Computer-Automated Static, Dynamic and Cellular Bone Histomorphometry.
Hong, Seung-Hyun; Jiang, Xi; Chen, Li; Josh, Pujan; Shin, Dong-Guk; Rowe, David
2012-12-24
Dynamic and cellular histomorphometry of trabeculae is the most biologically relevant way of assessing steady state bone health. Traditional measurement involves manual visual feature identification by a trained and qualified professional. Inherent with this methodology is the time and cost expenditure, as well as the subjectivity that naturally arises under human visual inspection. In this work, we propose a rapidly deployable, automated, and objective method for dynamic histomorphometry. We demonstrate that our method is highly effective in assessing cellular activities in distal femur and vertebra of mice which are injected with calcein and alizarin complexone 7 and 2 days prior to sacrifice. The mineralized bone tissues of mice are cryosectioned using a tape transfer protocol. A sequential workflow is implemented in which endogenous fluorescent signals (bone mineral, green and red mineralization lines), tartrate resistant acid phosphatase identified by ELF-97 and alkaline phosphatase identified by Fast Red are captured as individual tiled images of the section for each fluorescent color. All the images are then submitted to an image analysis pipeline that automates identification of the mineralized regions of bone and selection of a region of interest. The TRAP and AP stained images are aligned to the mineralized image using strategically placed fluorescent registration beads. Fluorescent signals are identified and are related to the trabecular surface within the ROI. Subsequently, the pipelined method computes static measurements, dynamic measurements, and cellular activities of osteoclast and osteoblast related to the trabecular surface. Our method has been applied to the distal femurs and vertebrae of 8 and 16 week old male and female C57Bl/6J mice. The histomorphometric results reveal a significantly greater bone turnover rate in female in contrast to male irrespective of age, validating similar outcomes reported by other studies.
Computer-Automated Static, Dynamic and Cellular Bone Histomorphometry
Hong, Seung-Hyun; Jiang, Xi; Chen, Li; Josh, Pujan; Shin, Dong-Guk; Rowe, David
2013-01-01
Dynamic and cellular histomorphometry of trabeculae is the most biologically relevant way of assessing steady state bone health. Traditional measurement involves manual visual feature identification by a trained and qualified professional. Inherent with this methodology is the time and cost expenditure, as well as the subjectivity that naturally arises under human visual inspection. In this work, we propose a rapidly deployable, automated, and objective method for dynamic histomorphometry. We demonstrate that our method is highly effective in assessing cellular activities in distal femur and vertebra of mice which are injected with calcein and alizarin complexone 7 and 2 days prior to sacrifice. The mineralized bone tissues of mice are cryosectioned using a tape transfer protocol. A sequential workflow is implemented in which endogenous fluorescent signals (bone mineral, green and red mineralization lines), tartrate resistant acid phosphatase identified by ELF-97 and alkaline phosphatase identified by Fast Red are captured as individual tiled images of the section for each fluorescent color. All the images are then submitted to an image analysis pipeline that automates identification of the mineralized regions of bone and selection of a region of interest. The TRAP and AP stained images are aligned to the mineralized image using strategically placed fluorescent registration beads. Fluorescent signals are identified and are related to the trabecular surface within the ROI. Subsequently, the pipelined method computes static measurements, dynamic measurements, and cellular activities of osteoclast and osteoblast related to the trabecular surface. Our method has been applied to the distal femurs and vertebrae of 8 and 16 week old male and female C57Bl/6J mice. The histomorphometric results reveal a significantly greater bone turnover rate in female in contrast to male irrespective of age, validating similar outcomes reported by other studies. PMID:25019033
A full computation-relevant topological dynamics classification of elementary cellular automata.
Schüle, Martin; Stoop, Ruedi
2012-12-01
Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos."
Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno
2013-09-18
Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297
Luitel, Bipul; Venayagamoorthy, Ganesh Kumar
2014-02-01
Neural networks for implementing large networked systems such as smart electric power grids consist of multiple inputs and outputs. Many outputs lead to a greater number of parameters to be adapted. Each additional variable increases the dimensionality of the problem and hence learning becomes a challenge. Cellular computational networks (CCNs) are a class of sparsely connected dynamic recurrent networks (DRNs). By proper selection of a set of input elements for each output variable in a given application, a DRN can be modified into a CCN which significantly reduces the complexity of the neural network and allows use of simple training methods for independent learning in each cell thus making it scalable. This article demonstrates this concept of developing a CCN using dimensionality reduction in a DRN for scalability and better performance. The concept has been analytically explained and empirically verified through application.
Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.
2013-01-01
This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550
Papadimitriou, Konstantinos I; Stan, Guy-Bart V; Drakakis, Emmanuel M
2013-01-01
This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented.
Energetic costs of cellular computation.
Mehta, Pankaj; Schwab, David J
2012-10-30
Cells often perform computations in order to respond to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds, it is expected that such computations require cells to consume energy. In particular, Landauer's principle states that energy must be consumed in order to erase the memory of past observations. Here, we explicitly calculate the energetic cost of steady-state computation of ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg-Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments, such as the spore germination networks of bacteria.
Energetic costs of cellular computation
Mehta, Pankaj; Schwab, David J.
2012-01-01
Cells often perform computations in order to respond to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds, it is expected that such computations require cells to consume energy. In particular, Landauer’s principle states that energy must be consumed in order to erase the memory of past observations. Here, we explicitly calculate the energetic cost of steady-state computation of ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg–Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments, such as the spore germination networks of bacteria. PMID:23045633
Computational 'microscopy' of cellular membranes.
Ingólfsson, Helgi I; Arnarez, Clément; Periole, Xavier; Marrink, Siewert J
2016-01-15
Computational 'microscopy' refers to the use of computational resources to simulate the dynamics of a molecular system. Tuned to cell membranes, this computational 'microscopy' technique is able to capture the interplay between lipids and proteins at a spatio-temporal resolution that is unmatched by other methods. Recent advances allow us to zoom out from individual atoms and molecules to supramolecular complexes and subcellular compartments that contain tens of millions of particles, and to capture the complexity of the crowded environment of real cell membranes. This Commentary gives an overview of the main concepts of computational 'microscopy' and describes the state-of-the-art methods used to model cell membrane processes. We illustrate the power of computational modelling approaches by providing a few in-depth examples of large-scale simulations that move up from molecular descriptions into the subcellular arena. We end with an outlook towards modelling a complete cell in silico.
Cellular dynamics and embryonic morphogenesis
NASA Astrophysics Data System (ADS)
Zallen, Jennifer
2007-11-01
The elongated body axis is a characteristic feature of many multicellular animals. Axis elongation occurs largely through cell rearrangements that are coordinated across a large cell population and driven by an asymmetric distribution of cytoskeletal and junctional proteins [1]. To visualize cellular dynamics during this process, we performed time-lapse confocal imaging of cell behavior in the Drosophila embryo. These studies revealed that rearranging cells display a steady increase in topological disorder that is accompanied by the formation of transient structures where 5-11 cells meet [2,3]. These multicellular rosettes form and resolve in a directional fashion to produce a local change in the aspect ratio of the cellular assembly, contributing to an overall change in tissue structure. We propose that higher-order rosette structures link local cell interactions to global tissue reorganization during morphogenesis. [1] J. Zallen and E. Wieschaus, Developmental Cell 6, 343 (2004). [2] J. Zallen and R. Zallen, J. Phys.: Condens. Matter 16, S5073 (2004). [3] J. Blankenship et al., Developmental Cell 11, 459 (2006).
Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.
Yilmaz, Ozgur
2015-12-01
This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air?
Bioimage informatics for understanding spatiotemporal dynamics of cellular processes.
Yang, Ge
2013-01-01
The inner environment of the cell is highly dynamic and heterogeneous yet exquisitely organized. Successful completion of cellular processes within this environment depends on the right molecules or molecular complexes to function at the right place at the right time. Understanding spatiotemporal behaviors of cellular processes is therefore essential to understanding their molecular mechanisms at the systems level. These behaviors are usually visualized and recorded using imaging techniques. However, to infer from them systems-level molecular mechanisms, computational analysis and understanding of recorded image data is crucial, not only for acquiring quantitative behavior measurements but also for comprehending complex interactions among the molecules or molecular complexes involved. The technology of computational analysis and understanding of biological images is often referred to simply as bioimage informatics. This article introduces fundamentals of bioimage informatics for understanding spatiotemporal dynamics of cellular processes and reviews recent advances on this topic. Basic bioimage informatics concepts and techniques for characterizing spatiotemporal cell dynamics are introduced first. Studies on specific cellular processes such as cell migration and signal transduction are then used as examples to analyze and summarize recent advances, with the focus on transforming quantitative measurements of spatiotemporal cellular behaviors into knowledge of underlying molecular mechanisms. Despite the advances made, substantial technological challenges remain, especially in representation of spatiotemporal cellular behaviors and inference of systems-level molecular mechanisms. These challenges are briefly discussed. Overall, understanding spatiotemporal cell dynamics will provide critical insights into how specific cellular processes as well as the entire inner cellular environment are dynamically organized and regulated.
Complexity, dynamic cellular network, and tumorigenesis.
Waliszewski, P
1997-01-01
A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.
Phosphatidylserine dynamics in cellular membranes.
Kay, Jason G; Koivusalo, Mirkka; Ma, Xiaoxiao; Wohland, Thorsten; Grinstein, Sergio
2012-06-01
Much has been learned about the role of exofacial phosphatidylserine (PS) in apoptosis and blood clotting using annexin V. However, because annexins are impermeant and unable to bind PS at low calcium concentration, they are unsuitable for intracellular use. Thus little is known about the topology and dynamics of PS in the endomembranes of normal cells. We used two new probes-green fluorescent protein (GFP)-LactC2, a genetically encoded fluorescent PS biosensor, and 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-phospho-L-serine (TopFluor-PS), a synthetic fluorescent PS analogue-to examine PS distribution and dynamics inside live cells. The mobility of PS was assessed by a combination of advanced optical methods, including single-particle tracking and fluorescence correlation spectroscopy. Our results reveal the existence of a sizable fraction of PS with limited mobility, with cortical actin contributing to the confinement of PS in the plasma membrane. We were also able to measure the dynamics of PS in endomembrane organelles. By targeting GFP-LactC2 to the secretory pathway, we detected the presence of PS in the luminal leaflet of the endoplasmic reticulum. Our data provide new insights into properties of PS inside cells and suggest mechanisms to account for the subcellular distribution and function of this phospholipid.
A hierarchical cellular logic for pyramid computers
Tanimoto, S.L.
1984-11-01
Hierarchical structure occurs in biological vision systems and there is good reason to incorporate it into a model of computation for processing binary images. A mathematical formalism is presented which can describe a wide variety of operations useful in image processing and graphics. The formalism allows for two kinds of simple transformations on the values (called pyramids) of a set of cells called a hierarchical domain: the first are binary operations on boolean values, and the second are neighborhood-matching operations. The implied model of computation is more structured than previously discussed pyramidal models, and is more readily realized in parallel hardware, while it remains sufficiently rich to provide efficient solutions to a wide variety of problems. The model has a simplicity which is due to the restricted nature of the operations and the implied synchronization across the hierarchical domain. A corresponding algebraic simplicity in the logic makes possible the concise representation of many cellular-data operations.
Optimal temporal patterns for dynamical cellular signaling
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko
2016-11-01
Cells use temporal dynamical patterns to transmit information via signaling pathways. As optimality with respect to the environment plays a fundamental role in biological systems, organisms have evolved optimal ways to transmit information. Here, we use optimal control theory to obtain the dynamical signal patterns for the optimal transmission of information, in terms of efficiency (low energy) and reliability (low uncertainty). Adopting an activation-deactivation decoding network, we reproduce several dynamical patterns found in actual signals, such as steep, gradual, and overshooting dynamics. Notably, when minimizing the energy of the input signal, the optimal signals exhibit overshooting, which is a biphasic pattern with transient and steady phases; this pattern is prevalent in actual dynamical patterns. We also identify conditions in which these three patterns (steep, gradual, and overshooting) confer advantages. Our study shows that cellular signal transduction is governed by the principle of minimizing free energy dissipation and uncertainty; these constraints serve as selective pressures when designing dynamical signaling patterns.
Computer Modeling of the Earliest Cellular Structures and Functions
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl
2000-01-01
In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membrane< We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.
Literature Review on Dynamic Cellular Manufacturing System
NASA Astrophysics Data System (ADS)
Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.
2014-06-01
In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.
Traffic jam dynamics in stochastic cellular automata
Nagel, K. |; Schreckenberg, M.
1995-09-01
Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA) and in NRW (Germany) for large scale microsimulations of network traffic.
The Spatiotemporal Cellular Dynamics of Lung Immunity
Lelkes, E.; Headley, M.B.; Thornton, E.E.; Looney, M.R.; Krummel, M.F.
2014-01-01
The lung is a complex structure that is interdigitated with immune cells. Understanding the 4-dimensional process of normal and defective lung function and immunity has been a centuries-old problem. Challenges intrinsic to the lung have limited adequate microscopic evaluation of its cellular dynamics in real time, until recently. Because of emerging technologies, we now recognize alveolar-to-airway transport of inhaled antigen. We understand the nature of neutrophil entry during lung injury and are learning more about cellular interactions during inflammatory states. Insights are also accumulating in lung development and the metatastatic niche of the lung. Here we assess the developing technology of lung imaging, its merits for studies of pathophysiology and areas where further advances are needed. PMID:24974157
Javaheri, Narjes; Dries, Roland; Kaandorp, Jaap
2014-06-01
Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV). Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT). Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search), together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics. The model
Cellular automata and complex dynamics of driven elastic media
Coppersmith, S.N.; Littlewodd, P.B.; Sibani, P.
1995-12-01
Several systems of importance in condensed matter physics can be modelled as an elastic medium in a disordered environment and driven by an external force. In the simplest cases, the equation of motion involves competition between a local non-linear potential (fluctuating in space) and elastic coupling, as well as relaxational (inertialess) dynamics. Despite a simple mathematical description, the interactions between many degrees of freedom lead to the emergence of time and length scales much longer than those set by the microscopic dynamics. Extensive computations have improved the understanding of the behavior of such models, but full solutions of the equations of motion for very large systems are time-consuming and may obscure important physical principles in a massive volume of output. The development of cellular automata models has been crucial, both in conceptual simplification and in allowing the collection of data on many replicas of very large systems. We will discuss how the marriage of cellular automata models and parallel computation on a MasPar MP-1216 computer has helped to elucidate the dynamical properties of these many-degree-of-freedom systems.
Computational reacting gas dynamics
NASA Technical Reports Server (NTRS)
Lam, S. H.
1993-01-01
In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).
Chiral hexagonal cellular sandwich structures: dynamic response
NASA Astrophysics Data System (ADS)
Spadoni, A.; Ruzzene, M.; Scarpa, F.
2005-05-01
Periodic cellular configurations with negative Poisson's ratio have attracted the attention of several researchers because of their superior dynamic characteristics. Among the geometries featuring a negative Poisson's ratio, the chiral topology possesses a geometric complexity that guarantees unique deformed configurations when excited at one of its natural frequencies. Specifically, localized deformations have been observed even at relatively low excitation frequencies. This is of particular importance as resonance can be exploited to minimize the power required for the appearance of localized deformations, thus giving practicality to the concept. The particular nature of these deformed configurations and the authority provided by the chiral geometry, suggest the application of the proposed structural configuration for the design of innovative lifting bodies, such as helicopter rotor blades or airplane wings. The dynamic characteristics of chiral structures are here investigated through a numerical model and experimental investigations. The numerical formulation uses dynamic shape functions to accurately describe the behavior of the considered structural assembly over a wide frequency range. The model is used to predict frequency response functions, and to investigate the occurrence of localized deformations. Experimental tests are also performed to demonstrate the accuracy of the model and to illustrate the peculiarities of the behavior of the considered chiral structures.
Computational fluid dynamic applications
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
Congenital limb malformations are among the most frequent malformation occurs in humans, with a frequency of about 1 in 500 to 1 in 1000 human live births. ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput (HTS) and computational methods that...
Experimental design for dynamics identification of cellular processes.
Dinh, Vu; Rundell, Ann E; Buzzard, Gregery T
2014-03-01
We address the problem of using nonlinear models to design experiments to characterize the dynamics of cellular processes by using the approach of the Maximally Informative Next Experiment (MINE), which was introduced in W. Dong et al. (PLoS ONE 3(8):e3105, 2008) and independently in M.M. Donahue et al. (IET Syst. Biol. 4:249-262, 2010). In this approach, existing data is used to define a probability distribution on the parameters; the next measurement point is the one that yields the largest model output variance with this distribution. Building upon this approach, we introduce the Expected Dynamics Estimator (EDE), which is the expected value using this distribution of the output as a function of time. We prove the consistency of this estimator (uniform convergence to true dynamics) even when the chosen experiments cluster in a finite set of points. We extend this proof of consistency to various practical assumptions on noisy data and moderate levels of model mismatch. Through the derivation and proof, we develop a relaxed version of MINE that is more computationally tractable and robust than the original formulation. The results are illustrated with numerical examples on two nonlinear ordinary differential equation models of biomolecular and cellular processes.
Computational astrophysical fluid dynamics
NASA Technical Reports Server (NTRS)
Norman, Michael L.; Clarke, David A.; Stone, James M.
1991-01-01
The field of astrophysical fluid dynamics (AFD) is described as an emerging discipline which derives historically from both the theory of stellar evolution and space plasma physics. The fundamental physical assumption behind AFD is that fluid equations of motion accurately describe the evolution of plasmas on scales that are large in comparison with particle interaction length scales. Particular attention is given to purely fluid models of large-scale astrophysical plasmas. The role of computer simulation in AFD research is also highlighted and a suite of general-purpose application codes for AFD research is discussed. The codes are called ZEUS-2D and ZEUS-3D and solve the equations of AFD in two and three dimensions, respectively, in several coordinate geometries for general initial and boundary conditions. The topics of bipolar outflows from protostars, galactic superbubbles and supershells, and extragalactic radio sources are addressed.
Supramolecular polymers as dynamic multicomponent cellular uptake carriers.
Petkau-Milroy, Katja; Sonntag, Michael H; van Onzen, Arthur H A M; Brunsveld, Luc
2012-05-16
Supramolecular synthesis represents a flexible approach to the generation of dynamic multicomponent materials with tunable properties. Here, cellular uptake systems based on dynamic supramolecular copolymers have been developed using a combination of differently functionalized discotic molecules. Discotics featuring peripheral amine functionalities that endow the supramolecular polymer with cellular uptake capabilities were readily synthesized. This enabled the uptake of otherwise cell-impermeable discotics via cotransport as a function of supramolecular coassembly. Dynamic multicomponent and multifunctional supramolecular polymers represent a novel and unique platform for modular cellular uptake systems.
Dynamic modeling of cellular populations within iBioSim.
Stevens, Jason T; Myers, Chris J
2013-05-17
As the complexity of synthetic genetic circuits increases, modeling is becoming a necessary first step to inform subsequent experimental efforts. In recent years, the design automation community has developed a wealth of computational tools for assisting experimentalists in designing and analyzing new genetic circuits at several scales. However, existing software primarily caters to either the DNA- or single-cell level, with little support for the multicellular level. To address this need, the iBioSim software package has been enhanced to provide support for modeling, simulating, and visualizing dynamic cellular populations in a two-dimensional space. This capacity is fully integrated into the software, capitalizing on iBioSim's strengths in modeling, simulating, and analyzing single-celled systems.
Cellular automaton formulation of passive scalar dynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Matthaeus, William H.
1987-01-01
Cellular automata modeling of the advection of a passive scalar in a two-dimensional flow is examined in the context of discrete lattice kinetic theory. It is shown that if the passive scalar is represented by tagging or 'coloring' automation particles a passive advection-diffusion equation emerges without use of perturbation expansions. For the specific case of the hydrodynamic lattice gas model of Frisch et al. (1986), the diffusion coefficient is calculated by perturbation.
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
The nonlinearity of dynamics in systems biology makes it hard to infer them from experimental data. Simple linear models are computationally efficient, but cannot incorporate these important nonlinearities. An adaptive method based on the S-system formalism, which is a sensible representation of nonlinear mass-action kinetics typically found in cellular dynamics, maintains the efficiency of linear regression. We combine this approach with adaptive model selection to obtain efficient and parsimonious representations of cellular dynamics. The approach is tested by inferring the dynamics of yeast glycolysis from simulated data. With little computing time, it produces dynamical models with high predictive power and with structural complexity adapted to the difficulty of the inference problem. PMID:25806510
Bimolecular dynamics by computer analysis
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-01-01
As numerical tools (computers and display equipment) become more powerful and the atomic structures of important biological molecules become known, the importance of detailed computation of nonequilibrium biomolecular dynamics increases. In this manuscript we report results from a well developed study of the hydrogen bonded polypeptide crystal acetanilide, a model protein. Directions for future research are suggested. 9 references, 6 figures.
Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying
Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying
Computer animation challenges for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine
2012-07-01
Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.
Computational Workbench for Multibody Dynamics
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2007-01-01
PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.
Real-Time Bioluminescent Tracking of Cellular Population Dynamics
Close, Dan; Sayler, Gary Steven; Xu, Tingting; Ripp, Steven Anthony
2014-01-01
Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.
Real-Time Bioluminescent Tracking of Cellular Population Dynamics
Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary
2015-01-01
Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods. PMID:24166372
Cellular Automata Models of Ring Dynamics
NASA Astrophysics Data System (ADS)
Gravner, Janko
This paper describes three models arising from the theory of excitable media, whose primary visual feature are expanding rings of excitation. Rigorous mathematical results and experimental/computational issues are both addressed. We start with the much-studied Greenberg-Hastings model (GHM) in which the rings are very short-lived, but they do have a transient percolation property. By contrast, in the model we call annihilating nested rings (ANR), excitation centers only gradually lose strength, i.e., each time they become inactive (and then stay so forever) with a fixed probability; we show how the long-term global connectivity properties of the set of excited sites undergo a phase transition. Second part of the paper is devoted to digital boiling (DB) in which new rings spontaneously appear at rested sites with a positive probability. We focus on such (related) issues as convergence to equilibrium, equilibrium excitation level and success of the basic coupling.
Cellular automata models of ring dynamics
Gravner, J.
1996-12-01
This paper describes three models arising from the theory of excitable media, whose primary visual feature are expanding rings of excitation. Rigorous mathematical results and experimental/computational issues are both addressed. We start with the much-studied Greenberg-Hastings model (GHM) in which the rings are very short-lived, but they do have a transient percolation property. By contrast, in the model we call annihilating nested rings (ANR), excitation centers only gradually lose strength, i.e., each time they become inactive (and then stay so forever) with a fixed probability; we show how the long-term global connectivity properties of the set of excited sites undergo a phase transition. Second part of the paper is devoted to digital boiling (DB) in which new rings spontaneously appear at rested sites with a positive probability. We focus on such (related) issues as convergence to equilibrium, equilibrium excitation level and success of the basic coupling.
Inferring biological dynamics in heterogeneous cellular environments
NASA Astrophysics Data System (ADS)
Pressé, Steve
In complex environments, it often appears that biomolecules such as proteins do not diffuse normally. That is, their mean square displacement does not scale linearly with time. This anomalous diffusion happens for multiple reasons: proteins can bind to structures and other proteins; fluorophores used to label proteins may flicker or blink making it appear that the labeled protein is diffusing anomalously; and proteins can diffuse in differently crowded environments. Here we describe methods for learning about such processes from imaging data collected inside the heterogeneous environment of the living cell. Refs.: ''Inferring Diffusional Dynamics from FCS in Heterogeneous Nuclear Environments'' Konstantinos Tsekouras, Amanda Siegel, Richard N. Day, Steve Pressé*, Biophys. J. , 109, 7 (2015). ''A data-driven alternative to the fractional Fokker-Planck equation'' Steve Pressé*, J. Stat. Phys.: Th. and Expmt. , P07009 (2015).
Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations
Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi
2016-01-01
The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418
A Computational Model of Cellular Engraftment on Lung Scaffolds
Pothen, Joshua J.; Rajendran, Vignesh; Wagner, Darcy; Weiss, Daniel J.; Smith, Bradford J.; Ma, Baoshun; Bates, Jason H.T.
2016-01-01
Abstract The possibility that stem cells might be used to regenerate tissue is now being investigated for a variety of organs, but these investigations are still essentially exploratory and have few predictive tools available to guide experimentation. We propose, in this study, that the field of lung tissue regeneration might be better served by predictive tools that treat stem cells as agents that obey certain rules of behavior governed by both their phenotype and their environment. Sufficient knowledge of these rules of behavior would then, in principle, allow lung tissue development to be simulated computationally. Toward this end, we developed a simple agent-based computational model to simulate geographic patterns of cells seeded onto a lung scaffold. Comparison of the simulated patterns to those observed experimentally supports the hypothesis that mesenchymal stem cells proliferate preferentially toward the scaffold boundary, whereas alveolar epithelial cells do not. This demonstrates that a computational model of this type has the potential to assist in the discovery of rules of cellular behavior. PMID:27843709
Cellular-based modeling of oscillatory dynamics in brain networks.
Skinner, Frances K
2012-08-01
Oscillatory, population activities have long been known to occur in our brains during different behavioral states. We know that many different cell types exist and that they contribute in distinct ways to the generation of these activities. I review recent papers that involve cellular-based models of brain networks, most of which include theta, gamma and sharp wave-ripple activities. To help organize the modeling work, I present it from a perspective of three different types of cellular-based modeling: 'Generic', 'Biophysical' and 'Linking'. Cellular-based modeling is taken to encompass the four features of experiment, model development, theory/analyses, and model usage/computation. The three modeling types are shown to include these features and interactions in different ways.
Computational models of molecular self-organization in cellular environments.
LeDuc, Philip; Schwartz, Russell
2007-01-01
The cellular environment creates numerous obstacles to efficient chemistry, as molecular components must navigate through a complex, densely crowded, heterogeneous, and constantly changing landscape in order to function at the appropriate times and places. Such obstacles are especially challenging to self-organizing or self-assembling molecular systems, which often need to build large structures in confined environments and typically have high-order kinetics that should make them exquisitely sensitive to concentration gradients, stochastic noise, and other non-ideal reaction conditions. Yet cells nonetheless manage to maintain a finely tuned network of countless molecular assemblies constantly forming and dissolving with a robustness and efficiency generally beyond what human engineers currently can achieve under even carefully controlled conditions. Significant advances in high-throughput biochemistry and genetics have made it possible to identify many of the components and interactions of this network, but its scale and complexity will likely make it impossible to understand at a global, systems level without predictive computational models. It is thus necessary to develop a clear understanding of how the reality of cellular biochemistry differs from the ideal models classically assumed by simulation approaches and how simulation methods can be adapted to accurately reflect biochemistry in the cell, particularly for the self-organizing systems that are most sensitive to these factors. In this review, we present approaches that have been undertaken from the modeling perspective to address various ways in which self-organization in the cell differs from idealized models.
Spectral representations and global maps of cellular automata dynamics
NASA Astrophysics Data System (ADS)
Raptis, Theophanes E.
2016-10-01
We present a spectral representation of any computation performed by a Cellular Automaton (CA) of arbitrary topology and dimensionality via an appropriate coding scheme in Fourier space that can be implemented in an analog machine ideally circumventing part of the overall waste heat production. We explore further consequences of this encoding and we provide a simple example based on the Game-of-Life where we find global maps for small lattices indicating an interesting underlying recursive structure.
Bioreactor studies and computational fluid dynamics.
Singh, H; Hutmacher, D W
2009-01-01
The hydrodynamic environment "created" by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.
Bioreactor Studies and Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Singh, H.; Hutmacher, D. W.
The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.
HSP90: the Rosetta stone for cellular protein dynamics?
Dezwaan, Diane C; Freeman, Brian C
2008-04-15
The Hsp90 proteomic network is expansive and includes a variety of cell processes operating within the cytoplasm and nucleoplasm. Though the functional significance of the extensive interactions has not been defined, we suggest that the Hsp90 molecular chaperone machinery promotes dynamic behaviors for client proteins that is critical to achieve homeostasis. A general rapid action by cell factors would permit both proper assembly of biological complexes and efficient transitions between distinct structures. Here, we describe why the properties that are inherent to molecular chaperones place these proteins in a unique position to drive the dynamic cellular environment.
Computer Simulation of Cellular Patterning Within the Drosophila Pupal Eye
Swat, Maciej; Cordero, Julia B.; Glazier, James A.; Cagan, Ross L.
2010-01-01
We present a computer simulation and associated experimental validation of assembly of glial-like support cells into the interweaving hexagonal lattice that spans the Drosophila pupal eye. This process of cell movements organizes the ommatidial array into a functional pattern. Unlike earlier simulations that focused on the arrangements of cells within individual ommatidia, here we examine the local movements that lead to large-scale organization of the emerging eye field. Simulations based on our experimental observations of cell adhesion, cell death, and cell movement successfully patterned a tracing of an emerging wild-type pupal eye. Surprisingly, altering cell adhesion had only a mild effect on patterning, contradicting our previous hypothesis that the patterning was primarily the result of preferential adhesion between IRM-class surface proteins. Instead, our simulations highlighted the importance of programmed cell death (PCD) as well as a previously unappreciated variable: the expansion of cells' apical surface areas, which promoted rearrangement of neighboring cells. We tested this prediction experimentally by preventing expansion in the apical area of individual cells: patterning was disrupted in a manner predicted by our simulations. Our work demonstrates the value of combining computer simulation with in vivo experiments to uncover novel mechanisms that are perpetuated throughout the eye field. It also demonstrates the utility of the Glazier–Graner–Hogeweg model (GGH) for modeling the links between local cellular interactions and emergent properties of developing epithelia as well as predicting unanticipated results in vivo. PMID:20617161
A general computational framework for modeling cellular structure and function.
Schaff, J; Fink, C C; Slepchenko, B; Carson, J H; Loew, L M
1997-01-01
The "Virtual Cell" provides a general system for testing cell biological mechanisms and creates a framework for encapsulating the burgeoning knowledge base comprising the distribution and dynamics of intracellular biochemical processes. It approaches the problem by associating biochemical and electrophysiological data describing individual reactions with experimental microscopic image data describing their subcellular localizations. Individual processes are collected within a physical and computational infrastructure that accommodates any molecular mechanism expressible as rate equations or membrane fluxes. An illustration of the method is provided by a dynamic simulation of IP3-mediated Ca2+ release from endoplasmic reticulum in a neuronal cell. The results can be directly compared to experimental observations and provide insight into the role of experimentally inaccessible components of the overall mechanism. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:9284281
Examining the architecture of cellular computing through a comparative study with a computer.
Wang, Degeng; Gribskov, Michael
2005-06-22
The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software-hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's "hardware" equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the "bandwidth" of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed.
Changes in single-molecule integrin dynamics linked to local cellular behavior
Jaqaman, Khuloud; Galbraith, James A.; Davidson, Michael W.; Galbraith, Catherine G.
2016-01-01
Recent advances in light microscopy permit visualization of the behavior of individual molecules within dense macromolecular ensembles in live cells. It is now conceptually possible to relate the dynamic organization of molecular machinery to cellular function. However, inherent heterogeneities, as well as disparities between spatial and temporal scales, pose substantial challenges in deriving such a relationship. New approaches are required to link discrete single-molecule behavior with continuous cellular-level processes. Here we combined intercalated molecular and cellular imaging with a computational framework to detect reproducible transient changes in the behavior of individual molecules that are linked to cellular behaviors. Applying our approach to integrin transmembrane receptors revealed a spatial density gradient underlying characteristic molecular density increases and mobility decreases, indicating the subsequent onset of local protrusive activity. Integrin mutants further revealed that these density and mobility transients are separable and depend on different binding domains within the integrin cytoplasmic tail. Our approach provides a generalizable paradigm for dissecting dynamic spatiotemporal molecular behaviors linked to local cellular events. PMID:27009207
Chernenkov, Iu V; Gumeniuk, O I
2009-01-01
The paper presents the results of studying the impact of using cellular phones and personal computers on the health status of 277 Saratov schoolchildren (mean age 13.2 +/- 2.3 years). About 80% of the adolescents have been ascertained to use cellular phones and computers mainly for game purposes. The active users of cellular phones and computers show a high aggressiveness, anxiety, hostility, and social stress, low stress resistance, and susceptibility to arterial hypotension. The negative influence of cellular phones and computers on the schoolchildren's health increases with the increased duration and frequency of their use.
Computational Methods for Structural Mechanics and Dynamics
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.
Cellular Biotechnology Operations Support System Fluid Dynamics Investigation
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.
