In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...
Mass spectrometry. [in organic chemistry
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.
1978-01-01
A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.
ERIC Educational Resources Information Center
Culp, G. H.; And Others
Over 100 interactive computer programs for use in general and organic chemistry at the University of Texas at Austin have been prepared. The rationale for the programs is based upon the belief that computer-assisted instruction (CAI) can improve education by, among other things, freeing teachers from routine tasks, measuring entry skills,…
On October 25 and 26, 1984, the U.S. EPA sponsored a workshop to consider the potential applications of the techniques of computational biological chemistry to problems in environmental health. Eleven extramural scientists from the various related disciplines and a similar number...
The ChemViz Project: Using a Supercomputer To Illustrate Abstract Concepts in Chemistry.
ERIC Educational Resources Information Center
Beckwith, E. Kenneth; Nelson, Christopher
1998-01-01
Describes the Chemistry Visualization (ChemViz) Project, a Web venture maintained by the University of Illinois National Center for Supercomputing Applications (NCSA) that enables high school students to use computational chemistry as a technique for understanding abstract concepts. Discusses the evolution of computational chemistry and provides a…
[Advancements of computer chemistry in separation of Chinese medicine].
Li, Lingjuan; Hong, Hong; Xu, Xuesong; Guo, Liwei
2011-12-01
Separating technique of Chinese medicine is not only a key technique in the field of Chinese medicine' s research and development, but also a significant step in the modernization of Chinese medicinal preparation. Computer chemistry can build model and look for the regulations from Chinese medicine system which is full of complicated data. This paper analyzed the applicability, key technology, basic mode and common algorithm of computer chemistry applied in the separation of Chinese medicine, introduced the mathematic mode and the setting methods of Extraction kinetics, investigated several problems which based on traditional Chinese medicine membrane procession, and forecasted the application prospect.
Conformational Analysis of Drug Molecules: A Practical Exercise in the Medicinal Chemistry Course
ERIC Educational Resources Information Center
Yuriev, Elizabeth; Chalmers, David; Capuano, Ben
2009-01-01
Medicinal chemistry is a specialized, scientific discipline. Computational chemistry and structure-based drug design constitute important themes in the education of medicinal chemists. This problem-based task is associated with structure-based drug design lectures. It requires students to use computational techniques to investigate conformational…
NASA Astrophysics Data System (ADS)
Clementi, Enrico
2012-06-01
This is the introductory chapter to the AIP Proceedings volume "Theory and Applications of Computational Chemistry: The First Decade of the Second Millennium" where we discuss the evolution of "computational chemistry". Very early variational computational chemistry developments are reported in Sections 1 to 7, and 11, 12 by recalling some of the computational chemistry contributions by the author and his collaborators (from late 1950 to mid 1990); perturbation techniques are not considered in this already extended work. Present day's computational chemistry is partly considered in Sections 8 to 10 where more recent studies by the author and his collaborators are discussed, including the Hartree-Fock-Heitler-London method; a more general discussion on present day computational chemistry is presented in Section 14. The following chapters of this AIP volume provide a view of modern computational chemistry. Future computational chemistry developments can be extrapolated from the chapters of this AIP volume; further, in Sections 13 and 15 present an overall analysis on computational chemistry, obtained from the Global Simulation approach, by considering the evolution of scientific knowledge confronted with the opportunities offered by modern computers.
ERIC Educational Resources Information Center
Hoffman, Gary G.
2015-01-01
A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…
Computers in Science: Thinking Outside the Discipline.
ERIC Educational Resources Information Center
Hamilton, Todd M.
2003-01-01
Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…
Mass spectrometry. [review of techniques
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.
1976-01-01
Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.
ERIC Educational Resources Information Center
Litofsky, Joshua; Viswanathan, Rama
2015-01-01
Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…
ERIC Educational Resources Information Center
Wilkins, Charles L.
Computer-assisted instruction (CAI) has proven useful in teaching chemistry instrumentation techniques to undergraduate students. The work completed at the time of this interim report has clearly shown that a general purpose laboratory computer system, equipped with suitable devices to allow direct data input from experiments, can be an effective…
ERIC Educational Resources Information Center
Stotter, Philip L.; Culp, George H.
An experimental course in organic chemistry utilized computer-assisted instructional (CAI) techniques. The CAI lessons provided tutorial drill and practice and simulated experiments and reactions. The Conversational Language for Instruction and Computing was used, along with a CDC 6400-6600 system; students scheduled and completed the lessons at…
Major uncertainties remain in our ability to identify the key reactions and primary oxidation products of volatile hydrocarbons that contribute to ozone formation in the troposphere. To reduce these uncertainties, computational chemistry, mechanistic and process analysis techniqu...
Computer Augmented Lectures (CAL): A New Teaching Technique for Chemistry.
ERIC Educational Resources Information Center
Masten, F. A.; And Others
A new technique described as computer augmented lectures (CAL) is being used at the University of Texas at Austin. It involves the integration of on-line, interactive, time sharing computer terminals and theater size video projectors for large screen display. This paper covers the basic concept, pedagogical techniques, experiments conducted,…
Computer-aided drug discovery research at a global contract research organization
NASA Astrophysics Data System (ADS)
Kitchen, Douglas B.
2017-03-01
Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.
Computer-aided drug discovery research at a global contract research organization.
Kitchen, Douglas B
2017-03-01
Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.
Compressed Sensing for Chemistry
NASA Astrophysics Data System (ADS)
Sanders, Jacob Nathan
Many chemical applications, from spectroscopy to quantum chemistry, involve measuring or computing a large amount of data, and then compressing this data to retain the most chemically-relevant information. In contrast, compressed sensing is an emergent technique that makes it possible to measure or compute an amount of data that is roughly proportional to its information content. In particular, compressed sensing enables the recovery of a sparse quantity of information from significantly undersampled data by solving an ℓ 1-optimization problem. This thesis represents the application of compressed sensing to problems in chemistry. The first half of this thesis is about spectroscopy. Compressed sensing is used to accelerate the computation of vibrational and electronic spectra from real-time time-dependent density functional theory simulations. Using compressed sensing as a drop-in replacement for the discrete Fourier transform, well-resolved frequency spectra are obtained at one-fifth the typical simulation time and computational cost. The technique is generalized to multiple dimensions and applied to two-dimensional absorption spectroscopy using experimental data collected on atomic rubidium vapor. Finally, a related technique known as super-resolution is applied to open quantum systems to obtain realistic models of a protein environment, in the form of atomistic spectral densities, at lower computational cost. The second half of this thesis deals with matrices in quantum chemistry. It presents a new use of compressed sensing for more efficient matrix recovery whenever the calculation of individual matrix elements is the computational bottleneck. The technique is applied to the computation of the second-derivative Hessian matrices in electronic structure calculations to obtain the vibrational modes and frequencies of molecules. When applied to anthracene, this technique results in a threefold speed-up, with greater speed-ups possible for larger molecules. The implementation of the method in the Q-Chem commercial software package is described. Moreover, the method provides a general framework for bootstrapping cheap low-accuracy calculations in order to reduce the required number of expensive high-accuracy calculations.
A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry
ERIC Educational Resources Information Center
Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew
2012-01-01
In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S.
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems asmore » well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of« less
Computational toxicology (CompTox) leverages the significant gains in computing power and computational techniques (e.g., numerical approaches, structure-activity relationships, bioinformatics) realized over the last few years, thereby reducing costs and increasing efficiency i...
Cheng, Gui-Juan; Zhang, Xinhao; Chung, Lung Wa; Xu, Liping; Wu, Yun-Dong
2015-02-11
Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.
Tools, techniques, organisation and culture of the CADD group at Sygnature Discovery.
St-Gallay, Steve A; Sambrook-Smith, Colin P
2017-03-01
Computer-aided drug design encompasses a wide variety of tools and techniques, and can be implemented with a range of organisational structures and focus in different organisations. Here we outline the computational chemistry skills within Sygnature Discovery, along with the software and hardware at our disposal, and briefly discuss the methods that are not employed and why. The goal of the group is to provide support for design and analysis in order to improve the quality of compounds synthesised and reduce the timelines of drug discovery projects, and we reveal how this is achieved at Sygnature. Impact on medicinal chemistry is vital to demonstrating the value of computational chemistry, and we discuss the approaches taken to influence the list of compounds for synthesis, and how we recognise success. Finally we touch on some of the areas being developed within the team in order to provide further value to the projects and clients.
Tools, techniques, organisation and culture of the CADD group at Sygnature Discovery
NASA Astrophysics Data System (ADS)
St-Gallay, Steve A.; Sambrook-Smith, Colin P.
2017-03-01
Computer-aided drug design encompasses a wide variety of tools and techniques, and can be implemented with a range of organisational structures and focus in different organisations. Here we outline the computational chemistry skills within Sygnature Discovery, along with the software and hardware at our disposal, and briefly discuss the methods that are not employed and why. The goal of the group is to provide support for design and analysis in order to improve the quality of compounds synthesised and reduce the timelines of drug discovery projects, and we reveal how this is achieved at Sygnature. Impact on medicinal chemistry is vital to demonstrating the value of computational chemistry, and we discuss the approaches taken to influence the list of compounds for synthesis, and how we recognise success. Finally we touch on some of the areas being developed within the team in order to provide further value to the projects and clients.
Using Technology to Enhance the Effectiveness of General Chemistry Laboratory Courses
ERIC Educational Resources Information Center
Carvalho-Knighton, Kathleen M.; Keen-Rocha, Linda
2007-01-01
The effectiveness of two different laboratory techniques is compared to teach students majoring in science in a general chemistry laboratory. The results demonstrated that student laboratory activities with computer-interface systems could improve student understanding.
The international water conference proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guseman, J.R.
1984-10-01
This book provides information on computer applications to water chemistry control, groundwater, membrane technology, instrumentation/analytical techniques and ion exchange. Other topics of discussion include cooling water, biocontrol, the hydraulic properties of ion exchange resins, steam electric power plant aqueous discharges and colorimetric determination of trace benzotriazole or tolytriazole. Water chemistry guidelines for large steam generating power plants is discussed, as well as wastewater treatment, boiler water conditioning and ion exchange/computer related topics.
Numerical computation of linear instability of detonations
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry; Kasimov, Aslan
2017-11-01
We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.
Current status and future prospects for enabling chemistry technology in the drug discovery process.
Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.
Current status and future prospects for enabling chemistry technology in the drug discovery process
Djuric, Stevan W.; Hutchins, Charles W.; Talaty, Nari N.
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities. PMID:27781094
Synthesis meets theory: Past, present and future of rational chemistry
NASA Astrophysics Data System (ADS)
Fianchini, Mauro
2017-11-01
Chemical synthesis has its roots in the empirical approach of alchemy. Nonetheless, the birth of the scientific method, the technical and technological advances (exploiting revolutionary discoveries in physics) and the improved management and sharing of growing databases greatly contributed to the evolution of chemistry from an esoteric ground into a mature scientific discipline during these last 400 years. Furthermore, thanks to the evolution of computational resources, platforms and media in the last 40 years, theoretical chemistry has added to the puzzle the final missing tile in the process of "rationalizing" chemistry. The use of mathematical models of chemical properties, behaviors and reactivities is nowadays ubiquitous in literature. Theoretical chemistry has been successful in the difficult task of complementing and explaining synthetic results and providing rigorous insights when these are otherwise unattainable by experiment. The first part of this review walks the reader through a concise historical overview on the evolution of the "model" in chemistry. Salient milestones have been highlighted and briefly discussed. The second part focuses more on the general description of recent state-of-the-art computational techniques currently used worldwide by chemists to produce synergistic models between theory and experiment. Each section is complemented by key-examples taken from the literature that illustrate the application of the technique discussed therein.
Laboratory Sequence in Computational Methods for Introductory Chemistry
NASA Astrophysics Data System (ADS)
Cody, Jason A.; Wiser, Dawn C.
2003-07-01
A four-exercise laboratory sequence for introductory chemistry integrating hands-on, student-centered experience with computer modeling has been designed and implemented. The progression builds from exploration of molecular shapes to intermolecular forces and the impact of those forces on chemical separations made with gas chromatography and distillation. The sequence ends with an exploration of molecular orbitals. The students use the computers as a tool; they build the molecules, submit the calculations, and interpret the results. Because of the construction of the sequence and its placement spanning the semester break, good laboratory notebook practices are reinforced and the continuity of course content and methods between semesters is emphasized. The inclusion of these techniques in the first year of chemistry has had a positive impact on student perceptions and student learning.
The application of computational chemistry to lignin
Thomas Elder; Laura Berstis; Nele Sophie Zwirchmayr; Gregg T. Beckham; Michael F. Crowley
2017-01-01
Computational chemical methods have become an important technique in the examination of the structure and reactivity of lignin. The calculations can be based either on classical or quantum mechanics, with concomitant differences in computational intensity and size restrictions. The current paper will concentrate on results developed from the latter type of calculations...
Upwind MacCormack Euler solver with non-equilibrium chemistry
NASA Technical Reports Server (NTRS)
Sherer, Scott E.; Scott, James N.
1993-01-01
A computer code, designated UMPIRE, is currently under development to solve the Euler equations in two dimensions with non-equilibrium chemistry. UMPIRE employs an explicit MacCormack algorithm with dissipation introduced via Roe's flux-difference split upwind method. The code also has the capability to employ a point-implicit methodology for flows where stiffness is introduced through the chemical source term. A technique consisting of diagonal sweeps across the computational domain from each corner is presented, which is used to reduce storage and execution requirements. Results depicting one dimensional shock tube flow for both calorically perfect gas and thermally perfect, dissociating nitrogen are presented to verify current capabilities of the program. Also, computational results from a chemical reactor vessel with no fluid dynamic effects are presented to check the chemistry capability and to verify the point implicit strategy.
An approach to quality and performance control in a computer-assisted clinical chemistry laboratory.
Undrill, P E; Frazer, S C
1979-01-01
A locally developed, computer-based clinical chemistry laboratory system has been in operation since 1970. This utilises a Digital Equipment Co Ltd PDP 12 and an interconnected PDP 8/F computer. Details are presented of the performance and quality control techniques incorporated into the system. Laboratory performance is assessed through analysis of results from fixed-level control sera as well as from cumulative sum methods. At a simple level the presentation may be considered purely indicative, while at a more sophisticated level statistical concepts have been introduced to aid the laboratory controller in decision-making processes. PMID:438340
Mass spectrometry. [in organic ion and biorganic chemistry and medicine
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Cox, R. E.; Derrick, P. J.
1974-01-01
Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.
2015-04-27
MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is...Henmi, C. and Kusachi, I. Monoclinic tobermorite from fuka, bitchu-cho, Okoyama Perfecture. Japan J. Min. Petr. Econ . Geol. (1989)84:374-379. [22...31] Liu, Y. et al. First principles study of the stability and mechanical properties of MC (M=Ti, V, Zr, Nb, Hf and Ta) compounds. Journal of Alloys and Compounds. (2014) 582:500-504. 10
Research in bioanalysis and separations at the University of Nebraska - Lincoln.
Hage, David S; Dodds, Eric D; Du, Liangcheng; Powers, Robert
2011-05-01
The Chemistry Department at the University of Nebraska - Lincoln (UNL) is located in Hamilton Hall on the main campus of UNL in Lincoln, NE, USA. This department houses the primary graduate and research program in chemistry in the state of Nebraska. This program includes the traditional fields of analytical chemistry, biochemistry, inorganic chemistry, organic chemistry and physical chemistry. However, this program also contains a great deal of multidisciplinary research in fields that range from bioanalytical and biophysical chemistry to nanomaterials, energy research, catalysis and computational chemistry. Current research in bioanalytical and biophysical chemistry at UNL includes work with separation methods such as HPLC and CE, as well as with techniques such as MS and LC-MS, NMR spectroscopy, electrochemical biosensors, scanning probe microscopy and laser spectroscopy. This article will discuss several of these areas, with an emphasis being placed on research in bioanalytical separations, binding assays and related fields.
Managing the computational chemistry big data problem: the ioChem-BD platform.
Álvarez-Moreno, M; de Graaf, C; López, N; Maseras, F; Poblet, J M; Bo, C
2015-01-26
We present the ioChem-BD platform ( www.iochem-bd.org ) as a multiheaded tool aimed to manage large volumes of quantum chemistry results from a diverse group of already common simulation packages. The platform has an extensible structure. The key modules managing the main tasks are to (i) upload of output files from common computational chemistry packages, (ii) extract meaningful data from the results, and (iii) generate output summaries in user-friendly formats. A heavy use of the Chemical Mark-up Language (CML) is made in the intermediate files used by ioChem-BD. From them and using XSL techniques, we manipulate and transform such chemical data sets to fulfill researchers' needs in the form of HTML5 reports, supporting information, and other research media.
NASA Technical Reports Server (NTRS)
Frazier, John M.; Mattie, D. R.; Hussain, Saber; Pachter, Ruth; Boatz, Jerry; Hawkins, T. W.
2000-01-01
The development of quantitative structure-activity relationship (QSAR) is essential for reducing the chemical hazards of new weapon systems. The current collaboration between HEST (toxicology research and testing), MLPJ (computational chemistry) and PRS (computational chemistry, new propellant synthesis) is focusing R&D efforts on basic research goals that will rapidly transition to useful products for propellant development. Computational methods are being investigated that will assist in forecasting cellular toxicological end-points. Models developed from these chemical structure-toxicity relationships are useful for the prediction of the toxicological endpoints of new related compounds. Research is focusing on the evaluation tools to be used for the discovery of such relationships and the development of models of the mechanisms of action. Combinations of computational chemistry techniques, in vitro toxicity methods, and statistical correlations, will be employed to develop and explore potential predictive relationships; results for series of molecular systems that demonstrate the viability of this approach are reported. A number of hydrazine salts have been synthesized for evaluation. Computational chemistry methods are being used to elucidate the mechanism of action of these salts. Toxicity endpoints such as viability (LDH) and changes in enzyme activity (glutahoione peroxidase and catalase) are being experimentally measured as indicators of cellular damage. Extrapolation from computational/in vitro studies to human toxicity, is the ultimate goal. The product of this program will be a predictive tool to assist in the development of new, less toxic propellants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Grout, Ray W
This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less
Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.
Dash, Tirtharaj; Sahu, Prabhat K
2015-05-30
The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. © 2015 Wiley Periodicals, Inc.
An intermediate level of abstraction for computational systems chemistry.
Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F
2017-12-28
Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately predict the structures and reactivities of small molecules, they are not efficient enough to cope with large-scale reaction systems. The formalization of chemical reactions as graph grammars provides a generative system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large reaction networks using optimization techniques.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).
Artificial Intelligence Support for Computational Chemistry
NASA Astrophysics Data System (ADS)
Duch, Wlodzislaw
Possible forms of artificial intelligence (AI) support for quantum chemistry are discussed. Questions addressed include: what kind of support is desirable, what kind of support is feasible, what can we expect in the coming years. Advantages and disadvantages of current AI techniques are presented and it is argued that at present the memory-based systems are the most effective for large scale applications. Such systems may be used to predict the accuracy of calculations and to select the least expensive methods and basis sets belonging to the same accuracy class. Advantages of the Feature Space Mapping as an improvement on the memory based systems are outlined and some results obtained in classification problems given. Relevance of such classification systems to computational chemistry is illustrated with two examples showing similarity of results obtained by different methods that take electron correlation into account.
ERIC Educational Resources Information Center
Grimaldi, Ralph P.
