of a single molecule, however, in practice the large computational resources are required to carry out a simulation of larger biomolecular system. Due to the limited accessibility using even the most ambitious all-atom models and the demand for the multiscale molecular modeling and simulation, the emergence of the reduced models is critically important to provide the capability for investigating the biomolecular dynamics that are critical to many biological processes. Then the coarse-grained models, such as elastic network models and anisotropic network models, have been shown to bequite accurate in predicting microtubule mechanical response, but still requires significant computational resources. On the other hand, the microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models, are often used to extract mechanical parameters from experimental results. The microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models in which the biomolecular system is assumed as homogeneous isotropic materials with solid cross-sections, are often used to extract mechanical parameters from experimental results. However, in real biological world, these homogeneous and isotropic assumptions are usually invalidate. Thus, instead of using hypothesized model, a specific continuum model at mesoscopic scale can be introduced based upon data reduction of the results from molecular simulations at atomistic level. Once a continuum model is established, it can provide details on the distribution of stresses and strains induced within the biomolecular system which is useful in determining the distribution and transmission of these forces to the cytoskeletal and sub-cellular components, and help us gain a better understanding in cell mechanics. A data-driven model reduction approach to the problem of microtubule mechanics as an application is present, a beam element is constructed for microtubules based upon data reduction of the results from molecular simulation of the carbon backbone chain of alphabeta-tubulin dimers. The data base of mechanical responses to various types of loads from molecular simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.

  20. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  1. Transverse vibration of Bernoulli Euler beams carrying point masses and taking into account their rotatory inertia: Exact solution

    NASA Astrophysics Data System (ADS)

    Maiz, Santiago; Bambill, Diana V.; Rossit, Carlos A.; Laura, P. A. A.

    2007-06-01

    The situation of structural elements supporting motors or engines attached to them is usual in technological applications. The operation of the machine may introduce severe dynamic stresses on the beam. It is important, then, to know the natural frequencies of the coupled beam-mass system, in order to obtain a proper design of the structural elements. An exact solution for the title problem is obtained in closed-form fashion, considering general boundary conditions by means of translational and rotatory springs at both ends. The model allows to analyze the influence of the masses and their rotatory inertia on the dynamic behavior of beams with all the classic boundary conditions, and also, as particular cases, to determine the frequencies of continuous beams.

  2. A technique for individual atom delivery into a crossed vortex bottle beam trap using a dynamic 1D optical lattice.

    PubMed

    Dinardo, Brad A; Anderson, Dana Z

    2016-12-01

    We describe a system for loading a single atom from a reservoir into a blue-detuned crossed vortex bottle beam trap using a dynamic 1D optical lattice. The lattice beams are frequency chirped using acousto-optic modulators, which causes the lattice to move along its axial direction and behave like an optical conveyor belt. A stationary lattice is initially loaded with approximately 6000 atoms from a reservoir, and the conveyor belt transports them 1.1 mm from the reservoir to a bottle beam trap, where a single atom is loaded via light-assisted collisions. Photon counting data confirm that an atom can be delivered and loaded into the bottle beam trap 13.1% of the time.

  3. Reduced complexity structural modeling for automated airframe synthesis

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1987-01-01

    A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations.

  4. Computational model for simulation of sequences of helicity and angular momentum transfer in turbid tissue-like scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Meglinski, Igor

    2017-02-01

    Current report considers development of a unified Monte Carlo (MC) -based computational model for simulation of propagation of Laguerre-Gaussian (LG) beams in turbid tissue-like scattering medium. With a primary goal to proof the concept of using complex light for tissue diagnosis we explore propagation of LG beams in comparison with Gaussian beams for both linear and circular polarization. MC simulations of radially and azimuthally polarized LG beams in turbid media have been performed, classic phenomena such as preservation of the orbital angular momentum, optical memory and helicity flip are observed, detailed comparison is presented and discussed.

  5. Contribution of High-Order Rainbows to the Scattering of a Gaussian Laser Beam by a Spherical Particle

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1993-01-01

    I review the theory of the scattering of a Gaussian laser beam by a dielectric spherical particle and give the details for constructing a computer program to implement the theory. Computational results indicate that if the width of the laser beam is much less than the diameter of the particle and if the axis of the beam is incident near the edge of the particle, the fifth-, sixth-, and ninth-order rainbows should be evident in the far-field scattered intensity. I performed an experiment that yielded tentative evidence for the presence of the sixth- order rainbow.