Nonlinear dynamics as an engine of computation
NASA Astrophysics Data System (ADS)
Kia, Behnam; Lindner, John F.; Ditto, William L.
2017-03-01
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation. This article is part of the themed issue 'Horizons of cybernetical physics'.
Nonlinear dynamics as an engine of computation.
Kia, Behnam; Lindner, John F; Ditto, William L
2017-03-06
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'.
Dynamic Simulation of 1D Cellular Automata in the Active aTAM.
Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke
2015-07-01
The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location.
Dynamic Simulation of 1D Cellular Automata in the Active aTAM
Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke
2016-01-01
The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location. PMID:27789918
Mosquito population dynamics from cellular automata-based simulation
NASA Astrophysics Data System (ADS)
Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning
2016-02-01
In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.
Cellular contact guidance through dynamic sensing of nanotopography.
Driscoll, Meghan K; Sun, Xiaoyu; Guven, Can; Fourkas, John T; Losert, Wolfgang
2014-04-22
We investigate the effects of surface nanotopography on the migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Multiple prior studies have implicated the patterning of focal adhesions in contact guidance. However, we observe significant contact guidance of Dictyostelium along surfaces with nanoscale ridges or grooves, even though this organism lacks integrin-based adhesions. Cells that move parallel to nanoridges are faster, more protrusive at their fronts, and more elongated than are cells that move perpendicular to nanoridges. Quantitative studies show that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Because Dictyostelium cells exhibit oscillatory shape dynamics, we model contact guidance as a process in which stochastic cellular harmonic oscillators couple to the periodicity of the nanoridges. In support of this connection, we find that nanoridges nucleate actin polymerization waves of nanoscale width that propagate parallel to the nanoridges.
A dynamic cellular vertex model of growing epithelial tissues
NASA Astrophysics Data System (ADS)
Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao
2017-03-01
Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.
Research on Computational Fluid Dynamics and Turbulence
NASA Technical Reports Server (NTRS)
1986-01-01
Preconditioning matrices for Chebyshev derivative operators in several space dimensions; the Jacobi matrix technique in computational fluid dynamics; and Chebyshev techniques for periodic problems are discussed.
Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.
Skoneczny, Szymon
2015-01-01
The article presents a mathematical model of biofilm growth for aerobic biodegradation of a toxic carbonaceous substrate. Modelling of biofilm growth has fundamental significance in numerous processes of biotechnology and mathematical modelling of bioreactors. The process following double-substrate kinetics with substrate inhibition proceeding in a biofilm has not been modelled so far by means of cellular automata. Each process in the model proposed, i.e. diffusion of substrates, uptake of substrates, growth and decay of microorganisms and biofilm detachment, is simulated in a discrete manner. It was shown that for flat biofilm of constant thickness, the results of the presented model agree with those of a continuous model. The primary outcome of the study was to propose a mathematical model of biofilm growth; however a considerable amount of focus was also placed on the development of efficient algorithms for its solution. Two parallel algorithms were created, differing in the way computations are distributed. Computer programs were created using OpenMP Application Programming Interface for C++ programming language. Simulations of biofilm growth were performed on three high-performance computers. Speed-up coefficients of computer programs were compared. Both algorithms enabled a significant reduction of computation time. It is important, inter alia, in modelling and simulation of bioreactor dynamics.
Predictive Dynamic Security Assessment through Advanced Computing
Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu
2014-11-30
Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.
Cellular dynamics of neuronal migration in the hippocampus
Hayashi, Kanehiro; Kubo, Ken-ichiro; Kitazawa, Ayako; Nakajima, Kazunori
2015-01-01
A fine structure of the hippocampus is required for proper functions, and disruption of this formation by neuronal migration defects during development may play a role in some psychiatric illnesses. During hippocampal development in rodents, pyramidal neurons in the Ammon's horn are mostly generated in the ventricular zone (VZ), spent as multipolar cells just above the VZ, and then migrate radially toward the pial surface, ultimately settling into the hippocampal plate. Although this process is similar to that of neocortical projection neurons, these are not identical. In addition to numerous histological studies, the development of novel techniques gives a clear picture of the cellular dynamics of hippocampal neurons, as well as neocortical neurons. In this article, we provide an overview of the cellular mechanisms of rodent hippocampal neuronal migration including those of dentate granule cells, especially focusing on the differences of migration modes between hippocampal neurons and neocortical neurons. The unique migration mode of hippocampal pyramidal neurons might enable clonally related cells in the Ammon's horn to distribute in a horizontal fashion. PMID:25964735
Cellular Automaton Simulation of Vegetated Dune Field Dynamics
NASA Astrophysics Data System (ADS)
Nield, J. M.; Baas, A. C.
2007-12-01
Vegetated aeolian dune fields develop through non-linear interactions between physical geomorphic processes and ecological vegetation growth and response into complex ecogeomorphic systems that are sensitive to both climatic and environmental variations. We present a Discrete Ecogeomorphic Aeolian Landscape (DECAL) cellular automaton model that replicates the self-organisation of vegetated dune systems and enables the investigation of conditions necessary for long-walled (hairpin) parabolic dune and nebkha formation in coastal and semi-arid environments over various temporal and spatial scales. The algorithm utilises simple transport rules and mutual feedback between geomorphic and ecological components to investigate vegetation pattern formation and how and why this influences dune dynamics. We examine ecogeomorphic interactions both by exploring system mechanics via dune mobility and by more descriptive numerical state variables, facilitating the investigation of trajectories and potential attractors as a function of environmental parameters and system perturbations and leading to the identification of possible system sensitivities and thresholds. The model simulations elucidate possible dune field responses to anthropogenic impacts and palaeo and future climate variations and highlight the ability of vegetation to impart a characteristic length-scale on a landscape. This simple vegetated dune model illustrates the power and versatility of a cellular automaton approach for exploring ecological and geomorphic interactions in complex earth surface systems.
Cellular Manufacturing System with Dynamic Lot Size Material Handling
NASA Astrophysics Data System (ADS)
Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.
2016-02-01
Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.
The ECM Moves during Primitive Streak Formation—Computation of ECM Versus Cellular Motion
Zamir, Evan A; Rongish, Brenda J; Little, Charles D
2008-01-01
Galileo described the concept of motion relativity—motion with respect to a reference frame—in 1632. He noted that a person below deck would be unable to discern whether the boat was moving. Embryologists, while recognizing that embryonic tissues undergo large-scale deformations, have failed to account for relative motion when analyzing cell motility data. A century of scientific articles has advanced the concept that embryonic cells move (“migrate”) in an autonomous fashion such that, as time progresses, the cells and their progeny assemble an embryo. In sharp contrast, the motion of the surrounding extracellular matrix scaffold has been largely ignored/overlooked. We developed computational/optical methods that measure the extent embryonic cells move relative to the extracellular matrix. Our time-lapse data show that epiblastic cells largely move in concert with a sub-epiblastic extracellular matrix during stages 2 and 3 in primitive streak quail embryos. In other words, there is little cellular motion relative to the extracellular matrix scaffold—both components move together as a tissue. The extracellular matrix displacements exhibit bilateral vortical motion, convergence to the midline, and extension along the presumptive vertebral axis—all patterns previously attributed solely to cellular “migration.” Our time-resolved data pose new challenges for understanding how extracellular chemical (morphogen) gradients, widely hypothesized to guide cellular trajectories at early gastrulation stages, are maintained in this dynamic extracellular environment. We conclude that models describing primitive streak cellular guidance mechanisms must be able to account for sub-epiblastic extracellular matrix displacements.
Stochastic cellular automata model for stock market dynamics
NASA Astrophysics Data System (ADS)
Bartolozzi, M.; Thomas, A. W.
2004-04-01
In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two-dimensional grid. Active traders are characterized by the decision to buy, σi (t)=+1 , or sell, σi (t)=-1 , a stock at a certain discrete time step. The remaining cells are inactive, σi (t)=0 . The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Extreme, intermittent events, such as crashes or bubbles, are triggered by a phase transition in the state of the bigger clusters present on the grid, where almost all the active traders come to share the same spin orientation. Most of the stylized aspects of the financial market time series, including multifractal proprieties, are reproduced by the model. A direct comparison is made with the daily closures of the S&P500 index.
Modeling dynamics of HIV infected cells using stochastic cellular automaton
NASA Astrophysics Data System (ADS)
Precharattana, Monamorn; Triampo, Wannapong
2014-08-01
Ever since HIV was first diagnosed in human, a great number of scientific works have been undertaken to explore the biological mechanisms involved in the infection and progression of the disease. Several cellular automata (CA) models have been introduced to gain insights into the dynamics of the disease progression but none of them has taken into account effects of certain immune cells such as the dendritic cells (DCs) and the CD8+ T lymphocytes (CD8+ T cells). In this work, we present a CA model, which incorporates effects of the HIV specific immune response focusing on the cell-mediated immunities, and investigate the interaction between the host immune response and the HIV infected cells in the lymph nodes. The aim of our work is to propose a model more realistic than the one in Precharattana et al. (2010) [10], by incorporating roles of the DCs, the CD4+ T cells, and the CD8+ T cells into the model so that it would reproduce the HIV infection dynamics during the primary phase of HIV infection.
Nonlinear dynamics of C-terminal tails in cellular microtubules
NASA Astrophysics Data System (ADS)
Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.
2016-07-01
The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.
Stochastic cellular automata model for stock market dynamics.
Bartolozzi, M; Thomas, A W
2004-04-01
In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two-dimensional grid. Active traders are characterized by the decision to buy, sigma(i) (t)=+1, or sell, sigma(i) (t)=-1, a stock at a certain discrete time step. The remaining cells are inactive, sigma(i) (t)=0. The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Extreme, intermittent events, such as crashes or bubbles, are triggered by a phase transition in the state of the bigger clusters present on the grid, where almost all the active traders come to share the same spin orientation. Most of the stylized aspects of the financial market time series, including multifractal proprieties, are reproduced by the model. A direct comparison is made with the daily closures of the S&P 500 index.
Molecular dynamics on hypercube parallel computers
NASA Astrophysics Data System (ADS)
Smith, W.
1991-03-01
The implementation of molecular dynamics on parallel computers is described, with particular reference to hypercube computers. Three particular algorithms are described: replicated data (RD); systolic loop (SLS-G), and parallelised link-cells (PLC), all of which have good load balancing. The performance characteristics of each algorithm and the factors affecting their scaling properties are discussed. The article is pedagogic in intent, to introduce a novice to the main aspects of parallel computing in molecular dynamics.
Dance Dynamics: Computers and Dance.
ERIC Educational Resources Information Center
Gray, Judith A., Ed.; And Others
1983-01-01
Five articles discuss the use of computers in dance and dance education. They describe: (1) a computerized behavioral profile of a dance teacher; (2) computer-based dance notation; (3) elementary school computer-assisted dance instruction; (4) quantified analysis of dance criticism; and (5) computerized simulation of human body movements in a…
Yielding and post-yield behaviour of closed-cell cellular materials under multiaxial dynamic loading
NASA Astrophysics Data System (ADS)
Vesenjak, Matej; Ren, Zoran
2016-05-01
The paper focuses on characterisation of yielding and post-yield behaviour of metals with closed-cell cellular structure when subjected to multiaxial dynamic loading, considering the influence of the relative density, base material, strain rate and pore gas pressure. Research was conducted by extensive parametric fully-coupled computational simulations using the finite element code LS-DYNA. Results have shown that the macroscopic yield stress of cellular material rises with increase of the relative density, while its dependence on the hydrostatic stress decreases. The yield limit also rises with increase of the strain rate, while the hydrostatic stress influence remains more or less the same at different strain-rates. The macroscopic yield limit of the cellular material is also strongly influenced by the choice of base material since the base materials with higher yield limit contribute also to higher macroscopic yield limit of the cellular material. By increasing the pore gas filler pressure the dependence on hydrostatic stress increases while at the same time the yield surface shifts along the hydrostatic axis in the negative direction. This means that yielding at compression is delayed due to influence of the initial pore pressure and occurs at higher compressive loading, while the opposite is true for tensile loading.
Cellular uptake and dynamics of unlabeled freestanding silicon nanowires
Zimmerman, John F.; Parameswaran, Ramya; Murray, Graeme; Wang, Yucai; Burke, Michael; Tian, Bozhi
2016-01-01
The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials. To improve on this, an important next step is learning how to distribute these devices in a drug-like fashion, where cells can naturally uptake and incorporate these electronic components, allowing for truly noninvasive device integration. We show that silicon nanowires (SiNWs) can potentially be used as such a system, demonstrating that label-free SiNWs can be internalized in multiple cell lines (96% uptake rate), undergoing an active “burst-like” transport process. Our results show that, rather than through exogenous manipulation, SiNWs are internalized primarily through an endogenous phagocytosis pathway, allowing cellular integration of these materials. To study this behavior, we have developed a robust set of methodologies for quantitatively examining high–aspect ratio nanowire-cell interactions in a time-dependent manner on both single-cell and ensemble levels. This approach represents one of the first dynamic studies of semiconductor nanowire internalization and offers valuable insight into designing devices for biomolecule delivery, intracellular sensing, and photoresponsive therapies. PMID:28028534
Dynamic involvement of ATG5 in cellular stress responses
Lin, H H; Lin, S-M; Chung, Y; Vonderfecht, S; Camden, J M; Flodby, P; Borok, Z; Limesand, K H; Mizushima, N; Ann, D K
2014-01-01
Autophagy maintains cell and tissue homeostasis through catabolic degradation. To better delineate the in vivo function for autophagy in adaptive responses to tissue injury, we examined the impact of compromised autophagy in mouse submandibular glands (SMGs) subjected to main excretory duct ligation. Blocking outflow from exocrine glands causes glandular atrophy by increased ductal pressure. Atg5f/−;Aqp5-Cre mice with salivary acinar-specific knockout (KO) of autophagy essential gene Atg5 were generated. While duct ligation induced autophagy and the expression of inflammatory mediators, SMGs in Atg5f/−;Aqp5-Cre mice, before ligation, already expressed higher levels of proinflammatory cytokine and Cdkn1a/p21 messages. Extended ligation period resulted in the caspase-3 activation and acinar cell death, which was delayed by Atg5 knockout. Moreover, expression of a set of senescence-associated secretory phenotype (SASP) factors was elevated in the post-ligated glands. Dysregulation of cell-cycle inhibitor CDKN1A/p21 and activation of senescence-associated β-galactosidase were detected in the stressed SMG duct cells. These senescence markers peaked at day 3 after ligation and partially resolved by day 7 in post-ligated SMGs of wild-type (WT) mice, but not in KO mice. The role of autophagy-related 5 (ATG5)-dependent autophagy in regulating the tempo, duration and magnitude of cellular stress responses in vivo was corroborated by in vitro studies using MEFs lacking ATG5 or autophagy-related 7 (ATG7) and autophagy inhibitors. Collectively, our results highlight the role of ATG5 in the dynamic regulation of ligation-induced cellular senescence and apoptosis, and suggest the involvement of autophagy resolution in salivary repair. PMID:25341032
A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer
NASA Technical Reports Server (NTRS)
Jespersen, Dennis C.; Levit, Creon
1989-01-01
The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.
Fluid dynamics computer programs for NERVA turbopump
NASA Technical Reports Server (NTRS)
Brunner, J. J.
1972-01-01
During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.
A Computational model for compressed sensing RNAi cellular screening
2012-01-01
Background RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. Results In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs a unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. Conclusions This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening experiments which
Fast Parallel Computation Of Manipulator Inverse Dynamics
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1991-01-01
Method for fast parallel computation of inverse dynamics problem, essential for real-time dynamic control and simulation of robot manipulators, undergoing development. Enables exploitation of high degree of parallelism and, achievement of significant computational efficiency, while minimizing various communication and synchronization overheads as well as complexity of required computer architecture. Universal real-time robotic controller and simulator (URRCS) consists of internal host processor and several SIMD processors with ring topology. Architecture modular and expandable: more SIMD processors added to match size of problem. Operate asynchronously and in MIMD fashion.
A Computational Model of Cellular Response to Modulated Radiation Fields
McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.
2012-09-01
Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.
Computational fluid dynamics - The coming revolution
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.
1982-01-01
The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.
Computational plasticity algorithm for particle dynamics simulations
NASA Astrophysics Data System (ADS)
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2017-03-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
Three-Dimensional Computational Fluid Dynamics
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
Role of cellular adhesions in tissue dynamics spectroscopy
NASA Astrophysics Data System (ADS)
Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David
2014-02-01
Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.
Dynamic Associations in Nonlinear Computing Arrays
NASA Astrophysics Data System (ADS)
Huberman, B. A.; Hogg, T.
1985-10-01
We experimentally show that nonlinear parallel arrays can be made to compute with attractors. This leads to fast adaptive behavior in which dynamical associations can be made between different inputs which initially produce sharply distinct outputs. We first define a set of simple local procedures which allow a general computing structure to change its state in time so as to produce classical Pavlovian conditioning. We then examine the dynamics of coalescence and dissociation of attractors with a number of quantitative experiments. We also show how such arrays exhibit generalization and differentiation of inputs in their behavior.
Fast Parallel Computation Of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Fijany, Amir; Kwan, Gregory L.; Bagherzadeh, Nader
1996-01-01
Constraint-force algorithm fast, efficient, parallel-computation algorithm for solving forward dynamics problem of multibody system like robot arm or vehicle. Solves problem in minimum time proportional to log(N) by use of optimal number of processors proportional to N, where N is number of dynamical degrees of freedom: in this sense, constraint-force algorithm both time-optimal and processor-optimal parallel-processing algorithm.
Dynamic self-assembly in living systems as computation.
Bouchard, Ann Marie; Osbourn, Gordon Cecil
2004-06-01
Biochemical reactions taking place in living systems that map different inputs to specific outputs are intuitively recognized as performing information processing. Conventional wisdom distinguishes such proteins, whose primary function is to transfer and process information, from proteins that perform the vast majority of the construction, maintenance, and actuation tasks of the cell (assembling and disassembling macromolecular structures, producing movement, and synthesizing and degrading molecules). In this paper, we examine the computing capabilities of biological processes in the context of the formal model of computing known as the random access machine (RAM) [Dewdney AK (1993) The New Turing Omnibus. Computer Science Press, New York], which is equivalent to a Turing machine [Minsky ML (1967) Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, NJ]. When viewed from the RAM perspective, we observe that many of these dynamic self-assembly processes - synthesis, degradation, assembly, movement - do carry out computational operations. We also show that the same computing model is applicable at other hierarchical levels of biological systems (e.g., cellular or organism networks as well as molecular networks). We present stochastic simulations of idealized protein networks designed explicitly to carry out a numeric calculation. We explore the reliability of such computations and discuss error-correction strategies (algorithms) employed by living systems. Finally, we discuss some real examples of dynamic self-assembly processes that occur in living systems, and describe the RAM computer programs they implement. Thus, by viewing the processes of living systems from the RAM perspective, a far greater fraction of these processes can be understood as computing than has been previously recognized.
TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics
Etournay, Raphaël; Merkel, Matthias; Popović, Marko; Brandl, Holger; Dye, Natalie A; Aigouy, Benoît; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank
2016-01-01
Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins. DOI: http://dx.doi.org/10.7554/eLife.14334.001 PMID:27228153
A computational approach to modeling cellular-scale blood flow in complex geometry
NASA Astrophysics Data System (ADS)
Balogh, Peter; Bagchi, Prosenjit
2017-04-01
We present a computational methodology for modeling cellular-scale blood flow in arbitrary and highly complex geometry. Our approach is based on immersed-boundary methods, which allow modeling flows in arbitrary geometry while resolving the large deformation and dynamics of every blood cell with high fidelity. The present methodology seamlessly integrates different modeling components dealing with stationary rigid boundaries of complex shape, moving rigid bodies, and highly deformable interfaces governed by nonlinear elasticity. Thus it enables us to simulate 'whole' blood suspensions flowing through physiologically realistic microvascular networks that are characterized by multiple bifurcating and merging vessels, as well as geometrically complex lab-on-chip devices. The focus of the present work is on the development of a versatile numerical technique that is able to consider deformable cells and rigid bodies flowing in three-dimensional arbitrarily complex geometries over a diverse range of scenarios. After describing the methodology, a series of validation studies are presented against analytical theory, experimental data, and previous numerical results. Then, the capability of the methodology is demonstrated by simulating flows of deformable blood cells and heterogeneous cell suspensions in both physiologically realistic microvascular networks and geometrically intricate microfluidic devices. It is shown that the methodology can predict several complex microhemodynamic phenomena observed in vascular networks and microfluidic devices. The present methodology is robust and versatile, and has the potential to scale up to very large microvascular networks at organ levels.
HL-20 computational fluid dynamics analysis
NASA Astrophysics Data System (ADS)
Weilmuenster, K. James; Greene, Francis A.
1993-09-01
The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.
HL-20 computational fluid dynamics analysis
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Greene, Francis A.
1993-01-01
The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.
Graphics supercomputer for computational fluid dynamics research
NASA Astrophysics Data System (ADS)
Liaw, Goang S.
1994-11-01
The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.
Visualization of unsteady computational fluid dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1994-01-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modeling.
Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B
2014-11-10
Following partial hepatectomy, the liver initiates a regenerative program involving hepatocyte priming and replication driven by coordinated cytokine and growth factor actions. We investigated the mechanisms underlying Adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn-/- mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn-/- mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to IL-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver. This article is protected by copyright. All rights reserved.
Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modelling.
Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B
2015-01-15
Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.
Impact of time delay on the dynamics of SEIR epidemic model using cellular automata
NASA Astrophysics Data System (ADS)
Sharma, Natasha; Gupta, Arvind Kumar
2017-04-01
The delay of an infectious disease is significant when aiming to predict its strength and spreading patterns. In this paper the SEIR (susceptible-exposed-infected-recovered) epidemic spread with time delay is analyzed through a two-dimensional cellular automata model. The time delay corresponding to the infectious span, predominantly, includes death during the latency period in due course of infection. The advancement of whole system is described by SEIR transition function complemented with crucial factors like inhomogeneous population distribution, birth and disease independent mortality. Moreover, to reflect more realistic population dynamics some stochastic parameters like population movement and connections at local level are also considered. The existence and stability of disease free equilibrium is investigated. Two prime behavioral patterns of disease dynamics is found depending on delay. The critical value of delay, beyond which there are notable variations in spread patterns, is computed. The influence of important parameters affecting the disease dynamics on basic reproduction number is also examined. The results obtained show that delay plays an affirmative role to control disease progression in an infected host.
Computational fluid dynamics in oil burner design
Butcher, T.A.
1997-09-01
In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.
Final Report Computational Analysis of Dynamical Systems
Guckenheimer, John
2012-05-08
This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.
Localization microscopy: mapping cellular dynamics with single molecules.
Nelson, A J; Hess, S T
2014-04-01
Resolution describes the smallest details within a sample that can be recovered by a microscope lens system. For optical microscopes detecting visible light, diffraction limits the resolution to ∼200-250 nm. In contrast, localization measures the position of an isolated object using its image. Single fluorescent molecules can be localized with an uncertainty of a few tens of nanometres, and in some cases less than one nanometre. Superresolution fluorescence localization microscopy (SRFLM) images and localizes fluorescent molecules in a sample. By controlling the visibility of the fluorescent molecules with light, it is possible to cause a sparse subset of the tags to fluoresce and be spatially separated from each other. A movie is acquired with a camera, capturing images of many sets of visible fluorescent tags over a period of time. The movie is then analysed by a computer whereby all of the single molecules are independently measured, and their positions are recorded. When the coordinates of a sufficient number of molecules are collected, an image can be rendered by plotting the coordinates of the localized molecules. The spatial resolution of these rendered images can be better than 20 nm, roughly an order of magnitude better than the diffraction limited resolution. The invention of SRFLM has led to an explosion of related techniques. Through the use of specialized optics, the fluorescent signal can be split into multiple detection channels. These channels can capture additional information such as colour (emission wavelength), orientation and three-dimensional position of the detected molecules. Measurement of the colour of the detected fluorescence can allow researchers to distinguish multiple types of fluorescent tags and to study the interaction between multiple molecules of interest. Three-dimensional imaging and determination of molecular orientations offer insight into structural organization of the sample. SRFLM is compatible with living samples and
Direct high-resolution label-free imaging of cellular nanostructure dynamics in living cells
NASA Astrophysics Data System (ADS)
Heo, Chaejeong; Lee, Sohee; Lee, Si Young; Jeong, Mun Seok; Lee, Young Hee; Suh, Minah
2013-06-01
We report the application of an optical microscope equipped with a high-resolution dark-field condenser for detecting dynamic responses of cellular nanostructures in real time. Our system provides an easy-to-use technique to visualize biological specimens without any staining. This system can visualize the dynamic behavior of nanospheres and nanofibers, such as F-actin, at the leading edges of adjacent neuronal cells. We confirmed that the nanofibers imaged with this high-resolution optical microscopic technique are F-actin by using fluorescence microscopy after immunostaining the F-actin of fixed cells. Furthermore, cellular dynamics are enhanced by applying noncontact electric field stimulation through a transparent graphene electric field stimulator. High-resolution label-free optical microscopy enables the visualization of nanofiber dynamics initiated by filopodial nanofiber contacts. In conclusion, our optical microscopy system allows the visualization of nanoscale cellular dynamics under various external stimuli in real time without specific staining.
Use of computer and cellular phone technology by older rural adults.
O'Brien, Tara Renee; Treiber, Frank; Jenkins, Carolyn; Mercier, Angela
2014-08-01
The objective of this study was to explore the use of computer and cellular phone technology among older adults living in the rural Appalachian region of North Carolina. A 21-item questionnaire on access to and use of computer and cellular phone technology was administered to 43 older adults, using dichotomous and frequency-rated questions. The sample was recruited from two rural senior centers in the Appalachian region of North Carolina. Forty percent of the participants earned $20 000 or less annually. The majority owned a cellular phone (79.9%), and nearly half had a desktop computer (44.2%). High-speed Internet coverage was the most frequent type (42%) of in-home coverage. This study provides insights into the needs and challenges of older rural Appalachians with regard to technology. Computer technology may be more accessible and have fewer barriers by older adults than other forms of technology. Future research should explore the levels of computer literacy of older adults.
Computationally Efficient Multiconfigurational Reactive Molecular Dynamics
Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.
2012-01-01
It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924
A cellular automata model of Ebola virus dynamics
NASA Astrophysics Data System (ADS)
Burkhead, Emily; Hawkins, Jane
2015-11-01
We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola virus (EBOV). We make substantial modifications to an existing SCA model used for HIV, introduced by others and studied by the authors. We give a rigorous analysis of the similarities between models due to the spread of virus and the typical immune response to it, and the differences which reflect the drastically different timing of the course of EBOV. We demonstrate output from the model and compare it with clinical data.
The brain dynamics of linguistic computation
Murphy, Elliot
2015-01-01
Neural oscillations at distinct frequencies are increasingly being related to a number of basic and higher cognitive faculties. Oscillations enable the construction of coherently organized neuronal assemblies through establishing transitory temporal correlations. By exploring the elementary operations of the language faculty—labeling, concatenation, cyclic transfer—alongside neural dynamics, a new model of linguistic computation is proposed. It is argued that the universality of language, and the true biological source of Universal Grammar, is not to be found purely in the genome as has long been suggested, but more specifically within the extraordinarily preserved nature of mammalian brain rhythms employed in the computation of linguistic structures. Computational-representational theories are used as a guide in investigating the neurobiological foundations of the human “cognome”—the set of computations performed by the nervous system—and new directions are suggested for how the dynamics of the brain (the “dynome”) operate and execute linguistic operations. The extent to which brain rhythms are the suitable neuronal processes which can capture the computational properties of the human language faculty is considered against a backdrop of existing cartographic research into the localization of linguistic interpretation. Particular focus is placed on labeling, the operation elsewhere argued to be species-specific. A Basic Label model of the human cognome-dynome is proposed, leading to clear, causally-addressable empirical predictions, to be investigated by a suggested research program, Dynamic Cognomics. In addition, a distinction between minimal and maximal degrees of explanation is introduced to differentiate between the depth of analysis provided by cartographic, rhythmic, neurochemical, and other approaches to computation. PMID:26528201
Visualization of unsteady computational fluid dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1995-01-01
The current computing environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array) provide the required computation bandwidth for CFD calculations of transient problems. Work is in progress on a set of software tools designed specifically to address visualizing 3D unsteady CFD results in these super-computer-like environments. The visualization is concurrently executed with the CFD solver. The parallel version of Visual3, pV3 required splitting up the unsteady visualization task to allow execution across a network of workstation(s) and compute servers. In this computing model, the network is almost always the bottleneck so much of the effort involved techniques to reduce the size of the data transferred between machines.
Computational fluid dynamics using CATIA created geometry
NASA Astrophysics Data System (ADS)
Gengler, Jeanne E.
1989-07-01
A method has been developed to link the geometry definition residing on a CAD/CAM system with a computational fluid dynamics (CFD) tool needed to evaluate aerodynamic designs and requiring the memory capacity of a supercomputer. Requirements for surfaces suitable for CFD analysis are discussed. Techniques for developing surfaces and verifying their smoothness are compared, showing the capability of the CAD/CAM system. The utilization of a CAD/CAM system to create a computational mesh is explained, and the mesh interaction with the geometry and input file preparation for the CFD analysis is discussed.
The use of computers for instruction in fluid dynamics
NASA Technical Reports Server (NTRS)
Watson, Val
1987-01-01
Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.
Spectral Methods for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zang, T. A.; Streett, C. L.; Hussaini, M. Y.
1994-01-01
As a tool for large-scale computations in fluid dynamics, spectral methods were prophesized in 1944, born in 1954, virtually buried in the mid-1960's, resurrected in 1969, evangalized in the 1970's, and catholicized in the 1980's. The use of spectral methods for meteorological problems was proposed by Blinova in 1944 and the first numerical computations were conducted by Silberman (1954). By the early 1960's computers had achieved sufficient power to permit calculations with hundreds of degrees of freedom. For problems of this size the traditional way of computing the nonlinear terms in spectral methods was expensive compared with finite-difference methods. Consequently, spectral methods fell out of favor. The expense of computing nonlinear terms remained a severe drawback until Orszag (1969) and Eliasen, Machenauer, and Rasmussen (1970) developed the transform methods that still form the backbone of many large-scale spectral computations. The original proselytes of spectral methods were meteorologists involved in global weather modeling and fluid dynamicists investigating isotropic turbulence. The converts who were inspired by the successes of these pioneers remained, for the most part, confined to these and closely related fields throughout the 1970's. During that decade spectral methods appeared to be well-suited only for problems governed by ordinary diSerential eqllations or by partial differential equations with periodic boundary conditions. And, of course, the solution itself needed to be smooth. Some of the obstacles to wider application of spectral methods were: (1) poor resolution of discontinuous solutions; (2) inefficient implementation of implicit methods; and (3) drastic geometric constraints. All of these barriers have undergone some erosion during the 1980's, particularly the latter two. As a result, the applicability and appeal of spectral methods for computational fluid dynamics has broadened considerably. The motivation for the use of spectral
NASA Astrophysics Data System (ADS)
Kawamura, Kohei; Ueno, Yosuke; Nakamura, Yoshiaki
In the present study we have developed a numerical method to simulate the flight dynamics of a small flying body with unsteady motion, where both aerodynamics and flight dynamics are fully considered. A key point of this numerical code is to use computational fluid dynamics and computational flight dynamics at the same time, which is referred to as CFD2, or double CFDs, where several new ideas are adopted in the governing equations, the method to make each quantity nondimensional, and the coupling method between aerodynamics and flight dynamics. This numerical code can be applied to simulate the unsteady motion of small vehicles such as micro air vehicles (MAV). As a sample calculation, we take up Taketombo, or a bamboo dragonfly, and its free flight in the air is demonstrated. The eventual aim of this research is to virtually fly an aircraft with arbitrary motion to obtain aerodynamic and flight dynamic data, which cannot be taken in the conventional wind tunnel.
Phenomenological study of a cellular material behaviour under dynamic loadings
NASA Astrophysics Data System (ADS)
Bouix, R.; Viot, Ph.; Lataillade, J.-L.
2006-08-01
Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.
Computation in Dynamically Bounded Asymmetric Systems
Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney
2015-01-01
Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645
A computational model for dynamic vision
NASA Technical Reports Server (NTRS)
Moezzi, Saied; Weymouth, Terry E.
1990-01-01
This paper describes a novel computational model for dynamic vision which promises to be both powerful and robust. Furthermore the paradigm is ideal for an active vision system where camera vergence changes dynamically. Its basis is the retinotopically indexed object-centered encoding of the early visual information. Specifically, the relative distances of objects to a set of referents is encoded in image registered maps. To illustrate the efficacy of the method, it is applied to the problem of dynamic stereo vision. Integration of depth information over multiple frames obtained by a moving robot generally requires precise information about the relative camera position from frame to frame. Usually, this information can only be approximated. The method facilitates the integration of depth information without direct use or knowledge of camera motion.