This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…
ERIC Educational Resources Information Center
New Orleans Public Schools, LA.
Secondary school teachers incorporating the use of a computer in algebra, trigonometry, advanced mathematics, chemistry, or physics classes are the individuals for whom this book is intended. The content included in it is designed to aid the learning of programing techniques and basic scientific or mathematical principles, and to offer some…
Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...
2008-01-01
Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less
NASA Technical Reports Server (NTRS)
Pratt, D. T.
1984-01-01
An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.
Application of fermionic marginal constraints to hybrid quantum algorithms
NASA Astrophysics Data System (ADS)
Rubin, Nicholas C.; Babbush, Ryan; McClean, Jarrod
2018-05-01
Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic n-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic n-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments.
Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira
2007-02-01
Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.
The halogen bond: Nature and applications
NASA Astrophysics Data System (ADS)
Costa, Paulo J.
2017-10-01
The halogen bond, corresponding to an attractive interaction between an electrophilic region in a halogen (X) and a nucleophile (B) yielding a R-X⋯B contact, found applications in many fields such as supramolecular chemistry, crystal engineering, medicinal chemistry, and chemical biology. Their large range of applications also led to an increased interest in their study using computational methods aiming not only at understanding the phenomena at a fundamental level, but also to help in the interpretation of results and guide the experimental work. Herein, a succinct overview of the recent theoretical and experimental developments is given starting by discussing the nature of the halogen bond and the latest theoretical insights on this topic. Then, the effects of the surrounding environment on halogen bonds are presented followed by a presentation of the available method benchmarks. Finally, recent experimental applications where the contribution of computational chemistry was fundamental are discussed, thus highlighting the synergy between the lab and modeling techniques.
Computer Assisted Design, Prediction, and Execution of Economical Organic Syntheses
NASA Astrophysics Data System (ADS)
Gothard, Nosheen Akber
The synthesis of useful organic molecules via simple and cost-effective routes is a core challenge in organic chemistry. In industry or academia, organic chemists use their chemical intuition, technical expertise and published procedures to determine an optimal pathway. This approach, not only takes time and effort, but also is cost prohibitive. Many potential optimal routes scratched on paper fail to get experimentally tested. In addition, with new methods being discovered daily are often overlooked by established techniques. This thesis reports a computational technique that assist the discovery of economical synthetic routes to useful organic targets. Organic chemistry exists as a network where chemicals are connected by reactions, analogous to citied connected by roads in a geographic map. This network topology of organic reactions in the network of organic chemistry (NOC) allows the application of graph-theory to devise algorithms for synthetic optimization of organic targets. A computational approach comprised of customizable algorithms, pre-screening filters, and existing chemoinformatic techniques is capable of answering complex questions and perform mechanistic tasks desired by chemists such as optimization of organic syntheses. One-pot reactions are central to modern synthesis since they save resources and time by avoiding isolation, purification, characterization, and production of chemical waste after each synthetic step. Sometimes, such reactions are identified by chance or, more often, by careful inspection of individual steps that are to be wired together. Algorithms are used to discover one-pot reactions and validated experimentally. Which demonstrate that the computationally predicted sequences can indeed by carried out experimentally in good overall yields. The experimental examples are chosen to from small networks of reactions around useful chemicals such as quinoline scaffolds, quinoline-based inhibitors of phosphoinositide 3-kinase delta (PI3Kdelta) enzyme, and thiophene derivatives. In this way, we replace individual synthetic connections with two-, three-, or even four-step one-pot sequences. Lastly, the computational method is utilized to devise hypothetical synthetic route to popular pharmaceutical drugs like NaproxenRTM and TaxolRTM. The algorithmically generated optimal pathways are evaluated with chemistry logic. By applying labor/cost factor It was revealed that not all shorter synthesis routes are economical, sometimes "Longest way round is the shortest way home" lengthier routes are found to be more economical and environmentally friendly.
NASA Astrophysics Data System (ADS)
Sugiharti, Gulmah
2018-03-01
This study aims to see the improvement of student learning outcomes by independent learning using computer-based learning media in the course of STBM (Teaching and Learning Strategy) Chemistry. Population in this research all student of class of 2014 which take subject STBM Chemistry as many as 4 class. While the sample is taken by purposive as many as 2 classes, each 32 students, as control class and expriment class. The instrument used is the test of learning outcomes in the form of multiple choice with the number of questions as many as 20 questions that have been declared valid, and reliable. Data analysis techniques used one-sided t test and improved learning outcomes using a normalized gain test. Based on the learning result data, the average of normalized gain values for the experimental class is 0,530 and for the control class is 0,224. The result of the experimental student learning result is 53% and the control class is 22,4%. Hypothesis testing results obtained t count> ttable is 9.02> 1.6723 at the level of significance α = 0.05 and db = 58. This means that the acceptance of Ha is the use of computer-based learning media (CAI Computer) can improve student learning outcomes in the course Learning Teaching Strategy (STBM) Chemistry academic year 2017/2018.
Atomdroid: a computational chemistry tool for mobile platforms.
Feldt, Jonas; Mata, Ricardo A; Dieterich, Johannes M
2012-04-23
We present the implementation of a new molecular mechanics program designed for use in mobile platforms, the first specifically built for these devices. The software is designed to run on Android operating systems and is compatible with several modern tablet-PCs and smartphones available in the market. It includes molecular viewer/builder capabilities with integrated routines for geometry optimizations and Monte Carlo simulations. These functionalities allow it to work as a stand-alone tool. We discuss some particular development aspects, as well as the overall feasibility of using computational chemistry software packages in mobile platforms. Benchmark calculations show that through efficient implementation techniques even hand-held devices can be used to simulate midsized systems using force fields.
Per-Olov Löwdin - father of quantum chemistry
NASA Astrophysics Data System (ADS)
Brändas, Erkki J.
2017-09-01
During 2016, we celebrate the 100th anniversary of the birth of Per-Olov Löwdin. He was appointed to the first Lehrstuhl in quantum chemistry at Uppsala University in 1960. Löwdin introduced quantum chemistry as a field in its own right by formulating its goals, establishing fundamental concepts, like the correlation energy, the method of configuration interaction, reduced density matrices, natural spin orbitals, charge and bond order matrices, symmetric orthogonalisation, and generalised self-consistent fields. His exposition of partitioning technique and perturbation theory, wave and reaction operators and associated non-linear summation techniques, introduced mathematical rigour and deductive order in the interpretative organisation of the new field. He brought the first computer to Uppsala University and pioneered the initiation of 'electronic brains' and anticipated their significance for quantum chemistry. Perhaps his single most influential contribution to the field was his education of two generations of future faculty in quantum chemistry through Summer Schools in the Scandinavian Mountains, Winter Institutes at Sanibel Island in the Gulf of Mexico. Per-Olov Löwdin founded the book series Advances in Quantum Chemistry and the International Journal of Quantum Chemistry. The evolution of quantum chemistry is appraised, starting from a collection of cross-disciplinary applications of quantum mechanics to the technologically advanced and predominant field of today, virtually used in all branches of chemistry. The scientific work of Per-Olov Löwdin has been crucial for the development of this new important province of science.
Plane-Wave DFT Methods for Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.
A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.
NASA Astrophysics Data System (ADS)
Lipkowitz, Kenny B.; Robertson, Daniel
2000-02-01
A computational chemistry project suitable for both graduate and undergraduate classes has been developed, tested, and implemented successfully over the course of 10 years. In this project we ask students the following simple question: "Which conformer searching strategy in Spartan is the best?" To answer this question the students need to develop a working definition of what "best" means within the context of the project, design their own experiments that can address that question most suitably, carry out the calculations to derive a compelling answer, and then write their results in the form of a research paper. In addition to teaching students about potential energy surfaces, molecular modeling techniques, and stereochemistry, the pedagogical advantages of this computational chemistry exercise compared to others published in this Journal are that it (i) requires a significant amount of student forethought in addition to afterthought by forcing students to design their own experiments, (ii) demonstrates real-world levels of complexity by using molecules having multiple rotatable bonds, (iii) allows for student creativity that is missing in most other published exercises, (iv) focuses on writing in the curriculum.
NASA Astrophysics Data System (ADS)
Stevens, Jonathan
2017-07-01
Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.
ERIC Educational Resources Information Center
Ziegler, Blake E.
2013-01-01
Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…
Soft computing methods in design of superalloys
NASA Technical Reports Server (NTRS)
Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.
1995-01-01
Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modeled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.
Soft Computing Methods in Design of Superalloys
NASA Technical Reports Server (NTRS)
Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.
1996-01-01
Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.
On the Impact of Execution Models: A Case Study in Computational Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Halappanavar, Mahantesh; Krishnamoorthy, Sriram
2015-05-25
Efficient utilization of high-performance computing (HPC) platforms is an important and complex problem. Execution models, abstract descriptions of the dynamic runtime behavior of the execution stack, have significant impact on the utilization of HPC systems. Using a computational chemistry kernel as a case study and a wide variety of execution models combined with load balancing techniques, we explore the impact of execution models on the utilization of an HPC system. We demonstrate a 50 percent improvement in performance by using work stealing relative to a more traditional static scheduling approach. We also use a novel semi-matching technique for load balancingmore » that has comparable performance to a traditional hypergraph-based partitioning implementation, which is computationally expensive. Using this study, we found that execution model design choices and assumptions can limit critical optimizations such as global, dynamic load balancing and finding the correct balance between available work units and different system and runtime overheads. With the emergence of multi- and many-core architectures and the consequent growth in the complexity of HPC platforms, we believe that these lessons will be beneficial to researchers tuning diverse applications on modern HPC platforms, especially on emerging dynamic platforms with energy-induced performance variability.« less
A study of trends and techniques for space base electronics
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Wade, T. E.; Gassaway, J. D.
1978-01-01
Furnaces and photolithography related equipment were applied to experiments on double layer metal. The double layer metal activity emphasized wet chemistry techniques. By incorporating the following techniques: (1) ultrasonic etching of the vias; (2) premetal clean using a modified buffered hydrogen fluoride; (3) phosphorus doped vapor; and (4) extended sintering, yields of 98 percent were obtained using the standard test pattern. The two dimensional modeling problems have stemmed from, alternately, instability and too much computation time to achieve convergence.
ERIC Educational Resources Information Center
Karacop, Ataman; Doymus, Kemal
2013-01-01
The aim of this study was to determine the effect of jigsaw cooperative learning and computer animation techniques on academic achievements of first year university students attending classes in which the unit of chemical bonding is taught within the general chemistry course and these students' learning of the particulate nature of matter of this…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitez, Juan A.; Sanchez, Morella; Ruette, Fernando
Application of simulated annealing (SA) and simplified GSA (SGSA) techniques for parameter optimization of parametric quantum chemistry method (CATIVIC) was performed. A set of organic molecules were selected for test these techniques. Comparison of the algorithms was carried out for error function minimization with respect to experimental values. Results show that SGSA is more efficient than SA with respect to computer time. Accuracy is similar in both methods; however, there are important differences in the final set of parameters.
Berkeley Lab Wins Seven 2015 R&D 100 Awards | Berkeley Lab
products from industry, academia, and government-sponsored research, ranging from chemistry to materials to problems in metrology techniques: the quantitative characterization of the imaging instrumentation Computational Research Division led the development of the technology. Sensor Integrated with Recombinant and
Applications of Adaptive Quantum Control to Research Questions in Solar Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damrauer, Niels
2017-02-07
This award supported a broad research effort at the University of Colorado at Boulder comprising synthesis, applications of computational chemistry, development of theory, exploration of material properties, and advancement of spectroscopic tools including femtosecond pulse shaping techniques. It funded six graduate students and two postdoctoral researchers.
Betowski, Don; Bevington, Charles; Allison, Thomas C
2016-01-19
Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.
NASA Astrophysics Data System (ADS)
Jain, A.
2017-08-01
Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.
Calculating Potential Energy Curves with Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Powell, Andrew D.; Dawes, Richard
2014-06-01
Quantum Monte Carlo (QMC) is a computational technique that can be applied to the electronic Schrödinger equation for molecules. QMC methods such as Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) have demonstrated the capability of capturing large fractions of the correlation energy, thus suggesting their possible use for high-accuracy quantum chemistry calculations. QMC methods scale particularly well with respect to parallelization making them an attractive consideration in anticipation of next-generation computing architectures which will involve massive parallelization with millions of cores. Due to the statistical nature of the approach, in contrast to standard quantum chemistry methods, uncertainties (error-bars) are associated with each calculated energy. This study focuses on the cost, feasibility and practical application of calculating potential energy curves for small molecules with QMC methods. Trial wave functions were constructed with the multi-configurational self-consistent field (MCSCF) method from GAMESS-US.[1] The CASINO Monte Carlo quantum chemistry package [2] was used for all of the DMC calculations. An overview of our progress in this direction will be given. References: M. W. Schmidt et al. J. Comput. Chem. 14, 1347 (1993). R. J. Needs et al. J. Phys.: Condensed Matter 22, 023201 (2010).
Gozalbes, Rafael; Carbajo, Rodrigo J; Pineda-Lucena, Antonio
2010-01-01
In the last decade, fragment-based drug discovery (FBDD) has evolved from a novel approach in the search of new hits to a valuable alternative to the high-throughput screening (HTS) campaigns of many pharmaceutical companies. The increasing relevance of FBDD in the drug discovery universe has been concomitant with an implementation of the biophysical techniques used for the detection of weak inhibitors, e.g. NMR, X-ray crystallography or surface plasmon resonance (SPR). At the same time, computational approaches have also been progressively incorporated into the FBDD process and nowadays several computational tools are available. These stretch from the filtering of huge chemical databases in order to build fragment-focused libraries comprising compounds with adequate physicochemical properties, to more evolved models based on different in silico methods such as docking, pharmacophore modelling, QSAR and virtual screening. In this paper we will review the parallel evolution and complementarities of biophysical techniques and computational methods, providing some representative examples of drug discovery success stories by using FBDD.
Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution
NASA Astrophysics Data System (ADS)
Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.
2007-12-01
The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.
Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution
NASA Astrophysics Data System (ADS)
Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.
2007-11-01
The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.
Integrating Computational Chemistry into a Course in Classical Thermodynamics
ERIC Educational Resources Information Center
Martini, Sheridan R.; Hartzell, Cynthia J.
2015-01-01
Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…
NASA Astrophysics Data System (ADS)
Eibern, Hendrik; Schmidt, Hauke
1999-08-01
The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.
Outlook Bright for Computers in Chemistry.
ERIC Educational Resources Information Center
Baum, Rudy M.
1981-01-01
Discusses the recent decision to close down the National Resource for Computation in Chemistry (NRCC), implications of that decision, and various alternatives in the field of computational chemistry. (CS)
Parallel Performance of a Combustion Chemistry Simulation
Skinner, Gregg; Eigenmann, Rudolf
1995-01-01
We used a description of a combustion simulation's mathematical and computational methods to develop a version for parallel execution. The result was a reasonable performance improvement on small numbers of processors. We applied several important programming techniques, which we describe, in optimizing the application. This work has implications for programming languages, compiler design, and software engineering.
Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi
2011-01-01
Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.
NASA Astrophysics Data System (ADS)
Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.
Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.
NASA Astrophysics Data System (ADS)
Lapington, M. T.; Crudden, D. J.; Reed, R. C.; Moody, M. P.; Bagot, P. A. J.
2018-06-01
A family of novel polycrystalline Ni-based superalloys with varying Ti:Nb ratios has been created using computational alloy design techniques, and subsequently characterized using atom probe tomography and electron microscopy. Phase chemistry, elemental partitioning, and γ' character have been analyzed and compared with thermodynamic predictions created using Thermo-Calc. Phase compositions and γ' volume fraction were found to compare favorably with the thermodynamically predicted values, while predicted partitioning behavior for Ti, Nb, Cr, and Co tended to overestimate γ' preference over the γ matrix, often with opposing trends vs Nb concentration.
Jacob, Alexandre; Pratuangdejkul, Jaturong; Buffet, Sébastien; Launay, Jean-Marie; Manivet, Philippe
2009-04-01
We have broken old surviving dogmas and concepts used in computational chemistry and created an efficient in silico ADME-T pharmacological properties modeling and prediction toolbox for any xenobiotic. With the help of an innovative and pragmatic approach combining various in silico techniques, like molecular modeling, quantum chemistry and in-house developed algorithms, the interactions between drugs and those enzymes, transporters and receptors involved in their biotransformation can be studied. ADME-T pharmacological parameters can then be predicted after in vitro and in vivo validations of in silico models.
Silicon material task. Part 3: Low-cost silicon solar array project
NASA Technical Reports Server (NTRS)
Roques, R. A.; Coldwell, D. M.
1977-01-01
The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2002-01-01
A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.
Knowing when to give up: early-rejection stratagems in ligand docking
NASA Astrophysics Data System (ADS)
Skone, Gwyn; Voiculescu, Irina; Cameron, Stephen
2009-10-01
Virtual screening is an important resource in the drug discovery community, of which protein-ligand docking is a significant part. Much software has been developed for this purpose, largely by biochemists and those in related disciplines, who pursue ever more accurate representations of molecular interactions. The resulting tools, however, are very processor-intensive. This paper describes some initial results from a project to review computational chemistry techniques for docking from a non-chemistry standpoint. An abstract blueprint for protein-ligand docking using empirical scoring functions is suggested, and this is used to discuss potential improvements. By introducing computer science tactics such as lazy function evaluation, dramatic increases to throughput can and have been realized using a real-world docking program. Naturally, they can be extended to any system that approximately corresponds to the architecture outlined.
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.
The importance of employing computational resources for the automation of drug discovery.
Rosales-Hernández, Martha Cecilia; Correa-Basurto, José
2015-03-01
The application of computational tools to drug discovery helps researchers to design and evaluate new drugs swiftly with a reduce economic resources. To discover new potential drugs, computational chemistry incorporates automatization for obtaining biological data such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), as well as drug mechanisms of action. This editorial looks at examples of these computational tools, including docking, molecular dynamics simulation, virtual screening, quantum chemistry, quantitative structural activity relationship, principal component analysis and drug screening workflow systems. The authors then provide their perspectives on the importance of these techniques for drug discovery. Computational tools help researchers to design and discover new drugs for the treatment of several human diseases without side effects, thus allowing for the evaluation of millions of compounds with a reduced cost in both time and economic resources. The problem is that operating each program is difficult; one is required to use several programs and understand each of the properties being tested. In the future, it is possible that a single computer and software program will be capable of evaluating the complete properties (mechanisms of action and ADMET properties) of ligands. It is also possible that after submitting one target, this computer-software will be capable of suggesting potential compounds along with ways to synthesize them, and presenting biological models for testing.
Computer-aided drug design at Boehringer Ingelheim
NASA Astrophysics Data System (ADS)
Muegge, Ingo; Bergner, Andreas; Kriegl, Jan M.
2017-03-01
Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.
Lejaren A. Hiller, Jr.: A Memorial Tribute to a Chemist-Composer
NASA Astrophysics Data System (ADS)
Wamser, Christian A.; Wamser, Carl C.