  6. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement ofmore » the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.« less

  7. Planar dynamics of a uniform beam with rigid bodies affixed to the ends

    NASA Technical Reports Server (NTRS)

    Storch, J.; Gates, S.

    1983-01-01

    The planar dynamics of a uniform elastic beam subject to a variety of geometric and natural boundary conditions and external excitations were analyzed. The beams are inextensible and capable of small transverse bending deformations only. Classical beam vibration eigenvalue problems for a cantilever with tip mass, a cantilever with tip body and an unconstrained beam with rigid bodies at each are examined. The characteristic equations, eigenfunctions and orthogonality relations for each are derived. The forced vibration of a cantilever with tip body subject to base acceleration is analyzed. The exact solution of the governing nonhomogeneous partial differential equation with time dependent boundary conditions is presented and compared with a Rayleigh-Ritz approximate solution. The arbitrary planar motion of an elastic beam with rigid bodies at the ends is addressed. Equations of motion are derived for two modal expansions of the beam deflection. The motion equations are cast in a first order form suitable for numerical integration. Selected FORTRAN programs are provided.

  8. Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Xin; Tian, Hao; Zhao, Yang

    2017-10-01

    The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.

  9. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.

    PubMed

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-12-01

    Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm. Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. An ultrafast, reliable and scalable 4D CBCT∕CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment.

  10. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment

    PubMed Central

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-01-01

    Purpose: Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT/CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. Methods: In this work, we accelerated the Feldcamp–Davis–Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT/CT reconstruction algorithm. Results: Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10−7. Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. Conclusions: An ultrafast, reliable and scalable 4D CBCT/CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment. PMID:22149842

  11. Analysis of the influence of dynamic phenomena on the fracture of a reinforced concrete beam under quasistatic loading (computations and experiment)

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Matveenko, V. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.

    2015-07-01

    Construction of numerical models which reliably describe the processes of crack formation and development in reinforced concrete permit estimating the bearing capacity and structural strength of any structural element without using expensive full-scale experiments. In the present paper, an example of four-point bending of a rectangular beam is used to consider a finite-element model of concrete fracture. The results obtained by quasistatic calculations and by solving the problem with inertia forces taken into account are compared. The kinetic energy contribution to the total mechanical energy of the system at the crack origination moment, which is greater than 30%, is estimated to justify the expediency of taking the inertia forces into account. The crack distribution characters obtained numerically and observed experimentally are compared. It is shown that the leading role in the evolution of the crack formation process is played by the mechanism of fracture of bonds between the reinforcing elements and the concrete.

  12. Distributed support modelling for vertical track dynamic analysis

    NASA Astrophysics Data System (ADS)

    Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.

    2018-04-01

    The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.

  13. Analysis of continuous beams with joint slip

    Treesearch

    L. A. Soltis

    1981-01-01

    A computer analysis with user guidelines to analyze partially continuous multi-span beams is presented. Partial continuity is due to rotational slip which occurs at spliced joints at the supports of continuous beams such as floor joists. Beam properties, loads, and joint slip are input; internal forces, reactions, and deflections are output.

  14. Computer Aided Design of Computer Generated Holograms for electron beam fabrication

    NASA Technical Reports Server (NTRS)

    Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid

    1989-01-01

    Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.

  15. Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method.

    PubMed

    Sung, Seung-Yong; Lee, Yong-Gu

    2008-03-03

    Optical forces on a micro-bubble were computed using the Finite Difference Time Domain method. Non-paraxial Gaussian beam equation was used to represent the incident laser with high numerical aperture, common in optical tweezers. The electromagnetic field distribution around a micro-bubble was computed using FDTD method and the electromagnetic stress tensor on the surface of a micro-bubble was used to compute the optical forces. By the analysis of the computational results, interesting relations between the radius of the circular trapping ring and the corresponding stability of the trap were found.

  16. A slewing control experiment for flexible structures

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Horta, L. G.; Robertshaw, H. H.

    1985-01-01

    A hardware set-up has been developed to study slewing control for flexible structures including a steel beam and a solar panel. The linear optimal terminal control law is used to design active controllers which are implemented in an analog computer. The objective of this experiment is to demonstrate and verify the dynamics and optimal terminal control laws as applied to flexible structures for large angle maneuver. Actuation is provided by an electric motor while sensing is given by strain gages and angle potentiometer. Experimental measurements are compared with analytical predictions in terms of modal parameters of the system stability matrix and sufficient agreement is achieved to validate the theory.