Arterioportal shunts on dynamic computed tomography
Nakayama, T.; Hiyama, Y.; Ohnishi, K.; Tsuchiya, S.; Kohno, K.; Nakajima, Y.; Okuda, K.
1983-05-01
Thirty-two patients, 20 with hepatocelluar carcinoma and 12 with liver cirrhosis, were examined by dynamic computed tomography (CT) using intravenous bolus injection of contrast medium and by celiac angiography. Dynamic CT disclosed arterioportal shunting in four cases of hepatocellular carcinoma and in one of cirrhosis. In three of the former, the arterioportal shunt was adjacent to a mass lesion on CT, suggesting tumor invasion into the portal branch. In one with hepatocellular carcinoma, the shunt was remote from the mass. In the case with cirrhosis, there was no mass. In these last two cases, the shunt might have been caused by prior percutaneous needle puncture. In another case of hepatocellular carcinoma, celiac angiography but not CT demonstrated an arterioportal shunt. Thus, dynamic CT was diagnostic in five of six cases of arteriographically demonstrated arterioportal shunts.
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
Dynamical modeling and analysis of large cellular regulatory networks
NASA Astrophysics Data System (ADS)
Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.
2013-06-01
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration
McCampbell, Kristen K.; Springer, Kristin N.; Wingert, Rebecca A.
2015-01-01
The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration. PMID:26089919
Computational Fluid Dynamics of rising droplets
Wagner, Matthew; Francois, Marianne M.
2012-09-05
The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.
Cellular Automata as a Computational Model for Low-Level Vision
NASA Astrophysics Data System (ADS)
Broggi, Alberto; D'Andrea, Vincenzo; Destri, Giulio
In this paper we discuss the use of the Cellular Automata (CA) computational model in computer vision applications on massively parallel architectures. Motivations and guidelines of this approach to low-level vision in the frame of the PROMETHEUS project are discussed. The hard real-time requirement of actual application can be only satisfied using an ad hoc VLSI massively parallel architecture (PAPRICA). The hardware solutions and the specific algorithms can be efficiently verified and tested only using, as a simulator, a general purpose machine with a parent architecture (CM-2). An example of application related to feature extraction is discussed.
Cell adhesion: integrating cytoskeletal dynamics and cellular tension
Parsons, J. Thomas; Horwitz, Alan Rick; Schwartz, Martin A.
2010-01-01
Cell migration affects all morphogenetic processes and contributes to numerous diseases, including cancer and cardiovascular disease. For most cells in most environments, movement begins with protrusion of the cell membrane followed by the formation of new adhesions at the cell front that link the actin cytoskeleton to the substratum, generation of traction forces that move the cell forwards and disassembly of adhesions at the cell rear. Adhesion formation and disassembly drive the migration cycle by activating Rho GTPases, which in turn regulate actin polymerization and myosin II activity, and therefore adhesion dynamics. PMID:20729930
Cellular Transport and Membrane Dynamics of the Glycine Receptor
Dumoulin, Andrea; Triller, Antoine; Kneussel, Matthias
2009-01-01
Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR) trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review (i) proteins and mechanisms involved in GlyR cytoskeletal transport, (ii) the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and (iii) adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism. PMID:20161805
Stochasticity and universal dynamics in communicating cellular populations
NASA Astrophysics Data System (ADS)
Noorbakhsh, Javad; Mehta, Pankaj; Allyson Sgro Collaboration; David Schwab Collaboration; Troy Mestler Collaboration; Thomas Gregor Collaboration
2014-03-01
A fundamental problem in biology is to understand how biochemical networks within individual cells coordinate and control population-level behaviors. Our knowledge of these biochemical networks is often incomplete, with little known about the underlying kinetic parameters. Here, we present a general modeling approach for overcoming these challenges based on universality. We apply our approach to study the emergence of collective oscillations of the signaling molecule cAMP in populations of the social amoebae Dictyostelium discoideum and show that a simple two-dimensional dynamical system can reproduce signaling dynamics of single cells and successfully predict novel population-level behaviors. We reduce all the important parameters of our model to only two and will study its behavior through a phase diagram. This phase diagram determines conditions under which cells are quiet or oscillating either coherently or incoherently. Furthermore it allows us to study the effect of different model components such as stochasticity, multicellularity and signal preprocessing. A central finding of our model is that Dictyostelium exploit stochasticity within biochemical networks to control population level behaviors.
Computational stability analysis of dynamical systems
NASA Astrophysics Data System (ADS)
Nikishkov, Yuri Gennadievich
2000-10-01
Due to increased available computer power, the analysis of nonlinear flexible multi-body systems, fixed-wing aircraft and rotary-wing vehicles is relying on increasingly complex, large scale models. An important aspect of the dynamic response of flexible multi-body systems is the potential presence of instabilities. Stability analysis is typically performed on simplified models with the smallest number of degrees of freedom required to capture the physical phenomena that cause the instability. The system stability boundaries are then evaluated using the characteristic exponent method or Floquet theory for systems with constant or periodic coefficients, respectively. As the number of degrees of freedom used to represent the system increases, these methods become increasingly cumbersome, and quickly unmanageable. In this work, a novel approach is proposed, the Implicit Floquet Analysis, which evaluates the largest eigenvalues of the transition matrix using the Arnoldi algorithm, without the explicit computation of this matrix. This method is far more computationally efficient than the classical approach and is ideally suited for systems involving a large number of degrees of freedom. The proposed approach is conveniently implemented as a postprocessing step to any existing simulation tool. The application of the method to a geometrically nonlinear multi-body dynamics code is presented. This work also focuses on the implementation of trimming algorithms and the development of tools for the graphical representation of numerical simulations and stability information for multi-body systems.
Logical Modeling and Dynamical Analysis of Cellular Networks
Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine
2016-01-01
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle. PMID:27303434
The evolution of cellular computing: nature's solution to a computational problem.
Landweber, L F; Kari, L
1999-10-01
How do cells and nature 'compute'? They read and 'rewrite' DNA all the time, by processes that modify sequences at the DNA or RNA level. In 1994, Adleman's elegant solution to a seven-city directed Hamiltonian path problem using DNA launched the new field of DNA computing, which in a few years has grown to international scope. However, unknown to this field, two ciliated protozoans of the genus Oxytricha had solved a potentially harder problem using DNA several million years earlier. The solution to this problem, which occurs during the process of gene unscrambling, represents one of nature's ingenious solutions to the problem of the creation of genes. RNA editing, which can also be viewed as a computational process, offers a second algorithm for the construction of functional genes from encrypted pieces of the genome.
Imaging cellular dynamics in vivo with multicolor fluorescent proteins
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.
2005-04-01
The new field of in vivo cell biology is being developed with multi-colored fluorescent proteins. With the use of fluorescent proteins, the behavior of individual cells can be visualized in the living animal. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of the tumor-stroma cell-cell interaction especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts and macrophages. Another example is the color-coding of cells with RFP or GFP such that both cell types and their interaction can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo with fluorescent proteins. Mice, in which the regulatory elements of the stem-cell marker nestin drive GFP expression, can be used to visualize hair follicle stem cells including their ability to form hair follicles as well as blood vessels. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Dual-color cells also enable the in vivo imaging of cell and nuclear deformation as well as trafficking in capillaries in living animals. Multiple-color labeling of cells will enable multiple events to be simultaneously visualized in vivo including cell-cell interaction, gene expression, ion fluxes, protein and organelle trafficking, chromosome dynamics and numerous other processes currently still studied in vitro.
Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob
2016-01-01
Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518
Computational fluid dynamics in cardiovascular disease.
Lee, Byoung-Kwon
2011-08-01
Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and
Shuttle rocket booster computational fluid dynamics
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.
Computational fluid dynamics: Transition to design applications
NASA Technical Reports Server (NTRS)
Bradley, R. G.; Bhateley, I. C.; Howell, G. A.
1987-01-01
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.
Verification of computer users using keystroke dynamics.
Obaidat, M S; Sadoun, B
1997-01-01
This paper presents techniques to verify the identity of computer users using the keystroke dynamics of computer user's login string as characteristic patterns using pattern recognition and neural network techniques. This work is a continuation of our previous work where only interkey times were used as features for identifying computer users. In this work we used the key hold times for classification and then compared the performance with the former interkey time-based technique. Then we use the combined interkey and hold times for the identification process. We applied several neural network and pattern recognition algorithms for verifying computer users as they type their password phrases. It was found that hold times are more effective than interkey times and the best identification performance was achieved by using both time measurements. An identification accuracy of 100% was achieved when the combined hold and intekey time-based approach were considered as features using the fuzzy ARTMAP, radial basis function networks (RBFN), and learning vector quantization (LVQ) neural network paradigms. Other neural network and classical pattern algorithms such as backpropagation with a sigmoid transfer function (BP, Sigm), hybrid sum-of-products (HSOP), sum-of-products (SOP), potential function and Bayes' rule algorithms gave moderate performance.
Domain decomposition algorithms and computational fluid dynamics
NASA Technical Reports Server (NTRS)
Chan, Tony F.
1988-01-01
Some of the new domain decomposition algorithms are applied to two model problems in computational fluid dynamics: the two-dimensional convection-diffusion problem and the incompressible driven cavity flow problem. First, a brief introduction to the various approaches of domain decomposition is given, and a survey of domain decomposition preconditioners for the operator on the interface separating the subdomains is then presented. For the convection-diffusion problem, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is examined.
Efficient quantum computing of complex dynamics.
Benenti, G; Casati, G; Montangero, S; Shepelyansky, D L
2001-11-26
We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more significant than the errors of random noise in gate operations.
Computational Fluid Dynamics Symposium on Aeropropulsion
NASA Technical Reports Server (NTRS)
1991-01-01
Recognizing the considerable advances that have been made in computational fluid dynamics, the Internal Fluid Mechanics Division of NASA Lewis Research Center sponsored this symposium with the objective of providing a forum for exchanging information regarding recent developments in numerical methods, physical and chemical modeling, and applications. This conference publication is a compilation of 4 invited and 34 contributed papers presented in six sessions: algorithms one and two, turbomachinery, turbulence, components application, and combustors. Topics include numerical methods, grid generation, chemically reacting flows, turbulence modeling, inlets, nozzles, and unsteady flows.
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
Cellular dynamics of the negative transcription elongation factor NELF
Yung, Tetsu M.C.; Narita, Takashi; Komori, Toshiharu; Yamaguchi, Yuki; Handa, Hiroshi
2009-06-10
Negative Elongation Factor (NELF) is a transcription factor discovered based on its biochemical activity to suppress transcription elongation, and has since been implicated in various diseases ranging from neurological disorders to cancer. Besides its role in promoter-proximal pausing of RNA polymerase II during early stages of transcription, recently we found that it also plays important roles in the 3'-end processing of histone mRNA. Furthermore, NELF has been found to form a distinct subnuclear structure, which we named NELF bodies. These recent developments point to a wide range of potential functions for NELF, and, as most studies on NELF thus far had been carried out in vitro, here, we prepared a complete set of fusion protein constructs of NELF subunits and carried out a general cell biological study of the intracellular dynamics of NELF. Our data show that NELF subunits exhibit highly specific subcellular localizations, such as in NELF bodies or in midbodies, and some shuttle actively between the nucleus and cytoplasm. We further show that loss of NELF from cells can lead to enlarged and/or multiple nuclei. This work serves as a foundation and starting point for further cell biological investigations of NELF in the future.
Direct modeling for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne -Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-02-01
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.
Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...
2014-02-01
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less
Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes
2004-01-01
14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810
Computational energetic model of morphogenesis based on multi-agent Cellular Potts Model.
Tripodi, Sébastien; Ballet, Pascal; Rodin, Vincent
2010-01-01
The Cellular Potts Model (CPM) is a cellular automaton (CA), developed by Glazier and Graner in 1992, to model the morphogenesis. In this model, the entities are the cells. It has already been improved in many ways; however, a key point in biological systems, not defined in CPM, is energetic exchange between entities. We integrate this energetic concept inside the CPM. We simulate a cell differentiation inside a growing cell tissue. The results are the emergence of dynamic patterns coming from the consumption and production of energy. A model described by CA is less scalable than one described by a multi-agent system (MAS). We have developed a MAS based on the CPM, where a cell agent is implemented from the cell of CPM together with several behaviours, in particular the consumption and production of energy from the consumption of molecules.
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS
We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...
Visualization of Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient
Computational fluid dynamics in coronary artery disease.
Sun, Zhonghua; Xu, Lei
2014-12-01
Computational fluid dynamics (CFD) is a widely used method in mechanical engineering to solve complex problems by analysing fluid flow, heat transfer, and associated phenomena by using computer simulations. In recent years, CFD has been increasingly used in biomedical research of coronary artery disease because of its high performance hardware and software. CFD techniques have been applied to study cardiovascular haemodynamics through simulation tools to predict the behaviour of circulatory blood flow in the human body. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of coronary artery geometry, thus, identifying risk factors for development and progression of coronary artery disease. This review aims to provide an overview of the CFD applications in coronary artery disease, including biomechanics of atherosclerotic plaques, plaque progression and rupture; regional haemodynamics relative to plaque location and composition. A critical appraisal is given to a more recently developed application, fractional flow reserve based on CFD computation with regard to its diagnostic accuracy in the detection of haemodynamically significant coronary artery disease.
Image Segmentation Based on Learning Cellular Automata Using Soft Computing Approach
NASA Astrophysics Data System (ADS)
Das, Debasis; Ray, Abhishek
2010-10-01
Image Segmentation refers to the process of partitioning a digital image into multiple segments. The goal of segmentation is to simplify and change the representation of an image into something that is more meaningful and easier to analyze. A Cellular Automata (CA) is a computing model of complex system using simple rule. It divides the problem space into number of cells and each cell can be in one or several final states. Cells are affected by its neighbor's to the simple rule. Learning Cellular Automata (LCA) is a variant of automata that interact with random environment having as goal to improve its behavior. This paper proposes an image segmentation technique based on LCA using soft computing approach. This proposed method works in two steps, the first step is called as soft segmentation where the input image(s) is/are analyzed through LCA and the second step is called as soft computing approach where the analyzed image is segmented through fuzzy C-means algorithm.
Heijman, Jordi; Erfanian Abdoust, Pegah; Voigt, Niels; Nattel, Stanley; Dobrev, Dobromir
2016-02-01
The complexity of the heart makes an intuitive understanding of the relative contribution of ion channels, transporters and signalling pathways to cardiac electrophysiology challenging. Computational modelling of cardiac cellular electrophysiology has proven useful to integrate experimental findings, extrapolate results obtained in expression systems or animal models to other systems, test quantitatively ideas based on experimental data and provide novel hypotheses that are experimentally testable. While the bulk of computational modelling has traditionally been directed towards ventricular bioelectricity, increasing recognition of the clinical importance of atrial arrhythmias, particularly atrial fibrillation, has led to widespread efforts to apply computational approaches to understanding atrial electrical function. The increasing availability of detailed, atrial-specific experimental data has stimulated the development of novel computational models of atrial-cellular electrophysiology and Ca(2+) handling. To date, more than 300 studies have employed mathematical simulations to enhance our understanding of atrial electrophysiology, arrhythmogenesis and therapeutic responses. Future modelling studies are likely to move beyond current whole-cell models by incorporating new data on subcellular architecture, macromolecular protein complexes, and localized ion-channel regulation by signalling pathways. At the same time, more integrative multicellular models that take into account regional electrophysiological and Ca(2+) handling properties, mechano-electrical feedback and/or autonomic regulation will be needed to investigate the mechanisms governing atrial arrhythmias. A combined experimental and computational approach is expected to provide the more comprehensive understanding of atrial arrhythmogenesis that is required to develop improved diagnostic and therapeutic options. Here, we review this rapidly expanding area, with a particular focus on Ca(2+) handling, and
Dynamic stress-strain states for metal foams using a 3D cellular model
NASA Astrophysics Data System (ADS)
Zheng, Zhijun; Wang, Changfeng; Yu, Jilin; Reid, Stephen R.; Harrigan, John J.
2014-12-01
Dynamic uniaxial impact behaviour of metal foams using a 3D cell-based finite element model is examined. At sufficiently high loading rates, these materials respond by forming ‘shock or consolidation waves' (Tan et al., 2005a, 2005b). However, the existing dynamic experimental methods have limitations in fully informing this behaviour, particularly for solving boundary/initial value problems. Recently, the problem of the shock-like response of an open-cell foam has been examined by Barnes et al. (2014) using the Hugoniot-curve representations. The present study is somewhat complementary to that approach and additionally aims to provide insight into the ‘rate sensitivity' mechanism applicable to cellular materials. To assist our understanding of the ‘loading rate sensitivity' behaviour of cellular materials, a virtual ‘test' method based on the direct impact technique is explored. Following a continuum representation of the response, the strain field calculation method is employed to determine the local strains ahead of and behind the resulting ‘shock front'. The dynamic stress-strain states in the densification stage are found to be different from the quasi-static ones. It is evident that the constitutive behaviour of the cellular material is deformation-mode dependent. The nature of the ‘rate sensitivity' revealed for cellular materials in this paper is different from the strain-rate sensitivity of dense metals. It is shown that the dynamic stress-strain states behind a shock front of the cellular material lie on a unique curve and each point on the curve corresponds to a particular ‘impact velocity', referred as the velocity upstream of the shock in this study. The dynamic stress-strain curve is related to a layer-wise collapse mode, whilst the equivalent quasi-static curve is related to a random shear band collapse mode. The findings herein are aimed at improving the experimental test techniques used to characterise the rate-sensitivity behaviour
Dynamics of the Multiplicity of Cellular Infection in a Plant Virus
Gutiérrez, Serafín; Monsion, Baptiste; Michalakis, Yannis; Blanc, Stéphane
2010-01-01
Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host. PMID:20862320
Baroux, Célia; Autran, Daphné
2015-07-01
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.
A mathematical model to study the dynamics of epithelial cellular networks.
Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D; Tomlin, Claire J
2012-01-01
Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution, we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction).
Domain decomposition methods in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Gropp, William D.; Keyes, David E.
1991-01-01
The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.
Sawfishes stealth revealed using computational fluid dynamics.
Bradney, D R; Davidson, A; Evans, S P; Wueringer, B E; Morgan, D L; Clausen, P D
2017-02-27
Detailed computational fluid dynamics simulations for the rostrum of three species of sawfish (Pristidae) revealed that negligible turbulent flow is generated from all rostra during lateral swipe prey manipulation and swimming. These results suggest that sawfishes are effective stealth hunters that may not be detected by their teleost prey's lateral line sensory system during pursuits. Moreover, during lateral swipes, the rostra were found to induce little velocity into the surrounding fluid. Consistent with previous data of sawfish feeding behaviour, these data indicate that the rostrum is therefore unlikely to be used to stir up the bottom to uncover benthic prey. Whilst swimming with the rostrum inclined at a small angle to the horizontal, the coefficient of drag of the rostrum is relatively low and the coefficient of lift is zero.
Lectures series in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Thompson, Kevin W.
1987-01-01
The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.
A perspective of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Kutler, P.
1986-01-01
Computational fluid dynamics (CFD) is maturing, and is at a stage in its technological life cycle in which it is now routinely applied to some rather complicated problems; it is starting to create an impact on the design cycle of aerospace flight vehicles and their components. CFD is also being used to better understand the fluid physics of flows heretofore not understood, such as three-dimensional separation. CFD is also being used to complement and is being complemented by experiments. In this paper, the primary and secondary pacing items that govern CFD in the past are reviewed and updated. The future prospects of CFD are explored which will offer people working in the discipline challenges that should extend the technological life cycle to further increase the capabilities of a proven demonstrated technology.
Domain decomposition algorithms and computation fluid dynamics
NASA Technical Reports Server (NTRS)
Chan, Tony F.
1988-01-01
In the past several years, domain decomposition was a very popular topic, partly motivated by the potential of parallelization. While a large body of theory and algorithms were developed for model elliptic problems, they are only recently starting to be tested on realistic applications. The application of some of these methods to two model problems in computational fluid dynamics are investigated. Some examples are two dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution is described. For the convection-diffusion problems, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is discussed.
Protein Dynamics from NMR and Computer Simulation
NASA Astrophysics Data System (ADS)
Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn
2002-03-01
Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).
Artificial Intelligence In Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
Computational modeling of intraocular gas dynamics
NASA Astrophysics Data System (ADS)
Noohi, P.; Abdekhodaie, M. J.; Cheng, Y. L.
2015-12-01
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency.
Computational modeling of intraocular gas dynamics.
Noohi, P; Abdekhodaie, M J; Cheng, Y L
2015-12-18
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency.
NASA Astrophysics Data System (ADS)
Sliozberg, Yelena R.; Chantawansri, Tanya L.
2016-05-01
To elucidate the mechanism of ion transport through a transmembrane pore, all-atom molecular dynamics simulations were employed. A model membrane where a pore connects the intra- and extra-cellular compartment was considered. Pores with radii of 1.5 nm or less exhibited resealing over the course of 135 ns simulations, and ionic disturbance is minimal. Ion transport through a larger pore (2 nm radius) leads to a substantial change in the intra- and extra-cellular ionic concentrations. The influx of Na+ and Cl- ions down their concentration gradients is greater than the efflux of K+ leading to an osmotic influx of water.
Computational Fluid Dynamics - Applications in Manufacturing Processes
NASA Astrophysics Data System (ADS)
Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance
2012-11-01
A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
Nonlinear ship waves and computational fluid dynamics.
Miyata, Hideaki; Orihara, Hideo; Sato, Yohei
2014-01-01
Research works undertaken in the first author's laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship's motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process.
Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models
The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...
Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.
2013-01-01
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.
Dynamics of cellular immune responses in the acute phase of dengue virus infection.
Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi
2013-06-01
In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.
Computational fluid dynamics modelling in cardiovascular medicine
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
Stochastic modeling for dynamics of HIV-1 infection using cellular automata: A review.
Precharattana, Monamorn
2016-02-01
Recently, the description of immune response by discrete models has emerged to play an important role to study the problems in the area of human immunodeficiency virus type 1 (HIV-1) infection, leading to AIDS. As infection of target immune cells by HIV-1 mainly takes place in the lymphoid tissue, cellular automata (CA) models thus represent a significant step in understanding when the infected population is dispersed. Motivated by these, the studies of the dynamics of HIV-1 infection using CA in memory have been presented to recognize how CA have been developed for HIV-1 dynamics, which issues have been studied already and which issues still are objectives in future studies.
Zhao, Yuchao; Conolly, Rory B; Andersen, Melvin E.
2006-11-21
This report describes the development of a computational systems biology approach to evaluate the hypotheses of molecular and cellular mechanisms of adaptive response to low dose ionizing radiation. Our concept is that computational models of signaling pathways can be developed and linked to biologically based dose response models to evaluate the underlying molecular mechanisms which lead to adaptive response. For development of quantitatively accurate, predictive models, it will be necessary to describe tissues consisting of multiple cell types where the different types each contribute in their own way to the overall function of the tissue. Such a model will probably need to incorporate not only cell type-specific data but also spatial information on the architecture of the tissue and on intercellular signaling. The scope of the current model was more limited. Data obtained in a number of different biological systems were synthesized to describe a chimeric, “average” population cell. Biochemical signaling pathways involved in sensing of DNA damage and in the activation of cell cycle checkpoint controls and the apoptotic path were also included. As with any computational modeling effort, it was necessary to develop these simplified initial descriptions (models) that can be iteratively refined. This preliminary model is a starting point which, with time, can evolve to a level of refinement where large amounts of detailed biological information are synthesized and a capability for robust predictions of dose- and time-response behaviors is obtained.
Dynamical Properties of Polymers: Computational Modeling
CURRO, JOHN G.; ROTTACH, DANA; MCCOY, JOHN D.
2001-01-01
The free volume distribution has been a qualitatively useful concept by which dynamical properties of polymers, such as the penetrant diffusion constant, viscosity, and glass transition temperature, could be correlated with static properties. In an effort to put this on a more quantitative footing, we define the free volume distribution as the probability of finding a spherical cavity of radius R in a polymer liquid. This is identical to the insertion probability in scaled particle theory, and is related to the chemical potential of hard spheres of radius R in a polymer in the Henry's law limit. We used the Polymer Reference Interaction Site Model (PRISM) theory to compute the free volume distribution of semiflexible polymer melts as a function of chain stiffness. Good agreement was found with the corresponding free volume distributions obtained from MD simulations. Surprisingly, the free volume distribution was insensitive to the chain stiffness, even though the single chain structure and the intermolecular pair correlation functions showed a strong dependence on chain stiffness. We also calculated the free volume distributions of polyisobutylene (PIB) and polyethylene (PE) at 298K and at elevated temperatures from PRISM theory. We found that PIB has more of its free volume distributed in smaller size cavities than for PE at the same temperature.
Computational social dynamic modeling of group recruitment.
Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken; Smrcka, Julianne D.; Ko, Teresa H.; Moy, Timothy David; Wu, Benjamin C.
2004-01-01
The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.
Computing cellular automata spectra under fixed boundary conditions via limit graphs
NASA Astrophysics Data System (ADS)
Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.
2016-01-01
Cellular automata are fully discrete complex systems with parallel and homogeneous behavior studied both from the theoretical and modeling viewpoints. The limit behaviors of such systems are of particular interest, as they give insight into their emerging properties. One possible approach to investigate such limit behaviors is the analysis of the growth of graphs describing the finite time behavior of a rule in order to infer its limit behavior. Another possibility is to study the Fourier spectrum describing the average limit configurations obtained by a rule. While the former approach gives the characterization of the limit configurations of a rule, the latter yields a qualitative and quantitative characterisation of how often particular blocks of states are present in these limit configurations. Since both approaches are closely related, it is tempting to use one to obtain information about the other. Here, limit graphs are automatically adjusted by configurations directly generated by their respective rules, and use the graphs to compute the spectra of their rules. We rely on a set of elementary cellular automata rules, on lattices with fixed boundary condition, and show that our approach is a more reliable alternative to a previously described method from the literature.
Baroux, Célia; Autran, Daphné
2015-01-01
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells – precursors of the plant reproductive lineage – are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions. PMID:26031902
Integrated computer simulation on FIR FEL dynamics
Furukawa, H.; Kuruma, S.; Imasaki, K.
1995-12-31
An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.
Dynamic leaching test of personal computer components.
Li, Yadong; Richardson, Jay B; Niu, Xiaojun; Jackson, Ollie J; Laster, Jeremy D; Walker, Aaron K
2009-11-15
A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains.
Forest, Loïc; Demongeot, Jacques
2008-06-01
Morphogenesis is a key process in developmental biology. An important issue is the understanding of the generation of shape and cellular organisation in tissues. Despite of their great diversity, morphogenetic processes share common features. This work is an attempt to describe this diversity using the same formalism based on a cellular description. Tissue is seen as a multi-cellular system whose behaviour is the result of all constitutive cells dynamics. Morphogenesis is then considered as a spatiotemporal organization of cells activities. We show how this formalism relies on Reaction-Diffusion/Positional Information approach and how it permits to generalize its modelling possibilities. Three quite different applications for concrete morphogenetic processes are presented. The first one is a model for epithelial invagination, the second is a model of cellular differentiation by local cell-cell signalling. The last example is the secondary radial growth of conifer trees. From the mathematical point of view, different modelling tools are used according to the specificity of each process.
Nimeth, Katharina Theresia; Egger, Bernhard; Rieger, Reinhard; Salvenmoser, Willi; Peter, Roland; Gschwentner, Robert
2007-03-01
Neoblasts are potentially totipotent stem cells and the only proliferating cells in adult Platyhelminthes. We have examined the cellular dynamics of neoblasts during the posterior regeneration of Macrostomum lignano. Double-labeling of neoblasts with bromodeoxyuridine and the anti-phospho histone H3 mitosis marker has revealed a complex cellular response in the first 48 h after amputation; this response is different from that known to occur during regeneration in triclad platyhelminths and in starvation/feeding experiments in M. lignano. Mitotic activity is reduced during the first 8 h of regeneration but, at 48 h after amputation, reaches almost twice the value of control animals. The total number of S-phase cells significantly increases after 1 day of regeneration. A subpopulation of fast-cycling neoblasts surprisingly shows the same dynamics during regeneration as those in control animals. Wound healing and regeneration are accompanied by the formation of a distinct blastema. These results present new insights, at the cellular level, into the early regeneration of rhabditophoran Platyhelminthes.
Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics.
Albrecht, Dirk R; Underhill, Gregory H; Resnikoff, Joshua; Mendelson, Avital; Bhatia, Sangeeta N; Shah, Jagesh V
2010-06-01
An understanding of the mechanisms regulating cellular responses has recently been augmented by innovations enabling the observation of phenotypes at high spatio-temporal resolution. Technologies such as microfluidics have sought to expand the throughput of these methods, although assimilation with advanced imaging strategies has been limited. Here, we describe the pairing of high resolution time-lapse imaging with microfluidic multiplexing for the analysis of cellular dynamics, utilizing a design selected for facile fabrication and operation, and integration with microscopy instrumentation. This modular, medium-throughput platform enables the long-term imaging of living cells at high numerical aperture (via oil immersion) by using a conserved 96-well, approximately 6 x 5 mm(2) imaging area with a variable input/output channel design chosen for the number of cell types and microenvironments under investigation. In the validation of this system, we examined fundamental features of cell cycle progression, including mitotic kinetics and spindle orientation dynamics, through the high-resolution parallel analysis of model cell lines subjected to anti-mitotic agents. We additionally explored the self-renewal kinetics of mouse embryonic stem cells, and demonstrate the ability to dynamically assess and manipulate stem cell proliferation, detect rare cell events, and measure extended time-scale correlations. We achieved an experimental throughput of >900 cells/experiment, each observed at >40x magnification for up to 120 h. Overall, these studies illustrate the capacity to probe cellular functions and yield dynamic information in time and space through the integration of a simple, modular, microfluidics-based imaging platform.
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2012-11-01
Excitable cellular automata with dynamical excitation interval exhibit a wide range of space-time dynamics based on an interplay between propagating excitation patterns which modify excitability of the automaton cells. Such interactions leads to formation of standing domains of excitation, stationary waves and localized excitations. We analyzed morphological and generative diversities of the functions studied and characterized the functions with highest values of the diversities. Amongst other intriguing discoveries we found that upper boundary of excitation interval more significantly affects morphological diversity of configurations generated than lower boundary of the interval does and there is no match between functions which produce configurations of excitation with highest morphological diversity and configurations of interval boundaries with highest morphological diversity. Potential directions of future studies of excitable media with dynamically changing excitability may focus on relations of the automaton model with living excitable media, e.g. neural tissue and muscles, novel materials with memristive properties and networks of conductive polymers.
Molecular modeling of the conformational dynamics of the cellular prion protein
NASA Astrophysics Data System (ADS)
Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia
2014-03-01
Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.
Synchrotron-based X-ray computed tomography during compression loading of cellular materials
Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.
2015-04-29
Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.
Synchrotron-based X-ray computed tomography during compression loading of cellular materials
Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; ...
2015-04-29
Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.
NASA Astrophysics Data System (ADS)
Lazo, M. J.; Ferreira, A. A.; Alcaraz, F. C.
2015-11-01
We obtained the exact solution of a probabilistic cellular automaton related to the diagonal-to-diagonal transfer matrix of the six-vertex model on a square lattice. The model describes the flow of ants (or particles), traveling on a one-dimensional lattice whose sites are small craters containing sleeping or awake ants (two kinds of particles). We found the Bethe ansatz equations and the spectral gap for the time-evolution operator of the cellular automaton. From the spectral gap we show that in the asymmetric case it belongs to the Kardar-Parisi-Zhang (KPZ) universality class, exhibiting a dynamical critical exponent value z = 3/2. This result is also obtained from a direct Monte Carlo simulation, by evaluating the lattice-size dependence of the decay time to the stationary state.
Generation and precise control of dynamic biochemical gradients for cellular assays
NASA Astrophysics Data System (ADS)
Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.
2017-03-01
Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.