1996-07-01
Lejaren Hiller (1924-1994) was trained in chemistry but maintained a lifelong love of music. Like Alexander Borodin, the Russian chemist-composer, but eventually dedicated his career solely to music. His early work on the chemistry of polymers with Fred Wall at the University of Illinois introduced him to the Illiac computer, with which he did Monte Carlo calculations of polymer conformations. He promptly collaborated with Leonard Isaacson, a graduate student also associated with the Wall group, to teach the Illiac to compose music. Using a modified Monte Carlo technique to select the notes and other aspects of the music, they applied increasingly complex rules to define what constituted acceptable music. The result was their String Quartet #4, produced in 1957, often called the Illiac Suite. It is generally acknowledged as the first piece of music composed by a computer. Hiller remained a pioneer in the field of copmuter composition during his distinguished career at the University of Illinois and the State University of New York at Buffalo. This paper traces Hiller's careers in chemistry and music and examines the connections between the two.
Computer Series, 101: Accurate Equations of State in Computational Chemistry Projects.
ERIC Educational Resources Information Center
Albee, David; Jones, Edward
1989-01-01
Discusses the use of computers in chemistry courses at the United States Military Academy. Provides two examples of computer projects: (1) equations of state, and (2) solving for molar volume. Presents BASIC and PASCAL listings for the second project. Lists 10 applications for physical chemistry. (MVL)
Evaluation of the new EMAC-SWIFT chemistry climate model
NASA Astrophysics Data System (ADS)
Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus
2016-04-01
It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.
Development and Assessment of a Chemistry-Based Computer Video Game as a Learning Tool
ERIC Educational Resources Information Center
Martinez-Hernandez, Kermin Joel
2010-01-01
The chemistry-based computer video game is a multidisciplinary collaboration between chemistry and computer graphics and technology fields developed to explore the use of video games as a possible learning tool. This innovative approach aims to integrate elements of commercial video game and authentic chemistry context environments into a learning…
A-Priori Tuning of Modified Magnussen Combustion Model
NASA Technical Reports Server (NTRS)
Norris, A. T.
2016-01-01
In the application of CFD to turbulent reacting flows, one of the main limitations to predictive accuracy is the chemistry model. Using a full or skeletal kinetics model may provide good predictive ability, however, at considerable computational cost. Adding the ability to account for the interaction between turbulence and chemistry improves the overall fidelity of a simulation but adds to this cost. An alternative is the use of simple models, such as the Magnussen model, which has negligible computational overhead, but lacks general predictive ability except for cases that can be tuned to the flow being solved. In this paper, a technique will be described that allows the tuning of the Magnussen model for an arbitrary fuel and flow geometry without the need to have experimental data for that particular case. The tuning is based on comparing the results of the Magnussen model and full finite-rate chemistry when applied to perfectly and partially stirred reactor simulations. In addition, a modification to the Magnussen model is proposed that allows the upper kinetic limit for the reaction rate to be set, giving better physical agreement with full kinetic mechanisms. This procedure allows a simple reacting model to be used in a predictive manner, and affords significant savings in computational costs for simulations.
Algorithms Bridging Quantum Computation and Chemistry
NASA Astrophysics Data System (ADS)
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostlund, Neil
This research showed the feasibility of applying the concepts of the Semantic Web to Computation Chemistry. We have created the first web portal (www.chemsem.com) that allows data created in the calculations of quantum chemistry, and other such chemistry calculations to be placed on the web in a way that makes the data accessible to scientists in a semantic form never before possible. The semantic web nature of the portal allows data to be searched, found, and used as an advance over the usual approach of a relational database. The semantic data on our portal has the nature of a Giantmore » Global Graph (GGG) that can be easily merged with related data and searched globally via a SPARQL Protocol and RDF Query Language (SPARQL) that makes global searches for data easier than with traditional methods. Our Semantic Web Portal requires that the data be understood by a computer and hence defined by an ontology (vocabulary). This ontology is used by the computer in understanding the data. We have created such an ontology for computational chemistry (purl.org/gc) that encapsulates a broad knowledge of the field of computational chemistry. We refer to this ontology as the Gainesville Core. While it is perhaps the first ontology for computational chemistry and is used by our portal, it is only a start of what must be a long multi-partner effort to define computational chemistry. In conjunction with the above efforts we have defined a new potential file standard (Common Standard for eXchange – CSX for computational chemistry data). This CSX file is the precursor of data in the Resource Description Framework (RDF) form that the semantic web requires. Our portal translates CSX files (as well as other computational chemistry data files) into RDF files that are part of the graph database that the semantic web employs. We propose a CSX file as a convenient way to encapsulate computational chemistry data.« less
Computational Chemistry in the Pharmaceutical Industry: From Childhood to Adolescence.
Hillisch, Alexander; Heinrich, Nikolaus; Wild, Hanno
2015-12-01
Computational chemistry within the pharmaceutical industry has grown into a field that proactively contributes to many aspects of drug design, including target selection and lead identification and optimization. While methodological advancements have been key to this development, organizational developments have been crucial to our success as well. In particular, the interaction between computational and medicinal chemistry and the integration of computational chemistry into the entire drug discovery process have been invaluable. Over the past ten years we have shaped and developed a highly efficient computational chemistry group for small-molecule drug discovery at Bayer HealthCare that has significantly impacted the clinical development pipeline. In this article we describe the setup and tasks of the computational group and discuss external collaborations. We explain what we have found to be the most valuable and productive methods and discuss future directions for computational chemistry method development. We share this information with the hope of igniting interesting discussions around this topic. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transuranic Computational Chemistry.
Kaltsoyannis, Nikolas
2018-02-26
Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Web-Based Computational Chemistry Education with CHARMMing II: Coarse-Grained Protein Folding
Schalk, Vinushka; Lerner, Michael G.; Woodcock, H. Lee; Brooks, Bernard R.
2014-01-01
A lesson utilizing a coarse-grained (CG) G-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the G-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG G model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field. PMID:25058338
Web-based computational chemistry education with CHARMMing II: Coarse-grained protein folding.
Pickard, Frank C; Miller, Benjamin T; Schalk, Vinushka; Lerner, Michael G; Woodcock, H Lee; Brooks, Bernard R
2014-07-01
A lesson utilizing a coarse-grained (CG) Gō-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the Gō-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG Gō model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field.
Exploiting Locality in Quantum Computation for Quantum Chemistry.
McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-12-18
Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
ERIC Educational Resources Information Center
Dori, Y. J.; Barnea, N.
A computer-assisted instruction (CAI) module on polymers was used to introduce chemistry teachers (n=64) to the variety of possibilities and benefits of using courseware in the current chemistry curriculum in Israel. From an analysis of a pre-and post-attitude questionnaire regarding the use of computers in chemistry teaching, it was concluded…
Current techniques in acid-chloride corrosion control and monitoring at The Geysers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirtz, Paul; Buck, Cliff; Kunzman, Russell
1991-01-01
Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steammore » purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.« less
Yankelov, Rami; Yungerman, Irena; Srebnik, Simcha
2017-07-01
Polymer-based protein recognition systems have enormous potential within clinical and diagnostic fields due to their reusability, biocompatibility, ease of manufacturing, and potential specificity. Imprinted polymer matrices have been extensively studied and applied as a simple technique for creating artificial polymer-based recognition gels for a target molecule. Although this technique has been proven effective when targeting small molecules (such as drugs), imprinting of proteins have so far resulted in materials with limited selectivity due to the large molecular size of the protein and aqueous environment. Using coarse-grained molecular simulation, we investigate the relation between protein makeup, polymer properties, and the selectivity of imprinted gels. Nonspecific binding that results in poor selectivity is shown to be strongly dependent on surface chemistry of the template and competitor proteins as well as on polymer chemistry. Residence time distributions of proteins diffusing within the gels provide a transparent picture of the relation between polymer constitution, protein properties, and the nonspecific interactions with the imprinted gel. The pronounced effect of protein surface chemistry on imprinted gel specificity is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.
The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.
Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter
2012-08-07
: This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.
The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem
2012-01-01
This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications. PMID:22870956
NASA Astrophysics Data System (ADS)
Donini, A.; Martin, S. M.; Bastiaans, R. J. M.; van Oijen, J. A.; de Goey, L. P. H.
2013-10-01
In the present paper a computational analysis of a high pressure confined premixed turbulent methane/air jet flames is presented. In this scope, chemistry is reduced by the use of the Flamelet Generated Manifold method [1] and the fluid flow is modeled in an LES and RANS context. The reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the turbulence effect on the reaction is represented by the progress variable variance. The interaction between chemistry and turbulence is considered through a presumed probability density function (PDF) approach. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. Furthermore, the present analysis indicates that the physical and chemical processes controlling carbon monoxide (CO) emissions can be captured only by means of unsteady simulations.
Chen, Mingyang; Stott, Amanda C; Li, Shenggang; Dixon, David A
2012-04-01
A robust metadata database called the Collaborative Chemistry Database Tool (CCDBT) for massive amounts of computational chemistry raw data has been designed and implemented. It performs data synchronization and simultaneously extracts the metadata. Computational chemistry data in various formats from different computing sources, software packages, and users can be parsed into uniform metadata for storage in a MySQL database. Parsing is performed by a parsing pyramid, including parsers written for different levels of data types and sets created by the parser loader after loading parser engines and configurations. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jong, Wibe A.; Walker, Andrew M.; Hanwell, Marcus D.
Background Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper the generation of semantically rich data from the NWChem computational chemistry software is discussed within the Chemical Markup Language (CML) framework. Results The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files used by the computational chemistry software. Conclusions The production of CML compliant XMLmore » files for the computational chemistry software NWChem can be relatively easily accomplished using the FoX library. A unified computational chemistry or CompChem convention and dictionary needs to be developed through a community-based effort. The long-term goal is to enable a researcher to do Google-style chemistry and physics searches.« less
Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.
Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal
2014-05-15
We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.
CAG12 - A CSCM based procedure for flow of an equilibrium chemically reacting gas
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.; Lombard, C. K.
1985-01-01
The Conservative Supra Characteristic Method (CSCM), an implicit upwind Navier-Stokes algorithm, is extended to the numerical simulation of flows in chemical equilibrium. The resulting computer code known as Chemistry and Gasdynamics Implicit - Version 2 (CAG12) is described. First-order accurate results are presented for inviscid and viscous Mach 20 flows of air past a hemisphere-cylinder. The solution procedure captures the bow shock in a chemically reacting gas, a technique that is needed for simulating high altitude, rarefied flows. In an initial effort to validate the code, the inviscid results are compared with published gasdynamic and chemistry solutions and satisfactorily agreement is obtained.
Computational Chemistry Comparison and Benchmark Database
National Institute of Standards and Technology Data Gateway
SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access) The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.
Strange, Richard W; Feiters, Martin C
2008-10-01
Using X-ray absorption spectroscopy (XAS) the binding modes (type and number of ligands, distances and geometry) and oxidation states of metals and other trace elements in crystalline as well as non-crystalline samples can be revealed. The method may be applied to biological systems as a 'stand-alone' technique, but it is particularly powerful when used alongside other X-ray and spectroscopic techniques and computational approaches. In this review, we highlight how biological XAS is being used in concert with crystallography, spectroscopy and computational chemistry to study metalloproteins in crystals, and report recent applications on relatively rare trace elements utilised by living organisms and metals involved in neurodegenerative diseases.
Web-Based Job Submission Interface for the GAMESS Computational Chemistry Program
ERIC Educational Resources Information Center
Perri, M. J.; Weber, S. H.
2014-01-01
A Web site is described that facilitates use of the free computational chemistry software: General Atomic and Molecular Electronic Structure System (GAMESS). Its goal is to provide an opportunity for undergraduate students to perform computational chemistry experiments without the need to purchase expensive software.
Modelling and simulation techniques for membrane biology.
Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V
2007-07-01
One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrate advances in biology, chemistry, exposure and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and da...
Ontologies in medicinal chemistry: current status and future challenges.
Gómez-Pérez, Asunción; Martínez-Romero, Marcos; Rodríguez-González, Alejandro; Vázquez, Guillermo; Vázquez-Naya, José M
2013-01-01
Recent years have seen a dramatic increase in the amount and availability of data in the diverse areas of medicinal chemistry, making it possible to achieve significant advances in fields such as the design, synthesis and biological evaluation of compounds. However, with this data explosion, the storage, management and analysis of available data to extract relevant information has become even a more complex task that offers challenging research issues to Artificial Intelligence (AI) scientists. Ontologies have emerged in AI as a key tool to formally represent and semantically organize aspects of the real world. Beyond glossaries or thesauri, ontologies facilitate communication between experts and allow the application of computational techniques to extract useful information from available data. In medicinal chemistry, multiple ontologies have been developed during the last years which contain knowledge about chemical compounds and processes of synthesis of pharmaceutical products. This article reviews the principal standards and ontologies in medicinal chemistry, analyzes their main applications and suggests future directions.
Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.
2001-01-01
The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with the method of Interactive Temperature with Assumed Chemistry (ITAC). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS measurements and the method of ITAC used in computing the species concentration are discussed. From the flame luminosity results, the increase in ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes. Preliminary results and application of ITAC show some potential capabilities of ITAC in DLS. The measured concentration of methane, and computed concentrations of water and carbon dioxide agree well with available results from numerical simulations.
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
ERIC Educational Resources Information Center
Liu, Xiufeng
2006-01-01
Based on current theories of chemistry learning, this study intends to test a hypothesis that computer modeling enhanced hands-on chemistry laboratories are more effective than hands-on laboratories or computer modeling laboratories alone in facilitating high school students' understanding of chemistry concepts. Thirty-three high school chemistry…
ERIC Educational Resources Information Center
Springer, Michael T.
2014-01-01
Several articles suggest how to incorporate computer models into the organic chemistry laboratory, but relatively few papers discuss how to incorporate these models broadly into the organic chemistry lecture. Previous research has suggested that "manipulating" physical or computer models enhances student understanding; this study…
NASA Technical Reports Server (NTRS)
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-01-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
NASA Astrophysics Data System (ADS)
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-12-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
Computations and interpretations: The growth of quantum chemistry, 1927-1967
NASA Astrophysics Data System (ADS)
Park, Buhm Soon
1999-10-01
This dissertation is a contribution to the historical study of scientific disciplines in the twentieth century. It seeks to examine the development of quantum chemistry during the four decades after its inception in 1927. This development was manifest in theories, tools, scientists, and institutions, all of which constituted the disciplinary identity of quantum chemistry. To characterize its identity, I deal with the origins of key ideas and concepts; the change of computational tools from desk calculators to digital computers; the formation of a network among research groups and individuals; and the institutionalization of annual meetings. The dissertation's thesis is three-fold. First, in the pre- World War II years, there were individual contributions to the development of theories in quantum chemistry, but the founding fathers worked in their disciplinary contexts of physics or chemistry with little interest in building a quantum chemistry community. Second, the introduction of electronic digital computers in the postwar years affected the resurgence of the ab initio approach-the attempt to solve the Schrödinger equation without recourse to empirical data-and also the emergence of a community of quantum chemists. But the use of computers did not give rise to a consensus over the aims, methods, or content of the discipline. Third, quantum chemistry exerted a significant influence upon the transformation of chemical education and research in general, thanks to ``chemical translators,'' who sought to explain the gist of quantum chemistry in a language that chemists could understand. In sum, quantum chemistry has been a discipline characterized by diverse traditions, and the whole of chemistry has been under the influence of computations and interpretations made by quantum chemists.
NASA Astrophysics Data System (ADS)
Mendoza-Wilson, Ana María.; Lardizabal-Gutiérrez, Daniel; Torres-Moye, Enrique; Fuentes-Cobas, Luis; Balandrán-Quintana, René R.; Camacho-Dávila, Alejandro; Quintero-Ramos, Armando; Glossman-Mitnik, Daniel
2007-12-01
The purpose of this work was to evaluate the accuracy of the CHIH(medium)-DFT model chemistry (PBEg/CBSB2 ∗∗//PBEg/CBSB4) in the determination of the optimized structure and thermochemical properties of heterocyclic systems of medium size such as flavonoids, wherefore were selected three of the most abundant flavonoids in vegetable tissues, and which posses the higher antioxidant activity: quercetin, (+)-catechin and cyanidin. As reference systems were employed three cyclic compounds: phenol, catechol and resorcinol. The thermochemical properties evaluated were enthalpy of formation, bond dissociation enthalpy (BDE) and ionization potential (IP), following the scheme of isodesmic reactions. The theoretical results were compared with experimental data generated by X-ray diffraction and calorimetric techniques realized in part by us, whereas other data were taken from the literature. The results obtained in this work reveal that the CHIH(medium)-DFT model chemistry represents an accurate computational tool to calculate structural and thermochemical properties in the studied flavonoid and reference compounds. The average absolute deviation of enthalpy of formation for reference compounds was 3.0 kcal/mol, 2.64 kcal/mol for BDE, and 2.97 kcal/mol for IP.
NASA Technical Reports Server (NTRS)
Bose, Deepak
2012-01-01
The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
2012-01-01
Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net. PMID:22889332
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.
Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R
2012-08-13
The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.
Techniques in Chemistry: The Centerpiece of a Research-Oriented Curriculum.
ERIC Educational Resources Information Center
Hanks, T. W.; Wright, Laura L.
2002-01-01
Introduces the Techniques in Chemistry I course taught in the Furman University Department of Chemistry which focuses on organic and inorganic chemistry. Uses a problem solving approach and active learning. (Contains 17 references.) (YDS)
Mathematics Competency for Beginning Chemistry Students Through Dimensional Analysis.
Pursell, David P; Forlemu, Neville Y; Anagho, Leonard E
2017-01-01
Mathematics competency in nursing education and practice may be addressed by an instructional variation of the traditional dimensional analysis technique typically presented in beginning chemistry courses. The authors studied 73 beginning chemistry students using the typical dimensional analysis technique and the variation technique. Student quantitative problem-solving performance was evaluated. Students using the variation technique scored significantly better (18.3 of 20 points, p < .0001) on the final examination quantitative titration problem than those who used the typical technique (10.9 of 20 points). American Chemical Society examination scores and in-house assessment indicate that better performing beginning chemistry students were more likely to use the variation technique rather than the typical technique. The variation technique may be useful as an alternative instructional approach to enhance beginning chemistry students' mathematics competency and problem-solving ability in both education and practice. [J Nurs Educ. 2017;56(1):22-26.]. Copyright 2017, SLACK Incorporated.
ERIC Educational Resources Information Center
Gambari, Isiaka A.; Gbodi, Bimpe E.; Olakanmi, Eyitao U.; Abalaka, Eneojo N.
2016-01-01
The role of computer-assisted instruction in promoting intrinsic and extrinsic motivation among Nigerian secondary school chemistry students was investigated in this study. The study employed two modes of computer-assisted instruction (computer simulation instruction and computer tutorial instructional packages) and two levels of gender (male and…
Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume; ...
2017-07-10
Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume
Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less
Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.; VanderWal, R. (Technical Monitor)
2001-01-01
The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with an iterative method called ITAC (Iterative Temperature with Assumed Chemistry). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS and the method used to compute the species concentration are discussed. From the flame luminosity results, ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes but different ring circulations. The concentrations of methane, water, and carbon dioxide agree well with available results from numerical simulations.
Recent developments in computer vision-based analytical chemistry: A tutorial review.
Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J
2015-10-29
Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-consistent field for fragmented quantum mechanical model of large molecular systems.