  17. [CONE BEAM COMPUTED TOMOGRAPHY IN DIAGNOSTICS OF ODONTOGENIC MAXILLARY SINUSITIS (CASE REPORTS)].

    PubMed

    Demidova, E; Khurdzidze, G

    2017-06-01

    Diagnostic studies performed by cone beam computed tomography Morita 3D made possible to obtain high resolution images of hard tissues of upper jawbone and maxillary sinus, to detect bony tissue defects, such as odontogenic cysts, cystogranulomas and granulomas. High-resolution and three dimensional tomographic image reconstructions allowed for optimal and prompt determination of the scope of surgical treatment and planning of effective conservative treatment regimen. Interactive diagnostics helped to estimate cosmetic and functional results of surgical treatment, to prevent the occurrence of surgical complications, and to evaluate the efficacy of conservative treatment. The obtained data contributed to determination of particular applications of cone beam computed tomography in the diagnosis of odontogenic maxillary sinusitis, detection of specific defects with cone beam tomography as the most informative method of diagnosis; as well as to determination of weak and strong sides, and helped to offer mechanisms of x-ray diagnostics to dental surgeons and ENT specialists.

  18. Fast computation of radiation pressure force exerted by multiple laser beams on red blood cell-like particles

    NASA Astrophysics Data System (ADS)

    Gou, Ming-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2016-10-01

    Mature red blood cells (RBC) do not contain huge complex nuclei and organelles, makes them can be approximately regarded as homogeneous medium particles. To compute the radiation pressure force (RPF) exerted by multiple laser beams on this kind of arbitrary shaped homogenous nano-particles, a fast electromagnetic optics method is demonstrated. In general, based on the Maxwell's equations, the matrix equation formed by the method of moment (MOM) has many right hand sides (RHS's) corresponding to the different laser beams. In order to accelerate computing the matrix equation, the algorithm conducts low-rank decomposition on the excitation matrix consisting of all RHS's to figure out the so-called skeleton laser beams by interpolative decomposition (ID). After the solutions corresponding to the skeletons are obtained, the desired responses can be reconstructed efficiently. Some numerical results are performed to validate the developed method.

  19. Kinetic description of electron beams in the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Mauas, Pablo J.

    1992-01-01

    We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate.

  20. Experimental study and simulation of space charge stimulated discharge

    NASA Astrophysics Data System (ADS)

    Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.

    2002-11-01

    The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.

  1. STARS: A general-purpose finite element computer program for analysis of engineering structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1984-01-01

    STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.

  2. Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Tuan L.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550; Marian, Jaime, E-mail: jmarian@ucla.edu

    2015-11-01

    An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a proceduremore » for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe{sup 3+}, He{sup +} and H{sup +}) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.« less

  3. Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Marian, Jaime; Bulatov, Vasily V.; Hosemann, Peter

    2015-11-01

    An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+ and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.

  4. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  5. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  6. A method for photon beam Monte Carlo multileaf collimator particle transport

    NASA Astrophysics Data System (ADS)

    Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe

    2002-09-01

    Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/-1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.

  7. 1D array of dark spot traps formed by counter-propagating nested Gaussian laser beams for trapping and moving atomic qubits

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Frazer, Travis D.

    2017-04-01

    The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.

  8. C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.

    PubMed

    Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo

    2013-11-01

    C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.

  9. Nonlinear dynamics of 3D beams of fast magnetosonic waves propagating in the ionospheric and magnetospheric plasma

    NASA Astrophysics Data System (ADS)

    Belashov, V. Yu.; Belashova, E. S.

    2016-11-01

    On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B / B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4 πnT/ B 2 ≪ 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = ( B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.

  10. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    NASA Technical Reports Server (NTRS)

    Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.

    1976-01-01

    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potts, C.; Faber, M.; Gunderson, G.

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated themore » desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981.« less

  12. Systematics of intermediate-energy single-nucleon removal cross sections

    NASA Astrophysics Data System (ADS)

    Tostevin, J. A.; Gade, A.

    2014-11-01

    There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.

  13. Simulation capability for dynamics of two-body flexible satellites

    NASA Technical Reports Server (NTRS)

    Austin, F.; Zetkov, G.