Computational study on cortical spreading depression based on a generalized cellular automaton model
NASA Astrophysics Data System (ADS)
Chen, Shangbin; Hu, Lele; Li, Bing; Xu, Changcheng; Liu, Qian
2009-02-01
Cortical spreading depression (CSD) is an important neurophysiological phenomenon correlating with some neural disorders, such as migraine, cerebral ischemia and epilepsy. By now, we are still not clear about the mechanisms of CSD's initiation and propagation, also the relevance between CSD and those neural diseases. Nevertheless, characterization of CSD, especially the spatiotemporal evolution, will promote the understanding of the CSD's nature and mechanisms. Besides the previous experimental work on charactering the spatiotemporal evolution of CSD in rats by optical intrinsic signal imaging, a computational study based on a generalized cellular automaton (CA) model was proposed here. In the model, we exploited a generalized neighborhood connection rule: a central CA cell is related with a group of surrounding CA cells with different weight coefficients. By selecting special parameters, the generalized CA model could be transformed to the traditional CA models with von Neumann, Moore and hexagon neighborhood connection means. Hence, the new model covered several properties of CSD simulated in traditional CA models: 1) expanding from the origin site like a circular wave; 2) annihilation of two waves traveling in opposite directions after colliding; 3) wavefront of CSD breaking and recovering when and after encountering an obstacle. By setting different refractory period in the different CA lattice field, different connection coefficient in different direction within the defined neighborhood, inhomogeneous propagation of CSD was simulated with high fidelity. The computational results were analogous to the reported time-varying CSD waves by optical imaging. So, the generalized CA model would be useful to study CSD because of its intuitive appeal and computational efficiency.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.
Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1993-01-01
Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Dynamic Equilibrium Explained Using the Computer
ERIC Educational Resources Information Center
Sariçayir, Hakan; Sahin, Musa; Üce, Musa
2006-01-01
Since their introduction into schools, educators have tried to utilize computers in classes in order to make difficult topics more comprehensible. Chemistry educators, when faced with the task of teaching a topic that cannot be taught through experiments in a laboratory, resort to computers to help students visualize difficult concepts and…
González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E
2017-03-07
The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition.
Computing Bisectors in a Dynamic Geometry Environment
ERIC Educational Resources Information Center
Botana, Francisco
2013-01-01
In this note, an approach combining dynamic geometry and automated deduction techniques is used to study the bisectors between points and curves. Usual teacher constructions for bisectors are discussed, showing that inherent limitations in dynamic geometry software impede their thorough study. We show that the interactive sketching of bisectors…
Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks
Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok
2016-01-01
Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user’s quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities. PMID:27347975
Computational approaches to the topology, stability and dynamics of metabolic networks.
Steuer, Ralf
2007-01-01
Cellular metabolism is characterized by an intricate network of interactions between biochemical fluxes, metabolic compounds and regulatory interactions. To investigate and eventually understand the emergent global behavior arising from such networks of interaction is not possible by intuitive reasoning alone. This contribution seeks to describe recent computational approaches that aim to asses the topological and functional properties of metabolic networks. In particular, based on a recently proposed method, it is shown that it is possible to acquire a quantitative picture of the possible dynamics of metabolic systems, without assuming detailed knowledge of the underlying enzyme-kinetic rate equations and parameters. Rather, the method builds upon a statistical exploration of the comprehensive parameter space to evaluate the dynamic capabilities of a metabolic system, thus providing a first step towards the transition from topology to function of metabolic pathways. Utilizing this approach, the role of feedback mechanisms in the maintenance of stability is discussed using minimal models of cellular pathways.
Measuring and modeling cellular contact guidance through dynamic sensing of nanotopography
NASA Astrophysics Data System (ADS)
Guven, Can; Driscoll, Meghan; Sun, Xiaoyu; Fourkas, John; Losert, Wolfgang
2013-03-01
We investigate the shape dynamics of the amoeba Dictyostelium discoideum on nanotopographical gratings. Multiple studies have previously implicated the patterning of focal adhesion complexes (FACs) in contact guidance. However, we observe significant contact guidance of Dictyostelium along ridge-shaped nano- and microtopographic surface features, even though Dictyostelium lacks FACs. We measure the surface contact guidance efficiency, which we calculate from the statistics of cell orientations, as a function of the distance between parallel ridges. Ridges with a spacing of about 1.5 μm lead to the greatest contact guidance efficiency. We previously observed that Dictyostelium cells exhibit oscillatory shape dynamics. Therefore, we model contact guidance as a resonance between the cell oscillations and the nanogratings. In particular, we model cells as stochastic cellular harmonic oscillators that couple to the periodicity of the ridges. The spatial and temporal scales of the oscillations that best couple to the surface are consistent with those of protrusive dynamics. Our results suggest that the coupling of protrusive dynamics, which are governed by actin dynamics, to surface topography is one possible mechanism for contact guidance.
Computer architecture evaluation for structural dynamics computations: Project summary
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1989-01-01
The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.
Bergemann, Claudia; Elter, Patrick; Lange, Regina; Weißmann, Volker; Hansmann, Harald; Klinkenberg, Ernst-Dieter; Nebe, Barbara
2015-01-01
Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volume in vitro. Therefore, we developed an in vitro perfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method. We found that the local cell viability correlates with the local oxygen concentration and the local shear stress. On the one hand the oxygen supply of the cells in the core becomes optimal with a higher perfusion flow. On the other hand shear stress caused by high flow rates impedes cell vitality, especially at the surface of the scaffold. Our results demonstrate that both parameters must be considered to derive an optimal nutrient flow rate.
Bergemann, Claudia; Elter, Patrick; Lange, Regina; Weißmann, Volker; Hansmann, Harald; Klinkenberg, Ernst-Dieter; Nebe, Barbara
2015-01-01
Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volume in vitro. Therefore, we developed an in vitro perfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method. We found that the local cell viability correlates with the local oxygen concentration and the local shear stress. On the one hand the oxygen supply of the cells in the core becomes optimal with a higher perfusion flow. On the other hand shear stress caused by high flow rates impedes cell vitality, especially at the surface of the scaffold. Our results demonstrate that both parameters must be considered to derive an optimal nutrient flow rate. PMID:26539216
Sonovestibular symptoms evaluated by computed dynamic posturography.
Teszler, C B; Ben-David, J; Podoshin, L; Sabo, E
2000-01-01
The investigation of stability under bilateral acoustic stimulation was undertaken in an attempt to mimic the real-life conditions of noisy environment (e.g., industry, aviation). The Tullio phenomenon evaluated by computed dynamic posturography (CDP) under acoustic stimulation is reflected in postural unsteadiness, rather than in the classic nystagmus. With such a method, the dangerous effects of noise-induced instability can be assessed and prevented. Three groups of subjects were submitted. The first (group A) included 20 patients who complained of sonovestibular symptoms (i.e., Tullio phenomenon) on the background of an inner-ear disease. The second group (B) included 20 neurootological patients without a history of Tullio phenomenon. Group C consisted of 20 patients with normal hearing, as controls. A pure-tone stimulus of 1,000 Hz at 110 dB was delivered binaurally for 20 seconds during condition 5 and condition 6 of the CDP sensory organization test. The sequence of six sensory organization conditions was performed three times with two intermissions of 15-20 minutes between the trials. The first was performed in the regular mode (quiet stance). This was followed 20 minutes by a trial carried out in quiet stance in sensory organizations tests (SOTs) 1 through 4, and with acoustic stimulation in SOT 5 and SOT 6. The last test was performed in quiet stance throughout (identical to the first trial). A significant drop in the composite equilibrium score was witnessed in group A patients upon acoustic stimulation (p < .0001). This imbalance did not disappear completely until 20 minutes later when the third sensory organization trial was performed. In fact, the composite score obtained on the last SOT was still significantly worse than the baseline. Group B and the normal subjects (group C) showed no significant change in composite score. As regards the vestibular ratio score, again, group A marked a drop on stimulation with sound (p < .004). This decrease
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...
Ghaffarizadeh, Ahmadreza; Podgorski, Gregory J; Flann, Nicholas S
2017-02-27
The dynamics of gene regulatory networks (GRNs) guide cellular differentiation. Determining the ways regulatory genes control expression of their targets is essential to understand and control cellular differentiation. The way a regulatory gene controls its target can be expressed as a gene regulatory function. Manual derivation of these regulatory functions is slow, error-prone and difficult to update as new information arises. Automating this process is a significant challenge and the subject of intensive effort. This work presents a novel approach to discovering biologically plausible gene regulatory interactions that control cellular differentiation. This method integrates known cell type expression data, genetic interactions, and knowledge of the effects of gene knockouts to determine likely GRN regulatory functions. We employ a genetic algorithm to search for candidate GRNs that use a set of transcription factors that control differentiation within a lineage. Nested canalyzing functions are used to constrain the search space to biologically plausible networks. The method identifies an ensemble of GRNs whose dynamics reproduce the gene expression pattern for each cell type within a particular lineage. The method's effectiveness was tested by inferring consensus GRNs for myeloid and pancreatic cell differentiation and comparing the predicted gene regulatory interactions to manually derived interactions. We identified many regulatory interactions reported in the literature and also found differences from published reports. These discrepancies suggest areas for biological studies of myeloid and pancreatic differentiation. We also performed a study that used defined synthetic networks to evaluate the accuracy of the automated search method and found that the search algorithm was able to discover the regulatory interactions in these defined networks with high accuracy. We suggest that the GRN functions derived from the methods described here can be used to fill
Cellular automata model based on GIS and urban sprawl dynamics simulation
NASA Astrophysics Data System (ADS)
Mu, Fengyun; Zhang, Zengxiang
2005-10-01
The simulation of land use change process needs the support of Geographical Information System (GIS) and other relative technologies. While the present commercial GIS lack capabilities of distribution, prediction, and simulation of spatial-temporal data. Cellular automata (CA) provide dynamically modeling "from bottom-to-top" framework and posses the capability of modeling spatial-temporal evolvement process of a complicated geographical system, which is composed of a fourfold: cells, states, neighbors and rules. The simplicity and flexibility make CA have the ability to simulate a variety of behaviors of complex systems. One of the most potentially useful applications of cellular automata from the point of view of spatial planning is their use in simulations of urban sprawl at local and regional level. The paper firstly introduces the principles and characters of the cellular automata, and then discusses three methods of the integration of CA and GIS. The paper analyses from a practical point of view the factors that effect urban activities in the science of spatial decision-making. The status of using CA to dynamic simulates of urban expansion at home and abroad is analyzed. Finally, the problems and tendencies that exist in the application of CA model are detailed discussed, such as the quality of the data that the CA needs, the self-organization of the CA roots in the mutual function among the elements of the system, the partition of the space scale, the time calibration of the CA and the integration of the CA with other modular such as artificial nerve net modular and population modular etc.
Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments.
Ben-Gedalya, Tziona; Lyakhovetsky, Roman; Yedidia, Yifat; Bejerano-Sagie, Michal; Kogan, Natalya M; Karpuj, Marcela Viviana; Kaganovich, Daniel; Cohen, Ehud
2011-06-01
Despite the activity of cellular quality-control mechanisms, subsets of mature and newly synthesized polypeptides fail to fold properly and form insoluble aggregates. In some cases, protein aggregation leads to the development of human neurodegenerative maladies, including Alzheimer's and prion diseases. Aggregates of misfolded prion protein (PrP), which appear in cells after exposure to the drug cyclosporin A (CsA), and disease-linked PrP mutants have been found to accumulate in juxtanuclear deposition sites termed 'aggresomes'. Recently, it was shown that cells can contain at least two types of deposition sites for misfolded proteins: a dynamic quality-control compartment, which was termed 'JUNQ', and a site for terminally aggregated proteins called 'IPOD'. Here, we show that CsA-induced PrP aggresomes are dynamic structures that form despite intact proteasome activity, recruit chaperones and dynamically exchange PrP molecules with the cytosol. These findings define the CsA-PrP aggresome as a JUNQ-like dynamic quality-control compartment that mediates the refolding or degradation of misfolded proteins. Together, our data suggest that the formation of PrP aggresomes protects cells from proteotoxic stress.
(U) Computation acceleration using dynamic memory
Hakel, Peter
2014-10-24
Many computational applications require the repeated use of quantities, whose calculations can be expensive. In order to speed up the overall execution of the program, it is often advantageous to replace computation with extra memory usage. In this approach, computed values are stored and then, when they are needed again, they are quickly retrieved from memory rather than being calculated again at great cost. Sometimes, however, the precise amount of memory needed to store such a collection is not known in advance, and only emerges in the course of running the calculation. One problem accompanying such a situation is wasted memory space in overdimensioned (and possibly sparse) arrays. Another issue is the overhead of copying existing values to a new, larger memory space, if the original allocation turns out to be insufficient. In order to handle these runtime problems, the programmer therefore has the extra task of addressing them in the code.
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Min, Kyoung Ah; Zhang, Xinyuan; Yu, Jing-yu; Rosania, Gus R
2014-01-01
Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analysing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful for interpreting experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyse the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next step for the advancement of systems pharmacology research.
NASA Astrophysics Data System (ADS)
Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.
2013-01-01
The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.
Potential applications of computational fluid dynamics to biofluid analysis
NASA Technical Reports Server (NTRS)
Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.
1988-01-01
Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.
Computer Visualization of Many-Particle Quantum Dynamics
Ozhigov, A. Y.
2009-03-10
In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.
The Computer Simulation of Liquids by Molecular Dynamics.
ERIC Educational Resources Information Center
Smith, W.
1987-01-01
Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks
NASA Astrophysics Data System (ADS)
Pyle, Ryan; Rosenbaum, Robert
2017-01-01
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
Computational spectroscopy, dynamics, and photochemistry of photosensory flavoproteins.
Domratcheva, Tatiana; Udvarhelyi, Anikó; Shahi, Abdul Rehaman Moughal
2014-01-01
Extensive interest in photosensory proteins stimulated computational studies of flavins and flavoproteins in the past decade. This review is dedicated to the three central topics of these studies: calculations of flavin UV-visible and IR spectra, simulated dynamics of photoreceptor proteins, and flavin photochemistry. Accordingly, this chapter is divided into three parts; each part describes corresponding computational protocols, summarizes computational results, and discusses the emerging mechanistic picture.
Parallel Domain Decomposition Preconditioning for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai; Kutler, Paul (Technical Monitor)
1998-01-01
This viewgraph presentation gives an overview of the parallel domain decomposition preconditioning for computational fluid dynamics. Details are given on some difficult fluid flow problems, stabilized spatial discretizations, and Newton's method for solving the discretized flow equations. Schur complement domain decomposition is described through basic formulation, simplifying strategies (including iterative subdomain and Schur complement solves, matrix element dropping, localized Schur complement computation, and supersparse computations), and performance evaluation.
Dynamic traffic assignment on parallel computers
Nagel, K.; Frye, R.; Jakob, R.; Rickert, M.; Stretz, P.
1998-12-01
The authors describe part of the current framework of the TRANSIMS traffic research project at the Los Alamos National Laboratory. It includes parallel implementations of a route planner and a microscopic traffic simulation model. They present performance figures and results of an offline load-balancing scheme used in one of the iterative re-planning runs required for dynamic route assignment.
A computational model of cellular mechanisms of temporal coding in the medial geniculate body (MGB).
Rabang, Cal F; Bartlett, Edward L
2011-01-01
Acoustic stimuli are often represented in the early auditory pathway as patterns of neural activity synchronized to time-varying features. This phase-locking predominates until the level of the medial geniculate body (MGB), where previous studies have identified two main, largely segregated response types: Stimulus-synchronized responses faithfully preserve the temporal coding from its afferent inputs, and Non-synchronized responses, which are not phase locked to the inputs, represent changes in temporal modulation by a rate code. The cellular mechanisms underlying this transformation from phase-locked to rate code are not well understood. We use a computational model of a MGB thalamocortical neuron to test the hypothesis that these response classes arise from inferior colliculus (IC) excitatory afferents with divergent properties similar to those observed in brain slice studies. Large-conductance inputs exhibiting synaptic depression preserved input synchrony as short as 12.5 ms interclick intervals, while maintaining low firing rates and low-pass filtering responses. By contrast, small-conductance inputs with Mixed plasticity (depression of AMPA-receptor component and facilitation of NMDA-receptor component) desynchronized afferent inputs, generated a click-rate dependent increase in firing rate, and high-pass filtered the inputs. Synaptic inputs with facilitation often permitted band-pass synchrony along with band-pass rate tuning. These responses could be tuned by changes in membrane potential, strength of the NMDA component, and characteristics of synaptic plasticity. These results demonstrate how the same synchronized input spike trains from the inferior colliculus can be transformed into different representations of temporal modulation by divergent synaptic properties.
Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.
2003-01-01
Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.
Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.
2004-01-01
Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.
A new computational structure for real-time dynamics
Izaguirre, A. ); Hashimoto, Minoru )
1992-08-01
The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.
Neural Computations in a Dynamical System with Multiple Time Scales
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569
Robot-Arm Dynamic Control by Computer
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.
1987-01-01
Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.
Osmosis : a molecular dynamics computer simulation study
NASA Astrophysics Data System (ADS)
Lion, Thomas
Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..
Dynamics of Bottlebrush Networks: A Computational Study
NASA Astrophysics Data System (ADS)
Dobrynin, Andrey; Cao, Zhen; Sheiko, Sergei
We study dynamics of deformation of bottlebrush networks using molecular dynamics simulations and theoretical calculations. Analysis of our simulation results show that the dynamics of bottlebrush network deformation can be described by a Rouse model for polydisperse networks with effective Rouse time of the bottlebrush network strand, τR =τ0Ns2 (Nsc + 1) where, Ns is the number-average degree of polymerization of the bottlebrush backbone strands between crosslinks, Nsc is the degree of polymerization of the side chains and τ0is a characteristic monomeric relaxation time. At time scales t smaller than the Rouse time, t <τR , the time dependent network shear modulus decays with time as G (t) ~ ρkB T(τ0 / t) 1 / 2 , where ρis the monomer number density. However, at the time scale t larger than the Rouse time of the bottlebrush strands between crosslinks, the network response is pure elastic with shear modulus G (t) =G0 , where G0 is the equilibrium shear modulus at small deformation. The stress evolution in the bottlebrush networks can be described by a universal function of t /τR . NSF DMR-1409710.
Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach
NASA Astrophysics Data System (ADS)
González, Ramón E. R.; Coutinho, Sérgio; Zorzenon dos Santos, Rita Maria; de Figueirêdo, Pedro Hugo
2013-10-01
The dynamics of human immunodeficiency virus infection under antiretroviral therapy is investigated using a cellular automata model where the effectiveness of each drug is self-adjusted by the concentration of CD4+ T infected cells present at each time step. The effectiveness of the drugs and the infected cell concentration at the beginning of treatment are the control parameters of the cell population’s dynamics during therapy. The model allows describing processes of mono and combined therapies. The dynamics that emerges from this model when considering combined antiretroviral therapies reproduces with fair qualitative agreement the phases and different time scales of the process. As observed in clinical data, the results reproduce the significant decrease in the population of infected cells and a concomitant increase of the population of healthy cells in a short timescale (weeks) after the initiation of treatment. Over long time scales, early treatment with potent drugs may lead to undetectable levels of infection. For late treatment or treatments starting with a low density of CD4+ T healthy cells it was observed that the treatment may lead to a steady state in which the T cell counts are above the threshold associated with the onset of AIDS. The results obtained are validated through comparison to available clinical trial data.
Within-host spatiotemporal dynamics of plant virus infection at the cellular level.
Tromas, Nicolas; Zwart, Mark P; Lafforgue, Guillaume; Elena, Santiago F
2014-02-01
A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3), and few cells were coinfected by both virus variants (<0.1). We then estimated the cellular contagion rate (R), the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI), the number of virions infecting a cell, were low (<1.5). Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.
Within-Host Spatiotemporal Dynamics of Plant Virus Infection at the Cellular Level
Lafforgue, Guillaume; Elena, Santiago F.
2014-01-01
A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3), and few cells were coinfected by both virus variants (<0.1). We then estimated the cellular contagion rate (R), the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI), the number of virions infecting a cell, were low (<1.5). Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself. PMID:24586207
Dynamical localization simulated on a few-qubit quantum computer
Benenti, Giuliano; Montangero, Simone; Casati, Giulio; Shepelyansky, Dima L.
2003-05-01
We show that a quantum computer operating with a small number of qubits can simulate the dynamical localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the system is computed efficiently up to a time t{>=}l, and then the localization length l can be obtained with accuracy {nu} by means of order 1/{nu}{sup 2} computer runs, followed by coarse-grained projective measurements on the computational basis. We also show that in the presence of static imperfections, a reliable computation of the localization length is possible without error correction up to an imperfection threshold which drops polynomially with the number of qubits.
Exponential rise of dynamical complexity in quantum computing through projections.
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-10-10
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
Exponential rise of dynamical complexity in quantum computing through projections
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-01-01
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692
Nicolás-Pérez, María; Kuchling, Franz; Letelier, Joaquín; Polvillo, Rocío; Wittbrodt, Jochen; Martínez-Morales, Juan R
2016-01-01
Contractile actomyosin networks have been shown to power tissue morphogenesis. Although the basic cellular machinery generating mechanical tension appears largely conserved, tensions propagate in unique ways within each tissue. Here we use the vertebrate eye as a paradigm to investigate how tensions are generated and transmitted during the folding of a neuroepithelial layer. We record membrane pulsatile behavior and actomyosin dynamics during zebrafish optic cup morphogenesis by live imaging. We show that retinal neuroblasts undergo fast oscillations and that myosin condensation correlates with episodic contractions that progressively reduce basal feet area. Interference with lamc1 function impairs basal contractility and optic cup folding. Mapping of tensile forces by laser cutting uncover a developmental window in which local ablations trigger the displacement of the entire tissue. Our work shows that optic cup morphogenesis is driven by a constriction mechanism and indicates that supra-cellular transmission of mechanical tension depends on ECM attachment. DOI: http://dx.doi.org/10.7554/eLife.15797.001 PMID:27797321
Cellular dynamics during early barley pollen embryogenesis revealed by time-lapse imaging
Daghma, Diaa Eldin S.; Hensel, Goetz; Rutten, Twan; Melzer, Michael; Kumlehn, Jochen
2014-01-01
Plants display a remarkable capacity for cellular totipotency. An intriguing and useful example is that immature pollen cultured in vitro can pass through embryogenic development to form haploid or doubled haploid plants. However, a lack of understanding the initial mechanisms of pollen embryogenesis hampers the improvement and more effective and widespread employment of haploid technology in plant research and breeding. To investigate the cellular dynamics during the onset of pollen embryogenesis, we used time-lapse imaging along with transgenic barley expressing nuclear localized Green Fluorescent Protein. The results enabled us to identify nine distinct embryogenic and non-embryogenic types of pollen response to the culture conditions. Cell proliferation in embryogenic pollen normally started via a first symmetric mitosis (54.3% of pollen observed) and only rarely did so via asymmetric pollen mitosis I (4.3% of pollen observed). In the latter case, proliferation generally originated from the vegetative-like cell, albeit the division of the generative-like cell was observed in few types of pollen. Under the culture conditions used, fusion of cell nuclei was the only mechanism of genome duplication observed. PMID:25538715
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, a TCM is shown after mixing protocols, and bubbles of various sizes can be seen.
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, beads are trapped in the injection port, with bubbles forming shortly after injection.
Burianek, Lauren E.; Soderling, Scott H.
2013-01-01
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development. PMID:23291261
NASA Astrophysics Data System (ADS)
Aalaei, Amin; Davoudpour, Hamid
2012-11-01
This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.
Dynamic deformation and fragmentation response of maraging steel linear cellular alloy
NASA Astrophysics Data System (ADS)
Jakus, Adam E.; Fredenberg, David A.; McCoy, Tammy; Thadhani, Naresh; Cochran, Joe K.
2012-03-01
The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN finite element code. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6mm helium gas gun and the transient deformation and fragmentation response was recorded with highspeed imaging. Analysis of observed deformation states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation.
Some rotorcraft applications of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1988-01-01
The growing application of computational aerodynamics to nonlinear rotorcraft problems is outlined, with particular emphasis on the development of new methods based on the Euler and thin-layer Navier-Stokes equations. Rotor airfoil characteristics can now be calculated accurately over a wide range of transonic flow conditions. However, unsteady 3-D viscous codes remain in the research stage, and a numerical simulation of the complete flow field about a helicopter in forward flight is not now feasible. Nevertheless, impressive progress is being made in preparation for future supercomputers that will enable meaningful calculations to be made for arbitrary rotorcraft configurations.
Perspective: Computer simulations of long time dynamics
Elber, Ron
2016-02-14
Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances.
Perspective: Computer simulations of long time dynamics
Elber, Ron
2016-01-01
Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances. PMID:26874473
Computational fluid dynamics combustion analysis evaluation
NASA Technical Reports Server (NTRS)
Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.
1992-01-01
This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.
Computing interface motion in compressible gas dynamics
NASA Technical Reports Server (NTRS)
Mulder, W.; Osher, S.; Sethan, James A.
1992-01-01
An analysis is conducted of the coupling of Osher and Sethian's (1988) 'Hamilton-Jacobi' level set formulation of the equations of motion for propagating interfaces to a system of conservation laws for compressible gas dynamics, giving attention to both the conservative and nonconservative differencing of the level set function. The capabilities of the method are illustrated in view of the results of numerical convergence studies of the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities for air-air and air-helium boundaries.
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
Oxygen and seizure dynamics: II. Computational modeling
Wei, Yina; Ullah, Ghanim; Ingram, Justin
2014-01-01
Electrophysiological recordings show intense neuronal firing during epileptic seizures leading to enhanced energy consumption. However, the relationship between oxygen metabolism and seizure patterns has not been well studied. Recent studies have developed fast and quantitative techniques to measure oxygen microdomain concentration during seizure events. In this article, we develop a biophysical model that accounts for these experimental observations. The model is an extension of the Hodgkin-Huxley formalism and includes the neuronal microenvironment dynamics of sodium, potassium, and oxygen concentrations. Our model accounts for metabolic energy consumption during and following seizure events. We can further account for the experimental observation that hypoxia can induce seizures, with seizures occurring only within a narrow range of tissue oxygen pressure. We also reproduce the interplay between excitatory and inhibitory neurons seen in experiments, accounting for the different oxygen levels observed during seizures in excitatory vs. inhibitory cell layers. Our findings offer a more comprehensive understanding of the complex interrelationship among seizures, ion dynamics, and energy metabolism. PMID:24671540
Challenges to computing plasma thruster dynamics
Smith, G.A. )
1992-01-01
This paper describes computational challenges in describing high thrust and I[sub sp] expected from the proposed ion-compressed antimatter nuclear (ICAN) propulsion system. This concept uses antiprotons to induce fission reactions that jump start a microfission/fusion process in a target compressed by low-energy ion beams. The ICAN system could readily provide the high energy density required for interplanetary space missions of short duration. In conventional rocket design, thrust is obtained by expelling a propellant under high pressure through a nozzle. A larger I[sub sp] can be achieved by operating the system at a higher temperature. Full ionization of propellant at high temperature introduces new and challenging questions in the design of plasma thrusters.
A modular system for computational fluid dynamics
NASA Astrophysics Data System (ADS)
McCarthy, D. R.; Foutch, D. W.; Shurtleff, G. E.
This paper describes the Modular System for Compuational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on multizone, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it consitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.
Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations
NASA Technical Reports Server (NTRS)
Chrisochoides, Nikos
1995-01-01
We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.
Fluid dynamics parallel computer development at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.
1987-01-01
To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.
Martini, Matus N.; Gustafson, William I.; Yang, Qing; Xiao, Heng
2014-11-18
Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.
GC-based dynamic QoS priority handoff scheme in multimedia cellular systems
NASA Astrophysics Data System (ADS)
Chen, Huan; Kumar, Sunil; Kuo, C.-C. Jay
2001-03-01
A dynamic call admission control (CAC) and its associated resource reservation (RR) schemes are proposed in this research based on the guard channel (GC) concept for a wireless cellular system supporting multiple QoS classes. A comprehensive service model is developed, which includes not only mobile terminals' bandwidth requirements but also their different levels of priorities, rate adaptivity and mobility. The proposed CAC policy selects the resource access thresold according to the estimated number of incoming call requests of different QoS classes. The amount of resources to be reserved is dynamically adjusted by considering neighboring-cell higher-priority calls which are likely to handoff. The handoff interaction between adjacent cells is estimated by using radio propagation in terms of the signal-to-noise ratio (SNR) and the distance of each active call in neighboring cells. Experiments are conducted by using the OPNET simulator to study the performance of the proposed scheme under various traffic conditions. It is shown that better QoS guarantees can be provided by the proposed CAC and RR schemes.
Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis
Hellesøy, Monica; Lorens, James B.
2015-01-01
The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089
NASA Technical Reports Server (NTRS)
Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.
1994-01-01
Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko
2013-06-18
Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
Qualification of a computer program for drill string dynamics
Stone, C.M.; Carne, T.G.; Caskey, B.C.
1985-01-01
A four point plan for the qualification of the GEODYN drill string dynamics computer program is described. The qualification plan investigates both modal response and transient response of a short drill string subjected to simulated cutting loads applied through a polycrystalline diamond compact (PDC) bit. The experimentally based qualification shows that the analytical techniques included in Phase 1 GEODYN correctly simulate the dynamic response of the bit-drill string system. 6 refs., 8 figs.
Workshop on Populations & Crowds: Dynamics, Disruptions and their Computational Models
2015-01-01
Aug-2012 9-Aug-2013 Approved for Public Release; Distribution Unlimited Final Report: Workshop on Populations & Crowds: Dynamics, Disruptions and... Disruptions , Social networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Number of Papers published in non peer-reviewed journals: Final Report: Workshop on Populations & Crowds: Dynamics, Disruptions and their Computational
Roberts, Logan; Leise, Tanya L; Welsh, David K; Holmes, Todd C
2016-08-01
Light is the primary signal that calibrates circadian neural circuits and thus coordinates daily physiological and behavioral rhythms with solar entrainment cues. Drosophila and mammalian circadian circuits consist of diverse populations of cellular oscillators that exhibit a wide range of dynamic light responses, periods, phases, and degrees of synchrony. How heterogeneous circadian circuits can generate robust physiological rhythms while remaining flexible enough to respond to synchronizing stimuli has long remained enigmatic. Cryptochrome is a short-wavelength photoreceptor that is endogenously expressed in approximately half of Drosophila circadian neurons. In a previous study, physiological light response was measured using real-time bioluminescence recordings in Drosophila whole-brain explants, which remain intrinsically light-sensitive. Here we apply analysis of real-time bioluminescence experimental data to show detailed dynamic ensemble representations of whole circadian circuit light entrainment at single neuron resolution. Organotypic whole-brain explants were either maintained in constant darkness (DD) for 6 days or exposed to a phase-advancing light pulse on the second day. We find that stronger circadian oscillators support robust overall circuit rhythmicity in DD, whereas weaker oscillators can be pushed toward transient desynchrony and damped amplitude to facilitate a new state of phase-shifted network synchrony. Additionally, we use mathematical modeling to examine how a network composed of distinct oscillator types can give rise to complex dynamic signatures in DD conditions and in response to simulated light pulses. Simulations suggest that complementary coupling mechanisms and a combination of strong and weak oscillators may enable a robust yet flexible circadian network that promotes both synchrony and entrainment. A more complete understanding of how the properties of oscillators and their signaling mechanisms facilitate their distinct roles
Resolving sub-cellular force dynamics using arrays of magnetic microposts
NASA Astrophysics Data System (ADS)
Reich, Daniel
2010-03-01
The biological response of cells to mechanical forces is integral to both normal cell function and the progression of many diseases, such as hypertensive vascular wall thickening. This likely results from the fact that mechanical stresses can directly affect many cellular processes, including signal transduction, gene expression, growth, differentiation, and survival. The need to understand the relationship between applied forces and the mechanical response of cells as a critical step towards understanding mechanotransduction calls for tools that can apply forces to cells while measuring their contractile response. This talk will describe an approach that simultaneously allows local mechanical stimulation of the adherent surface of a cell and spatially resolved measurement of the local force fields generated throughout the cell in response to this stimulation. Cells are cultured on the top surfaces of arrays of micrometer-scale posts made from a flexible elastomer (PDMS), and the contractile forces generated by an adherent cell bend the posts. Measurements of the displacement of each post allow the contractile force field of the cell to be mapped out with sub-cellular precision. To apply forces to cells, rod- shaped magnetic nanoparticles are embedded in some of the posts so that externally applied magnetic fields selectively deform these ``magnetic posts,'' thereby exerting tunable local, mechanical stresses to the adherent surface of attached cells. Alternatively, magnetic particles bound to or internalized by the cell may be employed to apply forces and torques to the cell. With either approach, measuring the deflection of the surrounding non-magnetic posts probes the full mechanical response of the cell to these stresses. Results that illustrate the temporal dynamics and spatial distribution of the non-local response of fibroblasts and smooth muscle cells to local stresses will be discussed.