Jin, Yingdi; Su, Neil Qiang; Xu, Xin; Hu, Hao
2016-01-30
Fragment-based linear scaling quantum chemistry methods are a promising tool for the accurate simulation of chemical and biomolecular systems. Because of the coupled inter-fragment electrostatic interactions, a dual-layer iterative scheme is often employed to compute the fragment electronic structure and the total energy. In the dual-layer scheme, the self-consistent field (SCF) of the electronic structure of a fragment must be solved first, then followed by the updating of the inter-fragment electrostatic interactions. The two steps are sequentially carried out and repeated; as such a significant total number of fragment SCF iterations is required to converge the total energy and becomes the computational bottleneck in many fragment quantum chemistry methods. To reduce the number of fragment SCF iterations and speed up the convergence of the total energy, we develop here a new SCF scheme in which the inter-fragment interactions can be updated concurrently without converging the fragment electronic structure. By constructing the global, block-wise Fock matrix and density matrix, we prove that the commutation between the two global matrices guarantees the commutation of the corresponding matrices in each fragment. Therefore, many highly efficient numerical techniques such as the direct inversion of the iterative subspace method can be employed to converge simultaneously the electronic structure of all fragments, reducing significantly the computational cost. Numerical examples for water clusters of different sizes suggest that the method shall be very useful in improving the scalability of fragment quantum chemistry methods. © 2015 Wiley Periodicals, Inc.
Integrating Computational Chemistry into the Physical Chemistry Curriculum
ERIC Educational Resources Information Center
Johnson, Lewis E.; Engel, Thomas
2011-01-01
Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…
The performance of low-cost commercial cloud computing as an alternative in computational chemistry.
Thackston, Russell; Fortenberry, Ryan C
2015-05-05
The growth of commercial cloud computing (CCC) as a viable means of computational infrastructure is largely unexplored for the purposes of quantum chemistry. In this work, the PSI4 suite of computational chemistry programs is installed on five different types of Amazon World Services CCC platforms. The performance for a set of electronically excited state single-point energies is compared between these CCC platforms and typical, "in-house" physical machines. Further considerations are made for the number of cores or virtual CPUs (vCPUs, for the CCC platforms), but no considerations are made for full parallelization of the program (even though parallelization of the BLAS library is implemented), complete high-performance computing cluster utilization, or steal time. Even with this most pessimistic view of the computations, CCC resources are shown to be more cost effective for significant numbers of typical quantum chemistry computations. Large numbers of large computations are still best utilized by more traditional means, but smaller-scale research may be more effectively undertaken through CCC services. © 2015 Wiley Periodicals, Inc.
What Chemists (or Chemistry Students) Need to Know about Computing.
ERIC Educational Resources Information Center
Swift, Mary L.; Zielinski, Theresa Julia
1995-01-01
Presents key points of an on-line conference discussion and integrates them with information from the literature. Key points included: computer as a tool for learning, study, research, and communication; hardware, software, computing concepts, and other teaching concerns; and the appropriate place for chemistry computer-usage instruction. (45…
An Educational Approach to Computationally Modeling Dynamical Systems
ERIC Educational Resources Information Center
Chodroff, Leah; O'Neal, Tim M.; Long, David A.; Hemkin, Sheryl
2009-01-01
Chemists have used computational science methodologies for a number of decades and their utility continues to be unabated. For this reason we developed an advanced lab in computational chemistry in which students gain understanding of general strengths and weaknesses of computation-based chemistry by working through a specific research problem.…
Advances in analytical chemistry
NASA Technical Reports Server (NTRS)
Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.
1991-01-01
Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.
Effects of different representations of transport in the new EMAC-SWIFT chemistry climate model
NASA Astrophysics Data System (ADS)
Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Kreyling, Daniel; Rex, Markus
2017-04-01
It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Interactively coupled chemistry climate models (CCMs) provide a means to realistically simulate the interaction between atmospheric chemistry and dynamics. The calculation of chemistry in CCMs, however, is computationally expensive which renders the use of complex chemistry models not suitable for ensemble simulations or simulations with multiple climate change scenarios. In these simulations ozone is therefore usually prescribed as a climatological field or included by incorporating a fast linear ozone scheme into the model. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. An alternative approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. When using SWIFT in EMAC, there are several possibilities to represent the effect of transport inside the polar vortex: the semi-Lagrangian transport scheme of EMAC and a transport parameterisation that can be useful when using SWIFT in models not having transport of their own. Here, we present results of equivalent simulations with different handling of transport, compare with EMAC simulations with full interactive chemistry and evaluate the results with observations.
Molecular Modeling and Computational Chemistry at Humboldt State University.
ERIC Educational Resources Information Center
Paselk, Richard A.; Zoellner, Robert W.
2002-01-01
Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…
ERIC Educational Resources Information Center
Esselman, Brian J.; Hill, Nicholas J.
2016-01-01
Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…
MIANN models in medicinal, physical and organic chemistry.
González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M
2013-01-01
Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.
ERIC Educational Resources Information Center
Garmon, Linda
1981-01-01
Describes the features of various computer chemistry programs. Utilization of computer graphics, color, digital imaging, and other innovations are discussed in programs including those which aid in the identification of unknowns, predict whether chemical reactions are feasible, and predict the biological activity of xenobiotic compounds. (CS)
Multicore Challenges and Benefits for High Performance Scientific Computing
Nielsen, Ida M. B.; Janssen, Curtis L.
2008-01-01
Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less
Using Computer Visualization Models in High School Chemistry: The Role of Teacher Beliefs.
ERIC Educational Resources Information Center
Robblee, Karen M.; Garik, Peter; Abegg, Gerald L.; Faux, Russell; Horwitz, Paul
This paper discusses the role of high school chemistry teachers' beliefs in implementing computer visualization software to teach atomic and molecular structure from a quantum mechanical perspective. The informants in this study were four high school chemistry teachers with comparable academic and professional backgrounds. These teachers received…
ERIC Educational Resources Information Center
Cedeno, David L.; Jones, Marjorie A.; Friesen, Jon A.; Wirtz, Mark W.; Rios, Luz Amalia; Ocampo, Gonzalo Taborda
2010-01-01
At the Universidad de Caldas, Manizales, Colombia, we used their new computer facilities to introduce chemistry graduate students to biochemical database mining and quantum chemistry calculations using freeware. These hands-on workshops allowed the students a strong introduction to easily accessible software and how to use this software to begin…
Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus
NASA Astrophysics Data System (ADS)
Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen
2010-01-01
The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.
Development and assessment of a chemistry-based computer video game as a learning tool
NASA Astrophysics Data System (ADS)
Martinez-Hernandez, Kermin Joel
The chemistry-based computer video game is a multidisciplinary collaboration between chemistry and computer graphics and technology fields developed to explore the use of video games as a possible learning tool. This innovative approach aims to integrate elements of commercial video game and authentic chemistry context environments into a learning experience through gameplay. The project consists of three areas: development, assessment, and implementation. However, the foci of this study were the development and assessment of the computer video game including possible learning outcomes and game design elements. A chemistry-based game using a mixed genre of a single player first-person game embedded with action-adventure and puzzle components was developed to determine if students' level of understanding of chemistry concepts change after gameplay intervention. Three phases have been completed to assess students' understanding of chemistry concepts prior and after gameplay intervention. Two main assessment instruments (pre/post open-ended content survey and individual semi-structured interviews) were used to assess student understanding of concepts. In addition, game design elements were evaluated for future development phases. Preliminary analyses of the interview data suggest that students were able to understand most of the chemistry challenges presented in the game and the game served as a review for previously learned concepts as well as a way to apply such previous knowledge. To guarantee a better understanding of the chemistry concepts, additions such as debriefing and feedback about the content presented in the game seem to be needed. The use of visuals in the game to represent chemical processes, game genre, and game idea appear to be the game design elements that students like the most about the current computer video game.
From transistor to trapped-ion computers for quantum chemistry.
Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E
2014-01-07
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
From transistor to trapped-ion computers for quantum chemistry
Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.
2014-01-01
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...
The EPA Comptox Chemistry Dashboard: A Web-Based Data Integration Hub for Toxicology Data (SOT)
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...
Computational Chemistry Using Modern Electronic Structure Methods
ERIC Educational Resources Information Center
Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert
2007-01-01
Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.
Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...
ERIC Educational Resources Information Center
Singh, Gurmukh
2012-01-01
The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…
Computer-based, Jeopardy™-like game in general chemistry for engineering majors
NASA Astrophysics Data System (ADS)
Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.
2013-03-01
We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi
|Mathematical biology Education Ph.D., Computational Chemistry, University of Chicago M.S., Chemistry , University of Chicago M.S., (2-Year) Chemistry, Indian Institute of Technology, Kanpur, India B.S., Chemistry
NASA Astrophysics Data System (ADS)
Coletti, Cecilia; Corinti, Davide; Paciotti, Roberto; Re, Nazzareno; Crestoni, Maria Elisa; Fornarini, Simonetta
2017-11-01
The investigation of the molecular structure and dynamics of ions in gas phase is an item of increasing interest, due the role such species play in many areas of chemistry and physics, not to mention that they often represent elusive intermediates in more complex reaction mechanisms. Infrared Multiple Photon Dissociation spectroscopy is today one of the most advanced technique to this purpose, because of its high sensitivity to even small structure changes. The interpretation of IRMPD spectra strongly relies on high level quantum mechanical computations, so that a close interplay is needed for a detailed understanding of structure and kinetics properties which can be gathered from the many applications of this powerful technique. Recent advances in experiment and theory in this field are here illustrated, with emphasis on recent progresses for the elucidation of the mechanism of action of cisplatin, one of the most widely used anticancer drugs.
The journey from forensic to predictive materials science using density functional theory
Schultz, Peter A.
2017-09-12
Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.
The journey from forensic to predictive materials science using density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.
ERIC Educational Resources Information Center
Perone, Sam P.
The objective of this project has been the development of a successful approach for the incorporation of on-line computer technology into the undergraduate chemistry laboratory. This approach assumes no prior programing, electronics or instrumental analysis experience on the part of the student; it does not displace the chemistry content with…
Computational Chemistry in the Undergraduate Laboratory: A Mechanistic Study of the Wittig Reaction
ERIC Educational Resources Information Center
Albrecht, Birgit
2014-01-01
The Wittig reaction is one of the most useful reactions in organic chemistry. Despite its prominence early in the organic chemistry curriculum, the exact mechanism of this reaction is still under debate, and this controversy is often neglected in the classroom. Introducing a simple computational study of the Wittig reaction illustrates the…
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.
Computational chemistry at Janssen
NASA Astrophysics Data System (ADS)
van Vlijmen, Herman; Desjarlais, Renee L.; Mirzadegan, Tara
2017-03-01
Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.
Efficient grid-based techniques for density functional theory
NASA Astrophysics Data System (ADS)
Rodriguez-Hernandez, Juan Ignacio
Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.
A greedy algorithm for species selection in dimension reduction of combustion chemistry
NASA Astrophysics Data System (ADS)
Hiremath, Varun; Ren, Zhuyin; Pope, Stephen B.
2010-09-01
Computational calculations of combustion problems involving large numbers of species and reactions with a detailed description of the chemistry can be very expensive. Numerous dimension reduction techniques have been developed in the past to reduce the computational cost. In this paper, we consider the rate controlled constrained-equilibrium (RCCE) dimension reduction method, in which a set of constrained species is specified. For a given number of constrained species, the 'optimal' set of constrained species is that which minimizes the dimension reduction error. The direct determination of the optimal set is computationally infeasible, and instead we present a greedy algorithm which aims at determining a 'good' set of constrained species; that is, one leading to near-minimal dimension reduction error. The partially-stirred reactor (PaSR) involving methane premixed combustion with chemistry described by the GRI-Mech 1.2 mechanism containing 31 species is used to test the algorithm. Results on dimension reduction errors for different sets of constrained species are presented to assess the effectiveness of the greedy algorithm. It is shown that the first four constrained species selected using the proposed greedy algorithm produce lower dimension reduction error than constraints on the major species: CH4, O2, CO2 and H2O. It is also shown that the first ten constrained species selected using the proposed greedy algorithm produce a non-increasing dimension reduction error with every additional constrained species; and produce the lowest dimension reduction error in many cases tested over a wide range of equivalence ratios, pressures and initial temperatures.
Using Games To Teach Chemistry: An Annotated Bibliography
NASA Astrophysics Data System (ADS)
Russell, Jeanne V.
1999-04-01
A list of published or marketed games based on a chemistry motif is presented. Each game is listed according to its level, subject matter, and title. A bibliographic notation and a short description are given for each game. For Introductory/High School/General Chemistry, 45 games are listed under the subjects General Knowledge; Elements & Atomic Structure (not Symbols); Nomenclature, Formulas, & Equation Writing; Chemical Reactions: Solutions & Solubilities; and Other Subjects. Seventeen games are listed under Organic Chemistry and 4 games under Other Chemistry Games. Computer games designed for outdated computers (PDP-11, TRS-80, and Apple II) are not included.
Casolo, S; Tantardini, G F; Martinazzo, R
2016-07-14
We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques.
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views
ERIC Educational Resources Information Center
Aksela, Maija; Lundell, Jan
2008-01-01
Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…
NASA Astrophysics Data System (ADS)
1996-06-01
Eight awards in chemistry curriculum development for FY1996 have been announced. One award, to a consortium centered at the University of California-Los Angeles, represents the fifth award in the Systemic Changes in the Undergraduate Chemistry Curriculum program. Although no proposals will be accepted in this program for either planning or full grants for FY1997, it is anticipated that proposals will be accepted in June of 1997 for projects that would adapt and adopt materials developed by the five funded consortia: Molecular Science centered at the University of California-Los Angeles; ChemLinks centered at Beloit College; MolecularChem Consortium centered at the University of California-Berkeley; Workshop Chemistry centered at CUNY City College; and New Traditions centered at the University of Wisconsin-Madison. Seven awards have been made in the Course and Curriculum Development program. This ongoing program continues to accept proposals in chemistry as usual. Systemic Changes in the Undergraduate Chemistry Curriculum Program Award. Molecular Science. Orville L. Chapman University of California-Los Angeles DUE 9555605 FY96 725,000 FY97 575,000, FY98 575,000 FY99 275,000, FY00 275,000 The UCLA-CSUF-Community College Alliance (24 area community colleges that have worked together for more than 15 years) proposes a sweeping restructuring of the lower division chemistry curriculum and the auxiliary learning and assessment processes. In forming our new curriculum, we reject the positivist approach to science education in favor of a constructivist approach that emphasizes problem solving and exploratory learning. We make this change in order to focus on the developing key skills, traits, and abilities of our students. Our new curriculum, the Molecular Science Curriculum, cuts across departments and disciplines to embrace all activities that involve the study of atoms and molecules. In particular, environmental science, materials science, and molecular life science have important positions in the lower-division chemistry curriculum. The new curriculum reflects accurately current practice in research and the chemical industry where growth is occurring in these new fields. Today information-technology-based learning enables a practical approach to discovery learning, which educational theorists have long favored. Students can learn science by doing science. In particular, we will produce problem-based modular learning units that define the molecular science curriculum; data sets organized for exploratory learning; prepackaged molecular, mathematical, and schematic models illustrating important principles and phenomena; and a client/server system that manages education. Client/server technology enables individualized courses and frees students from rigid time constraints. The learning units will be used immediately by several of the community colleges in technology programs, such as those for science technicians and hazardous materials technicians at Mount San Antonio CC. New assessment vehicles including cumulative electronic portfolios of group and individual work provide new insight into student development and potential. The project also addresses the preparation of primary and secondary science teachers by involving them as active participants in the lower division courses of the molecular science curriculum. At both UCLA and CSUF, these students will gain experience with the modules, associated learning methods, and electronic delivery system. These experiences should result in teachers with a practical perspective on science teaching as well as the ability to utilize current technology to direct learning activities. The electronic delivery system will allow students at UCLA to work with the science education faculty at CSUF to obtain certification. Since 1990 two high schools (Aliso Niguel and Crossroads) have become members of the Alliance. These schools have the facilities to expose students, experienced teachers, and future teachers to both the content and learning methods of the molecular science curriculum. Course and Curriculum Development Program Awards. Studio General Chemistry with Full Merging of the Laboratory and Classroom Experiences. Thomas M. Apple Rensselaer Polytechnic Institute DUE 9555069 114,000 A workshop general chemistry class is being developed that includes experimental work during every meeting. Lab work is merged with classroom discussion. Students working in groups are challenged to link their macroscopic observations to chemical principles. The merger of thirty-minute, concept-based discovery labs with discussion and lateral development material provides a unique perspective of chemistry. In modernizing the general chemistry curriculum, fewer topics are treated and the more esoteric aspects of physical chemistry that are inappropriate for freshmen are eliminated. More time is allocated to materials chemistry, organic and biological chemistry, and environmental science. The course material is organized into modules or case-studies that contain material that is developed with the specific aim of showing the relevance of the material to problems to which the students already have been exposed. Societal relevance is built into every module of the syllabus by incorporating laboratories, discussion and "lateral development" problems for each topic. Dynamic Visualization in Chemistry. James P. Birk Arizona State University DUE 9555098 175,000 This project will produce real images of chemical and physical changes occurring at the microscopic and atomic levels. These images, from different instruments (optical, electron, and scanning probe microscopes), will be captured electronically (video tapes and CD ROMs) and used in conjunction with molecular modeling as instructional aids in introductory chemistry courses. The objective is to introduce students to the relationships between macroscopic changes in materials and the corresponding changes in the arrangements of their atoms and molecules. The graphic images will be combined with interactive benchtop demonstrations and computer animations to produce dynamic visual instructional components (dynamic visualization modules, DVMs) for introductory chemistry courses. The existing instrumentation and modeling facilities required for the project are currently in place. Once developed the DVMs will be tested with approximately 4000 general chemistry students at Arizona State University and the Maricopa Community College system. There is a goal of national dissemination by a commercial publisher once the DVMs have been tested in the local environment. An Introductory Course in Modeling Dynamic Chemical and Ecological Systems. Joseph E. Earley Georgetown University DUE 9554932 99,996 An introductory course in modeling of dynamic systems, with special emphasis on chemical and ecological problems, will be developed. The target student population will be first- and second-year social science and humanities students, but upper division students and interested science majors will not be excluded. Rather than placing emphasis on mathematical methods and techniques used in modeling, attention will be centered on salient aspects of complex-system behavior as illustrated by models constructed using the commercially available software-package STELLA II. Relatively straightforward models dealing with chemical reactions will be used to introduce fundamental features of complex-system dynamics. Problems of ecological and demographic interest, at moderate level of difficulty, will then be covered. The origin and behavior of "deterministic chaos" will be treated using examples from both chemistry and ecology. In the last third of the course, students will work in small groups (or individually) developing their own models, each related to a specific problem of current interest, preferably in fields of the students' major academic interest. Opportunity will be provided for some outstanding students to use less "user-friendly" software such as ODEPACK to deal with models involving "stiff" differential equations. The last exercise of the course will be a poster session, at which individuals and groups will present their project models to other members of the class and to guests. The main aims of the course will be to facilitate development of the students' insight with respect to types of functioning to be expected of complex networks of relationships, and therefore in important natural systems, and also to engender an appreciation of the power and limitations of modeling techniques. VizChem-Visualizing Chemistry. Leonard W. Fine Columbia University DUE 9555122 209,000 Multimedia computer modules suitable for undergraduate chemistry lecture and laboratory courses are being designed. The modules are both content and skills oriented, interdisciplinary and multidimensional, and take full advantage of the benefits of simulation, computation, and visualization. They are being designed and created as tools for the teacher and for the student and are primarily directed at general chemistry, organic chemistry, physical chemistry, inorganic chemistry, and materials science. Module topics will include the next version of IR Tutor and applicable and important spectroscopies and diagnostic devices such as electronic absorption (UV-vis) and electronic emission (fluorescence and phosphorescence); proton and carbon-13 nuclear magnetic resonance; atomic absorption; thermal analysis; topics in polymer chemistry and materials science; and PCR technology. Secondary objectives of the project include: a broadening of the chemistry curriculum beyond traditional disciplinary boundaries, new undergraduate courses, enhanced effectiveness of teaching assistants, an expanded role for postdoctoral students in undergraduate education, and improved performance by classes of students. Connecting Undergraduate/Analytical Courses to Modern Analytical Chemistry. Thomas R. Gilbert Northeastern University DUE 9554906 200,000 Application modules in the form of projects and active learning techniques to provide a strong foundation in the principles of chemical measurement and to pique the interest of both chemistry majors and nonmajors will be developed for use in introductory analytical courses. The modules will address an analytical problem drawn from current research in biological, environmental, or materials science. Students will be responsible for proposing and evaluating analytical protocols to solve the problems: they will conduct workshops and design their own laboratory experiments. A multidisciplinary Advisory Council will guide the PIs in problem selection and module development. A two-week faculty workshop will provide training in the use of these modules. A World Wide Web home page will be used to distribute information about the modules and will allow users to share experiences using them. Modules will ultimately be distributed by a commercial publisher. Process Workshops for General Chemistry. David M. Hanson SUNY at Stony Brook DUE 9555142 150,000 The process skills needed by students will be addressed by developing innovations in both content and methodology to replace recitation sessions associated with large lecture courses by process workshops, specifically for introductory chemistry courses. The novel format involves process skills, student participation, and active learning at the forefront. Students will work in cooperative-learning groups on lessons that involve discovery learning, critical thinking, problem solving, reporting, and assessment. Computer-based technology will be used to provide personalized quizzes, and the workshop lessons will be transported to a computer network, multi-media format. The objectives of this project are to develop teaching strategies that support a successful cooperative-learning environment, develop lessons that enhance the understanding of concepts and promote learning and problem solving through the use of higher order thinking skills, develop lessons incorporating interdisciplinary and real world perspectives, enhance learning with computer-driven technology, develop process skills in key areas, promote positive attitudes toward chemistry and science, help students develop confidence in their ability to learn and perform well, create a supportive social environment that will encourage students to involve themselves seriously and successfully in learning, and promote a culture where the university is a community of learners. The transformation of recitation sessions into workshops introduces the missing element in large lecture courses. The lectures structure information and make it available to the students, and the workshops complement that component by facilitating the construction of understanding, the application of knowledge, and the development of process skills. Such development is extremely significant because introductory chemistry courses involve large numbers of students early in their college careers. Among other things, summer teaching and authoring institutes will be held to excite the interest of others in this approach and to share ideas on the methodology, strategies, and lesson content. Forensic Science: An Interactive Multimedia Laboratory Program to Enhance Introductory Chemistry (Science) Courses. Lawrence J. Kaplan Williams College DUE 9554875 234,539 While major changes have taken place in all areas of the natural sciences, introductory instruction in both the lecture hall and the laboratory has not changed significantly in many years. The PI instituted innovative teaching techniques in an elementary chemistry course called "Chemistry and Crime: From Sherlock Holmes to Modern Forensic Science" for the nonscience major. The techniques used in the laboratory have received national attention and many colleagues have instituted similar innovations. However, many institutions do not have the resources to develop laboratory programs along these lines and, as times have changed, are increasingly concerned with exposing the students to situations now recognized as potentially dangerous. Since the PI has proven that forensics can be used to spark interest in science and since it is given that young people are intrigued by computer graphics, it was decided to use computer-animated simulations to allow extensive, intensive investigation of scientific evidence collected at simulated crime scenes and studied using simulated scientific instruments. These animated modules will enhance not only the laboratory program in the forensic science course but also the programs in introductory science courses for majors. The PI will guide the development of the computer-animated modules, develop the story board and oversee the computer interfacing and the integration of the components into the curriculum. The actual modules will be created by Engineering Animation, Inc. EAI, using their Vislab software, is one of the premier computer animation companies in the world. It is anticipated that implementing this innovative and creative approach, as part of an overall multimedia program including actual laboratory experience, will enhance science education by stimulating interest and engendering enthusiasm instead of promoting the stereotype that science is boring and hard.