    1973-01-01

    An analysis and computer program were prepared to realistically simulate the dynamic behavior of a class of satellites consisting of two end bodies separated by a connecting structure. The shape and mass distribution of the flexible end bodies are arbitrary; the connecting structure is flexible but massless and is capable of deployment and retraction. Fluid flowing in a piping system and rigid moving masses, representing a cargo elevator or crew members, have been modeled. Connecting structure characteristics, control systems, and externally applied loads are modeled in easily replaced subroutines. Subroutines currently available include a telescopic beam-type connecting structure as well as attitude, deployment, spin and wobble control. In addition, a unique mass balance control system was developed to sense and balance mass shifts due to the motion of a cargo elevator. The mass of the cargo may vary through a large range. Numerical results are discussed for various types of runs.

  14. Intramolecular structure and dynamics of mequinol and guaiacol in the gas phase: Rotationally resolved electronic spectra of their S1 states

    NASA Astrophysics Data System (ADS)

    Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Cabellos, José Luis; Yi, John T.; Pratt, David W.; Schmitt, Michael; Merino, Gabriel; Álvarez-Valtierra, Leonardo

    2015-09-01

    The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, but it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent -OH and -OCH3 groups plays a major role in these dynamics.

  15. Intramolecular structure and dynamics of mequinol and guaiacol in the gas phase: Rotationally resolved electronic spectra of their S1 states.

    PubMed

    Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Cabellos, José Luis; Yi, John T; Pratt, David W; Schmitt, Michael; Merino, Gabriel; Álvarez-Valtierra, Leonardo

    2015-09-07

    The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, but it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent   -OH and   -OCH3 groups plays a major role in these dynamics.

  16. Building complex simulations rapidly using MATRIX(x): The Space Station redesign

    NASA Technical Reports Server (NTRS)

    Carrington, C. K.

    1994-01-01

    MSFC's quick response to the Space Station redesign effort last year required the development of a computer simulation to model the attitude and station-keeping dynamics of a complex body with rotating solar arrays in orbit around the Earth. The simulation was written using a rapid-prototyping graphical simulation and design tool called MATRIX(x) and provided the capability to quickly remodel complex configuration changes by icon manipulation using a mouse. The simulation determines time-dependent inertia properties, and models forces and torques from gravity-gradient, solar radiation, and aerodynamic disturbances. Surface models are easily built from a selection of beams, plates, tetrahedrons, and cylinders. An optimization scheme was written to determine the torque equilibrium attitudes that balance gravity-gradient and aerodynamic torques over an orbit, and propellant-usage estimates were determined. The simulation has been adapted to model the attitude dynamics for small spacecraft.

  17. Theoretical description of the mixed-field orientation of asymmetric-top molecules: A time-dependent study

    NASA Astrophysics Data System (ADS)

    Omiste, Juan J.; González-Férez, Rosario

    2016-12-01

    We present a theoretical study of the mixed-field-orientation of asymmetric-top molecules in tilted static electric field and nonresonant linearly polarized laser pulse by solving the time-dependent Schrödinger equation. Within this framework, we compute the mixed-field orientation of a state-selected molecular beam of benzonitrile (C7H5N ) and compare with the experimental observations [J. L. Hansen et al., Phys. Rev. A 83, 023406 (2011), 10.1103/PhysRevA.83.023406] and with our previous time-independent descriptions [J. J. Omiste et al., Phys. Chem. Chem. Phys. 13, 18815 (2011), 10.1039/c1cp21195a]. For an excited rotational state, we investigate the field-dressed dynamics for several field configurations as those used in the mixed-field experiments. The nonadiabatic phenomena and their consequences on the rotational dynamics are analyzed in detail.

  18. Approximate method for predicting the permanent set in a beam in vacuo and in water subject to a shock wave

    NASA Technical Reports Server (NTRS)

    Stiehl, A. L.; Haberman, R. C.; Cowles, J. H.

    1988-01-01

    An approximate method to compute the maximum deformation and permanent set of a beam subjected to shock wave laoding in vacuo and in water was investigated. The method equates the maximum kinetic energy of the beam (and water) to the elastic plastic work done by a static uniform load applied to a beam. Results for the water case indicate that the plastic deformation is controlled by the kinetic energy of the water. The simplified approach can result in significant savings in computer time or it can expediently be used as a check of results from a more rigorous approach. The accuracy of the method is demonstrated by various examples of beams with simple support and clamped support boundary conditions.