Morphing-Based Shape Optimization in Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Rousseau, Yannick; Men'Shov, Igor; Nakamura, Yoshiaki
In this paper, a Morphing-based Shape Optimization (MbSO) technique is presented for solving Optimum-Shape Design (OSD) problems in Computational Fluid Dynamics (CFD). The proposed method couples Free-Form Deformation (FFD) and Evolutionary Computation, and, as its name suggests, relies on the morphing of shape and computational domain, rather than direct shape parameterization. Advantages of the FFD approach compared to traditional parameterization are first discussed. Then, examples of shape and grid deformations by FFD are presented. Finally, the MbSO approach is illustrated and applied through an example: the design of an airfoil for a future Mars exploration airplane.
A model of cerebellar computations for dynamical state estimation.
Paulin, M G; Hoffman, L F; Assad, C
2001-11-01
The cerebellum is a neural structure that is essential for agility in vertebrate movements. Its contribution to motor control appears to be due to a fundamental role in dynamical state estimation, which also underlies its role in various non-motor tasks. Single spikes in vestibular sensory neurons carry information about head state. We show how computations for optimal dynamical state estimation may be accomplished when signals are encoded in spikes. This provides a novel way to design dynamical state estimators, and a novel way to interpret the structure and function of the cerebellum.
A model of cerebellar computations for dynamical state estimation
NASA Technical Reports Server (NTRS)
Paulin, M. G.; Hoffman, L. F.; Assad, C.
2001-01-01
The cerebellum is a neural structure that is essential for agility in vertebrate movements. Its contribution to motor control appears to be due to a fundamental role in dynamical state estimation, which also underlies its role in various non-motor tasks. Single spikes in vestibular sensory neurons carry information about head state. We show how computations for optimal dynamical state estimation may be accomplished when signals are encoded in spikes. This provides a novel way to design dynamical state estimators, and a novel way to interpret the structure and function of the cerebellum.
Remote Visualization and Remote Collaboration On Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).
Computational fluid dynamics applications to improve crop production systems
Technology Transfer Automated Retrieval System (TEKTRAN)
Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...
Current capabilities and future directions in computational fluid dynamics
NASA Technical Reports Server (NTRS)
1986-01-01
A summary of significant findings is given, followed by specific recommendations for future directions of emphasis for computational fluid dynamics development. The discussion is organized into three application areas: external aerodynamics, hypersonics, and propulsion - and followed by a turbulence modeling synopsis.
Computational Issues in the Control of Quantum Dynamics
NASA Astrophysics Data System (ADS)
Rabitz, Herschel
2003-03-01
Computational Issues in the Control of Quantum Dynamics Phenomena Herschel Rabitz Department of Chemistry Princeton University The control of quantum phenomena embraces a variety of applications, with the most common implementation involving tailored laser pulses to steer the dynamics of a quantum system towards some specified observable outcome. The theoretical and computational aspects of this subject are intimately tied to the growing experimental capabilities, especially the ability to perform massive numbers of high throughput experiments. Computational studies in this context have special roles. Especially important is the use of computational techniques to develop new control algorithms, which ultimately would be implemented in the laboratory to guide the control of complex quantum systems. Beyond control alone, many of the same concepts can be exploited for the performance of experiments optimally tuned for inversion, to extract Hamiltonian information. The latter scenario poses very high demands on the efficiency of solving the quantum dynamics equations to extract the information content from the experimental data. The concept of exploiting a computational quantum control tool kit will be introduced as a means for addressing many of these challenges.
Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion
NASA Technical Reports Server (NTRS)
Camarena, Ernesto; Vu, Bruce T.
2011-01-01
The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.
Interactive computer code for dynamic and soil structure interaction analysis
Mulliken, J.S.
1995-12-01
A new interactive computer code is presented in this paper for dynamic and soil-structure interaction (SSI) analyses. The computer program FETA (Finite Element Transient Analysis) is a self contained interactive graphics environment for IBM-PC`s that is used for the development of structural and soil models as well as post-processing dynamic analysis output. Full 3-D isometric views of the soil-structure system, animation of displacements, frequency and time domain responses at nodes, and response spectra are all graphically available simply by pointing and clicking with a mouse. FETA`s finite element solver performs 2-D and 3-D frequency and time domain soil-structure interaction analyses. The solver can be directly accessed from the graphical interface on a PC, or run on a number of other computer platforms.
Computational dynamics for robotics systems using a non-strict computational approach
NASA Technical Reports Server (NTRS)
Orin, David E.; Wong, Ho-Cheung; Sadayappan, P.
1989-01-01
A Non-Strict computational approach for real-time robotics control computations is proposed. In contrast to the traditional approach to scheduling such computations, based strictly on task dependence relations, the proposed approach relaxes precedence constraints and scheduling is guided instead by the relative sensitivity of the outputs with respect to the various paths in the task graph. An example of the computation of the Inverse Dynamics of a simple inverted pendulum is used to demonstrate the reduction in effective computational latency through use of the Non-Strict approach. A speedup of 5 has been obtained when the processes of the task graph are scheduled to reduce the latency along the crucial path of the computation. While error is introduced by the relaxation of precedence constraints, the Non-Strict approach has a smaller error than the conventional Strict approach for a wide range of input conditions.
Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter
2016-01-01
The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell
Kopp, C.; Pernice, M.; Domart-Coulon, I.; Djediat, C.; Spangenberg, J. E.; Alexander, D. T. L.; Hignette, M.; Meziane, T.; Meibom, A.
2013-01-01
ABSTRACT Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. PMID:23674611
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. In this picture, the beads are trapped in the injection port shortly after injection. Swirls of beads indicate, event to the naked eye, the contents of the TCM are not fully mixed. The beads are similar in size and density to human lymphoid cells. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light
NASA Astrophysics Data System (ADS)
Xu, Xiaoming; Du, Ziqiang; Zhang, Hong
2016-10-01
Land use and land cover change (LULCC) is a widely researched topic in related studies. A number of models have been established to simulate LULCC patterns. However, the integration of the system dynamic (SD) and the cellular automata (CA) model have been rarely employed in LULCC simulations, although it allows for combining the advantages of each approach and therefore improving the simulation accuracy. In this study, we integrated an SD model and a CA model to predict LULCC under three future development scenarios in Northern Shanxi province of China, a typical agro-pastoral transitional zone. The results indicated that our integrated approach represented the impacts of natural and socioeconomic factors on LULCC well, and could accurately simulate the magnitude and spatial pattern of LULCC. The modeling scenarios illustrated that different development pathways would lead to various LULCC patterns. This study demonstrated the advantages of the integration approach for simulating LULCC and suggests that LULCC is affected to a large degree by natural and socioeconomic factors.
A refined and dynamic cellular automaton model for pedestrian-vehicle mixed traffic flow
NASA Astrophysics Data System (ADS)
Liu, Mianfang; Xiong, Shengwu
2016-12-01
Mixed traffic flow sharing the “same lane” and having no discipline on road is a common phenomenon in the developing countries. For example, motorized vehicles (m-vehicles) and nonmotorized vehicles (nm-vehicles) may share the m-vehicle lane or nm-vehicle lane and pedestrians may share the nm-vehicle lane. Simulating pedestrian-vehicle mixed traffic flow consisting of three kinds of traffic objects: m-vehicles, nm-vehicles and pedestrians, can be a challenge because there are some erratic drivers or pedestrians who fail to follow the lane disciplines. In the paper, we investigate various moving and interactive behavior associated with mixed traffic flow, such as lateral drift including illegal lane-changing and transverse crossing different lanes, overtaking and forward movement, and propose some new moving and interactive rules for pedestrian-vehicle mixed traffic flow based on a refined and dynamic cellular automaton (CA) model. Simulation results indicate that the proposed model can be used to investigate the traffic flow characteristic in a mixed traffic flow system and corresponding complicated traffic problems, such as, the moving characteristics of different traffic objects, interaction phenomenon between different traffic objects, traffic jam, traffic conflict, etc., which are consistent with the actual mixed traffic system. Therefore, the proposed model provides a solid foundation for the management, planning and evacuation of the mixed traffic flow.
Escusa-Toret, Stéphanie; Vonk, Willianne I. M.; Frydman, Judith
2014-01-01
The extensive links between proteotoxic stress, protein aggregation and pathologies ranging from aging to neurodegeneration underscore the importance of understanding how cells manage protein misfolding. Using live-cell imaging, we here determine the fate of stress-induced misfolded proteins from their initial appearance until their elimination. Upon denaturation, misfolded proteins are sequestered from the bulk cytoplasm into dynamic ER-associated puncta that move and coalesce into larger structures in an energy-dependent but cytoskeleton-independent manner. These puncta, which we name Q-bodies, concentrate different misfolded and stress-denatured proteins en-route to degradation, but do not contain amyloid aggregates, which localize instead to the IPOD. Q-body formation and clearance depends on an intact cortical ER and a complex chaperone network that is affected by rapamycin and impaired during chronological aging. Importantly, Q-body formation enhances cellular fitness during stress. We conclude that spatial sequestration of misfolded proteins in Q-bodies is an early quality control strategy occurring synchronously with degradation to clear the cytoplasm from potentially toxic species. PMID:24036477
Complex dynamics of selection and cellular memory in adaptation to a changing environment
NASA Astrophysics Data System (ADS)
Kussell, Edo; Lin, Wei-Hsiang
We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.
Shalek, Alex K; Satija, Rahul; Shuga, Joe; Trombetta, John J; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S; Gaublomme, Jellert T; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P; Regev, Aviv
2014-06-19
High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
NASA Astrophysics Data System (ADS)
Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv
2014-06-01
High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a `core' module of antiviral genes is expressed very early by a few `precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced `peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.
Carey, Shawn P; Goldblatt, Zachary E; Martin, Karen E; Romero, Bethsabe; Williams, Rebecca M; Reinhart-King, Cynthia A
2016-08-08
Cell migration within 3D interstitial microenvironments is sensitive to extracellular matrix (ECM) properties, but the mechanisms that regulate migration guidance by 3D matrix features remain unclear. To examine the mechanisms underlying the cell migration response to aligned ECM, which is prevalent at the tumor-stroma interface, we utilized time-lapse microscopy to compare the behavior of MDA-MB-231 breast adenocarcinoma cells within randomly organized and well-aligned 3D collagen ECM. We developed a novel experimental system in which cellular morphodynamics during initial 3D cell spreading served as a reductionist model for the complex process of matrix-directed 3D cell migration. Using this approach, we found that ECM alignment induced spatial anisotropy of cells' matrix probing by promoting protrusion frequency, persistence, and lengthening along the alignment axis and suppressing protrusion dynamics orthogonal to alignment. Preference for on-axis behaviors was dependent upon FAK and Rac1 signaling and translated across length and time scales such that cells within aligned ECM exhibited accelerated elongation, front-rear polarization, and migration relative to cells in random ECM. Together, these findings indicate that adhesive and protrusive signaling allow cells to respond to coordinated physical cues in the ECM, promoting migration efficiency and cell migration guidance by 3D matrix structure.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-22
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Dynamic Deformation and Fragmentation Response of Maraging Steel Linear Cellular Alloy
NASA Astrophysics Data System (ADS)
Jakus, Adam; Fredenburg, D. A.; McCoy, T.; Thadhani, N. N.; Cochran, J.
2011-06-01
The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6 mm helium gas gun and the transient deformation and fragmentation response was recorded with high-speed imaging. For purpose of comparison, the response of 25% dense hollow cylinders of same density as the 9-cell LCA was also studied. Analysis of observed states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation. In comparison, the simple hollow cylinder undergoes significant radial lipping, eventually producing larger sized, external fragments. DTRA Grant No. HDTRA1-07-1-0018 and NDSEG Fellowship Program.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
NASA Astrophysics Data System (ADS)
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-01-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024
Opsahl, Jill A.; Ljostveit, Sonja; Solstad, Therese; Risa, Kristin; Roepstorff, Peter; Fladmark, Kari E.
2013-01-01
Exposure of cells to the diarrhetic shellfish poison, okadaic acid, leads to a dramatic reorganization of cytoskeletal architecture and loss of cell-cell contact. When cells are exposed to high concentrations of okadaic acid (100–500 nM), the morphological rearrangement is followed by apoptotic cell death. Okadaic acid inhibits the broad acting Ser/Thr protein phosphatases 1 and 2A, which results in hyperphosphorylation of a large number of proteins. Some of these hyperphosphorylated proteins are most likely key players in the reorganization of the cell morphology induced by okadaic acid. We wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM) could be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton, microtubules and cell adhesion structures. A large number of these okadaic acid-regulated proteins have previously also been shown to be similarly regulated prior to cell proliferation and migration. Our results suggest that okadaic acid activates general cell signaling pathways that induce breakdown of the cortical actin cytoskeleton and cell detachment. PMID:23708184
Towards Dynamic Remote Data Auditing in Computational Clouds
Khurram Khan, Muhammad; Anuar, Nor Badrul
2014-01-01
Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server. PMID:25121114
Towards dynamic remote data auditing in computational clouds.
Sookhak, Mehdi; Akhunzada, Adnan; Gani, Abdullah; Khurram Khan, Muhammad; Anuar, Nor Badrul
2014-01-01
Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server.
NASA Technical Reports Server (NTRS)
Thorp, Scott A.
1992-01-01
This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.
Parallel Computational Fluid Dynamics: Current Status and Future Requirements
NASA Technical Reports Server (NTRS)
Simon, Horst D.; VanDalsem, William R.; Dagum, Leonardo; Kutler, Paul (Technical Monitor)
1994-01-01
One or the key objectives of the Applied Research Branch in the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Allies Research Center is the accelerated introduction of highly parallel machines into a full operational environment. In this report we discuss the performance results obtained from the implementation of some computational fluid dynamics (CFD) applications on the Connection Machine CM-2 and the Intel iPSC/860. We summarize some of the experiences made so far with the parallel testbed machines at the NAS Applied Research Branch. Then we discuss the long term computational requirements for accomplishing some of the grand challenge problems in computational aerosciences. We argue that only massively parallel machines will be able to meet these grand challenge requirements, and we outline the computer science and algorithm research challenges ahead.
Interactive computational models of particle dynamics using virtual reality
Canfield, T.; Diachin, D.; Freitag, L.; Heath, D.; Herzog, J.; Michels, W.
1996-12-31
An increasing number of industrial applications rely on computational models to reduce costs in product design, development, and testing cycles. Here, the authors discuss an interactive environment for the visualization, analysis, and modification of computational models used in industrial settings. In particular, they focus on interactively placing massless, massed, and evaporating particulate matter in computational fluid dynamics applications.they discuss the numerical model used to compute the particle pathlines in the fluid flow for display and analysis. They briefly describe the toolkits developed for vector and scalar field visualization, interactive particulate source placement, and a three-dimensional GUI interface. This system is currently used in two industrial applications, and they present the tools in the context of these applications. They summarize the current state of the project and offer directions for future research.
A Textbook for a First Course in Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)
1999-01-01
This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.
Parallel algorithms and architecture for computation of manipulator forward dynamics
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel computation of manipulator forward dynamics is investigated. Considering three classes of algorithms for the solution of the problem, that is, the O(n), the O(n exp 2), and the O(n exp 3) algorithms, parallelism in the problem is analyzed. It is shown that the problem belongs to the class of NC and that the time and processors bounds are of O(log2/2n) and O(n exp 4), respectively. However, the fastest stable parallel algorithms achieve the computation time of O(n) and can be derived by parallelization of the O(n exp 3) serial algorithms. Parallel computation of the O(n exp 3) algorithms requires the development of parallel algorithms for a set of fundamentally different problems, that is, the Newton-Euler formulation, the computation of the inertia matrix, decomposition of the symmetric, positive definite matrix, and the solution of triangular systems. Parallel algorithms for this set of problems are developed which can be efficiently implemented on a unique architecture, a triangular array of n(n+2)/2 processors with a simple nearest-neighbor interconnection. This architecture is particularly suitable for VLSI and WSI implementations. The developed parallel algorithm, compared to the best serial O(n) algorithm, achieves an asymptotic speedup of more than two orders-of-magnitude in the computation the forward dynamics.
NASA Astrophysics Data System (ADS)
Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily
2017-01-01
Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.
Computational fluid dynamics studies of nuclear rocket performance
NASA Technical Reports Server (NTRS)
Stubbs, Robert M.; Kim, Suk C.; Benson, Thomas J.
1994-01-01
A CFD analysis of a low pressure nuclear rocket concept is presented with the use of an advanced chemical kinetics, Navier-Stokes code. The computations describe the flow field in detail, including gas dynamic, thermodynamic and chemical properties, as well as global performance quantities such as specific impulse. Computational studies of several rocket nozzle shapes are conducted in an attempt to maximize hydrogen recombination. These Navier-Stokes calculations, which include real gas and viscous effects, predict lower performance values than have been reported heretofore.
Operational computer graphics in the flight dynamics environment
NASA Technical Reports Server (NTRS)
Jeletic, James F.
1989-01-01
Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.
Multitasking the code ARC3D. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Barton, John T.; Hsiung, Christopher C.
1986-01-01
The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.
Computational fluid dynamics applications at McDonnel Douglas
NASA Technical Reports Server (NTRS)
Hakkinen, R. J.
1987-01-01
Representative examples are presented of applications and development of advanced Computational Fluid Dynamics (CFD) codes for aerodynamic design at the McDonnell Douglas Corporation (MDC). Transonic potential and Euler codes, interactively coupled with boundary layer computation, and solutions of slender-layer Navier-Stokes approximation are applied to aircraft wing/body calculations. An optimization procedure using evolution theory is described in the context of transonic wing design. Euler methods are presented for analysis of hypersonic configurations, and helicopter rotors in hover and forward flight. Several of these projects were accepted for access to the Numerical Aerodynamic Simulation (NAS) facility at the NASA-Ames Research Center.
Computer simulation of multigrid body dynamics and control
NASA Technical Reports Server (NTRS)
Swaminadham, M.; Moon, Young I.; Venkayya, V. B.
1990-01-01
The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.
Hasselmo, Michael E.; Giocomo, Lisa M.; Yoshida, Motoharu
2010-01-01
Understanding the mechanisms of episodic memory requires linking behavioural data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within these brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. PMID:20018213
Johnston, Iain G; Jones, Nick S
2015-08-08
Stochastic dynamics govern many important processes in cellular biology, and an underlying theoretical approach describing these dynamics is desirable to address a wealth of questions in biology and medicine. Mathematical tools exist for treating several important examples of these stochastic processes, most notably gene expression and random partitioning at single-cell divisions or after a steady state has been reached. Comparatively little work exists exploring different and specific ways that repeated cell divisions can lead to stochastic inheritance of unequilibrated cellular populations. Here we introduce a mathematical formalism to describe cellular agents that are subject to random creation, replication and/or degradation, and are inherited according to a range of random dynamics at cell divisions. We obtain closed-form generating functions describing systems at any time after any number of cell divisions for binomial partitioning and divisions provoking a deterministic or random, subtractive or additive change in copy number, and show that these solutions agree exactly with stochastic simulation. We apply this general formalism to several example problems involving the dynamics of mitochondrial DNA during development and organismal lifetimes.
Johnston, Iain G.; Jones, Nick S.
2015-01-01
Stochastic dynamics govern many important processes in cellular biology, and an underlying theoretical approach describing these dynamics is desirable to address a wealth of questions in biology and medicine. Mathematical tools exist for treating several important examples of these stochastic processes, most notably gene expression and random partitioning at single-cell divisions or after a steady state has been reached. Comparatively little work exists exploring different and specific ways that repeated cell divisions can lead to stochastic inheritance of unequilibrated cellular populations. Here we introduce a mathematical formalism to describe cellular agents that are subject to random creation, replication and/or degradation, and are inherited according to a range of random dynamics at cell divisions. We obtain closed-form generating functions describing systems at any time after any number of cell divisions for binomial partitioning and divisions provoking a deterministic or random, subtractive or additive change in copy number, and show that these solutions agree exactly with stochastic simulation. We apply this general formalism to several example problems involving the dynamics of mitochondrial DNA during development and organismal lifetimes. PMID:26339194
Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex
Procyk, Emmanuel; Dominey, Peter Ford
2016-01-01
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a
Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex.
Enel, Pierre; Procyk, Emmanuel; Quilodran, René; Dominey, Peter Ford
2016-06-01
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a
High resolution simulations of energy absorption in dynamically loaded cellular structures
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.
2016-04-01
Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.
High resolution simulations of energy absorption in dynamically loaded cellular structures
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.
2017-03-01
Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.
Analysis of nuclear thermal propulsion systems using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Stubbs, Robert M.; Kim, Suk C.; Papp, John L.
1993-01-01
Computational fluid dynamics (CFD) analyses of nuclear rockets with relatively low chamber pressures were carried out to assess the merits of using such low pressures to take advantage of hydrogen dissociation and recombination. The computations, using a Navier-Stokes code with chemical kinetics, describe the flow field in detail, including gas dynamics, thermodynamic and chemical properties, and provide global performance quantities such as specific impulse and thrust. Parametric studies were performed varying chamber temperature, chamber pressure and nozzle size. Chamber temperature was varied between 2700 K and 3600 K, and chamber pressure between 0.1 atm. and 10 atm. Performance advantages associated with lower chamber pressures are shown to occur at the higher chamber temperatures. Viscous losses are greater at lower chamber pressures and can be decreased in larger nozzles where the boundary layer is a smaller fraction of the flow field.
Determination of eigenvalues of dynamical systems by symbolic computation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1982-01-01
A symbolic computation technique for determining the eigenvalues of dynamical systems is described wherein algebraic operations, symbolic differentiation, matrix formulation and inversion, etc., can be performed on a digital computer equipped with a formula-manipulation compiler. An example is included that demonstrates the facility with which the system dynamics matrix and the control distribution matrix from the state space formulation of the equations of motion can be processed to obtain eigenvalue loci as a function of a system parameter. The example chosen to demonstrate the technique is a fourth-order system representing the longitudinal response of a DC 8 aircraft to elevator inputs. This simplified system has two dominant modes, one of which is lightly damped and the other well damped. The loci may be used to determine the value of the controlling parameter that satisfied design requirements. The results were obtained using the MACSYMA symbolic manipulation system.
Validation of Computational Fluid Dynamics Simulations for Realistic Flows (Preprint)
2007-12-01
these calculations, the reference length is the vortex core radius, the reference flow conditions are the free stream conditions with the Mach number M...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED...From - To) 11-10-2007 Technical Paper & Briefing Charts 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Validation of Computational Fluid Dynamics
Using Soft Computing Technologies for the Simulation of LCAC Dynamics
2011-09-01
real-time, time-domain predictions of the vehicle’s dynamics as a function of the control signals given by the driver. Results are presented...free- running LCAC model, faster-than-real-time simulation, soft computing technology 1.0 INTRODUCTION The Maneuvering and Control Division (MCD...like all hovercraft , rides on a cushion of air. The air is supplied to the cushion by four centrifugal fans driven by the craft’s gas turbine
Combining Dynamical Decoupling with Fault-Tolerant Quantum Computation
2009-11-17
ar X iv :0 91 1. 32 02 v1 [ qu an t- ph ] 1 7 N ov 2 00 9 Combining dynamical decoupling with fault-tolerant quantum computation Hui Khoon Ng,1...Daniel A. Lidar,2 and John Preskill1 1Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA 2Departments...of Chemistry, Electrical Engineering, and Physics, and Center for Quantum Information Science & Technology, University of Southern California, Los
Computer simulation of methanol exchange dynamics around cations and anions
Roy, Santanu; Dang, Liem X.
2016-03-03
In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.
Lesh, M D; Pring, M; Spear, J F
1989-11-01
Although slow conduction is a requirement for the preparation of sustained reentry, it alone is not sufficient for the initiation of reentry. Additionally, unidirectional block and recovery of excitability distal to the site of block must occur. Thus, a comprehensive description of the electrophysiological determinants of reentry must explain both slow conduction and unidirectional block. Although there is a growing body of research exploring the influence of axial resistivity and anisotropy on slow conduction, somewhat less is known about the relation of axial resistivity to spatial dispersion of action potential duration, a condition favorable to the development of unidirectional block. We hypothesized that when cells are well coupled, local differences in intrinsic action potential duration are not evident and that, as axial resistivity increases, local variation in action potential duration becomes manifest. We tested this hypothesis in a numerical model of electrical propagation in a grid of resistively coupled ionic current sources simulating a sheet of ventricular myocardium. Spatial dispersion of intrinsic action potential duration was simulated by varying the magnitude of the fully activated slow inward conductance in Beeler-Reuter membrane ionic kinetics. By then altering coupling resistance, we showed that dispersion of manifest action potential duration is masked in the setting of normal low-resistance cellular coupling and unmasked by increased axial resistance. When nonuniform anisotropy was simulated, dramatic pacing-site-dependent changes in both the pattern of activation and dispersion of action potential duration were noted. These findings may be important in understanding the mechanism of reentrant tachycardia initiation in the border zone of chronic, healed myocardial infarctions where evidence suggests that abnormal cellular coupling is the predominant electrophysiological derangement. In this study, we have shown, using a detailed ionic
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
Computational fluid dynamics capability for the solid fuel ramjet projectile
NASA Astrophysics Data System (ADS)
Nusca, Michael J.; Chakravarthy, Sukumar R.; Goldberg, Uriel C.
1988-12-01
A computational fluid dynamics solution of the Navier-Stokes equations has been applied to the internal and external flow of inert solid-fuel ramjet projectiles. Computational modeling reveals internal flowfield details not attainable by flight or wind tunnel measurements, thus contributing to the current investigation into the flight performance of solid-fuel ramjet projectiles. The present code employs numerical algorithms termed total variational diminishing (TVD). Computational solutions indicate the importance of several special features of the code including the zonal grid framework, the TVD scheme, and a recently developed backflow turbulence model. The solutions are compared with results of internal surface pressure measurements. As demonstrated by these comparisons, the use of a backflow turbulence model distinguishes between satisfactory and poor flowfield predictions.
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C
2013-07-01
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
Dang, Tram T.; Bratlie, Kaitlin M.; Bogatyrev, Said R.; Chen, Xiao Y.; Langer, Robert; Anderson, Daniel G.
2017-01-01
In general, biomaterials induce a non-specific host response when implanted in the body. This reaction has the potential to interfere with the function of the implanted materials. One method for controlling the host response is through local, controlled release of anti-inflammatory agents. Herein, we investigate the spatial and temporal effects of an anti-inflammatory drug on the cellular dynamics of the innate immune response to subcutaneously implanted poly(lactic-co-glycolic) microparticles. Noninvasive fluorescence imaging was used to investigate the influence of dexamethasone drug loading and release kinetics on the local and systemic inhibition of inflammatory cellular activities. Temporal monitoring of host response showed that inhibition of inflammatory proteases in the early phase was correlated with decreased cellular infiltration in the later phase of the foreign body response. We believe that using controlled-release anti-inflammatory platforms to modulate early cellular dynamics will be useful in reducing the foreign body response to implanted biomaterials and medical devices. PMID:21429573
Yamamoto, Takehiro; Ueda, Shuya
2013-01-01
Biofilm is a slime-like complex aggregate of microorganisms and their products, extracellular polymer substances, that grows on a solid surface. The growth phenomenon of biofilm is relevant to the corrosion and clogging of water pipes, the chemical processes in a bioreactor, and bioremediation. In these phenomena, the behavior of the biofilm under flow has an important role. Therefore, controlling the biofilm behavior in each process is important. To provide a computational tool for analyzing biofilm growth, the present study proposes a computational model for the simulation of biofilm growth in flows. This model accounts for the growth, decay, detachment and adhesion of biofilms. The proposed model couples the computation of the surrounding fluid flow, using the finite volume method, with the simulation of biofilm growth, using the cellular automaton approach, a relatively low-computational-cost method. Furthermore, a stochastic approach for considering the adhesion process is proposed. Numerical simulations for the biofilm growth on a planar wall and that in an L-shaped rectangular channel were carried out. A variety of biofilm structures were observed depending on the strength of the flow. Moreover, the importance of the detachment and adhesion processes was confirmed.
A computer code for beam dynamics simulations in SFRFQ structure
NASA Astrophysics Data System (ADS)
Wang, Z.; Chen, J. E.; Lu, Y. R.; Yan, X. Q.; Zhu, K.; Fang, J. X.; Guo, Z. Y.
2007-03-01
A computer code (SFRFQCODEv1.0) is developed to analyze the beam dynamics of Separated Function Radio Frequency Quadruples (SFRFQ) structure. Calculations show that the transverse and longitudinal stability can be ensured by selecting proper dynamic and structure parameters. This paper describes the beam dynamical mechanism of SFRFQ, and presents a design example of SFRFQ cavity, which will be used as a post accelerator of a 26 MHz 1 MeV O + Integrated Split Ring (ISR) RFQ and accelerate O + from 1 to 1.5 MeV. Three electrostatic quadruples are adopted to realize the transverse beam matching from ISR RFQ to SFRFQ cavity. This setting is also useful for the beam size adjustment and its applications.
Dynamic analysis of spur gears using computer program DANST
NASA Astrophysics Data System (ADS)
Oswald, Fred B.; Lin, Hsiang Hsi; Liou, Chuen-Huei; Valco, Mark J.
1993-06-01
DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results.
Dynamic analysis of spur gears using computer program DANST
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Lin, Hsiang Hsi; Liou, Chuen-Huei; Valco, Mark J.
1993-01-01
DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results.
Dynamic analysis of spur gears using computer program DANST
Oswald, F.B.; Lin, H.H.; Liou, Chuenheui; Valco, M.J.
1993-06-01
DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results. 14 refs.
Maret, Wolfgang
2011-06-01
Homeostatic control maintains essential transition metal ions at characteristic cellular concentrations to support their physiological functions and to avoid adverse effects. Zinc is especially widely used as a catalytic or structural cofactor in about 3000 human zinc proteins. In addition, the homeostatic control of zinc in eukaryotic cells permits functions of zinc(II) ions in regulation and in paracrine and intracrine signaling. Zinc ions are released from proteins through ligand-centered reactions in zinc/thiolate coordination environments, and from stores in cellular organelles, where zinc transporters participate in zinc loading and release. Muffling reactions allow zinc ions to serve as signaling ions (second messengers) in the cytosol that is buffered to picomolar zinc ion concentrations at steady-state. Muffling includes zinc ion binding to metallothioneins, cellular translocations of metallothioneins, delivery of zinc ions to transporter proteins, and zinc ion fluxes through cellular membranes with the result of removing the additional zinc ions from the cytosol and restoring the steady-state. Targets of regulatory zinc ions are proteins with sites for transient zinc binding, such as membrane receptors, enzymes, protein-protein interactions, and sensor proteins that control gene expression. The generation, transmission, targets, and termination of zinc ion signals involve proteins that use coordination dynamics in the inner and outer ligand spheres to control metal ion association and dissociation. These new findings establish critically important functions of zinc ions and zinc metalloproteins in cellular control.
NASA Astrophysics Data System (ADS)
González, Ramón E. R.; de Figueirêdo, Pedro Hugo; Coutinho, Sérgio
2013-10-01
We study a cellular automata model to test the timing of antiretroviral therapy strategies for the dynamics of infection with human immunodeficiency virus (HIV). We focus on the role of virus diffusion when its population is included in previous cellular automata model that describes the dynamics of the lymphocytes cells population during infection. This inclusion allows us to consider the spread of infection by the virus-cell interaction, beyond that which occurs by cell-cell contagion. The results show an acceleration of the infectious process in the absence of treatment, but show better efficiency in reducing the risk of the onset of AIDS when combined antiretroviral therapies are used even with drugs of low effectiveness. Comparison of results with clinical data supports the conclusions of this study.
Computational Fluid Dynamics Program at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1989-01-01
The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.
A Dedicated Computational Platform for Cellular Monte Carlo T-CAD Software Tools
2015-07-14
Nanoscience School of Electrical , Computer, and Energy Engineering Arizona State University Final Report for the AFOSR Grant FA9550-14-1-0083 1...development of a novel approach for the self-consistent microscopic simulation of the electrical and thermal properties of semiconductor devices...The reduction of mobility due to dislocation scattering results in a smaller velocity response to the electric field. Furthermore, the carrier
Computer simulation of a cellular automata model for the immune response in a retrovirus system
NASA Astrophysics Data System (ADS)
Pandey, R. B.
1989-02-01
Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B ca ( B cq). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B ca ( B cq).
Computer simulation of a cellular automata model for the immune response in a retrovirus system
Pandey, R.B.
1989-02-01
Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B/sub ca/ (B/sub cq/). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B/sub ca/ (B/sub cq/).
Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems
2013-01-01
Background Model development is a key task in systems biology, which typically starts from an initial model candidate and, involving an iterative cycle of hypotheses-driven model modifications, leads to new experimentation and subsequent model identification steps. The final product of this cycle is a satisfactory refined model of the biological phenomena under study. During such iterative model development, researchers frequently propose a set of model candidates from which the best alternative must be selected. Here we consider this problem of model selection and formulate it as a simultaneous model selection and parameter identification problem. More precisely, we consider a general mixed-integer nonlinear programming (MINLP) formulation for model selection and identification, with emphasis on dynamic models consisting of sets of either ODEs (ordinary differential equations) or DAEs (differential algebraic equations). Results We solved the MINLP formulation for model selection and identification using an algorithm based on Scatter Search (SS). We illustrate the capabilities and efficiency of the proposed strategy with a case study considering the KdpD/KdpE system regulating potassium homeostasis in Escherichia coli. The proposed approach resulted in a final model that presents a better fit to the in silico generated experimental data. Conclusions The presented MINLP-based optimization approach for nested-model selection and identification is a powerful methodology for model development in systems biology. This strategy can be used to perform model selection and parameter estimation in one single step, thus greatly reducing the number of experiments and computations of traditional modeling approaches. PMID:23938131
Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.
2006-02-01
We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.
Thompson, D.K.
2005-04-18
The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K2CrO4) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K{sub 2}CrO{sub 4}. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to {approx}240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)-exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both
Insights from molecular dynamics simulations for computational protein design.
Childers, Matthew Carter; Daggett, Valerie
2017-02-01
A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.
ERIC Educational Resources Information Center
Klaff, Vivian; Handler, Paul
Available on the University of Illinois PLATO IV Computer system, the Population Dynamic Group computer-aided instruction program for teaching population dynamics is described and explained. The computer-generated visual graphics enable fast and intuitive understanding of the dynamics of population and of the concepts and data of population. The…
Analog computation through high-dimensional physical chaotic neuro-dynamics
NASA Astrophysics Data System (ADS)
Horio, Yoshihiko; Aihara, Kazuyuki
2008-07-01
Conventional von Neumann computers have difficulty in solving complex and ill-posed real-world problems. However, living organisms often face such problems in real life, and must quickly obtain suitable solutions through physical, dynamical, and collective computations involving vast assemblies of neurons. These highly parallel computations through high-dimensional dynamics (computation through dynamics) are completely different from the numerical computations on von Neumann computers (computation through algorithms). In this paper, we explore a novel computational mechanism with high-dimensional physical chaotic neuro-dynamics. We physically constructed two hardware prototypes using analog chaotic-neuron integrated circuits. These systems combine analog computations with chaotic neuro-dynamics and digital computation through algorithms. We used quadratic assignment problems (QAPs) as benchmarks. The first prototype utilizes an analog chaotic neural network with 800-dimensional dynamics. An external algorithm constructs a solution for a QAP using the internal dynamics of the network. In the second system, 300-dimensional analog chaotic neuro-dynamics drive a tabu-search algorithm. We demonstrate experimentally that both systems efficiently solve QAPs through physical chaotic dynamics. We also qualitatively analyze the underlying mechanism of the highly parallel and collective analog computations by observing global and local dynamics. Furthermore, we introduce spatial and temporal mutual information to quantitatively evaluate the system dynamics. The experimental results confirm the validity and efficiency of the proposed computational paradigm with the physical analog chaotic neuro-dynamics.
Applications of Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.
2004-01-01
Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.
Digital computer program for generating dynamic turbofan engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Krosel, S. M.; Szuch, J. R.; Westerkamp, E. J.
1983-01-01
This report describes DIGTEM, a digital computer program that simulates two spool, two-stream turbofan engines. The turbofan engine model in DIGTEM contains steady-state performance maps for all of the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. Altogether there are 16 state variables and state equations. DIGTEM features a backward-differnce integration scheme for integrating stiff systems. It trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off-design points and iterates to a balanced engine condition. Transients can also be run. They are generated by defining controls as a function of time (open-loop control) in a user-written subroutine (TMRSP). DIGTEM has run on the IBM 370/3033 computer using implicit integration with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is generalized in the aerothermodynamic treatment of components.
NASA Technical Reports Server (NTRS)
Fijany, Amir; Toomarian, Benny N.
2000-01-01
There has been significant improvement in the performance of VLSI devices, in terms of size, power consumption, and speed, in recent years and this trend may also continue for some near future. However, it is a well known fact that there are major obstacles, i.e., physical limitation of feature size reduction and ever increasing cost of foundry, that would prevent the long term continuation of this trend. This has motivated the exploration of some fundamentally new technologies that are not dependent on the conventional feature size approach. Such technologies are expected to enable scaling to continue to the ultimate level, i.e., molecular and atomistic size. Quantum computing, quantum dot-based computing, DNA based computing, biologically inspired computing, etc., are examples of such new technologies. In particular, quantum-dots based computing by using Quantum-dot Cellular Automata (QCA) has recently been intensely investigated as a promising new technology capable of offering significant improvement over conventional VLSI in terms of reduction of feature size (and hence increase in integration level), reduction of power consumption, and increase of switching speed. Quantum dot-based computing and memory in general and QCA specifically, are intriguing to NASA due to their high packing density (10(exp 11) - 10(exp 12) per square cm ) and low power consumption (no transfer of current) and potentially higher radiation tolerant. Under Revolutionary Computing Technology (RTC) Program at the NASA/JPL Center for Integrated Space Microelectronics (CISM), we have been investigating the potential applications of QCA for the space program. To this end, exploiting the intrinsic features of QCA, we have designed novel QCA-based circuits for co-planner (i.e., single layer) and compact implementation of a class of data permutation matrices, a class of interconnection networks, and a bit-serial processor. Building upon these circuits, we have developed novel algorithms and QCA
NASA Astrophysics Data System (ADS)
Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.
2014-10-01
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using
Eiraku, Mototsugu; Adachi, Taiji; Sasai, Yoshiki
2012-01-01
The generation of complex organ structures such as the eye requires the intricate orchestration of multiple cellular interactions. In this paper, early retinal development is discussed with respect to the structure formation of the optic cup. Although recent studies have elucidated molecular mechanisms of retinal differentiation, little is known about how the unique shape of the optic cup is determined. A recent report has demonstrated that optic-cup morphogenesis spontaneously occurs in three-dimensional stem-cell culture without external forces, indicating a latent intrinsic order to generate the structure. Based on this self-organizing phenomenon, we introduce the "relaxation-expansion" model to mechanically interpret the tissue dynamics that enable the spontaneous invagination of the neural retina. This model involves three consecutive local rules (relaxation, apical constriction, and expansion), and its computer simulation recapitulates the optic-cup morphogenesis in silico.
Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review
Paquet, Eric; Viktor, Herna L.
2015-01-01
Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather, they are characterised by their flexibility, which is the result of the interaction and collective motion of their constituent atoms. This conformational diversity has a significant impact on their physicochemical and biological properties. Among these are their structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational space must be efficiently sampled and the dynamic of the constituent atoms must be simulated. This paper presents algorithms and techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo simulations, Langevin dynamics, and free energy calculation is presented. The exposition is made from first principles to promote a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods. PMID:25785262
Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M
2014-11-07
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.
Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.
2015-01-01
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼ 70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging. PMID:25248645
ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.
Schöneberg, Johannes; Noé, Frank
2013-01-01
We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.
ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments
Schöneberg, Johannes; Noé, Frank
2013-01-01
We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics. PMID:24040218
Data Point Averaging for Computational Fluid Dynamics Data
NASA Technical Reports Server (NTRS)
Norman, David, Jr. (Inventor)
2014-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Computational Fluid Dynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Kutler, Paul
1994-01-01
Computational fluid dynamics (CFD) is beginning to play a major role in the aircraft industry of the United States because of the realization that CFD can be a new and effective design tool and thus could provide a company with a competitive advantage. It is also playing a significant role in research institutions, both governmental and academic, as a tool for researching new fluid physics, as well as supplementing and complementing experimental testing. In this presentation, some of the progress made to date in CFD at NASA Ames will be reviewed. The presentation addresses the status of CFD in terms of methods, examples of CFD solutions, and computer technology. In addition, the role CFD will play in supporting the revolutionary goals set forth by the Aeronautical Policy Review Committee established by the Office of Science and Technology Policy is noted. The need for validated CFD tools is also briefly discussed.
Computational strategies in the dynamic simulation of constrained flexible MBS
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Xie, M.
1993-01-01
This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.
Computational fluid dynamics (CFD) and its potential for nuclear applications
Weber, D.P.; Wei, T.Y.C.; Rock, D.T.; Rizwan-Uddin; Brewster, R.A.; Jonnavithula, S.
1999-11-01
The purpose of this paper is to examine the use of these advanced models, methods and computing environments for nuclear applications to determine if the industry can expect to derive the same benefit as other industries, such as the automotive and the aerospace industries. As an example, the authors will examine the use of modern computational fluid dynamics (CFD) capability for subchannel analysis, which is an important part of the analysis technology used by utilities to ensure safe and economical design and operation of reactors. In the current deregulated environment, it is possible that by use of these enhanced techniques, the thermal and electrical output of current reactors may be increased without any increase in cost and at no compromise in safety.
Multilevel model reduction for uncertainty quantification in computational structural dynamics
NASA Astrophysics Data System (ADS)
Ezvan, O.; Batou, A.; Soize, C.; Gagliardini, L.
2017-02-01
This work deals with an extension of the reducedorder models (ROMs) that are classically constructed by modal analysis in linear structural dynamics for which the computational models are assumed to be uncertain. It is based on a multilevel projection strategy consisting in introducing three reduced-order bases that are obtained by using a spatial filtering methodology of local displacements. This filtering involves global shape functions for the kinetic energy. The proposed multilevel stochastic ROM is constructed by using the nonparametric probabilistic approach of uncertainties. It allows for affecting a specific level of uncertainties to each type of displacements associated with the corresponding vibration regime. The proposed methodology is applied to the computational model of an automobile structure, for which the multilevel stochastic ROM is identified with respect to experimental measurements. This identification is performed by solving a statistical inverse problem.
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
Dynamic computing resource allocation in online flood monitoring and prediction
NASA Astrophysics Data System (ADS)
Kuchar, S.; Podhoranyi, M.; Vavrik, R.; Portero, A.
2016-08-01
This paper presents tools and methodologies for dynamic allocation of high performance computing resources during operation of the Floreon+ online flood monitoring and prediction system. The resource allocation is done throughout the execution of supported simulations to meet the required service quality levels for system operation. It also ensures flexible reactions to changing weather and flood situations, as it is not economically feasible to operate online flood monitoring systems in the full performance mode during non-flood seasons. Different service quality levels are therefore described for different flooding scenarios, and the runtime manager controls them by allocating only minimal resources currently expected to meet the deadlines. Finally, an experiment covering all presented aspects of computing resource allocation in rainfall-runoff and Monte Carlo uncertainty simulation is performed for the area of the Moravian-Silesian region in the Czech Republic.
Computational methods. [Calculation of dynamic loading to offshore platforms
Maeda, H. . Inst. of Industrial Science)
1993-02-01
With regard to the computational methods for hydrodynamic forces, first identification of marine hydrodynamics in offshore technology is discussed. Then general computational methods, the state of the arts and uncertainty on flow problems in offshore technology in which developed, developing and undeveloped problems are categorized and future works follow. Marine hydrodynamics consists of water surface and underwater fluid dynamics. Marine hydrodynamics covers, not only hydro, but also aerodynamics such as wind load or current-wave-wind interaction, hydrodynamics such as cavitation, underwater noise, multi-phase flow such as two-phase flow in pipes or air bubble in water or surface and internal waves, and magneto-hydrodynamics such as propulsion due to super conductivity. Among them, two key words are focused on as the identification of marine hydrodynamics in offshore technology; they are free surface and vortex shedding.
Data Point Averaging for Computational Fluid Dynamics Data
NASA Technical Reports Server (NTRS)
Norman, Jr., David (Inventor)
2016-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Computational methods of the Advanced Fluid Dynamics Model
Bohl, W.R.; Wilhelm, D.; Parker, F.R.; Berthier, J.; Maudlin, P.J.; Schmuck, P.; Goutagny, L.; Ichikawa, S.; Ninokata, H.; Luck, L.B.
1987-01-01
To more accurately treat severe accidents in fast reactors, a program has been set up to investigate new computational models and approaches. The product of this effort is a computer code, the Advanced Fluid Dynamics Model (AFDM). This paper describes some of the basic features of the numerical algorithm used in AFDM. Aspects receiving particular emphasis are the fractional-step method of time integration, the semi-implicit pressure iteration, the virtual mass inertial terms, the use of three velocity fields, higher order differencing, convection of interfacial area with source and sink terms, multicomponent diffusion processes in heat and mass transfer, the SESAME equation of state, and vectorized programming. A calculated comparison with an isothermal tetralin/ammonia experiment is performed. We conclude that significant improvements are possible in reliably calculating the progression of severe accidents with further development.
Use of computational fluid dynamics in respiratory medicine.
Fernández Tena, Ana; Casan Clarà, Pere
2015-06-01
Computational Fluid Dynamics (CFD) is a computer-based tool for simulating fluid movement. The main advantages of CFD over other fluid mechanics studies include: substantial savings in time and cost, the analysis of systems or conditions that are very difficult to simulate experimentally (as is the case of the airways), and a practically unlimited level of detail. We used the Ansys-Fluent CFD program to develop a conducting airway model to simulate different inspiratory flow rates and the deposition of inhaled particles of varying diameters, obtaining results consistent with those reported in the literature using other procedures. We hope this approach will enable clinicians to further individualize the treatment of different respiratory diseases.
Theoretical and computational dynamics of a compressible flow
NASA Technical Reports Server (NTRS)
Pai, Shih-I; Luo, Shijun
1991-01-01
An introduction to the theoretical and computational fluid dynamics of a compressible fluid is presented. The general topics addressed include: thermodynamics and physical properties of compressible fluids; 1D flow of an inviscid compressible fluid; shock waves; fundamental equations of the dynamics of a compressible inviscid non-heat-conducting and radiating fluid, method of small perturbations, linearized theory; 2D subsonic steady potential flow; hodograph and rheograph methods, exact solutions of 2D insentropic steady flow equations, 2D steady transonic and hypersonic flows, method of characteristics, linearized theory of 3D potential flow, nonlinear theory of 3D compressibe flow, anisentropic (rotational) flow of inviscid compressible fluid, electromagnetogasdynamics, multiphase flows, flows of a compressible fluid with transport phenomena.
The role of computational fluid dynamics (CFD) in hair science.
Spicka, Peter; Grald, Eric
2004-01-01
The use of computational fluid dynamics (CFD) as a virtual prototyping tool is widespread in the consumer packaged goods industry. CFD refers to the calculation on a computer of the velocity, pressure, and temperature and chemical species concentrations within a flowing liquid or gas. Because the performance of manufacturing equipment and product designs can be simulated on the computer, the benefit of using CFD is significant time and cost savings when compared to traditional physical testing methods. CFD has been used to design, scale-up and troubleshoot mixing tanks, spray dryers, heat exchangers and other process equipment. Recently, computer models of the capillary wicking process inside fibrous structures have been added to CFD software. These models have been used to gain a better understanding of the absorbent performance of diapers and feminine protection products. The same models can also be used to represent the movement of shampoo, conditioner, colorants and other products through the hair and scalp. In this paper, we provide an introduction to CFD and show some examples of its application to the manufacture of consumer products. We also provide sonic examples to show the potential of CFD for understanding the performance of products applied to the hair and scalp.
Computational complexity of ecological and evolutionary spatial dynamics.
Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu; Nowak, Martin A
2015-12-22
There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant) will take over a resident population? We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP).
Modeling fires in adjacent ship compartments with computational fluid dynamics
Wix, S.D.; Cole, J.K.; Koski, J.A.
1998-05-10
This paper presents an analysis of the thermal effects on radioactive (RAM) transportation packages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on tile US Coast Guard ship Mayo Lykes located at Mobile, Alabama.
Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion
NASA Technical Reports Server (NTRS)
Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.
2011-01-01
A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
Computer studies of multiple-quantum spin dynamics
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Computer Modeling of Real-Time Dynamic Lighting
NASA Technical Reports Server (NTRS)
Maida, James C.; Pace, J.; Novak, J.; Russo, Dane M. (Technical Monitor)
2000-01-01
Space Station tasks involve procedures that are very complex and highly dependent on the availability of visual information. In many situations, cameras are used as tools to help overcome the visual and physical restrictions associated with space flight. However, these cameras are effected by the dynamic lighting conditions of space. Training for these is conditions is necessary. The current project builds on the findings of an earlier NRA funded project, which revealed improved performance by humans when trained with computer graphics and lighting effects such as shadows and glare.
New Challenges in Visualization of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
The development of visualization systems for analyzing computational fluid dynamics data has been driven by increasing size and complexity of the data. New extensions to the system domain into analysis of data from multiple sources, parameter space studies, and multidisciplinary studies in support of integrated aeronautical design systems provide new g challenges for the visualization system developer. Recent work at NASA Ames Research Center in visualization systems, automatic flow feature detection, unsteady flow visualization techniques, and a new area, data exploitation, will be discussed in the context of NASA information technology initiatives.
The very local Hubble flow: Computer simulations of dynamical history
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Makarov, D. I.
2004-02-01
The phenomenon of the very local (≤3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the ``initial conditions'' of the flow are drastically different from the linear velocity-distance relation. The simulations enable one also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by the cosmic vacuum.
Computer based training for flight dynamics and METEOSAT spacecraft
NASA Astrophysics Data System (ADS)
Thomas, Graham Roland
With its friendly language and completely integrated graphics and communications capabilities the Flight Dynamics Computer Based Training (CBT) Facility is everything the developer requires to turn their knowledge into sophisticated, technical training cources. It incorporates high quality graphics and has an open communications interface to allow current and future connections to external applications. For the author it provides a simple and effective suite of commands to develop training material. For the trainee, logical layout and access to help and graphical data via hypertext, provides a quick and pleasant learning system.
Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps.
Ruggerone, Paolo; Vargiu, Attilio V; Collu, Francesca; Fischer, Nadine; Kandt, Christian
2013-01-01
Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.
Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps
Ruggerone, Paolo; Vargiu, Attilio V.; Collu, Francesca; Fischer, Nadine; Kandt, Christian
2013-01-01
Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa. PMID:24688701
Dynamic computer simulations of electrophoresis: three decades of active research.
Thormann, Wolfgang; Caslavska, Jitka; Breadmore, Michael C; Mosher, Richard A
2009-06-01
Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.
Fletcher, Alexander G; Osborne, James M; Maini, Philip K; Gavaghan, David J
2013-11-01
The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell-cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable.
De Los Santos, Carla; Chang, Ching-Wei; Mycek, Mary-Ann; Cardullo, Richard A.
2015-01-01
The combination of fluorescent-probe technology plus modern optical microscopes allows investigators to monitor dynamic events in living cells with exquisite temporal and spatial resolution. Fluorescence recovery after photobleaching (FRAP), for example, has long been used to monitor molecular dynamics both within cells and on cellular surfaces. Although bound by the diffraction limit imposed on all optical microscopes, the combination of digital cameras and the application of fluorescence intensity information on large-pixel arrays have allowed such dynamic information to be monitored and quantified. Fluorescence lifetime imaging microscopy (FLIM), on the other hand, utilizes the information from an ensemble of fluorophores to probe changes in the local environment. Using either fluorescence-intensity or lifetime approaches, fluorescence resonance energy transfer (FRET) microscopy provides information about molecular interactions, with Ångstrom resolution. In this review, we summarize the theoretical framework underlying these methods and illustrate their utility in addressing important problems in reproductive and developmental systems. PMID:26010322
Computer simulations of cellular group selection reveal mechanism for sustaining cooperation.
Markvoort, Albert J; Sinai, Sam; Nowak, Martin A
2014-09-21
We present a computer simulation of group selection that is inspired by proto-cell division. Two types of replicating molecules, cooperators and defectors, reside inside membrane bound compartments. Cooperators pay a cost for other replicators in the cell to receive a benefit. Defectors pay no cost and distribute no benefits. The total population size fluctuates as a consequence of births and deaths of individual replicators. Replication requires activated substrates that are generated at a constant rate. Our model includes mutation between cooperators and defectors and selection on two levels: within proto-cells and between proto-cells. We find surprising similarities and differences between models with and without cell death. In both cases, a necessary requirement for group selection to favor some level of cooperation is the continuous formation of a minimum fraction of pure cooperator groups. Subsequently these groups become undermined by defectors, because of mutation and selection within cells. Cell division mechanisms which generate pure cooperator groups more efficiently are stronger promoters of cooperation. For example, division of a proto-cell into many daughter cells is more powerful in enhancing cooperation than division into two daughter cells. Our model differs from previous studies of group selection in that we explore a variety of different features and relax several restrictive assumptions that would be needed for analytic calculations.
Li, Ye; Yuan, Bing; Yang, Kai; Zhang, Xianren; Yan, Bing; Cao, Dapeng
2017-02-24
The nanoparticles (NPs) functionalized with charged ligands are of particular significance due to their potential drug/gene delivery and biomedical applications. However, the molecular mechanism of endocytosis of the charged NPs by cells, especially the effect of the NP-NP and NP-biomembrane interactions on the internalization pathways is still poorly understood. In this work, we systematically investigate the internalization behaviors of the positively charged NPs by combining experiment technology and dissipative particle dynamics (DPD) simulation. We experimentally find an interesting but highly counterintuitive phenomenon, i.e. the multiple positively charged NPs prefer to enter cells cooperatively although the like-charged NPs have obvious electrostatic repulsion. Furthermore, we adopt the DPD simulation to confirm the experimental findings, and reveal that the mechanism of the cooperative endocytosis between like-charged NPs is definitely caused by the interplay of particle size, the charged ligand density on particle surface and local concentration of NPs. Importantly, we not only observe the normal cooperative endocytosis of like-charged NPs in cell biomembrane like neutral NP case, but also predict the 'bud' cooperative endocytosis of like-charged NPs which is absence in the neutral NP case. The results indicate that electrostatic repulsion between the positively charged nanoparticles plays an important role in the 'bud' cooperative endocytosis of like-charged NPs.
NASA Astrophysics Data System (ADS)
Li, Ye; Yuan, Bing; Yang, Kai; Zhang, Xianren; Yan, Bing; Cao, Dapeng
2017-02-01
The nanoparticles (NPs) functionalized with charged ligands are of particular significance due to their potential drug/gene delivery and biomedical applications. However, the molecular mechanism of endocytosis of the charged NPs by cells, especially the effect of the NP–NP and NP–biomembrane interactions on the internalization pathways is still poorly understood. In this work, we systematically investigate the internalization behaviors of the positively charged NPs by combining experiment technology and dissipative particle dynamics (DPD) simulation. We experimentally find an interesting but highly counterintuitive phenomenon, i.e. the multiple positively charged NPs prefer to enter cells cooperatively although the like-charged NPs have obvious electrostatic repulsion. Furthermore, we adopt the DPD simulation to confirm the experimental findings, and reveal that the mechanism of the cooperative endocytosis between like-charged NPs is definitely caused by the interplay of particle size, the charged ligand density on particle surface and local concentration of NPs. Importantly, we not only observe the normal cooperative endocytosis of like-charged NPs in cell biomembrane like neutral NP case, but also predict the ‘bud’ cooperative endocytosis of like-charged NPs which is absence in the neutral NP case. The results indicate that electrostatic repulsion between the positively charged nanoparticles plays an important role in the ‘bud’ cooperative endocytosis of like-charged NPs.
Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.
NASA Astrophysics Data System (ADS)
Elliott, William Dewey
1995-01-01
A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over
Computational fluid dynamics modeling for emergency preparedness & response
Lee, R.L.; Albritton, J.R.; Ermak, D.L.; Kim, J.
1995-07-01
Computational fluid dynamics (CFD) has played an increasing role in the improvement of atmospheric dispersion modeling. This is because many dispersion models are now driven by meteorological fields generated from CFD models or, in numerical weather prediction`s terminology, prognostic models. Whereas most dispersion models typically involve one or a few scalar, uncoupled equations, the prognostic equations are a set of highly-coupled, nonlinear equations whose solution requires a significant level of computational power. Until recently, such computer power could be found only in CRAY-class supercomputers. Recent advances in computer hardware and software have enabled modestly-priced, high performance, workstations to exhibit the equivalent computation power of some mainframes. Thus desktop-class machines that were limited to performing dispersion calculations driven by diagnostic wind fields may now be used to calculate complex flows using prognostic CFD models. The Atmospheric Release and Advisory Capability (ARAC) program at Lawrence Livermore National Laboratory (LLNL) has, for the past several years, taken advantage of the improvements in hardware technology to develop a national emergency response capability based on executing diagnostic models on workstations. Diagnostic models that provide wind fields are, in general, simple to implement, robust and require minimal time for execution. Such models have been the cornerstones of the ARAC operational system for the past ten years. Kamada (1992) provides a review of diagnostic models and their applications to dispersion problems. However, because these models typically contain little physics beyond mass-conservation, their performance is extremely sensitive to the quantity and quality of input meteorological data and, in spite of their utility, can be applied with confidence to only modestly complex flows.
Issues in computational fluid dynamics code verification and validation
Oberkampf, W.L.; Blottner, F.G.
1997-09-01
A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.
Improvement in computational fluid dynamics through boundary verification and preconditioning
NASA Astrophysics Data System (ADS)
Folkner, David E.
This thesis provides improvements to computational fluid dynamics accuracy and efficiency through two main methods: a new boundary condition verification procedure and preconditioning techniques. First, a new verification approach that addresses boundary conditions was developed. In order to apply the verification approach to a large range of arbitrary boundary conditions, it was necessary to develop unifying mathematical formulation. A framework was developed that allows for the application of Dirichlet, Neumann, and extrapolation boundary condition, or in some cases the equations of motion directly. Verification of boundary condition techniques was performed using exact solutions from canonical fluid dynamic test cases. Second, to reduce computation time and improve accuracy, preconditioning algorithms were applied via artificial dissipation schemes. A new convective upwind and split pressure (CUSP) scheme was devised and was shown to be more effective than traditional preconditioning schemes in certain scenarios. The new scheme was compared with traditional schemes for unsteady flows for which both convective and acoustic effects dominated. Both boundary conditions and preconditioning algorithms were implemented in the context of a "strand grid" solver. While not the focus of this thesis, strand grids provide automatic viscous quality meshing and are suitable for moving mesh overset problems.
HYDRA, A finite element computational fluid dynamics code: User manual
Christon, M.A.
1995-06-01
HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.
A paradigm for modeling and computation of gas dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun; Liu, Chang
2017-02-01
In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct
Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang
2014-02-01
Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.
Novel optical-based methods and analyses for elucidating cellular mechanics and dynamics
NASA Astrophysics Data System (ADS)
Koo, Peter K.
Resolving distinct biochemical interaction states by analyzing the diffusive behaviors of individual protein trajectories is challenging due to the limited statistics provided by short trajectories and experimental noise sources, which are intimately coupled into each proteins localization. In the first part of this thesis, we introduce a novel, a machine-learning based classification methodology, called perturbation expectation-maximization (pEM), which simultaneously analyzes a population of protein trajectories to uncover the system of short-time diffusive behaviors which collectively result from distinct biochemical interactions. We then discuss an experimental application of pEM to Rho GTPase, an integral regulator of cytoskeletal dynamics and cellular homeostasis, inside live cells. We also derive the maximum likelihood estimator (MLE) for driven diffusion, confined diffusion, and fractional Brownian motion. We demonstrate that MLE yields improved estimates in comparison with traditional diffusion analysis, namely mean squared displacement analysis. In addition, we also introduce mleBayes, which is an empirical Bayesian model selection scheme to classify an individual protein trajectory to a given diffusion mode. By employing mleBayes on simulated data, we demonstrate that accurate determination of the underlying diffusive properties, beyond normal diffusion, remains challenging when analyzing particle trajectories on an individual basis. To improve upon the statistical limitations of classification from analyzing trajectories on an individual basis, we extend pEM with a new version (pEMv2) to simultaneously analyzing a collection of particle trajectories to uncover the system of interactions which give rise to unique normal or non-normal diffusive states. We test the performance of pEMv2 on various sets of simulated particle trajectories which transition between various modes of normal and non-normal diffusive states to highlight considerations when
Dynamical Approach Study of Spurious Numerics in Nonlinear Computations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi (Technical Monitor)
2002-01-01
The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.
Towards robust dynamical decoupling and high fidelity adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Quiroz, Gregory
Quantum computation (QC) relies on the ability to implement high-fidelity quantum gate operations and successfully preserve quantum state coherence. One of the most challenging obstacles for reliable QC is overcoming the inevitable interaction between a quantum system and its environment. Unwanted interactions result in decoherence processes that cause quantum states to deviate from a desired evolution, consequently leading to computational errors and loss of coherence. Dynamical decoupling (DD) is one such method, which seeks to attenuate the effects of decoherence by applying strong and expeditious control pulses solely to the system. Provided the pulses are applied over a time duration sufficiently shorter than the correlation time associated with the environment dynamics, DD effectively averages out undesirable interactions and preserves quantum states with a low probability of error, or fidelity loss. In this study various aspects of this approach are studied from sequence construction to applications of DD to protecting QC. First, a comprehensive examination of the error suppression properties of a near-optimal DD approach is given to understand the relationship between error suppression capabilities and the number of required DD control pulses in the case of ideal, instantaneous pulses. While such considerations are instructive for examining DD efficiency, i.e., performance vs the number of control pulses, high-fidelity DD in realizable systems is difficult to achieve due to intrinsic pulse imperfections which further contribute to decoherence. As a second consideration, it is shown how one can overcome this hurdle and achieve robustness and recover high-fidelity DD in the presence of faulty control pulses using Genetic Algorithm optimization and sequence symmetrization. Thirdly, to illustrate the implementation of DD in conjunction with QC, the utilization of DD and quantum error correction codes (QECCs) as a protection method for adiabatic quantum
Computational fluid dynamics of developing avian outflow tract heart valves.
Bharadwaj, Koonal N; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C; Butcher, Jonathan T
2012-10-01
Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16-30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm(2) at HH16 to 671.24 dynes/cm(2) at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm(2) at HH16 to 136.50 dynes/cm(2) at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research.
Dynamic remapping decisions in multi-phase parallel computations
NASA Technical Reports Server (NTRS)
Nicol, D. M.; Reynolds, P. F., Jr.
1986-01-01
The effectiveness of any given mapping of workload to processors in a parallel system is dependent on the stochastic behavior of the workload. Program behavior is often characterized by a sequence of phases, with phase changes occurring unpredictably. During a phase, the behavior is fairly stable, but may become quite different during the next phase. Thus a workload assignment generated for one phase may hinder performance during the next phase. We consider the problem of deciding whether to remap a paralled computation in the face of uncertainty in remapping's utility. Fundamentally, it is necessary to balance the expected remapping performance gain against the delay cost of remapping. This paper treats this problem formally by constructing a probabilistic model of a computation with at most two phases. We use stochastic dynamic programming to show that the remapping decision policy which minimizes the expected running time of the computation has an extremely simple structure: the optimal decision at any step is followed by comparing the probability of remapping gain against a threshold. This theoretical result stresses the importance of detecting a phase change, and assessing the possibility of gain from remapping. We also empirically study the sensitivity of optimal performance to imprecise decision threshold. Under a wide range of model parameter values, we find nearly optimal performance if remapping is chosen simply when the gain probability is high. These results strongly suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change; precise quantification of the decision model parameters is not necessary.
Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud
Florence, A. Paulin; Shanthi, V.; Simon, C. B. Sunil
2016-01-01
Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption. PMID:27239551
High-Precision Computation: Mathematical Physics and Dynamics
Bailey, D. H.; Barrio, R.; Borwein, J. M.
2010-04-01
At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.
Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.
1991-01-01
A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.
Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.
2016-11-01
Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.
High-Performance Java Codes for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.
Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.
Florence, A Paulin; Shanthi, V; Simon, C B Sunil
2016-01-01
Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.
Modeling behavior dynamics using computational psychometrics within virtual worlds
Cipresso, Pietro
2015-01-01
In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video, and audio) and an advanced technique [Virtual Reality (VR)] to manipulate experimental settings. The second step concerns the measurement of behavior in one, two, or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand, and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario. PMID:26594193
Modeling behavior dynamics using computational psychometrics within virtual worlds.
Cipresso, Pietro
2015-01-01
In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video, and audio) and an advanced technique [Virtual Reality (VR)] to manipulate experimental settings. The second step concerns the measurement of behavior in one, two, or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand, and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario.