Computation and Experiment: A Powerful Combination to Understand and Predict Reactivities.
Sperger, Theresa; Sanhueza, Italo A; Schoenebeck, Franziska
2016-06-21
Computational chemistry has become an established tool for the study of the origins of chemical phenomena and examination of molecular properties. Because of major advances in theory, hardware and software, calculations of molecular processes can nowadays be done with reasonable accuracy on a time-scale that is competitive or even faster than experiments. This overview will highlight broad applications of computational chemistry in the study of organic and organometallic reactivities, including catalytic (NHC-, Cu-, Pd-, Ni-catalyzed) and noncatalytic examples of relevance to organic synthesis. The selected examples showcase the ability of computational chemistry to rationalize and also predict reactivities of broad significance. A particular emphasis is placed on the synergistic interplay of computations and experiments. It is discussed how this approach allows one to (i) gain greater insight than the isolated techniques, (ii) inspire novel chemistry avenues, and (iii) assist in reaction development. Examples of successful rationalizations of reactivities are discussed, including the elucidation of mechanistic features (radical versus polar) and origins of stereoselectivity in NHC-catalyzed reactions as well as the rationalization of ligand effects on ligation states and selectivity in Pd- and Ni-catalyzed transformations. Beyond explaining, the synergistic interplay of computation and experiments is then discussed, showcasing the identification of the likely catalytically active species as a function of ligand, additive, and solvent in Pd-catalyzed cross-coupling reactions. These may vary between mono- or bisphosphine-bound or even anionic Pd complexes in polar media in the presence of coordinating additives. These fundamental studies also inspired avenues in catalysis via dinuclear Pd(I) cycles. Detailed mechanistic studies supporting the direct reactivity of Pd(I)-Pd(I) with aryl halides as well as applications of air-stable dinuclear Pd(I) catalysts are discussed. Additional combined experimental and computational studies are described for alternative metals, these include the discussion of the factors that control C-H versus C-C activation in the aerobic Cu-catalyzed oxidation of ketones, and ligand and additive effects on the nature and favored oxidation state of the active catalyst in Ni-catalyzed trifluoromethylthiolations of aryl chlorides. Examples of successful computational reactivity predictions along with experimental verifications are then presented. This includes the design of a fluorinated ligand [(CF3)2P(CH2)2P(CF3)2] for the challenging reductive elimination of ArCF3 from Pd(II) as well as the guidance of substrate scope (functional group tolerance and suitable leaving group) in the Ni-catalyzed trifluoromethylthiolation of C(sp(2))-O bonds. In summary, this account aims to convey the benefits of integrating computational studies in experimental research to increase understanding of observed phenomena and guide future experiments.
ERIC Educational Resources Information Center
Fleck, George
This publication was produced as a teaching tool for college chemistry. The book is a text for a computer-based unit on the chemistry of acid-base titrations, and is designed for use with FORTRAN or BASIC computer systems, and with a programmable electronic calculator, in a variety of educational settings. The text attempts to present computer…
ERIC Educational Resources Information Center
Akcay, Hüsamettin; Durmaz, Asli; Tüysüz, Cengiz; Feyzioglu, Burak
2006-01-01
The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…
Anthony H. Conner; Melissa S. Reeves
2001-01-01
Computational chemistry methods can be used to explore the theoretical chemistry behind reactive systems, to compare the relative chemical reactivity of different systems, and, by extension, to predict the reactivity of new systems. Ongoing research has focused on the reactivity of a wide variety of phenolic compounds with formaldehyde using semi-empirical and ab...
Eleventh international symposium on radiopharmaceutical chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.
Molecular dynamics simulations through GPU video games technologies
Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia
2016-01-01
Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251
NASA Astrophysics Data System (ADS)
Pellouchoud, Lenson; Reed, Evan
2014-03-01
With continual improvements in ultrafast optical spectroscopy and new multi-scale methods for simulating chemistry for hundreds of picoseconds, the opportunity is beginning to exist to connect experiments with simulations on the same timescale. We compute the optical properties of the liquid phase energetic material nitromethane (CH3NO2) for the first 100 picoseconds behind the front of a simulated shock at 6.5km/s, close to the experimentally observed detonation shock speed. We utilize molecular dynamics trajectories computed using the multi-scale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood (KG) formula within Kohn-Sham DFT. We find that TDDFT predicts optical conductivities 25-35% lower than KG-based values and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the KG spectra and find no significant effect at optical wavelengths. With all methods, the spectra evolve non-monotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. Supported by NASA Space Technology Research Fellowship (NSTRF) #NNX12AM48H.
Using quantum chemistry muscle to flex massive systems: How to respond to something perturbing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertoni, Colleen
Computational chemistry uses the theoretical advances of quantum mechanics and the algorithmic and hardware advances of computer science to give insight into chemical problems. It is currently possible to do highly accurate quantum chemistry calculations, but the most accurate methods are very computationally expensive. Thus it is only feasible to do highly accurate calculations on small molecules, since typically more computationally efficient methods are also less accurate. The overall goal of my dissertation work has been to try to decrease the computational expense of calculations without decreasing the accuracy. In particular, my dissertation work focuses on fragmentation methods, intermolecular interactionsmore » methods, analytic gradients, and taking advantage of new hardware.« less
The role of computational chemistry in the science and measurements of the atmosphere
NASA Technical Reports Server (NTRS)
Phillips, D. H.
1978-01-01
The role of computational chemistry in determining the stability, photochemistry, spectroscopic parameters, and parameters for estimating reaction rates of atmospheric constituents is discussed. Examples dealing with the photolysis cross sections of HOCl and (1 Delta g) O2 and with the stability of gaseous NH4Cl and asymmetric ClO3 are presented. It is concluded that computational chemistry can play an important role in the study of atmospheric constituents, particularly reactive and short-lived species which are difficult to investigate experimentally.
Computational chemistry and aeroassisted orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.
1985-01-01
An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.
The Development of Computational Thinking in a High School Chemistry Course
ERIC Educational Resources Information Center
Matsumoto, Paul S.; Cao, Jiankang
2017-01-01
Computational thinking is a component of the Science and Engineering Practices in the Next Generation Science Standards, which were adopted by some states. We describe the activities in a high school chemistry course that may develop students' computational thinking skills by primarily using Excel, a widely available spreadsheet software. These…
ERIC Educational Resources Information Center
1971
Computers have effected a comprehensive transformation of chemistry. Computers have greatly enhanced the chemist's ability to do model building, simulations, data refinement and reduction, analysis of data in terms of models, on-line data logging, automated control of experiments, quantum chemistry and statistical and mechanical calculations, and…
ERIC Educational Resources Information Center
Orenha, Renato P.; Galembeck, Sérgio E.
2014-01-01
This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…
Green analytical chemistry--theory and practice.
Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek
2010-08-01
This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.
Vidossich, Pietro; Lledós, Agustí; Ujaque, Gregori
2016-06-21
Computational chemistry is a valuable aid to complement experimental studies of organometallic systems and their reactivity. It allows probing mechanistic hypotheses and investigating molecular structures, shedding light on the behavior and properties of molecular assemblies at the atomic scale. When approaching a chemical problem, the computational chemist has to decide on the theoretical approach needed to describe electron/nuclear interactions and the composition of the model used to approximate the actual system. Both factors determine the reliability of the modeling study. The community dedicated much effort to developing and improving the performance and accuracy of theoretical approaches for electronic structure calculations, on which the description of (inter)atomic interactions rely. Here, the importance of the model system used in computational studies is highlighted through examples from our recent research focused on organometallic systems and homogeneous catalytic processes. We show how the inclusion of explicit solvent allows the characterization of molecular events that would otherwise not be accessible in reduced model systems (clusters). These include the stabilization of nascent charged fragments via microscopic solvation (notably, hydrogen bonding), transfer of charge (protons) between distant fragments mediated by solvent molecules, and solvent coordination to unsaturated metal centers. Furthermore, when weak interactions are involved, we show how conformational and solvation properties of organometallic complexes are also affected by the explicit inclusion of solvent molecules. Such extended model systems may be treated under periodic boundary conditions, thus removing the cluster/continuum (or vacuum) boundary, and require a statistical mechanics simulation technique to sample the accessible configurational space. First-principles molecular dynamics, in which atomic forces are computed from electronic structure calculations (namely, density functional theory), is certainly the technique of choice to investigate chemical events in solution. This methodology is well established and thanks to advances in both algorithms and computational resources simulation times required for the modeling of chemical events are nowadays accessible, though the computational requirements use to be high. Specific applications reviewed here include mechanistic studies of the Shilov and Wacker processes, speciation in Pd chemistry, hydrogen bonding to metal centers, and the dynamics of agostic interactions.
NASA Technical Reports Server (NTRS)
Arnold, J. O.
1987-01-01
With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.
Bias-Free Chemically Diverse Test Sets from Machine Learning.
Swann, Ellen T; Fernandez, Michael; Coote, Michelle L; Barnard, Amanda S
2017-08-14
Current benchmarking methods in quantum chemistry rely on databases that are built using a chemist's intuition. It is not fully understood how diverse or representative these databases truly are. Multivariate statistical techniques like archetypal analysis and K-means clustering have previously been used to summarize large sets of nanoparticles however molecules are more diverse and not as easily characterized by descriptors. In this work, we compare three sets of descriptors based on the one-, two-, and three-dimensional structure of a molecule. Using data from the NIST Computational Chemistry Comparison and Benchmark Database and machine learning techniques, we demonstrate the functional relationship between these structural descriptors and the electronic energy of molecules. Archetypes and prototypes found with topological or Coulomb matrix descriptors can be used to identify smaller, statistically significant test sets that better capture the diversity of chemical space. We apply this same method to find a diverse subset of organic molecules to demonstrate how the methods can easily be reapplied to individual research projects. Finally, we use our bias-free test sets to assess the performance of density functional theory and quantum Monte Carlo methods.
National resource for computation in chemistry, phase I: evaluation and recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The National Resource for Computation in Chemistry (NRCC) was inaugurated at the Lawrence Berkeley Laboratory (LBL) in October 1977, with joint funding by the Department of Energy (DOE) and the National Science Foundation (NSF). The chief activities of the NRCC include: assembling a staff of eight postdoctoral computational chemists, establishing an office complex at LBL, purchasing a midi-computer and graphics display system, administering grants of computer time, conducting nine workshops in selected areas of computational chemistry, compiling a library of computer programs with adaptations and improvements, initiating a software distribution system, providing user assistance and consultation on request. This reportmore » presents assessments and recommendations of an Ad Hoc Review Committee appointed by the DOE and NSF in January 1980. The recommendations are that NRCC should: (1) not fund grants for computing time or research but leave that to the relevant agencies, (2) continue the Workshop Program in a mode similar to Phase I, (3) abandon in-house program development and establish instead a competitive external postdoctoral program in chemistry software development administered by the Policy Board and Director, and (4) not attempt a software distribution system (leaving that function to the QCPE). Furthermore, (5) DOE should continue to make its computational facilities available to outside users (at normal cost rates) and should find some way to allow the chemical community to gain occasional access to a CRAY-level computer.« less
Development and Formative Evaluation of Computer Simulated College Chemistry Experiments.
ERIC Educational Resources Information Center
Cavin, Claudia S.; Cavin, E. D.
1978-01-01
This article describes the design, preparation, and initial evaluation of a set of computer-simulated chemistry experiments. The experiments entailed the use of an atomic emission spectroscope and a single-beam visible absorption spectrophometer. (Author/IRT)
ERIC Educational Resources Information Center
Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.
2016-01-01
This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.
ERIC Educational Resources Information Center
Batt, Russell H., Ed.
1989-01-01
Describes two chemistry computer programs: (1) "Eureka: A Chemistry Problem Solver" (problem files may be written by the instructor, MS-DOS 2.0, IBM with 384K); and (2) "PC-File+" (database management, IBM with 416K and two floppy drives). (MVL)
ERIC Educational Resources Information Center
Jameson, A. Keith
Presented are the teacher's guide and student materials for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on Le Chatelier's principle includes objectives, prerequisites, pretest, instructions for executing the computer program, and…
ERIC Educational Resources Information Center
Rodrigues, Ricardo P.; Andrade, Saulo F.; Mantoani, Susimaire P.; Eifler-Lima, Vera L.; Silva, Vinicius B.; Kawano, Daniel F.
2015-01-01
Advances in, and dissemination of, computer technologies in the field of drug research now enable the use of molecular modeling tools to teach important concepts of drug design to chemistry and pharmacy students. A series of computer laboratories is described to introduce undergraduate students to commonly adopted "in silico" drug design…
ERIC Educational Resources Information Center
Lower, Stephen K.
A brief overview of CHEMEX--a problem-solving, tutorial style computer-assisted instructional course--is provided and sample problems are offered. In CHEMEX, students receive problems in advance and attempt to solve them before moving through the computer program, which assists them in overcoming difficulties and serves as a review mechanism.…
The Impact of Learner's Prior Knowledge on Their Use of Chemistry Computer Simulations: A Case Study
ERIC Educational Resources Information Center
Liu, Han-Chin; Andre, Thomas; Greenbowe, Thomas
2008-01-01
It is complicated to design a computer simulation that adapts to students with different characteristics. This study documented cases that show how college students' prior chemistry knowledge level affected their interaction with peers and their approach to solving problems with the use of computer simulations that were designed to learn…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Raphael P
2017-01-01
This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, asmore » are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.« less
Programs for Fundamentals of Chemistry.
ERIC Educational Resources Information Center
Gallardo, Julio; Delgado, Steven
This document provides computer programs, written in BASIC PLUS, for presenting fundamental or remedial college chemistry students with chemical problems in a computer assisted instructional program. Programs include instructions, a sample run, and 14 separate practice sessions covering: mathematical operations, using decimals, solving…
Chemistry-split techniques for viscous reactive blunt body flow computations
NASA Technical Reports Server (NTRS)
Li, C. P.
1987-01-01
The weak-coupling structure between the fluid and species equations has been exploited and resulted in three, closely related, time-iterative implicit techniques. While the primitive variables are solved in two separated groups and each by an Alternating Direction Implicit (ADI) factorization scheme, the rate-species Jacobian can be treated in either full or diagonal matrix form, or simply ignored. The latter two versions render the split technique to solving for species as scalar rather than vector variables. The solution is completed at the end of each iteration after determining temperature and pressure from the flow density, energy and species concentrations. Numerical experimentation has shown that the split scalar technique, using partial rate Jacobian, yields the best overall stability and consistency. Satisfactory viscous solutions were obtained for an ellipsoidal body of axis ratio 3:1 at Mach 35 and an angle of attack of 20 degrees.