  19. Design, fabrication and characterization of Computer Generated Holograms for anti-counterfeiting applications using OAM beams as light decoders.

    PubMed

    Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo

    2017-12-21

    In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.

  20. The radiated electromagnetic field from collimated gamma rays and electron beams in air

    NASA Astrophysics Data System (ADS)

    Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.

    1980-12-01

    Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.

  1. Three-dimensional surgical simulation.

    PubMed

    Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-09-01

    In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  2. Analytical modeling of helicopter static and dynamic induced velocity in GRASP

    NASA Technical Reports Server (NTRS)

    Kunz, Donald L.; Hodges, Dewey H.

    1987-01-01

    The methodology used by the General Rotorcraft Aeromechanical Stability Program (GRASP) to model the characteristics of the flow through a helicopter rotor in hovering or axial flight is described. Since the induced flow plays a significant role in determining the aeroelastic properties of rotorcraft, the computation of the induced flow is an important aspect of the program. Because of the combined finite-element/multibody methodology used as the basis for GRASP, the implementation of induced velocity calculations presented an unusual challenge to the developers. To preserve the modelling flexibility and generality of the code, it was necessary to depart from the traditional methods of computing the induced velocity. This is accomplished by calculating the actuator disc contributions to the rotor loads in a separate element called the air mass element, and then performing the calculations of the aerodynamic forces on individual blade elements within the aeroelastic beam element.

  3. Effect of crack on natural frequency for beam type of structures

    NASA Astrophysics Data System (ADS)

    Sawant, Saurabh U.; Chauhan, Santosh J.; Deshmukh, Nilaj N.

    2017-07-01

    Detection of damage in early stages reduces chances of sudden failure of that structure which is important from safety and economic point of view. Crack or damage affects dynamic behavior of structure. In last few decades many researchers have been developing different approaches to detect the damage based on its dynamic behavior. This paper focuses on effect on natural frequency of cantilever beam due to the presence of crack at different locations and with different depths. Cantilever beam is selected for analysis because these beams are most common structures used in many industrial applications. In the present study, modeling of healthy and damaged cantilever beam is done using ANSYSsoftware. Crack at 38 different locations with 1 mm, 2 mm and 3 mm crack depth were created for each of these locations. The effect of these cracks on natural frequency were analyzed over the healthy beam for the first four mode shapes. It is found that the presence of crack decreases the natural frequency of the beam and at some particular locations, the natural frequency of the cracked beam is found to be almost the same as that of the healthy beam.

  4. 21ST International Symposium on Rarefied Gas Dynamics. Marseille (France) 26-31 July 1998. Book of Abstracts: Volume III, Special Session; Molecular Beams.

    DTIC Science & Technology

    1998-07-30

    contribution we will present size dependent results absorption.of photons from two ultrashort laser pulses on the dynamics of electronic excitations in the at a... cluster beam has confirmed that the nanoparticles in the gas phase and deposited in thin laser -driven flow reactor is capable of producing films. hydrogen ...approximately 7 times larger than neutrals. MB 11 - 138 Molecular Beam Studies of Ammonia Clustered with III Group Metals Produced by Pulsed Laser Reactive

  5. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  6. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, Alan R.; Auciello, Orlando

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  7. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  8. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study.

    PubMed

    Silveira-Neto, Nicolau; Flores, Mateus Ericson; De Carli, João Paulo; Costa, Max Dória; Matos, Felipe de Souza; Paranhos, Luiz Renato; Linden, Maria Salete Sandini

    2017-11-01

    This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone - A, B and E (control group) - to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3). In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey's test (α=0.05). The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  9. TU-F-CAMPUS-I-02: Validation of a CT X-Ray Source Characterization Technique for Dose Computation Using An Anthropomorphic Thorax Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommerville, M; Tambasco, M; Poirier, Y