NASA Astrophysics Data System (ADS)
Lovreglio, Ruggiero; Ronchi, Enrico; Nilsson, Daniel
2015-11-01
The formulation of pedestrian floor field cellular automaton models is generally based on hypothetical assumptions to represent reality. This paper proposes a novel methodology to calibrate these models using experimental trajectories. The methodology is based on likelihood function optimization and allows verifying whether the parameters defining a model statistically affect pedestrian navigation. Moreover, it allows comparing different model specifications or the parameters of the same model estimated using different data collection techniques, e.g. virtual reality experiment, real data, etc. The methodology is here implemented using navigation data collected in a Virtual Reality tunnel evacuation experiment including 96 participants. A trajectory dataset in the proximity of an emergency exit is used to test and compare different metrics, i.e. Euclidean and modified Euclidean distance, for the static floor field. In the present case study, modified Euclidean metrics provide better fitting with the data. A new formulation using random parameters for pedestrian cellular automaton models is also defined and tested.
Lu, Lin
2016-01-01
We investigate a class of memristor-based shunting inhibitory cellular neural networks with leakage delays. By applying a new Lyapunov function method, we prove that the neural network which has a unique almost periodic solution is globally exponentially stable. Moreover, the theoretical findings of this paper on the almost periodic solution are applied to prove the existence and stability of periodic solution for memristor-based shunting inhibitory cellular neural networks with leakage delays and periodic coefficients. An example is given to illustrate the effectiveness of the theoretical results. The results obtained in this paper are completely new and complement the previously known studies of Wu (2011) and Chen and Cao (2002). PMID:27840634
Classifying cellular automata using grossone
NASA Astrophysics Data System (ADS)
D'Alotto, Louis
2016-10-01
This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.
NASA Astrophysics Data System (ADS)
Pandey, Ras B.
1998-03-01
A stochastic cellular automata (SCA) approach is introduced to study the growth and decay of cellular population in an immune response model relevant to HIV. Four cell types are considered: macrophages (M), helper cells (H), cytotoxic cells (C), and viral infected cells (V). Mobility of the cells is introduced and viral mutation is considered probabilistically. In absence of mutation, the population of the host cells, helper (N_H) and cytotxic (N_C) cells in particular, dominates over the viral population (N_V), i.e., N_H, NC > N_V, the immune system wins over the viral infection. Variation of cellular population with time exhibits oscillations. The amplitude of oscillations in variation of N_H, NC and NV with time decreases at high mobility even at low viral mutation; the rate of viral growth is nonmonotonic with NV > N_H, NC in the long time regime. The viral population is much higher than that of the host cells at higher mutation rate, a possible cause of AIDS.
Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics
NASA Astrophysics Data System (ADS)
Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng
2013-03-01
Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.
Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M
2011-02-01
Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1986-01-01
The Fluid Dynamics Panel of AGARD arranged a Symposium on Applications of Computational Fluid Dynamics in Aeronautics, on 7 to 10 April 1986 in Aix-en-Provence, France. The purpose of the Symposium was to provide an assessment of the status of CFD in aerodynamic design and analysis, with an emphasis on emerging applications of advanced computational techniques to complex configurations. Sessions were devoted specifically to grid generation, methods for inviscid flows, calculations of viscous-inviscid interactions, and methods for solving the Navier-Stokes equations. The 31 papers presented at the meeting are published in AGARD Conference Proceedings CP-412 and are listed in the Appendix of this report. A brief synopsis of each paper and some general conclusions and recommendations are given.
Secure Dynamic access control scheme of PHR in cloud computing.
Chen, Tzer-Shyong; Liu, Chia-Hui; Chen, Tzer-Long; Chen, Chin-Sheng; Bau, Jian-Guo; Lin, Tzu-Ching
2012-12-01
With the development of information technology and medical technology, medical information has been developed from traditional paper records into electronic medical records, which have now been widely applied. The new-style medical information exchange system "personal health records (PHR)" is gradually developed. PHR is a kind of health records maintained and recorded by individuals. An ideal personal health record could integrate personal medical information from different sources and provide complete and correct personal health and medical summary through the Internet or portable media under the requirements of security and privacy. A lot of personal health records are being utilized. The patient-centered PHR information exchange system allows the public autonomously maintain and manage personal health records. Such management is convenient for storing, accessing, and sharing personal medical records. With the emergence of Cloud computing, PHR service has been transferred to storing data into Cloud servers that the resources could be flexibly utilized and the operation cost can be reduced. Nevertheless, patients would face privacy problem when storing PHR data into Cloud. Besides, it requires a secure protection scheme to encrypt the medical records of each patient for storing PHR into Cloud server. In the encryption process, it would be a challenge to achieve accurately accessing to medical records and corresponding to flexibility and efficiency. A new PHR access control scheme under Cloud computing environments is proposed in this study. With Lagrange interpolation polynomial to establish a secure and effective PHR information access scheme, it allows to accurately access to PHR with security and is suitable for enormous multi-users. Moreover, this scheme also dynamically supports multi-users in Cloud computing environments with personal privacy and offers legal authorities to access to PHR. From security and effectiveness analyses, the proposed PHR access
Computational solvation dynamics of oxyquinolinium betaine linked to trehalose
NASA Astrophysics Data System (ADS)
Heid, Esther; Schröder, Christian
2016-10-01
Studying the changed water dynamics in the hydration layers of biomolecules is an important step towards fuller understanding of their function and mechanisms, but has shown to be quite difficult. The measurement of the time-dependent Stokes shift of a chromophore attached to the biomolecule is a promising method to achieve this goal, as published in Sajadi et al. [J. Phys. Chem. Lett., 5, 1845 (2014).] where trehalose was used as biomolecule, 1-methyl-6-oxyquinolinium betaine as chromophore, and water as solvent. An overall retardation of solvent molecules is then obtained by comparison of the linked system to the same system without trehalose, but contributions from different subgroups of solvent molecules, for example, molecules close to or far from trehalose, are unknown. The difficulty arising from these unknown contributions of retarded and possibly unretarded solvent molecules is overcome in this work by conducting computer simulations on this system and decomposing the overall signal into the contributions from various molecules at different locations. We performed non-equilibrium molecular dynamics simulation using a polarizable water model and a non-polarizable solute model and could reproduce the experimental time-dependent Stokes shift accurately for the linked trehalose-oxyquinolinium and the pure oxyquinolinium over a wide temperature range, indicating the correctness of our employed models. Decomposition of the shift into contributions from different solvent subgroups showed that the amplitude of the measured shift is made up only half by the desired retarded solvent molecules in the hydration layer, but to another half by unretarded bulk water, so that measured relaxation times of the overall Stokes shift are only a lower boundary for the true relaxation times in the hydration layer of trehalose. As a side effect, the results on the effect of trehalose on solvation dynamics contribute to the long standing debate on the range of influence of
Lu, Jing; Yu, Jie; Shi, Heshui
2017-01-01
Background Adding functional features to morphological features offers a new method for non-invasive assessment of myocardial perfusion. This study aimed to explore technical routes of assessing the left coronary artery pressure gradient, wall shear stress distribution and blood flow velocity distribution, combining three-dimensional coronary model which was based on high resolution dual-source computed tomography (CT) with computational fluid dynamics (CFD) simulation. Methods Three cases of no obvious stenosis, mild stenosis and severe stenosis in left anterior descending (LAD) were enrolled. Images acquired on dual-source CT were input into software Mimics, ICEMCFD and FLUENT to simulate pressure gradient, wall shear stress distribution and blood flow velocity distribution. Measuring coronary enhancement ratio of coronary artery was to compare with pressure gradient. Results Results conformed to theoretical values and showed difference between normal and abnormal samples. Conclusions The study verified essential parameters and basic techniques in blood flow numerical simulation preliminarily. It was proved feasible. PMID:27924174
Data set for comparison of cellular dynamics between human AAVS1 locus-modified and wild-type cells
Mizutani, Takeomi; Haga, Hisashi; Kawabata, Kazushige
2016-01-01
This data article describes cellular dynamics, such as migration speed and mobility of the cytoskeletal protein, of wild-type human fibroblast cells and cells with a modified adeno-associated virus integration site 1 (AAVS1) locus on human chromosome 19. Insertion of exogenous gene into the AAVS1 locus has been conducted in recent biological researches. Previously, our data showed that the AAVS1-modification changes cellular contractile force (Mizutani et al., 2015 [1]). To assess if this AAVS1-modification affects cell migration, we compared cellular migration speed and turnover of cytoskeletal protein in human fibroblasts and fibroblasts with a green fluorescent protein gene knocked-in at the AAVS1 locus in this data article. Cell nuclei were stained and changes in their position attributable to cell migration were analyzed. Fluorescence recovery was observed after photobleaching for the fluorescent protein-tagged myosin regulatory light chain. Data here are related to the research article “Transgene Integration into the Human AAVS1 Locus Enhances Myosin II-Dependent Contractile Force by Reducing Expression of Myosin Binding Subunit 85” [1]. PMID:26937449
Ligand-binding dynamics rewire cellular signaling via Estrogen Receptor-α
Srinivasan, Sathish; Nwachukwu, Jerome C.; Parent, Alex A.; Cavett, Valerie; Nowak, Jason; Hughes, Travis S.; Kojetin, Douglas J.; Katzenellenbogen, John A.; Nettles, Kendall W.
2013-01-01
Ligand-binding dynamics control allosteric signaling through the estrogen receptor-α (ERα), but the biological consequences of such dynamic binding orientations are unknown. Here, we compare a set of ER ligands having dynamic binding orientation (dynamic ligands) with a control set of isomers that are constrained to bind in a single orientation (constrained ligands). Proliferation of breast cancer cells directed by constrained ligands is associated with DNA binding, coactivator recruitment and activation of the estrogen-induced gene GREB1, reflecting a highly interconnected signaling network. In contrast, proliferation driven by dynamic ligands is associated with induction of ERα-mediated transcription in a DNA-binding domain (DBD)-dependent manner. Further, dynamic ligands displayed enhanced anti-inflammatory activity. The DBD-dependent profile was predictive of these signaling patterns in a larger diverse set of natural and synthetic ligands. Thus, ligand dynamics directs unique signaling pathways, and reveals a novel role of the DBD in allosteric control of ERα-mediated signaling. PMID:23524984
NASA Astrophysics Data System (ADS)
He, Dong; Zhu, Jing Chuan; Wang, Yang; Liu, Yong
The dynamic recrystallization (DRX) of TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy during the hot deformation process was studied by the Cellular Automata (CA) model which is base on the dislocation density theory. To build the CA model, the dislocation density model, dynamic recovery model, nucleation model and grain growth model were introduced and developed. The influences of strain rate on the microstructure evolution and flow stress character were investigated which shows that high strain rate leads to later DRX appearance, high flow stress peak value, small mean size of recrystallizing grains(R-grains) and low DRX percentage, but they have the similar Avrami curve. The characteristic of DRX process in a modeling non-uniform temperature filed (NTF) has been studied. All the simulation results show good agreement with the pioneer's work and experimental results.
FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.
Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora
2013-09-01
In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.
Computational and theoretical aspects of biomolecular structure and dynamics
Garcia, A.E.; Berendzen, J.; Catasti, P., Chen, X.
1996-09-01
This is the final report for a project that sought to evaluate and develop theoretical, and computational bases for designing, performing, and analyzing experimental studies in structural biology. Simulations of large biomolecular systems in solution, hydrophobic interactions, and quantum chemical calculations for large systems have been performed. We have developed a code that implements the Fast Multipole Algorithm (FMA) that scales linearly in the number of particles simulated in a large system. New methods have been developed for the analysis of multidimensional NMR data in order to obtain high resolution atomic structures. These methods have been applied to the study of DNA sequences in the human centromere, sequences linked to genetic diseases, and the dynamics and structure of myoglobin.
Lightweight computational steering of very large scale molecular dynamics simulations
Beazley, D.M.; Lomdahl, P.S.
1996-09-01
We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Computational Methods for Structural Mechanics and Dynamics, part 1
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.
Knowledge-based zonal grid generation for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1988-01-01
Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.
Progress and future directions in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Kutler, Paul; Gross, Anthony R.
1988-01-01
Computational fluid dynamics (CFD) has made great strides in the detailed simulation of complex fluid flows, including the fluid physics of flows heretofore not understood. It is now being routinely applied to some rather complicated problems, and starting to impact the design cycle of aerospace vehicles and their components. In addition, it is being used to complement and is being complemented by experimental studies. In this paper some major elements of contemporary CFD research, such as code validation, turbulence physics, and hypersonic flows are discussed, along with a review of the principal pacing items that currently govern CFD. Several examples are presented to illustrate the current state of the art. Finally, prospects for the future of the development and application of CFD are suggested.
Computational fluid dynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Kutler, Paul
1989-01-01
Computational fluid dynamics (CFD) has made great strides in the detailed simulation of complex fluid flows, including the fluid physics of flows heretofore not understood. It is now being routinely applied to some rather complicated problems, and starting to impact the design cycle of aerospace flight vehicles and their components. In addition, it is being used to complement, and is being complemented by, experimental studies. In the present paper, some major elements of contemporary CFD research, such as code validation, turbulence physics, and hypersonic flows are discussed, along with a review of the principal pacing items that currently govern CFD. Several examples of pioneering CFD research are presented to illustrate the current state of the art. Finally, prospects for the future development and application of CFD are suggested.
Modern wing flutter analysis by computational fluid dynamics methods
NASA Technical Reports Server (NTRS)
Cunningham, Herbert J.; Batina, John T.; Bennett, Robert M.
1988-01-01
The application and assessment of the recently developed CAP-TSD transonic small-disturbance code for flutter prediction is described. The CAP-TSD code has been developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures with favorable results. Generalized aerodynamic forces and flutter characteristics are calculated and compared with linear theory results and with experimental data for a 45 deg sweptback wing. These results are in good agreement with the experimental flutter data which is the first step toward validating CAP-TSD for general transonic aeroelastic applications. The paper presents these results and comparisons along with general remarks regarding modern wing flutter analysis by computational fluid dynamics methods.
Lajevardipour, Alireza; Chon, James W. M.; Chattopadhyay, Amitabha; Clayton, Andrew H. A.
2016-01-01
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics. PMID:27872481
NASA Astrophysics Data System (ADS)
Lajevardipour, Alireza; Chon, James W. M.; Chattopadhyay, Amitabha; Clayton, Andrew H. A.
2016-11-01
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.
Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications
NASA Technical Reports Server (NTRS)
Sun, Xian-He
1997-01-01
Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm
Computer modelling of dynamics of Ser92X deoxymyoglobin mutants.
Nowak, W
1998-01-01
The hydrogen bond between His93 and Ser92, recently discovered in crystal structures of myoglobins (Mbs), may contribute to the oxygen storage capacity of the heme proteins through a stabilization of the proximal ligand. The possible influence of this H-bond on the geometry of the heme proximal side and ligand binding properties of Mb were computationally studied using model proteins with point mutations affecting this bond. The results of the computer modelling of Ser92X (X = Ala, Ile, Thr, Val) mutants of human (H) and sperm whale (SW) Mbs are presented. The OPLS-AMBER-CHARMM forcefield was used in the calculations. Several 10-50 ps molecular dynamics simulations (300 K, in vacuo) were performed. Our results show that the Ser92X mutants are stable molecules. In the wild types and Ser92Thr mutants, the H-bond studied is observed only for a relatively short period of time. It is expected that in both HMb and SW Mb molecules the impact of the proximal histidine interaction with the Ser92(F7) residue on the iron reactivity is rather low. However, the limited torsional flexibility of the proximal histidine imidazole ring was found in hydrogen bonding mutants. This effect may be attributed to the specific long range electrostatic interactions.
Dynamic modeling of Tampa Bay urban development using parallel computing
Xian, G.; Crane, M.; Steinwand, D.
2005-01-01
Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of urbanization and associated land use and land cover change in the Tampa Bay area. To reduce processing time and complete the modeling process within an acceptable period, the model is recoded and ported to a Beowulf cluster. The parallel-processing computer system accomplishes the massive amount of computation the modeling simulation requires. SLEUTH calibration process for the Tampa Bay urban growth simulation spends only 10 h CPU time. The model predicts future land use/cover change trends for Tampa Bay from 1992 to 2025. Urban extent is predicted to double in the Tampa Bay watershed between 1992 and 2025. Results show an upward trend of urbanization at the expense of a decline of 58% and 80% in agriculture and forested lands, respectively. ?? 2005 Elsevier Ltd. All rights reserved.
Experimental methodology for computational fluid dynamics code validation
Aeschliman, D.P.; Oberkampf, W.L.
1997-09-01
Validation of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. Typically, CFD code validation is accomplished through comparison of computed results to previously published experimental data that were obtained for some other purpose, unrelated to code validation. As a result, it is a near certainty that not all of the information required by the code, particularly the boundary conditions, will be available. The common approach is therefore unsatisfactory, and a different method is required. This paper describes a methodology developed specifically for experimental validation of CFD codes. The methodology requires teamwork and cooperation between code developers and experimentalists throughout the validation process, and takes advantage of certain synergisms between CFD and experiment. The methodology employs a novel uncertainty analysis technique which helps to define the experimental plan for code validation wind tunnel experiments, and to distinguish between and quantify various types of experimental error. The methodology is demonstrated with an example of surface pressure measurements over a model of varying geometrical complexity in laminar, hypersonic, near perfect gas, 3-dimensional flow.
Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems.
Chiu, Matt; Herbordt, Martin C
2010-11-01
The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable computing (HPRC) has been much studied. Given the intense competition from multicore and GPUs, there is now a question whether MD on HPRC can be competitive. We concentrate here on the MD kernel computation: determining the short-range force between particle pairs. In one part of the study, we systematically explore the design space of the force pipeline with respect to arithmetic algorithm, arithmetic mode, precision, and various other optimizations. We examine simplifications and find that some have little effect on simulation quality. In the other part, we present the first FPGA study of the filtering of particle pairs with nearly zero mutual force, a standard optimization in MD codes. There are several innovations, including a novel partitioning of the particle space, and new methods for filtering and mapping work onto the pipelines. As a consequence, highly efficient filtering can be implemented with only a small fraction of the FPGA's resources. Overall, we find that, for an Altera Stratix-III EP3ES260, 8 force pipelines running at nearly 200 MHz can fit on the FPGA, and that they can perform at 95% efficiency. This results in an 80-fold per core speed-up for the short-range force, which is likely to make FPGAs highly competitive for MD.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
High-order computational fluid dynamics tools for aircraft design
Wang, Z. J.
2014-01-01
Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419
Dynamic modeling of Tampa Bay urban development using parallel computing
NASA Astrophysics Data System (ADS)
Xian, George; Crane, Mike; Steinwand, Dan
2005-08-01
Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of urbanization and associated land use and land cover change in the Tampa Bay area. To reduce processing time and complete the modeling process within an acceptable period, the model is recoded and ported to a Beowulf cluster. The parallel-processing computer system accomplishes the massive amount of computation the modeling simulation requires. SLEUTH calibration process for the Tampa Bay urban growth simulation spends only 10 h CPU time. The model predicts future land use/cover change trends for Tampa Bay from 1992 to 2025. Urban extent is predicted to double in the Tampa Bay watershed between 1992 and 2025. Results show an upward trend of urbanization at the expense of a decline of 58% and 80% in agriculture and forested lands, respectively.
Unsteady computational fluid dynamics in front crawl swimming.
Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent
2017-03-23
The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.
Computational Fluid Dynamics of Acoustically Driven Bubble Systems
NASA Astrophysics Data System (ADS)
Glosser, Connor; Lie, Jie; Dault, Daniel; Balasubramaniam, Shanker; Piermarocchi, Carlo
2014-03-01
The development of modalities for precise, targeted drug delivery has become increasingly important in medical care in recent years. Assemblages of microbubbles steered by acoustic pressure fields present one potential vehicle for such delivery. Modeling the collective response of multi-bubble systems to an intense, externally applied ultrasound field requires accurately capturing acoustic interactions between bubbles and the externally applied field, and their effect on the evolution of bubble kinetics. In this work, we present a methodology for multiphysics simulation based on an efficient transient boundary integral equation (TBIE) coupled with molecular dynamics (MD) to compute trajectories of multiple acoustically interacting bubbles in an ideal fluid under pulsed acoustic excitation. For arbitrary configurations of spherical bubbles, the TBIE solver self-consistently models transient surface pressure distributions at bubble-fluid interfaces due to acoustic interactions and relative potential flows induced by bubble motion. Forces derived from the resulting pressure distributions act as driving terms in the MD update at each timestep. The resulting method efficiently and accurately captures individual bubble dynamics for clouds containing up to hundreds of bubbles.
Parellel beam dynamics calculations on high performance computers
Ryne, R.; Habib, S.
1996-12-01
Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000-100,000 particles, this represents an increase of 3-4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10`s of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies.
Computer acquisition of 3D images utilizing dynamic speckles
NASA Astrophysics Data System (ADS)
Kamshilin, Alexei A.; Semenov, Dmitry V.; Nippolainen, Ervin; Raita, Erik
2006-05-01
We present novel technique for fast non-contact and continuous profile measurements of rough surfaces by use of dynamic speckles. The dynamic speckle pattern is generated when the laser beam scans the surface under study. The most impressive feature of the proposed technique is its ability to work at extremely high scanning speed of hundreds meters per second. The technique is based on the continuous frequency measurements of the light-power modulation after spatial filtering of the scattered light. The complete optical-electronic system was designed and fabricated for fast measurement of the speckles velocity, its recalculation into the distance, and further data acquisition into computer. The measured surface profile is displayed in a PC monitor in real time. The response time of the measuring system is below 1 μs. Important parameters of the system such as accuracy, range of measurements, and spatial resolution are analyzed. Limits of the spatial filtering technique used for continuous tracking of the speckle-pattern velocity are shown. Possible ways of further improvement of the measurements accuracy are demonstrated. Owing to its extremely fast operation, the proposed technique could be applied for online control of the 3D-shape of complex objects (e.g., electronic circuits) during their assembling.
Analysis of coherent dynamical processes through computer vision
NASA Astrophysics Data System (ADS)
Hack, M. J. Philipp
2016-11-01
Visualizations of turbulent boundary layers show an abundance of characteristic arc-shaped structures whose apparent similarity suggests a common origin in a coherent dynamical process. While the structures have been likened to the hairpin vortices observed in the late stages of transitional flow, a consistent description of the underlying mechanism has remained elusive. Detailed studies are complicated by the chaotic nature of turbulence which modulates each manifestation of the process and which renders the isolation of individual structures a challenging task. The present study applies methods from the field of computer vision to capture the time evolution of turbulent flow features and explore the associated physical mechanisms. The algorithm uses morphological operations to condense the structure of the turbulent flow field into a graph described by nodes and links. The low-dimensional geometric information is stored in a database and allows the identification and analysis of equivalent dynamical processes across multiple scales. The framework is not limited to turbulent boundary layers and can also be applied to different types of flows as well as problems from other fields of science.
A computational fluid dynamics model of viscous coupling of hairs.
Lewin, Gregory C; Hallam, John
2010-06-01
Arrays of arthropod filiform hairs form highly sensitive mechanoreceptor systems capable of detecting minute air disturbances, and it is unclear to what extent individual hairs interact with one another within sensor arrays. We present a computational fluid dynamics model for one or more hairs, coupled to a rigid-body dynamics model, for simulating both biological (e.g., a cricket cercal hair) and artificial MEMS-based systems. The model is used to investigate hair-hair interaction between pairs of hairs and quantify the extent of so-called viscous coupling. The results show that the extent to which hairs are coupled depends on the mounting properties of the hairs and the frequency at which they are driven. In particular, it is shown that for equal length hairs, viscous coupling is suppressed when they are driven near the natural frequency of the undamped system and the damping coefficient at the base is small. Further, for certain configurations, the motion of a hair can be enhanced by the presence of nearby hairs. The usefulness of the model in designing artificial systems is discussed.
The aerospace plane design challenge: Credible computational fluid dynamics results
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.
1990-01-01
Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD.
Reduction of dynamical biochemical reactions networks in computational biology
Radulescu, O.; Gorban, A. N.; Zinovyev, A.; Noel, V.
2012-01-01
Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler models, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state (QSS) and quasi-equilibrium approximations (QE), and provide practical recipes for model reduction of linear and non-linear networks. We also discuss the application of model reduction to the problem of parameter identification, via backward pruning machine learning techniques. PMID:22833754
Madrigal-Arias, Jorge Enrique; Argumedo-Delira, Rosalba; Alarcón, Alejandro; Mendoza-López, Ma Remedios; García-Barradas, Oscar; Cruz-Sánchez, Jesús Samuel; Ferrera-Cerrato, Ronald; Jiménez-Fernández, Maribel
2015-01-01
In an effort to develop alternate techniques to recover metals from waste electrical and electronic equipment (WEEE), this research evaluated the bioleaching efficiency of gold (Au), copper (Cu) and nickel (Ni) by two strains of Aspergillus niger in the presence of gold-plated finger integrated circuits found in computer motherboards (GFICMs) and cellular phone printed circuit boards (PCBs). These three metals were analyzed for their commercial value and their diverse applications in the industry. Au-bioleaching ranged from 42 to 1% for Aspergillus niger strain MXPE6; with the combination of Aspergillus niger MXPE6 + Aspergillus niger MX7, the Au-bioleaching was 87 and 28% for PCBs and GFICMs, respectively. In contrast, the bioleaching of Cu by Aspergillus niger MXPE6 was 24 and 5%; using the combination of both strains, the values were 0.2 and 29% for PCBs and GFICMs, respectively. Fungal Ni-leaching was only found for PCBs, but with no significant differences among treatments. Improvement of the metal recovery efficiency by means of fungal metabolism is also discussed.
Madrigal-Arias, Jorge Enrique; Argumedo-Delira, Rosalba; Alarcón, Alejandro; Mendoza-López, Ma. Remedios; García-Barradas, Oscar; Cruz-Sánchez, Jesús Samuel; Ferrera-Cerrato, Ronald; Jiménez-Fernández, Maribel
2015-01-01
In an effort to develop alternate techniques to recover metals from waste electrical and electronic equipment (WEEE), this research evaluated the bioleaching efficiency of gold (Au), copper (Cu) and nickel (Ni) by two strains of Aspergillus niger in the presence of gold-plated finger integrated circuits found in computer motherboards (GFICMs) and cellular phone printed circuit boards (PCBs). These three metals were analyzed for their commercial value and their diverse applications in the industry. Au-bioleaching ranged from 42 to 1% for Aspergillus niger strain MXPE6; with the combination of Aspergillus niger MXPE6 + Aspergillus niger MX7, the Au-bioleaching was 87 and 28% for PCBs and GFICMs, respectively. In contrast, the bioleaching of Cu by Aspergillus niger MXPE6 was 24 and 5%; using the combination of both strains, the values were 0.2 and 29% for PCBs and GFICMs, respectively. Fungal Ni-leaching was only found for PCBs, but with no significant differences among treatments. Improvement of the metal recovery efficiency by means of fungal metabolism is also discussed. PMID:26413051
Wang, Fang; Knabe, W. Eric; Li, Liwei; Jo, Inha; Mani, Timmy; Roehm, Hartmut; Oh, Kyungsoo; Li, Jing; Khanna, May; Meroueh, Samy O.
2012-01-01
The urokinase receptor (uPAR) serves as a docking site to the serine protease urokinase-type plasminogen activator (uPA) to promote extracellular matrix (ECM) degradation and tumor invasion and metastasis. Previously, we had reported a small molecule inhibitor of the uPAR•uPA interaction that emerged from structure-based virtual screening. Here, we measure the affinity of a large number of derivatives from commercial sources. Synthesis of additional compounds was carried out to probe the role of various groups on the parent compound. Extensive structure-based computational studies suggested a binding mode for these compounds that led to a structure-activity relationship study. Cellular studies in non-small cell lung cancer (NSCLC) cell lines that include A549, H460 and H1299 showed that compounds blocked invasion, migration and adhesion. The effects on invasion of active compounds were consistent with their inhibition of uPA and MMP proteolytic activity. These compounds showed weak cytotoxicity consistent with the confined role of uPAR to metastasis. PMID:22771232
Cellular localization and dynamics of the Mrr type IV restriction endonuclease of Escherichia coli
Ghosh, Anirban; Passaris, Ioannis; Tesfazgi Mebrhatu, Mehari; Rocha, Susana; Vanoirbeek, Kristof; Hofkens, Johan; Aertsen, Abram
2014-01-01
In this study, we examined the intracellular whereabouts of Mrr, a cryptic type IV restriction endonuclease of Escherichia coli K12, in response to different conditions. In absence of stimuli triggering its activity, Mrr was found to be strongly associated with the nucleoid as a number of discrete foci, suggesting the presence of Mrr hotspots on the chromosome. Previously established elicitors of Mrr activity, such as exposure to high (hydrostatic) pressure (HP) or expression of the HhaII methyltransferase, both caused nucleoid condensation and an unexpected coalescence of Mrr foci. However, although the resulting Mrr/nucleoid complex was stable when triggered with HhaII, it tended to be only short-lived when elicited with HP. Moreover, HP-mediated activation of Mrr typically led to cellular blebbing, suggesting a link between chromosome and cellular integrity. Interestingly, Mrr variants could be isolated that were specifically compromised in either HhaII- or HP-dependent activation, underscoring a mechanistic difference in the way both triggers activate Mrr. In general, our results reveal that Mrr can take part in complex spatial distributions on the nucleoid and can be engaged in distinct modes of activity. PMID:24423871
Turbomachinery computational fluid dynamics: asymptotes and paradigm shifts.
Dawes, W N
2007-10-15
This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.
Dynamic Alignment Analysis in the Osteoarthritic Knee Using Computer Navigation.
Larrainzar-Garijo, Ricardo; Murillo-Vizuete, David; Garcia-Bogalo, Raul; Escobar-Anton, David; Horna-Castiñeiras, Lissette; Peralta-Molero, Juan Vicente
2017-02-13
The lower limb alignment is influenced by the geometry of the joint surfaces and surrounding soft tissue tension. The mechanical behavior changes in a normal, osteoarthritic, and postoperative knee. The purpose of this study is to determine the dynamic coronal femoral tibial mechanical angle (FTMA) in osteoarthritic knees using computer navigation. The authors hypothesize that there are different varus-valgus patterns between flexion and extension in the osteoarthritic knee. We conducted a transversal observational study and included patients with osteoarthritis who underwent primary navigation TKA (Orthopilot version 4.2; B. Braun Aesculap, Tuttlingen, Germany). In total, 98 consecutive patients with 100 osteoarthritic knee joints, on which total knee arthroplasty was performed in our institution from 2009 to 2010, were enrolled in this prospective study. The FTMA was measured with the patient supine with maximum knee extension possible (considering the value as 0), 30, 60, and 90 degrees. All FMTA data obtained were segmented by hierarchic cluster measuring method. Through the clustering system, five segments were generated for varus patients and three for valgus patients: expected varus, expected valgus, severe varus, severe valgus, structured varus, structured valgus, concave varus, mixed varus-valgus, and mixed valgus-varus. The findings of the present study have demonstrated that there is a well-defined dynamic alignment in osteoarthritic knees, resulting in a wide kinematic variation in the coronal FTMA between flexion and full extension. Further studies will be necessary to determine whether this dynamic approach to FTMA has clinical utility in the surgeon's decision-making process.
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-01
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-31
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells -- EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
ECM-modulated cellular dynamics as a driving force for tissue morphogenesis.
Daley, William P; Yamada, Kenneth M
2013-08-01
The extracellular matrix (ECM) plays diverse regulatory roles throughout development. Coordinate interactions between cells within a tissue and the ECM result in the dynamic remodeling of ECM structure. Both chemical signals and physical forces that result from such microenvironmental remodeling regulate cell behavior that sculpts tissue structure. Here, we review recent discoveries illustrating different ways in which ECM remodeling promotes dynamic cell behavior during tissue morphogenesis. We focus first on new insights that identify localized ECM signaling as a regulator of cell migration, shape, and adhesion during branching morphogenesis. We also review mechanisms by which the ECM and basement membrane can both sculpt and stabilize epithelial tissue structure, using as examples Drosophila egg chamber development and cleft formation in epithelial organs. Finally, we end with an overview of the dynamic mechanisms by which the ECM can regulate stem cell differentiation to contribute to proper tissue morphogenesis.
NASA Astrophysics Data System (ADS)
Peladeau-Pigeon, M.; Coolens, C.
2013-09-01
Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast
A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS
Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...
ECM Signaling Regulates Collective Cellular Dynamics to Control Pancreas Branching Morphogenesis.