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
Protein Engineering: Development of a Metal Ion Dependent Switch
2017-05-22
Society of Chemistry Royal Society of Chemistry Biochemistry PNAS Escherichia coli Journal of Biotechnology Biochemistry Nature Protocols Journal of...Molecular Biology Biochemistry Royal Society of Chemistry Proteins: Structure, Function, and Bioinformatics Journal of Molecular Biology Biophysical...Biophysical Journal Protein Science Journal of Computational Chemistry Current Opinion in Chemical Biology Royal Society of Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elnabawy, Ahmed O.; Rangarajan, Srinivas; Mavrikakis, Manos
Computational chemistry, especially density functional theory, has experienced a remarkable growth in terms of application over the last few decades. This is attributed to the improvements in theory and computing infrastructure that enable the analysis of systems of unprecedented size and detail at an affordable computational expense. In this perspective, we discuss recent progress and current challenges facing electronic structure theory in the context of heterogeneous catalysis. We specifically focus on the impact of computational chemistry in elucidating and designing catalytic systems in three topics of interest to Haldor Topsøe – ammonia, synthesis, hydrotreating, and NO x reduction. Furthermore, wemore » then discuss the common tools and concepts in computational catalysis that underline these topics and provide a perspective on the challenges and future directions of research in this area of catalysis research.« less
Elnabawy, Ahmed O.; Rangarajan, Srinivas; Mavrikakis, Manos
2015-06-05
Computational chemistry, especially density functional theory, has experienced a remarkable growth in terms of application over the last few decades. This is attributed to the improvements in theory and computing infrastructure that enable the analysis of systems of unprecedented size and detail at an affordable computational expense. In this perspective, we discuss recent progress and current challenges facing electronic structure theory in the context of heterogeneous catalysis. We specifically focus on the impact of computational chemistry in elucidating and designing catalytic systems in three topics of interest to Haldor Topsøe – ammonia, synthesis, hydrotreating, and NO x reduction. Furthermore, wemore » then discuss the common tools and concepts in computational catalysis that underline these topics and provide a perspective on the challenges and future directions of research in this area of catalysis research.« less
Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory
ERIC Educational Resources Information Center
Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.
2015-01-01
Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…
Advances in visual representation of molecular potentials.
Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen
2010-06-01
The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.
[Computational chemistry in structure-based drug design].
Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu
2013-07-01
Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.
Chemical calculations on Cray computers
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.
1989-01-01
The influence of recent developments in supercomputing on computational chemistry is discussed with particular reference to Cray computers and their pipelined vector/limited parallel architectures. After reviewing Cray hardware and software the performance of different elementary program structures are examined, and effective methods for improving program performance are outlined. The computational strategies appropriate for obtaining optimum performance in applications to quantum chemistry and dynamics are discussed. Finally, some discussion is given of new developments and future hardware and software improvements.
Morgnanesi, Dante; Heinrichs, Eric J; Mele, Anthony R; Wilkinson, Sean; Zhou, Suzanne; Kulp, John L
2015-11-01
Computational chemical biology, applied to research on hepatitis B virus (HBV), has two major branches: bioinformatics (statistical models) and first-principle methods (molecular physics). While bioinformatics focuses on statistical tools and biological databases, molecular physics uses mathematics and chemical theory to study the interactions of biomolecules. Three computational techniques most commonly used in HBV research are homology modeling, molecular docking, and molecular dynamics. Homology modeling is a computational simulation to predict protein structure and has been used to construct conformers of the viral polymerase (reverse transcriptase domain and RNase H domain) and the HBV X protein. Molecular docking is used to predict the most likely orientation of a ligand when it is bound to a protein, as well as determining an energy score of the docked conformation. Molecular dynamics is a simulation that analyzes biomolecule motions and determines conformation and stability patterns. All of these modeling techniques have aided in the understanding of resistance mutations on HBV non-nucleos(t)ide reverse-transcriptase inhibitor binding. Finally, bioinformatics can be used to study the DNA and RNA protein sequences of viruses to both analyze drug resistance and to genotype the viral genomes. Overall, with these techniques, and others, computational chemical biology is becoming more and more necessary in hepatitis B research. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B." Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kutler, Paul; Yee, Helen
1987-01-01
Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…
ERIC Educational Resources Information Center
Jordan, Jeremy T.; Box, Melinda C.; Eguren, Kristen E.; Parker, Thomas A.; Saraldi-Gallardo, Victoria M.; Wolfe, Michael I.; Gallardo-Williams, Maria T.
2016-01-01
Multimedia instruction has been shown to serve as an effective learning aid for chemistry students. In this study, the viability of student-generated video instruction for organic chemistry laboratory techniques and procedure was examined and its effectiveness compared to instruction provided by a teaching assistant (TA) was evaluated. After…
Graphical Interface for the Study of Gas-Phase Reaction Kinetics: Cyclopentene Vapor Pyrolysis
NASA Astrophysics Data System (ADS)
Marcotte, Ronald E.; Wilson, Lenore D.
2001-06-01
The undergraduate laboratory experiment on the pyrolysis of gaseous cyclopentene has been modernized to improve safety, speed, and precision and to better reflect the current practice of physical chemistry. It now utilizes virtual instrument techniques to create a graphical computer interface for the collection and display of experimental data. An electronic pressure gauge has replaced the mercury manometer formerly needed in proximity to the 500 °C pyrolysis oven. Students have much better real-time information available to them and no longer require multiple lab periods to get rate constants and acceptable Arrhenius parameters. The time saved on manual data collection is used to give the students a tour of the computer interfacing hardware and software and a hands-on introduction to gas-phase reagent preparation using a research-grade high-vacuum system. This includes loading the sample, degassing it by the freeze-pump-thaw technique, handling liquid nitrogen and working through the logic necessary for each reconfiguration of the diffusion pump section and the submanifolds.
Analytical Chemistry: A Literary Approach.
ERIC Educational Resources Information Center
Lucy, Charles A.
2000-01-01
Provides an anthology of references to descriptions of analytical chemistry techniques from history, popular fiction, and film which can be used to capture student interest and frame discussions of chemical techniques. (WRM)
2014-01-01
Study Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to...understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus...find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance are required. A computational material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, George; Glotzer, Sharon; McCurdy, Bill
This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together 160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in simulation and modeling. Uncertainty quantification becomes increasingly challenging as simulations become more complex. Robust and sustainable computational infrastructure, including software and applications. For modeling and simulation, software equals infrastructure. To validate the computational tools, software is critical infrastructure that effectively translates huge arrays of experimental data into useful scientific understanding. An integrated approach for managing this infrastructure is essential. Efficient transfer and incorporation of simulation-based engineering and science in industry. Strategies for bridging the gap between research and industrial applications and for widespread industry adoption of integrated computational materials engineering are needed.« less
Invited presentation at Dalton College, Dalton, GA to the Alliance for Innovation & Sustainability, April 20, 2017. U.S. EPA’s Computational Toxicology Program: Innovation Powered by Chemistry It is estimated that tens of thousands of commercial and industrial chemicals are ...
Applied Computational Chemistry for the Blind and Visually Impaired
ERIC Educational Resources Information Center
Wedler, Henry B.; Cohen, Sarah R.; Davis, Rebecca L.; Harrison, Jason G.; Siebert, Matthew R.; Willenbring, Dan; Hamann, Christian S.; Shaw, Jared T.; Tantillo, Dean J.
2012-01-01
We describe accommodations that we have made to our applied computational-theoretical chemistry laboratory to provide access for blind and visually impaired students interested in independent investigation of structure-function relationships. Our approach utilizes tactile drawings, molecular model kits, existing software, Bash and Perl scripts…
de Jong, Wibe A; Walker, Andrew M; Hanwell, Marcus D
2013-05-24
Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis and visualization. The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and analyse the CML output produced. The developments outlined in this paper will be made available in future releases of NWChem, FoX, and Avogadro. The production of CML compliant XML files for computational chemistry software such as NWChem can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a researcher to run simple "Google-style" searches of chemistry and physics and have the results of computational calculations returned in a comprehensible form alongside articles from the published literature.
2013-01-01
Background Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis and visualization. Results The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and analyse the CML output produced. The developments outlined in this paper will be made available in future releases of NWChem, FoX, and Avogadro. Conclusions The production of CML compliant XML files for computational chemistry software such as NWChem can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a researcher to run simple “Google-style” searches of chemistry and physics and have the results of computational calculations returned in a comprehensible form alongside articles from the published literature. PMID:23705910
Chemistry Division: Annual progress report for period ending March 31, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-08-01
This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)
ERIC Educational Resources Information Center
Park, Mihwa; Liu, Xiufeng; Waight, Noemi
2017-01-01
This paper describes the development of Connected Chemistry as Formative Assessment (CCFA) pedagogy, which integrates three promising teaching and learning approaches, computer models, formative assessments, and learning progressions, to promote student understanding in chemistry. CCFA supports student learning in making connections among the…
Pellouchoud, Lenson A; Reed, Evan J
2013-11-27
We compute the optical properties of the liquid-phase energetic material nitromethane (CH3NO2) for the first 100 ps behind the front of a simulated shock at 6.5 km/s, close to the experimentally observed detonation shock speed of the material. We utilize molecular dynamics trajectories computed using the multiscale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood formula with Kohn-Sham DFT wave functions. We find that the TDDFT method predicts an optical conductivity 25-35% lower than the Kubo-Greenwood calculation and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the Kubo-Greenwood spectra and find no significant effect at optical wavelengths. In both Kubo-Greenwood and TDDFT, the spectra evolve nonmonotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. These calculations offer direction for guiding and interpreting ultrafast optical measurements on reactive materials.
Simulated Raman Spectral Analysis of Organic Molecules
NASA Astrophysics Data System (ADS)
Lu, Lu
The advent of the laser technology in the 1960s solved the main difficulty of Raman spectroscopy, resulted in simplified Raman spectroscopy instruments and also boosted the sensitivity of the technique. Up till now, Raman spectroscopy is commonly used in chemistry and biology. As vibrational information is specific to the chemical bonds, Raman spectroscopy provides fingerprints to identify the type of molecules in the sample. In this thesis, we simulate the Raman Spectrum of organic and inorganic materials by General Atomic and Molecular Electronic Structure System (GAMESS) and Gaussian, two computational codes that perform several general chemistry calculations. We run these codes on our CPU-based high-performance cluster (HPC). Through the message passing interface (MPI), a standardized and portable message-passing system which can make the codes run in parallel, we are able to decrease the amount of time for computation and increase the sizes and capacities of systems simulated by the codes. From our simulations, we will set up a database that allows search algorithm to quickly identify N-H and O-H bonds in different materials. Our ultimate goal is to analyze and identify the spectra of organic matter compositions from meteorites and compared these spectra with terrestrial biologically-produced amino acids and residues.
Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.
Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María
2013-07-01
Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational Chemistry and Lubrication
NASA Technical Reports Server (NTRS)
Zehe, Michael J.
1998-01-01
Members of NASA Lewis Research Center's Tribology and Surface Science Branch are applying high-level computational chemistry techniques to the development of new lubrication systems for space applications and for future advanced aircraft engines. The next generation of gas turbine engines will require a liquid lubricant to function at temperatures in excess of 350 C in oxidizing environments. Conventional hydrocarbon-based lubricants are incapable of operating in these extreme environments, but a class of compounds known as the perfluoropolyether (PFAE) liquids (see the preceding illustration) shows promise for such applications. These commercially available products are already being used as lubricants in conditions where low vapor pressure and chemical stability are crucial, such as in satellite bearings and composite disk platters. At higher temperatures, however, these compounds undergo a decomposition process that is assisted (catalyzed) by metal and metal oxide bearing surfaces. This decomposition process severely limits the applicability of PFAE's at higher temperatures. A great deal of laboratory experimentation has revealed that the extent of fluid degradation depends on the chemical properties of the bearing surface materials. Lubrication engineers would like to understand the chemical breakdown mechanism to design a less vulnerable PFAE or to develop a chemical additive to block this degradation.
Computational Nanotechnology of Materials, Devices, and Machines: Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Kwak, Dolhan (Technical Monitor)
2000-01-01
The mechanics and chemistry of carbon nanotubes have relevance for their numerous electronic applications. Mechanical deformations such as bending and twisting affect the nanotube's conductive properties, and at the same time they possess high strength and elasticity. Two principal techniques were utilized including the analysis of large scale classical molecular dynamics on a shared memory architecture machine and a quantum molecular dynamics methodology. In carbon based electronics, nanotubes are used as molecular wires with topological defects which are mediated through various means. Nanotubes can be connected to form junctions.
Computational Nanotechnology of Materials, Electronics and Machines: Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2001-01-01
This report presents the goals and research of the Integrated Product Team (IPT) on Devices and Nanotechnology. NASA's needs for this technology are discussed and then related to the research focus of the team. The two areas of focus for technique development are: 1) large scale classical molecular dynamics on a shared memory architecture machine; and 2) quantum molecular dynamics methodology. The areas of focus for research are: 1) nanomechanics/materials; 2) carbon based electronics; 3) BxCyNz composite nanotubes and junctions; 4) nano mechano-electronics; and 5) nano mechano-chemistry.
Camera-enabled techniques for organic synthesis
Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L
2013-01-01
Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820
Combustion and flow modelling applied to the OMV VTE
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.; Jeng, San-Mou
1990-01-01
A predictive tool for hypergolic bipropellant spray combustion and flow evolution in the OMV VTE (orbital maneuvering vehicle variable thrust engine) is described. It encompasses a computational technique for the gas phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging liquid hypergolic stream interactions. Emphasis is placed on the phenomenological modelling of the hypergolic liquid bipropellant gasification processes. An application to the OMV VTE combustion chamber is given in order to show some of the capabilities and inadequacies of this tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-03-01
Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.
Trinuclear rhenium(III) halide clusters with carboxylate ligands
NASA Astrophysics Data System (ADS)
Dougan, Jeffrey Steven
Four mono(carboxylato)trirhenium complexes and three bis(carboxylato)trirhenium complexes have been synthesized and characterized, principally by mass spectrometry, with supporting evidence from X-ray diffraction. These compounds represent the first trinuclear rhenium carboxylate complexes. The reactions generally proceed readily under comparatively mild conditions. Mass spectrometry has again proved its usefulness as a technique in the field of metal cluster chemistry, having provided the initial identification of the products of the reactions studied. These compounds provide a further base to which future mass spectra of metal cluster compounds can be compared. Re-examination of a reaction reported by Taha and Wilkinson has also cast considerable doubt onto the validity of a conversion widely reported in the literature that transforms (Re3Cl9) x into [Re2(O2CCH3)4Cl 2]. We believe that the literature result is a consequence of the purity of the metal precursor, and suggest that the starting material in the earlier work may have contained ReCl4 or ReCl5. The importance of mass spectrometry in the characterization of the new compounds synthesized in this project has led to a thorough study of calculated isotopic distributions. The information gathered suggests that for isotopically simple molecules, the choice of algorithm for computing an isotopic distribution is unimportant. However, it is important to compute the mass spectrum of an isotopically complex molecule using an algorithm that can, if desired, show the underlying isotopic fine structure of a peak of interest. In the last chapter of this thesis, the results of a project in chemistry education research are presented. Predicting the success of students in general chemistry has long been of interest to the chemistry education community, and several factors have been identified as contributing factors. An off-hand comment by a student inspired an examination of whether continuity with the same instructor for two semesters of general chemistry contributed to success in the second semester course. The results obtained through an examination of three years of data held by the Chemistry Department indicate that continuing with the same instructor is positively correlated with a higher grade in the second semester of general chemistry, relative to students who have different instructors for the two semesters.
Writing and Computing across the USM Chemistry Curriculum
NASA Astrophysics Data System (ADS)
Gordon, Nancy R.; Newton, Thomas A.; Rhodes, Gale; Ricci, John S.; Stebbins, Richard G.; Tracy, Henry J.
2001-01-01
The faculty of the University of Southern Maine believes the ability to communicate effectively is one of the most important skills required of successful chemists. To help students achieve that goal, the faculty has developed a Writing and Computer Program consisting of writing and computer assignments of gradually increasing sophistication for all our laboratory courses. The assignments build in complexity until, at the junior level, students are writing full journal-quality laboratory reports. Computer assignments also increase in difficulty as students attack more complicated subjects. We have found the program easy to initiate and our part-time faculty concurs as well. The Writing and Computing across the Curriculum Program also serves to unite the entire chemistry curriculum. We believe the program is helping to reverse what the USM chemistry faculty and other educators have found to be a steady deterioration in the writing skills of many of today's students.
NASA Astrophysics Data System (ADS)
Supalo, Cary
2005-10-01
This paper describes techniques developed as solutions to problems encountered while teaching blind or visually impaired students in chemistry courses at high school and postsecondary levels. Establishing and maintaining a sound student instructor relationship is critical to the success and implementation of a plan of action for blind or visually impaired students enrolled in chemistry courses.
We'll Make You a Better Teacher: Learning from Guitar Techniques
NASA Astrophysics Data System (ADS)
Greenbowe, Thomas J.
2008-02-01
It is worth noting that there are more resources and more uses of technology available world-wide to help individuals become better guitar players than there are resources available to help individuals become better science teachers. Providing resources and services to help individuals become effective chemistry teachers and improve their chemistry teaching and expand their range of techniques is a worthwhile endeavor. This commentary proposes that a new magazine should be developed and designed to complement and augment the Journal of Chemical Education , the Examinations Institute, the BCCEs, and programming at regional, national, and international meetings. We need to be making use of the expertise of chemical educators from around the world to convey the best practices of teaching chemistry. This magazine would feature topics directly relating to teaching chemistry in the classroom and it would include master teachers explaining and discussing chemistry education techniques. A Web site and perhaps a DVD would have digital movies of master chemistry teachers illustrating how they implement a specific technique with students. The Web site would serve as a repository for resources. It would serve as an alternative site for professional development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McSkimming, Alex; Su, Jing; Cheisson, Thibault
Separations of f-block elements are a critical aspect of nuclear waste processing. Redox-based separations offer promise, but challenges remain in stabilizing and differentiating actinides in high oxidation states. The investigation of new ligand types that provide thermodynamic stabilization to high-valent actinides is essential for expanding their fundamental chemistry and to elaborate new separation techniques and storage methods. We report herein the preparation and characterization of Th and U complexes of the pyridyl-hydroxylamine ligand, N-tert-butyl-N-(pyridin-2-yl)hydroxylamine (pyNO–). Electrochemical studies performed on the homoleptic complexes [M(pyNO) 4] (M = Th, U) revealed significant stabilization of the U complex upon one-electron oxidation. The saltmore » [U(pyNO) 4] + was isolated by chemical oxidation of [U(pyNO) 4]; spectroscopic and computational data support assignment as a U V cation.« less
McSkimming, Alex; Su, Jing; Cheisson, Thibault; ...
2018-03-23
Separations of f-block elements are a critical aspect of nuclear waste processing. Redox-based separations offer promise, but challenges remain in stabilizing and differentiating actinides in high oxidation states. The investigation of new ligand types that provide thermodynamic stabilization to high-valent actinides is essential for expanding their fundamental chemistry and to elaborate new separation techniques and storage methods. We report herein the preparation and characterization of Th and U complexes of the pyridyl-hydroxylamine ligand, N-tert-butyl-N-(pyridin-2-yl)hydroxylamine (pyNO–). Electrochemical studies performed on the homoleptic complexes [M(pyNO) 4] (M = Th, U) revealed significant stabilization of the U complex upon one-electron oxidation. The saltmore » [U(pyNO) 4] + was isolated by chemical oxidation of [U(pyNO) 4]; spectroscopic and computational data support assignment as a U V cation.« less
NASA Technical Reports Server (NTRS)
Grossman, B.; Cinella, P.
1988-01-01
A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.
ERIC Educational Resources Information Center
1986
This document includes summaries of conference presentations dealing with a wide variety of topics, including chemistry units for the elementary classroom, science experimentation in the secondary school, computer simulations, computer interfaces, videodisc technology, correspondence teaching of general chemistry, interdisciplinary energy courses,…
Using Computer Simulations in Chemistry Problem Solving
ERIC Educational Resources Information Center
Avramiotis, Spyridon; Tsaparlis, Georgios
2013-01-01
This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…
In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...