    2015-06-15

    Purpose: To experimentally validate a rotational kV x-ray source characterization technique by computing CT dose in an anthropomorphic thorax phantom using an in-house dose computation algorithm (kVDoseCalc). Methods: The lateral variation in incident energy spectra of a GE Optima big bore CT scanner was found by measuring the HVL along the internal, full bow-tie filter axis. The HVL and kVp were used to generate the x-ray spectra using Spektr software, while beam fluence was derived by dividing the integral product of the spectra and in-air mass-energy absorption coefficients by in-air dose measurements along the bow-tie filter axis. Beams produced bymore » the GE Optima scanner were modeled at 80 and 140 kVp tube settings. kVDoseCalc calculates dose by solving the linear Boltzmann transport equation using a combination of deterministic and stochastic methods. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima scanner were measured using a (0.015 cc) PTW Freiburg ionization chamber, and compared to computations from kVDoseCalc. Results: The agreement in relative dose between dose computation and measurement for points of interest (POIs) within the primary path of the beam was within experimental uncertainty for both energies, however points outside the primary beam were not. The average absolute percent difference for POIs within the primary path of the beam was 1.37% and 5.16% for 80 and 140 kVp, respectively. The minimum and maximum absolute percent difference for both energies and all POIs within the primary path of the beam was 0.151% and 6.41%, respectively. Conclusion: The CT x-ray source characterization technique based on HVL measurements and kVp can be used to accurately compute CT dose in an anthropomorphic thorax phantom.« less

  10. Structural failure; International Symposium on Structural Crashworthiness, 2nd, Massachusetts Institute of Technology, Cambridge, June 6-8, 1988, Invited Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierzbicki, T.; Jones, N.

    1989-01-01

    The book discusses the fragmentation of solids under dynamic loading, the debris-impact protection of space structures, the controlled fracturing of structures by shock-wave interaction and focusing, the tearing of thin metal sheets, and the dynamic inelastic failure of beams, and dynamic rupture of shells. Consideration is also given to investigations of the failure of brittle and composite materials by numerical methods, the energy absorption of polymer matrix composite structures (frictional effects), the mechanics of deep plastic collapse of thin-walled structures, the denting and bending of tubular beams under local loads, the dynamic bending collapse of strain-softening cantilever beams, and themore » failure of bar structures under repeated loading. Other topics discussed are on the behavior of composite and metallic superstructures under blast loading, the catastrophic failure modes of marine structures, and industrial experience with structural failure.« less

  11. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    PubMed

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  12. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Chunbo; Qin, Weiyang, E-mail: 353481781@qq.com; Deng, Wangzheng

    We investigated the energy harvesting of a vertical beam with tip mass under vertical excitations. We applied dynamic unstability and internal resonance to improve the efficiency of harvesting. The experiments of harmonic excitation were carried out. Results show that for the beam there exist internal resonances in the dynamically unstable and the buckling bistable cases. The dynamic unstability is a determinant for strong internal resonance or mode coupling, which can be used to create a large output from piezoelectric patches. Then, the experiments of stochastic excitation were carried out. Results prove that the internal resonance or mode coupling can transfermore » the excitation energy to the low order modes, mainly the first and the second one. This can bring about a large output voltage. For a stochastic excitation, it is proved that there is an optimal weight of tip mass for realizing internal resonance and producing large outputs.« less

  13. A simplified approach to characterizing a kilovoltage source spectrum for accurate dose computation.

    PubMed

    Poirier, Yannick; Kouznetsov, Alexei; Tambasco, Mauro

    2012-06-01

    To investigate and validate the clinical feasibility of using half-value layer (HVL) and peak tube potential (kVp) for characterizing a kilovoltage (kV) source spectrum for the purpose of computing kV x-ray dose accrued from imaging procedures. To use this approach to characterize a Varian® On-Board Imager® (OBI) source and perform experimental validation of a novel in-house hybrid dose computation algorithm for kV x-rays. We characterized the spectrum of an imaging kV x-ray source using the HVL and the kVp as the sole beam quality identifiers using third-party freeware Spektr to generate the spectra. We studied the sensitivity of our dose computation algorithm to uncertainties in the beam's HVL and kVp by systematically varying these spectral parameters. To validate our approach experimentally, we characterized the spectrum of a Varian® OBI system by measuring the HVL using a Farmer-type Capintec ion chamber (0.06 cc) in air and compared dose calculations using our computationally validated in-house kV dose calculation code to measured percent depth-dose and transverse dose profiles for 80, 100, and 125 kVp open beams in a homogeneous phantom and a heterogeneous phantom comprising tissue, lung, and bone equivalent materials. The sensitivity analysis of the beam quality parameters (i.e., HVL, kVp, and field size) on dose computation accuracy shows that typical measurement uncertainties in the HVL and kVp (±0.2 mm Al and ±2 kVp, respectively) source characterization parameters lead to dose computation errors of less than 2%. Furthermore, for an open beam with no added filtration, HVL variations affect dose computation accuracy by less than 1% for a 125 kVp beam when field size is varied from 5 × 5 cm(2) to 40 × 40 cm(2). The central axis depth dose calculations and experimental measurements for the 80, 100, and 125 kVp energies agreed within 2% for the homogeneous and heterogeneous block phantoms, and agreement for the transverse dose profiles was within 6%. The HVL and kVp are sufficient for characterizing a kV x-ray source spectrum for accurate dose computation. As these parameters can be easily and accurately measured, they provide for a clinically feasible approach to characterizing a kV energy spectrum to be used for patient specific x-ray dose computations. Furthermore, these results provide experimental validation of our novel hybrid dose computation algorithm. © 2012 American Association of Physicists in Medicine.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bruning, Oliver; Cruz-Alaniz, E.