Shih, Hung Ping; Panlasigui, Devin; Cirulli, Vincenzo; Sander, Maike
2016-01-12
During pancreas development, epithelial buds undergo branching morphogenesis to form an exocrine and endocrine gland. Proper morphogenesis is necessary for correct lineage allocation of pancreatic progenitors; however, the cellular events underlying pancreas morphogenesis are unknown. Here, we employed time-lapse microscopy and fluorescent labeling of cells to analyze cell behaviors associated with pancreas morphogenesis. We observed that outer bud cells adjacent to the basement membrane are pleomorphic and rearrange frequently; additionally, they largely remain in the outer cell compartment even after mitosis. These cell behaviors and pancreas branching depend on cell contacts with the basement membrane, which induce actomyosin cytoskeleton remodeling via integrin-mediated activation of FAK/Src signaling. We show that integrin signaling reduces E-cadherin-mediated cell-cell adhesion in outer cells and provide genetic evidence that this regulation is necessary for initiation of branching. Our study suggests that regulation of cell motility and adhesion by local niche cues initiates pancreas branching morphogenesis.
Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics
Pulver, Stefan R.
2009-01-01
The output of a neural circuit results from an interaction between the intrinsic properties of neurons within the circuit and the features of the synaptic connections between them. The plasticity of intrinsic properties has been primarily attributed to modification of ion channel function and/or number. In this study, we demonstrate a mechanism for intrinsic plasticity in rhythmically active Drosophila neurons that is not conductance-based. Larval motor neurons show a long lasting sodium-dependent afterhyperpolarization (AHP) following bursts of action potentials that is mediated by the electrogenic activity of Na+/K+ ATPase. This AHP persists for multiple seconds following volleys of action potentials and is able to function as a pattern-insensitive integrator of spike number that is independent of external calcium. This current also interacts with endogenous Shal K+ conductances to modulate spike timing for multiple seconds following rhythmic activity, providing a cellular memory of network activity on a behaviorally relevant time scale. PMID:19966842
Evaluation of Aircraft Platforms for SOFIA by Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Klotz, S. P.; Srinivasan, G. R.; VanDalsem, William (Technical Monitor)
1995-01-01
The selection of an airborne platform for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is based not only on economic cost, but technical criteria, as well. Technical issues include aircraft fatigue, resonant characteristics of the cavity-port shear layer, aircraft stability, the drag penalty of the open telescope bay, and telescope performance. Recently, two versions of the Boeing 747 aircraft, viz., the -SP and -200 configurations, were evaluated by computational fluid dynamics (CFD) for their suitability as SOFIA platforms. In each configuration the telescope was mounted behind the wings in an open bay with nearly circular aperture. The geometry of the cavity, cavity aperture, and telescope was identical in both platforms. The aperture was located on the port side of the aircraft and the elevation angle of the telescope, measured with respect to the vertical axis, was 500. The unsteady, viscous, three-dimensional, aerodynamic and acoustic flow fields in the vicinity of SOFIA were simulated by an implicit, finite-difference Navier-Stokes flow solver (OVERFLOW) on a Chimera, overset grid system. The computational domain was discretized by structured grids. Computations were performed at wind-tunnel and flight Reynolds numbers corresponding to one free-stream flow condition (M = 0.85, angle of attack alpha = 2.50, and sideslip angle beta = 0 degrees). The computational domains consisted of twenty-nine(29) overset grids in the wind-tunnel simulations and forty-five(45) grids in the simulations run at cruise flight conditions. The maximum number of grid points in the simulations was approximately 4 x 10(exp 6). Issues considered in the evaluation study included analysis of the unsteady flow field in the cavity, the influence of the cavity on the flow across empennage surfaces, the drag penalty caused by the open telescope bay, and the noise radiating from cavity surfaces and the cavity-port shear layer. Wind-tunnel data were also available to compare
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2013-01-01
The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock
NASA Astrophysics Data System (ADS)
Azevedo, R. M.; Montenegro-Filho, R. R.; Coutinho-Filho, M. D.
2013-09-01
We use a lattice gas cellular automata model in the presence of random dynamic scattering sites and quenched disorder in the two-phase immiscible model with the aim of producing an interface dynamics similar to that observed in Hele-Shaw cells. The dynamics of the interface is studied as one fluid displaces the other in a clean lattice and in a lattice with quenched disorder. For the clean system, if the fluid with a lower viscosity displaces the other, we show that the model exhibits the Saffman-Taylor instability phenomenon, whose features are in very good agreement with those observed in real (viscous) fluids. In the system with quenched disorder, we obtain estimates for the growth and roughening exponents of the interface width in two cases: viscosity-matched fluids and the case of unstable interface. The first case is shown to be in the same universality class of the random deposition model with surface relaxation. Moreover, while the early-time dynamics of the interface behaves similarly, viscous fingers develop in the second case with the subsequent production of bubbles in the context of a complex dynamics. We also identify the Hurst exponent of the subdiffusive fractional Brownian motion associated with the interface, from which we derive its fractal dimension and the universality classes related to a percolation process.
Azevedo, R M; Montenegro-Filho, R R; Coutinho-Filho, M D
2013-09-01
We use a lattice gas cellular automata model in the presence of random dynamic scattering sites and quenched disorder in the two-phase immiscible model with the aim of producing an interface dynamics similar to that observed in Hele-Shaw cells. The dynamics of the interface is studied as one fluid displaces the other in a clean lattice and in a lattice with quenched disorder. For the clean system, if the fluid with a lower viscosity displaces the other, we show that the model exhibits the Saffman-Taylor instability phenomenon, whose features are in very good agreement with those observed in real (viscous) fluids. In the system with quenched disorder, we obtain estimates for the growth and roughening exponents of the interface width in two cases: viscosity-matched fluids and the case of unstable interface. The first case is shown to be in the same universality class of the random deposition model with surface relaxation. Moreover, while the early-time dynamics of the interface behaves similarly, viscous fingers develop in the second case with the subsequent production of bubbles in the context of a complex dynamics. We also identify the Hurst exponent of the subdiffusive fractional Brownian motion associated with the interface, from which we derive its fractal dimension and the universality classes related to a percolation process.
The dynamic and geometric phase transition in the cellular network of pancreatic islet
NASA Astrophysics Data System (ADS)
Wang, Xujing
2013-03-01
The pancreatic islet is a micro-organ that contains several thousands of endocrine cells, majority of which being the insulin releasing β - cells . - cellsareexcitablecells , andarecoupledtoeachother through gap junctional channels. Here, using percolation theory, we investigate the role of network structure in determining the dynamics of the β-cell network. We show that the β-cell synchronization depends on network connectivity. More specifically, as the site occupancy is reducing, initially the β-cell synchronization is barely affected, until it reaches around a critical value, where the synchronization exhibit a sudden rapid decline, followed by an slow exponential tail. This critical value coincides with the critical site open probability for percolation transition. The dependence over bond strength is similar, exhibiting critical-behavior like dependence around a certain value of bond strength. These results suggest that the β-cell network undergoes a dynamic phase transition when the network is percolated. We further apply the findings to study diabetes. During the development of diabetes, the β - cellnetworkconnectivitydecreases . Siteoccupancyreducesfromthe reducing β-cell mass, and the bond strength is increasingly impaired from β-cell stress and chronic hyperglycemia. We demonstrate that the network dynamics around the percolation transition explain the disease dynamics around onset, including a long time mystery in diabetes, the honeymoon phenomenon.
NASA Astrophysics Data System (ADS)
Ma, Zhanshan (Sam)
In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three
Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics
NASA Astrophysics Data System (ADS)
Guvendiren, Murat; Burdick, Jason A.
2012-04-01
Biological processes are dynamic in nature, and growing evidence suggests that matrix stiffening is particularly decisive during development, wound healing and disease; yet, nearly all in vitro models are static. Here we introduce a step-wise approach, addition then light-mediated crosslinking, to fabricate hydrogels that stiffen (for example, ~3-30 kPa) in the presence of cells, and investigated the short-term (minutes-to-hours) and long-term (days-to-weeks) cell response to dynamic stiffening. When substrates are stiffened, adhered human mesenchymal stem cells increase their area from ~500 to 3,000 μm2 and exhibit greater traction from ~1 to 10 kPa over a timescale of hours. For longer cultures up to 14 days, human mesenchymal stem cells selectively differentiate based on the period of culture, before or after stiffening, such that adipogenic differentiation is favoured for later stiffening, whereas osteogenic differentiation is favoured for earlier stiffening.
Simulating the nasal cycle with computational fluid dynamics
Patel, Ruchin G.; Garcia, Guilherme J. M.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.
2015-01-01
Objectives (1) Develop a method to account for the confounding effect of the nasal cycle when comparing pre- and post-surgery objective measures of nasal patency. (2) Illustrate this method by reporting objective measures derived from computational fluid dynamics (CFD) models spanning the full range of mucosal engorgement associated with the nasal cycle in two subjects. Study Design Retrospective Setting Academic tertiary medical center. Subjects and Methods A cohort of 24 nasal airway obstruction patients was reviewed to select the two patients with the greatest reciprocal change in mucosal engorgement between pre- and post-surgery computed tomography (CT) scans. Three-dimensional anatomic models were created based on the pre- and post-operative CT scans. Nasal cycling models were also created by gradually changing the thickness of the inferior turbinate, middle turbinate, and septal swell body. CFD was used to simulate airflow and to calculate nasal resistance and average heat flux. Results Before accounting for the nasal cycle, Patient A appeared to have a paradoxical worsening nasal obstruction in the right cavity postoperatively. After accounting for the nasal cycle, Patient A had small improvements in objective measures postoperatively. The magnitude of the surgical effect also differed in Patient B after accounting for the nasal cycle. Conclusion By simulating the nasal cycle and comparing models in similar congestive states, surgical changes in nasal patency can be distinguished from physiological changes associated with the nasal cycle. This ability can lead to more precise comparisons of pre and post-surgery objective measures and potentially more accurate virtual surgery planning. PMID:25450411
A computationally efficient spectral method for modeling core dynamics
NASA Astrophysics Data System (ADS)
Marti, P.; Calkins, M. A.; Julien, K.
2016-08-01
An efficient, spectral numerical method is presented for solving problems in a spherical shell geometry that employs spherical harmonics in the angular dimensions and Chebyshev polynomials in the radial direction. We exploit the three-term recurrence relation for Chebyshev polynomials that renders all matrices sparse in spectral space. This approach is significantly more efficient than the collocation approach and is generalizable to both the Galerkin and tau methodologies for enforcing boundary conditions. The sparsity of the matrices reduces the computational complexity of the linear solution of implicit-explicit time stepping schemes to O(N) operations, compared to O>(N2>) operations for a collocation method. The method is illustrated by considering several example problems of important dynamical processes in the Earth's liquid outer core. Results are presented from both fully nonlinear, time-dependent numerical simulations and eigenvalue problems arising from the investigation of the onset of convection and the inertial wave spectrum. We compare the explicit and implicit temporal discretization of the Coriolis force; the latter becomes computationally feasible given the sparsity of the differential operators. We find that implicit treatment of the Coriolis force allows for significantly larger time step sizes compared to explicit algorithms; for hydrodynamic and dynamo problems at an Ekman number of E=10-5, time step sizes can be increased by a factor of 3 to 16 times that of the explicit algorithm, depending on the order of the time stepping scheme. The implementation with explicit Coriolis force scales well to at least 2048 cores, while the implicit implementation scales to 512 cores.
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Rokkam, Ram
2012-01-01
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc
2016-01-01
Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858
Dynamic cellular and molecular modulations of diabetes mediated head and neck carcinogenesis.
Liu, Chung-Ji; Chang, Wan-Jung; Chen, Chang-Yi; Sun, Fang-Ju; Cheng, Hui-Wen; Chen, Tsai-Ying; Lin, Shu-Chun; Li, Wan-Chun
2015-10-06
Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. While numerous potent dietary insults were considered as oncogenic players for HNSCC development, the impact of metabolic imbalance was less emphasized during HNSCC carcinogenesis. Previous preclinical and epidemiological investigations showed that DM could possibly be correlated with greater incidence and poorer prognosis in HNSCC patients; however, the outcomes from different groups are contradictive and underlying mechanisms remains elusive. In the present study, the changes of cellular malignancy in response to prolonged glucose incubation in HNSCC cells were examined. The results demonstrated that hyperglycemia enhanced HNSCC cell malignancy over time through suppression of cell differentiation, promotion of cell motility, increased resistance to cisplatin, and up-regulation of the nutrient-sensing Akt/AMPK-mTORC1 pathway. Further analysis showed that a more aggressive tongue neoplastic progression was found under DM conditions compared to non-DM state whereas DM pathology led to a higher percentage of cervical lymph node metastasis and poorer prognosis in HNSCC patients. Taken together, the present study confirms that hyperglycemia and DM could enhance HNSCC malignancy and the outcomes are of great benefit in providing better anti-cancer treatment strategy for DM patients with HNSCC.
Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Brandt, Achi; Thomas, James L.; Diskin, Boris
2001-01-01
Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the
Therrien, O. D.; Aubé, B.; Pagès, S.; Koninck, P. De; Côté, D.
2011-01-01
Wide-field temporal focusing is a novel technique that provides optical sectioning for imaging without the need for beam scanning. However, illuminating over large areas greatly reduces the photon density which limits the technique applicability to small regions, precluding functional imaging of cellular networks. Here we present a strategy that combines beam shaping and temporal focusing of amplified pulses (>1 µJ/pulse) for fast imaging of cells from the central nervous system in acute slices. Multiphoton video-rate imaging over total areas as wide as 4800 µm2 with an optical sectioning under 10 µm at 800 nm is achieved with our setup, leading to imaging of calcium dynamics of multiple cells simultaneously in thick tissue. PMID:21412473
Suwandecha, Tan; Wongpoowarak, Wibul; Srichana, Teerapol
2016-01-01
Dry powder inhalers (DPIs) are gaining popularity for the delivery of drugs. A cost effective and efficient delivery device is necessary. Developing new DPIs by modifying an existing device may be the simplest way to improve the performance of the devices. The aim of this research was to produce a new DPIs using computational fluid dynamics (CFD). The new DPIs took advantages of the Cyclohaler® and the Rotahaler®. We chose a combination of the capsule chamber of the Cyclohaler® and the mouthpiece and grid of the Rotahaler®. Computer-aided design models of the devices were created and evaluated using CFD. Prototype models were created and tested with the DPI dispersion experiments. The proposed model 3 device had a high turbulence with a good degree of deagglomeration in the CFD and the experiment data. The %fine particle fraction (FPF) was around 50% at 60 L/min. The mass median aerodynamic diameter was around 2.8-4 μm. The FPF were strongly correlated to the CFD-predicted turbulence and the mechanical impaction parameters. The drug retention in the capsule was only 5-7%. In summary, a simple modification of the Cyclohaler® and Rotahaler® could produce a better performing inhaler using the CFD-assisted design.
Computational fluid dynamic design of rocket engine pump components
NASA Technical Reports Server (NTRS)
Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.
1992-01-01
Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.
Review of computational fluid dynamics applications in biotechnology processes.
Sharma, C; Malhotra, D; Rathore, A S
2011-01-01
Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years.
Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.
Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H
2017-02-08
Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen.
Numerical simulation of landfill aeration using computational fluid dynamics.
Fytanidis, Dimitrios K; Voudrias, Evangelos A
2014-04-01
The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.
Computational fluid dynamics for turbomachinery internal air systems.
Chew, John W; Hills, Nicholas J
2007-10-15
Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.
Design of airborne wind turbine and computational fluid dynamics analysis
NASA Astrophysics Data System (ADS)
Anbreen, Faiqa
Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.
Computational Fluid Dynamics Analysis of Canadian Supercritical Water Reactor (SCWR)
NASA Astrophysics Data System (ADS)
Movassat, Mohammad; Bailey, Joanne; Yetisir, Metin
2015-11-01
A Computational Fluid Dynamics (CFD) simulation was performed on the proposed design for the Canadian SuperCritical Water Reactor (SCWR). The proposed Canadian SCWR is a 1200 MW(e) supercritical light-water cooled nuclear reactor with pressurized fuel channels. The reactor concept uses an inlet plenum that all fuel channels are attached to and an outlet header nested inside the inlet plenum. The coolant enters the inlet plenum at 350 C and exits the outlet header at 625 C. The operating pressure is approximately 26 MPa. The high pressure and high temperature outlet conditions result in a higher electric conversion efficiency as compared to existing light water reactors. In this work, CFD simulations were performed to model fluid flow and heat transfer in the inlet plenum, outlet header, and various parts of the fuel assembly. The ANSYS Fluent solver was used for simulations. Results showed that mass flow rate distribution in fuel channels varies radially and the inner channels achieve higher outlet temperatures. At the outlet header, zones with rotational flow were formed as the fluid from 336 fuel channels merged. Results also suggested that insulation of the outlet header should be considered to reduce the thermal stresses caused by the large temperature gradients.
Rethinking hospital general ward ventilation design using computational fluid dynamics.
Yam, R; Yuen, P L; Yung, R; Choy, T
2011-01-01
Indoor ventilation with good air quality control minimises the spread of airborne respiratory and other infections in hospitals. This article considers the role of ventilation in preventing and controlling infection in hospital general wards and identifies a simple and cost-effective ventilation design capable of reducing the chances of cross-infection. Computational fluid dynamic (CFD) analysis is used to simulate and compare the removal of microbes using a number of different ventilation systems. Instead of the conventional corridor air return arrangement used in most general wards, air return is rearranged so that ventilation is controlled from inside the ward cubicle. In addition to boosting the air ventilation rate, the CFD results reveal that ventilation performance and the removal of microbes can be significantly improved. These improvements are capable of matching the standards maintained in a properly constructed isolation room, though at much lower cost. It is recommended that the newly identified ventilation parameters be widely adopted in the design of new hospital general wards to minimise cross-infection. The proposed ventilation system can also be retrofitted in existing hospital general wards with far less disruption and cost than a full-scale refurbishment.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
A preliminary study of molecular dynamics on reconfigurable computers
Wolinski, C.; Trouw, F. R.; Gokhale, M.
2003-01-01
In this paper we investigate the performance of platform FPGAs on a compute-intensive, floating-point-intensive supercomputing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles through time by integrating their equations of motion. One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I ] and mapped onto several reconfigurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract technology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators so that the design could be easily re-targeted. Experiments were performed using both non-pipelined and pipelined floating point modules. We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz(Altera Strath EPlS80), and 4.47 GFlops at 82 MHz (Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a 4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance at low power on jloating-point-intensivea pplications.
Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design
Beach, R.; Prahl, D.; Lange, R.
2013-12-01
IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.
Methodology for computational fluid dynamics code verification/validation
Oberkampf, W.L.; Blottner, F.G.; Aeschliman, D.P.
1995-07-01
The issues of verification, calibration, and validation of computational fluid dynamics (CFD) codes has been receiving increasing levels of attention in the research literature and in engineering technology. Both CFD researchers and users of CFD codes are asking more critical and detailed questions concerning the accuracy, range of applicability, reliability and robustness of CFD codes and their predictions. This is a welcomed trend because it demonstrates that CFD is maturing from a research tool to the world of impacting engineering hardware and system design. In this environment, the broad issue of code quality assurance becomes paramount. However, the philosophy and methodology of building confidence in CFD code predictions has proven to be more difficult than many expected. A wide variety of physical modeling errors and discretization errors are discussed. Here, discretization errors refer to all errors caused by conversion of the original partial differential equations to algebraic equations, and their solution. Boundary conditions for both the partial differential equations and the discretized equations will be discussed. Contrasts are drawn between the assumptions and actual use of numerical method consistency and stability. Comments are also made concerning the existence and uniqueness of solutions for both the partial differential equations and the discrete equations. Various techniques are suggested for the detection and estimation of errors caused by physical modeling and discretization of the partial differential equations.
NASA Astrophysics Data System (ADS)
Stolnitz, Mikhail M.; Medvedev, Boris A.; Gribko, Tatyana V.
2004-05-01
The semi-phenomenological model of epidermal cell dynamics is submitted. The model takes into account three types of basal layer keratinocytes (stem, transient amplifying, terminally differentiated), distribution of first two types cells on mitotic cycle stages and resting states, keratinocytes-lymphocytes interactions that provide a positive feedback loop, influence of more differentiated cells on their progenitors that provide a negative feedback loop. Simplified model are developed and its stationary solutions are received. The opportunity of interpretation of some received modes as corresponding to various stages of psoriasis is discussed. Influence of UV-radiation on transitions between various modes of epidermis functioning is qualitatively analyzed.
Oluwole, S.; Wang, T.; Fawwaz, R.; Satake, K.; Nowygrod, R.; Reemtsma, K.; Hardy, M.A.
1981-01-01
This study evaluates the kinetics and utility of infused indium-111-labeled cells in detecting rejection in ACI to Lewis rat heart allografts. Syngeneic leukocytes, lymph node lymphocytes, and platelets were isolated and labeled with indium-111 (/sup 111/In) oxine, respectively, and were infused i.v. into Lewis rats carrying beating ACI or syngeneic hearts from post-transplant days 0 to 6. Recipients were imaged serially at 24 hr after infusion of labeled cells followed by excision of both native and transplanted hearts for direct isotope count. Labeled leukocytes accumulative progressively in the allograft with the scan becoming positive by post-transplant day 4. The ratio of allograft to native heart isotope counts rose from 1.25 on day 1 to 10.07 (P less than 0.0001) on day 7. The Lewis recipients infused with labeled lymphocytes showed a positive scan on days 6 and 7 whereas the allograft to native heart isotope count ratio rose from 0.97 on day 1 to 5.33 (P less than 0.001) on day 7. Recipients infused with /sup 111/In-labeled platelets showed a positive scan on days 5 to 7 and the allograft to native heart isotope count ratio rose sharply from 2.56 on day 4 to 16.98 (P less than 0.005) on day 7. Syngeneic heart grafts failed to demonstrate significant accumulation of any of the labeled cell population. These studies confirm the importance of nonlymphocytic cells in cellular rejection, evaluate the kinetics of graft invasion by the various cell types, and suggest that the techniques used afford a method for a safe and an early detection of allograft rejection.
Araujo-Palomares, Cynthia L; Richthammer, Corinna; Seiler, Stephan; Castro-Longoria, Ernestina
2011-01-01
Rho-type GTPases are key regulators that control eukaryotic cell polarity, but their role in fungal morphogenesis is only beginning to emerge. In this study, we investigate the role of the CDC-42 - RAC - CDC-24 module in Neurospora crassa. rac and cdc-42 deletion mutants are viable, but generate highly compact colonies with severe morphological defects. Double mutants carrying conditional and loss of function alleles of rac and cdc-42 are lethal, indicating that both GTPases share at least one common essential function. The defects of the GTPase mutants are phenocopied by deletion and conditional alleles of the guanine exchange factor (GEF) cdc-24, and in vitro GDP-GTP exchange assays identify CDC-24 as specific GEF for both CDC-42 and RAC. In vivo confocal microscopy shows that this module is organized as membrane-associated cap that covers the hyphal apex. However, the specific localization patterns of the three proteins are distinct, indicating different functions of RAC and CDC-42 within the hyphal tip. CDC-42 localized as confined apical membrane-associated crescent, while RAC labeled a membrane-associated ring excluding the region labeled by CDC42. The GEF CDC-24 occupied a strategic position, localizing as broad apical membrane-associated crescent and in the apical cytosol excluding the Spitzenkörper. RAC and CDC-42 also display distinct localization patterns during branch initiation and germ tube formation, with CDC-42 accumulating at the plasma membrane before RAC. Together with the distinct cellular defects of rac and cdc-42 mutants, these localizations suggest that CDC-42 is more important for polarity establishment, while the primary function of RAC may be maintaining polarity. In summary, this study identifies CDC-24 as essential regulator for RAC and CDC-42 that have common and distinct functions during polarity establishment and maintenance of cell polarity in N. crassa.
In vitro assessment of blood compatibility: residual and dynamic markers of cellular activation.
Johnson, Greg; Curry, Benjamin; Cahalan, Linda; Prater, Roni; Beeler, Michael; Gartner, Mark; Biggerstaff, John; Cahalan, Patrick
2013-05-01
The blood compatibility of materials and surfaces used for medical device fabrication is a crucial factor in their function and effectiveness. Expansion of device use into more sensitive and longer term applications warrants increasingly detailed evaluations of blood compatibility that reach beyond the customary measures mandated by regulatory requirements. A panel of tests that assess both deposition on the surface and activation of circulating blood in contact with the surface has been developed. Specifically, the ability of a surface to modulate the biological response of blood is assessed by measuring: (1) dynamic thrombin generation; (2) surface-bound thrombin activity after exposure to blood; (3) activation of monocytes, polymorphonuclear leukocytes, lymphocytes, and platelets; (4) activation of complement; and (5) adherent monocytes, polymorphonuclear leukocytes, lymphocytes, and platelets on blood-contacting surfaces. The tests were used to evaluate surfaces modified with immobilized heparin (Ension's proprietary bioactive surface) and demonstrated that the modified surfaces reduced platelet activation, leukocyte activation, and complement activation in flowing human blood. Perfusion of the surfaces with human platelet-rich plasma showed that the immobilized heparin surfaces also reduce both dynamic thrombin levels in the circulating plasma and residual thrombin generated at the material surface.
Imaging the impact of chemically inducible proteins on cellular dynamics in vivo.
Leong, Hon S; Lizardo, Michael M; Ablack, Amber; McPherson, Victor A; Wandless, Thomas J; Chambers, Ann F; Lewis, John D
2012-01-01
The analysis of dynamic events in the tumor microenvironment during cancer progression is limited by the complexity of current in vivo imaging models. This is coupled with an inability to rapidly modulate and visualize protein activity in real time and to understand the consequence of these perturbations in vivo. We developed an intravital imaging approach that allows the rapid induction and subsequent depletion of target protein levels within human cancer xenografts while assessing the impact on cell behavior and morphology in real time. A conditionally stabilized fluorescent E-cadherin chimera was expressed in metastatic breast cancer cells, and the impact of E-cadherin induction and depletion was visualized using real-time confocal microscopy in a xenograft avian embryo model. We demonstrate the assessment of protein localization, cell morphology and migration in cells undergoing epithelial-mesenchymal and mesenchymal-epithelial transitions in breast tumors. This technique allows for precise control over protein activity in vivo while permitting the temporal analysis of dynamic biophysical parameters.
Rand, D A
2008-08-06
The dynamical systems arising from gene regulatory, signalling and metabolic networks are strongly nonlinear, have high-dimensional state spaces and depend on large numbers of parameters. Understanding the relation between the structure and the function for such systems is a considerable challenge. We need tools to identify key points of regulation, illuminate such issues as robustness and control and aid in the design of experiments. Here, I tackle this by developing new techniques for sensitivity analysis. In particular, I show how to globally analyse the sensitivity of a complex system by means of two new graphical objects: the sensitivity heat map and the parameter sensitivity spectrum. The approach to sensitivity analysis is global in the sense that it studies the variation in the whole of the model's solution rather than focusing on output variables one at a time, as in classical sensitivity analysis. This viewpoint relies on the discovery of local geometric rigidity for such systems, the mathematical insight that makes a practicable approach to such problems feasible for highly complex systems. In addition, we demonstrate a new summation theorem that substantially generalizes previous results for oscillatory and other dynamical phenomena. This theorem can be interpreted as a mathematical law stating the need for a balance between fragility and robustness in such systems.
Imaging the Impact of Chemically Inducible Proteins on Cellular Dynamics In Vivo
Leong, Hon S.; Lizardo, Michael M.; Ablack, Amber; McPherson, Victor A.; Wandless, Thomas J.; Chambers, Ann F.; Lewis, John D.
2012-01-01
The analysis of dynamic events in the tumor microenvironment during cancer progression is limited by the complexity of current in vivo imaging models. This is coupled with an inability to rapidly modulate and visualize protein activity in real time and to understand the consequence of these perturbations in vivo. We developed an intravital imaging approach that allows the rapid induction and subsequent depletion of target protein levels within human cancer xenografts while assessing the impact on cell behavior and morphology in real time. A conditionally stabilized fluorescent E-cadherin chimera was expressed in metastatic breast cancer cells, and the impact of E-cadherin induction and depletion was visualized using real-time confocal microscopy in a xenograft avian embryo model. We demonstrate the assessment of protein localization, cell morphology and migration in cells undergoing epithelial-mesenchymal and mesenchymal-epithelial transitions in breast tumors. This technique allows for precise control over protein activity in vivo while permitting the temporal analysis of dynamic biophysical parameters. PMID:22276156
Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices
Xu, Ren; Boudreau, Aaron; Bissell, Mina J
2008-12-23
Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
NASA Astrophysics Data System (ADS)
Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.
Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related
Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 1
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1992-01-01
Experimental and computational fluid dynamic activities in rocket propulsion were discussed. The workshop was an open meeting of government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors
Fan, Rong
2006-01-01
Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section
Jacob, Rick E.; Lamm, W. J.
2011-11-08
Pulmonary computational fluid dynamics models require 3D images to be acquired over multiple points in the dynamic breathing cycle, with no breath holds or changes in ventilatory mechanics. With small animals, these requirements result in long imaging times ({approx}90 minutes), over which lung mechanics, such as compliance, can gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for pulmonary CT imaging throughout the dynamic breathing cycle. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in peak inspiratory pressure and flow provide diagnostics of changes in breathing mechanics.
Dynamic stall analysis of horizontal-axis-wind-turbine blades using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Sayed, Mohamed A.; Kandil, Hamdy A.; Morgan, El-Sayed I.
2012-06-01
Dynamic stall has been widely known to significantly affect the performance of the wind turbines. In this paper, aerodynamic simulation of the unsteady low-speed flow past two-dimensional wind turbine blade profiles, developed by the National Renewable Energy Laboratory (NREL), will be performed. The aerodynamic simulation will be performed using Computational Fluid Dynamics (CFD). The governing equations used in the simulations are the Unsteady-Reynolds-Averaged-Navier-Stokes (URANS) equations. The unsteady separated turbulent flow around an oscillating airfoil pitching in a sinusoidal pattern in the regime of low Reynolds number is investigated numerically. The investigation employs the URANS approach with the most suitable turbulence model. The development of the light dynamic stall of the blades under consideration is studied. The S809 blade profile is simulated at different mean wind speeds. Moreover, the S826 blade profile is also considered for analysis of wind turbine blade which is the most suitable blade profile for the wind conditions in Egypt over the site of Gulf of El-Zayt. In order to find the best oscillating frequency, different oscillating frequencies are studied. The best frequency can then be used for the blade pitch controller. The comparisons with the experimental results showed that the used CFD code can accurately predict the blade profile unsteady aerodynamic loads.
Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling
NASA Technical Reports Server (NTRS)
Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong
2015-01-01
Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of
NASA Astrophysics Data System (ADS)
He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun
2015-06-01
Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.
A dynamic and non-invasive technique for space cellular effects research based on the SPR principle
NASA Astrophysics Data System (ADS)
Wang, C. Y.; Li, Y. H.; Xiong, J. H.; Tan, Y. J.; Yu, J. R.; Nie, J. L.
Space cell and molecular biology research has shown that space environment can affect the cellular morphology and function induce physiological and biochemical disorders The effect mechanism of space factors on the intracellular molecular events involved in signal transduction cytoskeleton reorganization and protein expression Surface plasmon resonance SPR is a promising tool for monitoring and studying the spatio-temporal and dynamic characteristic of the intricate biochemical reactions inside living cells For its advantages such as high sensitivity fast determination safety anti-jamming and long distance transmission it might be used in the space environment for studying the dynamic characteristic of intracellular molecular events In this paper a prototype of portable SPR based cytosensor SBCS was constructed for cell culture and SPR signal record and on the basis of it the corresponding technique was also established and utilized to study the possible involvement of actin cytoskeleton in the glutamate Glu uptake activity in C6 cells Firstly SBCS was used for monitoring the depolymerization of actin cytoskeleton in C6 cells at real-time After cytochalasin D CD was injected into the flow cell to disrupt actin cytoskeleton the SPR sensorgram declined gradually in a time- and dose-dependent manner Then the sensorgrams induced by Glu on C6 cells with or without CD preincubation were monitored The SPR signals induced by Glu were significant depressed by CD pretreatment which indicated that actin cytoskeleton played a crucial
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.; Sauer, Jeremy A.
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.
An Educational Approach to Computationally Modeling Dynamical Systems
ERIC Educational Resources Information Center
Chodroff, Leah; O'Neal, Tim M.; Long, David A.; Hemkin, Sheryl
2009-01-01
Chemists have used computational science methodologies for a number of decades and their utility continues to be unabated. For this reason we developed an advanced lab in computational chemistry in which students gain understanding of general strengths and weaknesses of computation-based chemistry by working through a specific research problem.…