Computational Chemistry Studies on the Carbene Hydroxymethylene
ERIC Educational Resources Information Center
Marzzacco, Charles J.; Baum, J. Clayton
2011-01-01
A density functional theory computational chemistry exercise on the structure and vibrational spectrum of the carbene hydroxymethylene is presented. The potential energy curve for the decomposition reaction of the carbene to formaldehyde and the geometry of the transition state are explored. The results are in good agreement with recent…
Dissociation of the Ethyl Radical: An Exercise in Computational Chemistry
ERIC Educational Resources Information Center
Nassabeh, Nahal; Tran, Mark; Fleming, Patrick E.
2014-01-01
A set of exercises for use in a typical physical chemistry laboratory course are described, modeling the unimolecular dissociation of the ethyl radical to form ethylene and atomic hydrogen. Students analyze the computational results both qualitatively and quantitatively. Qualitative structural changes are compared to approximate predicted values…
Planning chemical syntheses with deep neural networks and symbolic AI
NASA Astrophysics Data System (ADS)
Segler, Marwin H. S.; Preuss, Mike; Waller, Mark P.
2018-03-01
To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
NASA Technical Reports Server (NTRS)
Gloss, R. J.
1971-01-01
A finite difference turbulent boundary layer computer program which allows for mass transfer wall cooling and equilibrium chemistry effects is presented. The program is capable of calculating laminar or turbulent boundary layer solutions for an arbitrary ideal gas or an equilibrium hydrogen oxygen system. Either two dimensional or axisymmetric geometric configurations may be considered. The equations are solved, in nondimension-alized physical coordinates, using the implicit Crank-Nicolson technique. The finite difference forms of the conservation of mass, momentum, total enthalpy and elements equations are linearized and uncoupled, thereby generating easily solvable tridiagonal sets of algebraic equations. A detailed description of the computer program, as well as a program user's manual is provided. Detailed descriptions of all boundary layer subroutines are included, as well as a section defining all program symbols of principal importance. Instructions are then given for preparing card input to the program and for interpreting the printed output. Finally, two sample cases are included to illustrate the use of the program.
Civil propulsion technology for the next twenty-five years
NASA Technical Reports Server (NTRS)
Rosen, Robert; Facey, John R.
1987-01-01
The next twenty-five years will see major advances in civil propulsion technology that will result in completely new aircraft systems for domestic, international, commuter and high-speed transports. These aircraft will include advanced aerodynamic, structural, and avionic technologies resulting in major new system capabilities and economic improvements. Propulsion technologies will include high-speed turboprops in the near term, very high bypass ratio turbofans, high efficiency small engines and advanced cycles utilizing high temperature materials for high-speed propulsion. Key fundamental enabling technologies include increased temperature capability and advanced design methods. Increased temperature capability will be based on improved composite materials such as metal matrix, intermetallics, ceramics, and carbon/carbon as well as advanced heat transfer techniques. Advanced design methods will make use of advances in internal computational fluid mechanics, reacting flow computation, computational structural mechanics and computational chemistry. The combination of advanced enabling technologies, new propulsion concepts and advanced control approaches will provide major improvements in civil aircraft.
Claassen, Hans C.
1982-01-01
Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.
Forensic Chemistry--A Symposium Collection.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1985
1985-01-01
Presents a collection of articles to provide chemistry teachers with resource materials to add forensic chemistry units to their chemistry courses. Topics range from development of forensic science laboratory courses and mock-crime scenes to forensic serology and analytical techniques. (JN)
Web-based services for drug design and discovery.
Frey, Jeremy G; Bird, Colin L
2011-09-01
Reviews of the development of drug discovery through the 20(th) century recognised the importance of chemistry and increasingly bioinformatics, but had relatively little to say about the importance of computing and networked computing in particular. However, the design and discovery of new drugs is arguably the most significant single application of bioinformatics and cheminformatics to have benefitted from the increases in the range and power of the computational techniques since the emergence of the World Wide Web, commonly now referred to as simply 'the Web'. Web services have enabled researchers to access shared resources and to deploy standardized calculations in their search for new drugs. This article first considers the fundamental principles of Web services and workflows, and then explores the facilities and resources that have evolved to meet the specific needs of chem- and bio-informatics. This strategy leads to a more detailed examination of the basic components that characterise molecules and the essential predictive techniques, followed by a discussion of the emerging networked services that transcend the basic provisions, and the growing trend towards embracing modern techniques, in particular the Semantic Web. In the opinion of the authors, the issues that require community action are: increasing the amount of chemical data available for open access; validating the data as provided; and developing more efficient links between the worlds of cheminformatics and bioinformatics. The goal is to create ever better drug design services.
NASA Astrophysics Data System (ADS)
Kriswintari, D.; Yuanita, L.; Widodo, W.
2018-04-01
The aim of this study was to develop chemistry learning package using Student Teams Achievement Division (STAD) cooperative learning technique to foster students’ thinking skills and social attitudes. The chemistry learning package consisting of lesson plan, handout, students’ worksheet, thinking skill test, and observation sheet of social attitude was developed using the Dick and Carey model. Research subject of this study was chemistry learning package using STAD which was tried out on tenth grade students of SMA Trimurti Surabaya. The tryout was conducted using the one-group pre-test post-test design. Data was collected through observation, test, and questionnaire. The obtained data were analyzed using descriptive qualitative analysis. The findings of this study revealed that the developed chemistry learning package using STAD cooperative learning technique was categorized valid, practice and effective to be implemented in the classroom to foster students’ thinking skill and social attitude.
NASA Astrophysics Data System (ADS)
Holmes, Jon L.; Gettys, Nancy S.
1999-01-01
We begin 1999 with a message to all Journal subscribers about our plans for JCE Software and what you will be seeing in this column as the year progresses. Series News JCE Software will continue to publish individual programs, one to an issue as they become ready for distribution. The old Series B, C, and D designations no longer exist. Regular Issue numbers for 1999 will start with 99, and end with M for Mac OS, W for Windows, or MW for programs that will run under both the Mac OS and Windows. Windows programs will be compatible with Windows 95/98 and may or may not be compatible with Windows 3.1. Special Issues, such as CD-ROMs and videotapes will continue to be designated with SP followed by a number. Publication Plans for 1999 Periodic Table Live! Second Edition Periodic Table Live! Second Edition is a new version of one of JCE Software's most popular publications. The best features of Illustrated Periodic Table (1) for Windows and Chemistry Navigator (2) for Mac OS are combined in a new HTML-based, multimedia presentation format. Together with the video from Periodic Table Videodisc (3), digitized to take advantage of new features available in QuickTime 3 (4), the new Periodic Table Live! will be easy to use with complete features available to both Windows and Mac OS user. Chemistry Comes Alive! The Chemistry Comes Alive! (CCA!) series continues in 1999 with CD-ROMs for Mac OS and Windows. Like the first two volumes (5,6), new CDs will contain video and animations of chemical reactions, including clips from our videodiscs ChemDemos (7), ChemDemos II (8), and Titration Techniques (9). Other clips are new, available for the first time in Chemistry Comes Alive! New CCA! CDs will be made available in two varieties for individual users, one to take advantage of the high-quality video that can be displayed by new, faster computers, and another that will play well on older, slower models. In addition, a third variation for network licensing will include video optimized for delivery via the World Wide Web. If all goes according to plan, two new CCA! volumes will be announced in 1999, and CCA! 1 and CCA! 2 will be updated to take advantage of the latest digital video technology. Chem Pages Chem Pages, Laboratory Techniques, was developed by the New Traditions Curriculum Project at the University of Wisconsin-Madison. It is an HTML-based CD-ROM for Mac OS and Windows that contains lessons and tutorials to prepare introductory chemistry students to work in the laboratory. It includes text, photographs, computer graphics, animations, digital video, and voice narration to introduce students to the laboratory equipment and procedures. Regular Issues Programs that have been accepted for publication as Regular Issues in 1999 include a gas chromatography simulation for Windows 95 by Bruce Armitage, a collection of lessons on torsional rotation for organic chemistry students by Ronald Starkey, and a tutorial on pericyclic reactions, also for organic chemistry, by Albert Lee, C. T. So, and C. L. Chan. We have had many recent submissions and submissions of work in progress. In 1999 we will work with the authors and our peer-reviewers to complete and publish these submissions. Submissions include Multimedia Problems for General Chemistry by David Whisnant, lessons on point groups and crystallography by Margaret Kastner, et al., a mass spectrum simulator by Stephen W. Bigger and Robert A. Craig, a tutorial for introductory chemistry on determining the pH of very dilute acid and base solutions by Paul Mihas and George Papageorgiou, and many others. Also under development by the JCE Software staff are The General Chemistry Collection (instructor's edition) CD-ROM along with an updated student edition. An Invitation In collaboration with JCE Online we plan to make available in 1999 support files for JCE Software. These will include not only troubleshooting tips and technical support notes, but also supporting information such as lessons, specific assignments, and activities using JCE Software publications submitted by users. All JCE Software users are invited to contribute to this area. Get in touch with JCE Software and let us know how you are using our materials so that we can share your ideas with others! Although the word software is in our name, many of our publications are not traditional software. We also publish video on videotape, videodisc, and CD-ROM and electronic documents (Mathcad and Mathematica, spreadsheet files and macros, HTML documents, and PowerPoint presentations). Most chemistry instructors who use a computer in their teaching have created or considered creating one or more of these for their classes. If you have an original computer presentation, electronic document, animation, video, or any other item that is not printed text it is probably an appropriate submission for JCE Software. By publishing your work in any branch of the Journal of Chemical Education, you will share your efforts with chemistry instructors and students all over the world and get professional recognition for your achievements. Literature Cited 1. Schatz, P. F.; Moore, J. W.; Holmes, J. L. Illustrated Periodic Table; J. Chem. Educ. Software 1995, 2D2. 2. Kotz. J. C.; Young, S. Chemistry Navigator; J. Chem. Educ. Software 1995, 6C2. 3. Banks, A. Periodic Table Videodisc, 2nd ed.; J. Chem. Educ. Software 1996, SP1. 4. QuickTime 3.0, Apple Computer, Inc.: 1 Infinite Loop, Cupertino, CA 95014-2084. 5. Jacobsen, J. J.; Moore, J. W. Chemistry Comes Alive!, Volume 1; J. Chem. Educ. Software 1997, SP 18. 6. Jacobsen, J. J.; Moore, J. W. Chemistry Comes Alive!, Volume 2; Chem. Educ. Software 1998, SP 21. 7. Moore, J. W.; Jacobsen, J. J.; Hunsberger, L. R.; Gammon, S. D.; Jetzer, K. H.; Zimmerman, J. ChemDemos Videodisc; J. Chem. Educ. Software 1994, SP 8. 8. Moore, J. W.; Jacobsen, J. J.; Jetzer, K. H.; Gilbert, G.; Mattes, F.; Phillips, D.; Lisensky, G.; Zweerink, G. ChemDemos II; J. Chem. Educ. Software 1996, SP 14. 9. Jacobsen, J. J.; Jetzer, K. H.; Patani, N.; Zimmerman, J. Titration Techniques Videodisc; J. Chem. Educ. Software 1995, SP 9. JCE Software CD-ROMs In addition to more than 100 traditional computer programs and videodiscs, JCE Software has published nine CD-ROMs and four videotapes. Recently published CDs now available include:
First-Principles Design of Novel Catalytic and Chemoresponsive Materials
NASA Astrophysics Data System (ADS)
Roling, Luke T.
An emerging trend in materials design is the use of computational chemistry tools to accelerate materials discovery and implementation. In particular, the parallel nature of computational models enables high-throughput screening approaches that would be laborious and time-consuming with experiments alone, and can be useful for identifying promising candidate materials for experimental synthesis and evaluation. Additionally, atomic-scale modeling allows researchers to obtain a detailed understanding of phenomena invisible to many current experimental techniques. In this thesis, we highlight mechanistic studies and successes in catalyst design for heterogeneous electrochemical reactions, discussing both anode and cathode chemistries. In particular, we evaluate the properties of a new class of Pd-Pt core-shell and hollow nanocatalysts toward the oxygen reduction reaction. We do not limit our study to electrochemical reactivity, but also consider these catalysts in a broader context by performing in-depth studies of their stability at elevated temperatures as well as investigating the mechanisms by which they are able to form. We also present fundamental surface science studies, investigating graphene formation and H2 dissociation, which are processes of both fundamental and practical interest in many catalytic applications. Finally, we extend our materials design paradigm outside the field of catalysis to develop and apply a model for the detection of small chemical analytes by chemoresponsive liquid crystals, and offer several predictions for improving the detection of small chemicals. A close connection between computation, synthesis, and experimental evaluation is essential to the work described herein, as computations are used to gain fundamental insight into experimental observations, and experiments and synthesis are in turn used to validate predictions of material activities from computational models.
NASA Astrophysics Data System (ADS)
Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo
2013-08-01
One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.
NASA Astrophysics Data System (ADS)
Mazingo, Diann Etsuko
Feedback has been identified as a key variable in developing academic self-efficacy. The types of feedback can vary from a traditional, objectivist approach that focuses on minimizing learner errors to a more constructivist approach, focusing on facilitating understanding. The influx of computer-based courses, whether online or through a series of computer-assisted instruction (CAI) modules require that the current research of effective feedback techniques in the classroom be extended to computer environments in order to impact their instructional design. In this study, exposure to different types of feedback during a chemistry CAI module was studied in relation to science self-efficacy (SSE) and performance on an objective-driven assessment (ODA) of the chemistry concepts covered in the unit. The quantitative analysis consisted of two separate ANCOVAs on the dependent variables, using pretest as the covariate and group as the fixed factor. No significant differences were found for either variable between the three groups on adjusted posttest means for the ODA and SSE measures (.95F(2, 106) = 1.311, p = 0.274 and .95F(2, 106) = 1.080, p = 0.344, respectively). However, a mixed methods approach yielded valuable qualitative insights into why only one overall quantitative effect was observed. These findings are discussed in relation to the need to further refine the instruments and methods used in order to more fully explore the possibility that type of feedback might play a role in developing SSE, and consequently, improve academic performance in science. Future research building on this study may reveal significance that could impact instructional design practices for developing online and computer-based instruction.
Incorporating Computational Chemistry into the Chemical Engineering Curriculum
ERIC Educational Resources Information Center
Wilcox, Jennifer
2006-01-01
A graduate-level computational chemistry course was designed and developed and carried out in the Department of Chemical Engineering at Worcester Polytechnic Institute in the Fall of 2005. The thrust of the course was a reaction assignment that led students through a series of steps, beginning with energetic predictions based upon fundamental…
ERIC Educational Resources Information Center
Winberg, T. Mikael; Berg, C. Anders R.
2007-01-01
To enhance the learning outcomes achieved by students, learners undertook a computer-simulated activity based on an acid-base titration prior to a university-level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant…
ERIC Educational Resources Information Center
Toplis, Rob
2008-01-01
This paper reports case study research into the knowledge and understanding of chemistry for six secondary science student teachers. It combines innovative student-generated computer animations, using "ChemSense" software, with interviews to probe understanding of four common chemical processes used in the secondary school curriculum. Findings…
Investigating the Effectiveness of Computer Simulations for Chemistry Learning
ERIC Educational Resources Information Center
Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan
2012-01-01
Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…
The fourth age of quantum chemistry: molecules in motion.
Császár, Attila G; Fábri, Csaba; Szidarovszky, Tamás; Mátyus, Edit; Furtenbacher, Tibor; Czakó, Gábor
2012-01-21
Developments during the last two decades in nuclear motion theory made it possible to obtain variational solutions to the time-independent, nuclear-motion Schrödinger equation of polyatomic systems as "exact" as the potential energy surface (PES) is. Nuclear motion theory thus reached a level whereby this branch of quantum chemistry started to catch up with the well developed and widely applied other branch, electronic structure theory. It seems to be fair to declare that we are now in the fourth age of quantum chemistry, where the first three ages are principally defined by developments in electronic structure techniques (G. Richards, Nature, 1979, 278, 507). In the fourth age we are able to incorporate into our quantum chemical treatment the motion of nuclei in an exact fashion and, for example, go beyond equilibrium molecular properties and compute accurate, temperature-dependent, effective properties, thus closing the gap between measurements and electronic structure computations. In this Perspective three fundamental algorithms for the variational solution of the time-independent nuclear-motion Schrödinger equation employing exact kinetic energy operators are presented: one based on tailor-made Hamiltonians, one on the Eckart-Watson Hamiltonian, and one on a general internal-coordinate Hamiltonian. It is argued that the most useful and most widely applicable procedure is the third one, based on a Hamiltonian containing a kinetic energy operator written in terms of internal coordinates and an arbitrary embedding of the body-fixed frame of the molecule. This Hamiltonian makes it feasible to treat the nuclear motions of arbitrary quantum systems, irrespective of whether they exhibit a single well-defined minimum or not, and of arbitrary reduced-dimensional models. As a result, molecular spectroscopy, an important field for the application of nuclear motion theory, has almost black-box-type tools at its disposal. Variational nuclear motion computations, based on an exact kinetic energy operator and an arbitrary PES, can now be performed for about 9 active vibrational degrees of freedom relatively straightforwardly. Simulations of high-resolution spectra allow the understanding of complete rotational-vibrational spectra up to and beyond the first dissociation limits. Variational results obtained for H(2)O, H, NH(3), CH(4), and H(2)CCO are used to demonstrate the power of the variational techniques for the description of vibrational and rotational excitations. Some qualitative features of the results are also discussed.
Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.
2014-01-01
Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less
ERIC Educational Resources Information Center
Ochterski, Joseph W.
2014-01-01
This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…
Symbolic Mathematics Engines in Teaching Chemistry: A Symposium Report
ERIC Educational Resources Information Center
Ellison, Mark
2004-01-01
The use of Symbolic Mathematics Engines (SMEs) in chemical education as a part of the Division of Computers in Chemistry was discussed by a panel of educators at the Symbolic Calculation in Chemistry symposium in Philadelphia in 2004. The panelists agreed that many more topics in chemistry are amenable to SME's exploration and that symbolic…
Kharazian, B; Hadipour, N L; Ejtehadi, M R
2016-06-01
Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions. Copyright © 2016. Published by Elsevier Ltd.
Teaching Techniques in Clinical Chemistry.
ERIC Educational Resources Information Center
Wilson, Diane
This master's thesis presents several instructional methods and techniques developed for each of eleven topics or subject areas in clinical chemistry: carbohydrate metabolism, lipid metabolism, diagnostic enzymology, endocrinology, toxicology, quality control, electrolytes, acid base balance, hepatic function, nonprotein nitrogenous compounds, and…
NASA Astrophysics Data System (ADS)
Satish Jeyashekar, Nigil; Seiner, John
2006-11-01
The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.
Computational models for the analysis of three-dimensional internal and exhaust plume flowfields
NASA Technical Reports Server (NTRS)
Dash, S. M.; Delguidice, P. D.
1977-01-01
This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.
Instrumental Techniques in Archeological Research
1988-09-01
and instruments borrowed from the fields of chemistry , physics, geology, metallurgy, and ceramic engineering yield quantitative data on archeological...artifacts. Early analyses relied primarily on wet chemistry techniques in which samples of artifacts were dissolved into liquid solutions, destroying...other organic and inorganic materials. Advantages and disadvantages are dis- cussed. Each technique is presented with attention to appropriate materials
COMPUTATIONAL CHEMISTRY: AN EMERGING TECHNOLOGY FOR SOLVING PROBLEMS IN ATMOSPHERIC CHEMISTRY
Over the past three decades, atmospheric chemistry has served as an important component in developing strategies for reducing ambient concentrations of air pollutants. Laboratory studies are carried out to investigate the key chemical reactions that determine the fates and lif...