    Unprecedently high luminosity of 10 34 cm -2 s -1, promised by the LHeC accelerator complex poses several beam dynamics and lattice design challenges. As part of accelerator design process, exploration of innovative beam dynamics solutions and their lattice implementations is the key to mitigating performance limitations due to fundamental beam phenomena, such as: synchrotron radiation and collective instabilities. This article will present beam dynamics driven approach to accelerator design, which in particular, addresses emittance dilution due to quantum excitations and beam breakup instability in a large scale, multi-pass Energy Recovery Linac (ERL). The use of ERL accelerator technology tomore » provide improved beam quality and higher brightness continues to be the subject of active community interest and active accelerator development of future Electron Ion Colliders (EIC). Here, we employ current state of though for ERLs aiming at the energy frontier EIC. We will follow conceptual design options recently identified for the LHeC. The main thrust of these studies was to enhance the collider performance, while limiting overall power consumption through exploring interplay between emittance preservation and efficiencies promised by the ERL technology. Here, this combined with a unique design of the Interaction Region (IR) optics gives the impression that luminosity of 10 34 cm -2 s -1 is indeed feasible.« less

  15. Novel Lattice Solutions for the LHeC

    DOE PAGES

    Bogacz, Alex; Bruning, Oliver; Cruz-Alaniz, E.; ...

    2017-08-01

    Unprecedently high luminosity of 10 34 cm -2 s -1, promised by the LHeC accelerator complex poses several beam dynamics and lattice design challenges. As part of accelerator design process, exploration of innovative beam dynamics solutions and their lattice implementations is the key to mitigating performance limitations due to fundamental beam phenomena, such as: synchrotron radiation and collective instabilities. This article will present beam dynamics driven approach to accelerator design, which in particular, addresses emittance dilution due to quantum excitations and beam breakup instability in a large scale, multi-pass Energy Recovery Linac (ERL). The use of ERL accelerator technology tomore » provide improved beam quality and higher brightness continues to be the subject of active community interest and active accelerator development of future Electron Ion Colliders (EIC). Here, we employ current state of though for ERLs aiming at the energy frontier EIC. We will follow conceptual design options recently identified for the LHeC. The main thrust of these studies was to enhance the collider performance, while limiting overall power consumption through exploring interplay between emittance preservation and efficiencies promised by the ERL technology. Here, this combined with a unique design of the Interaction Region (IR) optics gives the impression that luminosity of 10 34 cm -2 s -1 is indeed feasible.« less

  16. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  17. Dynamic generation of Ince-Gaussian modes with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Gong, Lei; Huang, Kun; Chen, Yue; Lu, Rong-De

    2015-04-01

    Ince-Gaussian (IG) beam with elliptical profile, as a connection between Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, has showed unique advantages in some applications such as quantum entanglement and optical micromanipulation. However, its dynamic generation with high switching frequency is still challenging. Here, we experimentally reported the quick generation of Ince-Gaussian beam by using a digital micro-mirror device (DMD), which has the highest switching frequency of 5.2 kHz in principle. The configurable properties of DMD allow us to observe the quasi-smooth variation from LG (with ellipticity ɛ = 0 ) to IG and HG ( ɛ = ∞ ) beam. This approach might pave a path to high-speed quantum communication in terms of IG beam. Additionally, the characterized axial plane intensity distribution exhibits a 3D mould potentially being employed for optical micromanipulation.

  18. Dynamics of modulated beams in spectral domain

    DOE PAGES

    Yampolsky, Nikolai A.

    2017-07-16

    General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less

  19. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less

  20. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

Top