Extensible Computational Chemistry Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-08-09
ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing the power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of themore » inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less
NASA Astrophysics Data System (ADS)
Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.
2010-03-01
Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species with practical computer time.
ERIC Educational Resources Information Center
Schlenker, Richard M.; Yoshida, Sarah
This material describes an activity using vinegar and baking soda to generate carbon dioxide, and writing a report using the Appleworks word processing program for grades 3 to 8 students. Time requirement, relevant process skills, vocabulary, mathematics skills, computer skills, and materials are listed. Activity procedures including class…
ERIC Educational Resources Information Center
Bumpus, John A.; Lewis, Anne; Stotts, Corey; Cramer, Christopher J.
2007-01-01
Experiments suited for the undergraduate instructional laboratory in which the heats of formation of several aliphatic and aromatic compounds are calculated, are described. The experiments could be used to introduce students to commercially available computational chemistry and its thermodynamics, while assess and compare the energy content of…
ERIC Educational Resources Information Center
Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.
2012-01-01
In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…
Deciphering the physics and chemistry of perovskites with transmission electron microscopy.
Polking, Mark J
2016-03-28
Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.
Software platform virtualization in chemistry research and university teaching
2009-01-01
Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997
Software platform virtualization in chemistry research and university teaching.
Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver
2009-11-16
Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.
ERIC Educational Resources Information Center
Clark, Rose A.; Stock, Anne E.; Zovinka, Edward P.
2012-01-01
Training future chemists to be aware of the environmental impact of their work is of fundamental importance to global society. To convince chemists to embrace sustainability, the integration of green chemistry across the entire chemistry curriculum is a necessary step. This experiment expands the reach of green chemistry techniques into the…
Development and application of the GIM code for the Cyber 203 computer
NASA Technical Reports Server (NTRS)
Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.
1982-01-01
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.
Mobilizing EPA's Comptox Chemistry Dashboard Data on Mobile Devices (ACS Spring Meeting)
The EPA’s National Center of Computational Toxicology (NCCT) Chemistry Dashboard provides access to chemistry data for about 720,000 chemical substances. The application is used to source, for example: physicochemical property data, bioassay screening data and functional use, and...
Software Applications on the Peregrine System | High-Performance Computing
programming and optimization. Gaussian Chemistry Program for calculating molecular electronic structure and Materials Science Open-source classical molecular dynamics program designed for massively parallel systems framework Q-Chem Chemistry ab initio quantum chemistry package for predictin molecular structures
Environmental chemistry is applied to estimating the exposure of ecosystems and humans to various chemical environmental stressors. Among the stressors of concern are mercury, pesticides, and arsenic. Advanced analytical chemistry techniques are used to measure these stressors ...
An Approximate Axisymmetric Viscous Shock Layer Aeroheating Method for Three-Dimensional Bodies
NASA Technical Reports Server (NTRS)
Brykina, Irina G.; Scott, Carl D.
1998-01-01
A technique is implemented for computing hypersonic aeroheating, shear stress, and other flow properties on the windward side of a three-dimensional (3D) blunt body. The technique uses a 2D/axisymmetric flow solver modified by scale factors for a, corresponding equivalent axisymmetric body. Examples are given in which a 2D solver is used to calculate the flow at selected meridional planes on elliptic paraboloids in reentry flight. The report describes the equations and the codes used to convert the body surface parameters into input used to scale the 2D viscous shock layer equations in the axisymmetric viscous shock layer code. Very good agreement is obtained with solutions to finite rate chemistry 3D thin viscous shock layer equations for a finite rate catalytic body.
The Interaction of UV-Laser Radiation with Metal and Semiconductor Surfaces
1992-05-26
order of magnitude larger than the typical widths of non- 43 R.C. Weast, ed., Handbook of Chemistry and Physics, p. D-185 (CRC Press, 1986). 25 resonant...fundamental chemistry and practical applications of laser chemical processing techniques involved photofragmentation of relatively 28 simple metal-alkyl...pressure of the gas was monitored with a capacitance manometer. A variety of techniques were used in this work to examine the surface-phase chemistry and
ERIC Educational Resources Information Center
Levy, Sharona T.; Wilensky, Uri
2009-01-01
The focus of this study is students' learning with a Connected Chemistry unit, CC1 (denotes Connected Chemistry, chapter 1), a computer-based environment for learning the topics of gas laws and kinetic molecular theory in chemistry (Levy and Wilensky 2009). An investigation was conducted into high-school students' learning with Connected…
ERIC Educational Resources Information Center
Servos, John W.
1985-01-01
Discusses the development of chemistry in the United States by considering: (1) chemistry as an evolving body of ideas/techniques, and as a set of conceptual resources affecting and affected by the development of other sciences; and (2) chemistry related to the history of American social and economic institutions and practices. (JN)
Design of a Dynamic Undergraduate Green Chemistry Course
ERIC Educational Resources Information Center
Kennedy, Sarah A.
2016-01-01
The green chemistry course taught at Westminster College (PA) incorporates nontraditional teaching techniques and texts to educate future chemists about the importance of using green chemistry principles. The course is designed to introduce green chemistry concepts and demonstrate their inherent necessity by discussing historical missteps by the…
ERIC Educational Resources Information Center
Berry, Martyn
1999-01-01
Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…
Analysis of Gold Ores by Fire Assay
ERIC Educational Resources Information Center
Blyth, Kristy M.; Phillips, David N.; van Bronswijk, Wilhelm
2004-01-01
Students of an Applied Chemistry degree course carried out a fire-assay exercise. The analysis showed that the technique was a worthwhile quantitative analytical technique and covered interesting theory including acid-base and redox chemistry and other concepts such as inquarting and cupelling.
[Imaging and the new fabric of the human body].
Moulin, Anne-Marie; Baulieu, Jean-Louis
2010-11-01
A short historical survey recalls the main techniques of medical imaging, based on modern physico-chemistry and computer science. Imagery has provided novel visions of the inside of the body, which are not self-obvious but require a training of the gaze. Yet, these new images have permeated the contemporary mind and inspired esthetic ventures. The popularity of these images may be related to their ambiguous status, between real and virtual. The images, reminiscent of Vesalius' De humani corporis fabrica, crosslink art, science and society in a specific way: which role will they play in the "empowerment" of the tomorrow patient?
Davie, Stuart J; Di Pasquale, Nicodemo; Popelier, Paul L A
2016-10-15
Machine learning algorithms have been demonstrated to predict atomistic properties approaching the accuracy of quantum chemical calculations at significantly less computational cost. Difficulties arise, however, when attempting to apply these techniques to large systems, or systems possessing excessive conformational freedom. In this article, the machine learning method kriging is applied to predict both the intra-atomic and interatomic energies, as well as the electrostatic multipole moments, of the atoms of a water molecule at the center of a 10 water molecule (decamer) cluster. Unlike previous work, where the properties of small water clusters were predicted using a molecular local frame, and where training set inputs (features) were based on atomic index, a variety of feature definitions and coordinate frames are considered here to increase prediction accuracy. It is shown that, for a water molecule at the center of a decamer, no single method of defining features or coordinate schemes is optimal for every property. However, explicitly accounting for the structure of the first solvation shell in the definition of the features of the kriging training set, and centring the coordinate frame on the atom-of-interest will, in general, return better predictions than models that apply the standard methods of feature definition, or a molecular coordinate frame. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Grossman, B.; Garrett, J.; Cinnella, P.
1989-01-01
Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.
Chemistry on the Go: Review of Chemistry Apps on Smartphones
ERIC Educational Resources Information Center
Libman, Diana; Huang, Ling
2013-01-01
touch-controlled computers such as smartphones and iPods are seeing dramatic growth with increasing adoption rates. This review covers about 30 popular and mostly free apps that can be used to learn chemistry and to serve as reference or research tools. The target…
Richard J. French, Ph.D. | NREL
J. French, Ph.D. Photo of Richard J. French Rick French Researcher IV-Chemistry Richard.French Laboratory equipment design and construction Computer-aided design (CAD) Education Ph.D., Chemistry, Oregon State University B.S., Chemistry, Wheaton College Professional Experience Research Scientist, National
Effectiveness of Using Computer-Assisted Supplementary Instruction for Teaching the Mole Concept
NASA Astrophysics Data System (ADS)
Yalçinalp, Serpil; Geban, Ömer; Özkan, Ilker
This study examined the effect of computer-assisted instruction (CAI), used as a problem-solving supplement to classroom instruction, on students' understanding of chemical formulas and mole concept, their attitudes toward chemistry subjects, and CAI. The objective was to assess the effectiveness of CAI over recitation hours when both teaching methods were used as a supplement to the traditional chemistry instruction. We randomly selected two classes in a secondary school. Each teaching strategy was randomly assigned to one class. The experimental group received supplementary instruction delivered via CAI, while the control group received similar instruction through recitation hours. The data were analyzed using two-way analysis of variance and t-test. It was found that the students who used the CAI accompanied with lectures scored significantly higher than those who attended recitation hours, in terms of school subject achievement in chemistry and attitudes toward chemistry subjects. In addition, there was a significant improvement in the attitudes of students in the experimental group toward the use of computers in a chemistry course. There was no significant difference between the performances of females versus males in each treatment group.Received: 26 April 1994; Revised: 6 April 1995;
Open Source Molecular Modeling
Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan
2016-01-01
The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126
ERIC Educational Resources Information Center
Derting, Terry L.; Cox, James R.
2008-01-01
Over the past three decades, computer-based technologies have influenced all aspects of chemistry, including chemical education. Pen-based computing applications, such as the tablet PC, have reemerged in the past few years and are providing new ways for educators to deliver content and engage students inside and outside the classroom and…
ERIC Educational Resources Information Center
Wiediger, Susan D.
2009-01-01
The periodic table and the periodic system are central to chemistry and thus to many introductory chemistry courses. A number of existing activities use various data sets to model the development process for the periodic table. This paper describes an image arrangement computer program developed to mimic a paper-based card sorting periodic table…
ERIC Educational Resources Information Center
Simpson, Scott; Autschbach, Jochen; Zurek, Eva
2013-01-01
A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…
ERIC Educational Resources Information Center
Bozdogan, Aykut Emre; Demirbas, Murat
2014-01-01
The purpose of the study conducted is to present in-depth information about the postgraduate theses written within the context of Computer Assisted Instruction in Chemistry Education in Turkey. The theses collected in National Thesis Centre of Turkish Council of Higher Education were examined. As a result of an examination, it was found that about…
ERIC Educational Resources Information Center
Montgomery, Craig D.
2013-01-01
An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…
ERIC Educational Resources Information Center
Bader, Morris
Presented are the teacher's guide and student manual for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on the colligative properties of solutions includes objectives, prerequisites, pretest, discussion, and 20 problem sets. Included in…
Networked Instructional Chemistry: Using Technology To Teach Chemistry
NASA Astrophysics Data System (ADS)
Smith, Stanley; Stovall, Iris
1996-10-01
Networked multimedia microcomputers provide new ways to help students learn chemistry and to help instructors manage the learning environment. This technology is used to replace some traditional laboratory work, collect on-line experimental data, enhance lectures and quiz sections with multimedia presentations, provide prelaboratory training for beginning nonchemistry- major organic laboratory, provide electronic homework for organic chemistry students, give graduate students access to real NMR data for analysis, and provide access to molecular modeling tools. The integration of all of these activities into an active learning environment is made possible by a client-server network of hundreds of computers. This requires not only instructional software but also classroom and course management software, computers, networking, and room management. Combining computer-based work with traditional course material is made possible with software management tools that allow the instructor to monitor the progress of each student and make available an on-line gradebook so students can see their grades and class standing. This client-server based system extends the capabilities of the earlier mainframe-based PLATO system, which was used for instructional computing. This paper outlines the components of a technology center used to support over 5,000 students per semester.
González-Nilo, Fernando; Pérez-Acle, Tomás; Guínez-Molinos, Sergio; Geraldo, Daniela A; Sandoval, Claudia; Yévenes, Alejandro; Santos, Leonardo S; Laurie, V Felipe; Mendoza, Hegaly; Cachau, Raúl E
2011-01-01
After the progress made during the genomics era, bioinformatics was tasked with supporting the flow of information generated by nanobiotechnology efforts. This challenge requires adapting classical bioinformatic and computational chemistry tools to store, standardize, analyze, and visualize nanobiotechnological information. Thus, old and new bioinformatic and computational chemistry tools have been merged into a new sub-discipline: nanoinformatics. This review takes a second look at the development of this new and exciting area as seen from the perspective of the evolution of nanobiotechnology applied to the life sciences. The knowledge obtained at the nano-scale level implies answers to new questions and the development of new concepts in different fields. The rapid convergence of technologies around nanobiotechnologies has spun off collaborative networks and web platforms created for sharing and discussing the knowledge generated in nanobiotechnology. The implementation of new database schemes suitable for storage, processing and integrating physical, chemical, and biological properties of nanoparticles will be a key element in achieving the promises in this convergent field. In this work, we will review some applications of nanobiotechnology to life sciences in generating new requirements for diverse scientific fields, such as bioinformatics and computational chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndong, Mamadou; Lauvergnat, David; Nauts, André
2013-11-28
We present new techniques for an automatic computation of the kinetic energy operator in analytical form. These techniques are based on the use of the polyspherical approach and are extended to take into account Cartesian coordinates as well. An automatic procedure is developed where analytical expressions are obtained by symbolic calculations. This procedure is a full generalization of the one presented in Ndong et al., [J. Chem. Phys. 136, 034107 (2012)]. The correctness of the new implementation is analyzed by comparison with results obtained from the TNUM program. We give several illustrations that could be useful for users of themore » code. In particular, we discuss some cyclic compounds which are important in photochemistry. Among others, we show that choosing a well-adapted parameterization and decomposition into subsystems can allow one to avoid singularities in the kinetic energy operator. We also discuss a relation between polyspherical and Z-matrix coordinates: this comparison could be helpful for building an interface between the new code and a quantum chemistry package.« less
CCD high-speed videography system with new concepts and techniques
NASA Astrophysics Data System (ADS)
Zheng, Zengrong; Zhao, Wenyi; Wu, Zhiqiang
1997-05-01
A novel CCD high speed videography system with brand-new concepts and techniques is developed by Zhejiang University recently. The system can send a series of short flash pulses to the moving object. All of the parameters, such as flash numbers, flash durations, flash intervals, flash intensities and flash colors, can be controlled according to needs by the computer. A series of moving object images frozen by flash pulses, carried information of moving object, are recorded by a CCD video camera, and result images are sent to a computer to be frozen, recognized and processed with special hardware and software. Obtained parameters can be displayed, output as remote controlling signals or written into CD. The highest videography frequency is 30,000 images per second. The shortest image freezing time is several microseconds. The system has been applied to wide fields of energy, chemistry, medicine, biological engineering, aero- dynamics, explosion, multi-phase flow, mechanics, vibration, athletic training, weapon development and national defense engineering. It can also be used in production streamline to carry out the online, real-time monitoring and controlling.
Simulation with quantum mechanics/molecular mechanics for drug discovery.
Barbault, Florent; Maurel, François
2015-10-01
Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.
Simulation with quantum mechanics/molecular mechanics for drug discovery.
Barbault, Florent; Maurel, François
2015-08-08
Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. Areas covered: In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. Expert opinion: QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.
Successes and Techniques Associated with Teaching the Chemistry of Radioactive Wastes.
ERIC Educational Resources Information Center
Williams, Donald H.
1995-01-01
Describes a chemistry course that is built around the topic of radioactive waste and encompasses a large number of chemistry concepts including redox, equilibrium, kinetics, nuclear energy, and the periodic chart. (JRH)
77 FR 5852 - Proposal Review Panel for Chemistry; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation... and Computation for Chemistry Presentations. 11:45 a.m.-1 p.m. Closed--Executive Session, review and...
The National Center for Computational Toxicology (NCCT) has assembled and delivered an enormous quantity and diversity of data for the environmental sciences through the CompTox Chemistry Dashboard. These data include high-throughput in vitro screening data, in vivo and functiona...
Axisymmetric computational fluid dynamics analysis of a film/dump-cooled rocket nozzle plume
NASA Technical Reports Server (NTRS)
Tucker, P. K.; Warsi, S. A.
1993-01-01
Prediction of convective base heating rates for a new launch vehicle presents significant challenges to analysts concerned with base environments. The present effort seeks to augment classical base heating scaling techniques via a detailed investigation of the exhaust plume shear layer of a single H2/O2 Space Transportation Main Engine (STME). Use of fuel-rich turbine exhaust to cool the STME nozzle presented concerns regarding potential recirculation of these gases to the base region with attendant increase in the base heating rate. A pressure-based full Navier-Stokes computational fluid dynamics (CFD) code with finite rate chemistry is used to predict plumes for vehicle altitudes of 10 kft and 50 kft. Levels of combustible species within the plume shear layers are calculated in order to assess assumptions made in the base heating analysis.
Efficient Variational Quantum Simulator Incorporating Active Error Minimization
NASA Astrophysics Data System (ADS)
Li, Ying; Benjamin, Simon C.
2017-04-01
One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.
Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student
ERIC Educational Resources Information Center
Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.
2015-01-01
In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…
2007-09-01
1.1.2 Advantages and Disadvantages of the LIBS Technique ..... .. 21 1.1.3 LIBS in Liquids ................................ 23 1.2 Scientific ...1.2 Scientific Application: Hydrothermal Vent Chemistry Study of in situ hydrothermal vent chemistry could benefit greatly from the develop- ment of a...4935, 1994. [50] K. L. Von Danim . Chemistry of hydrothermal vent fluids froin 90 - 100 N, East Pacific Rise: ’Time zero,’ The inmnediate posteruptive
ERIC Educational Resources Information Center
Wainwright, Camille L.
Four classes of high school chemistry students (N=108) were randomly assigned to experimental and control groups to investigate the effectiveness of a computer assisted instruction (CAI) package during a unit on writing/naming of chemical formulas and balancing equations. Students in the experimental group received drill, review, and reinforcement…
Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses
ERIC Educational Resources Information Center
Rogers, James W.; Cox, James R.
2008-01-01
A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…
ERIC Educational Resources Information Center
Ozmen, Haluk
2008-01-01
In this study, the effect of computer-assisted instruction on conceptual understanding of chemical bonding and attitude toward chemistry was investigated. The study employed a quasi-experimental design involving 11 grade students; 25 in an experimental and 25 in a control group. The Chemical Bonding Achievement Test (CBAT) consisting of 15…
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Worsnop, Douglas R.; Nelson, David D.; Zahniser, Mark S.
1993-01-01
IR absorption using tunable diode laser spectroscopy provides a sensitive and quantitative detection method for laboratory kinetic studies of atmospheric trace gases. Improvements in multipass cell design, real time signal processing, and computer controlled data acquisition and analysis have extended the applicability of the technique. We have developed several optical systems using off-axis resonator mirror designs which maximize path length while minimizing both the sample volume and the interference fringes inherent in conventional 'White' cells. Computerized signal processing using rapid scan (300 kHz), sweep integration with 100 percent duty cycle allows substantial noise reduction while retaining the advantages of using direct absorption for absolute absorbance measurements and simultaneous detection of multiple species. Peak heights and areas are determined by curve fitting using nonlinear least square methods. We have applied these techniques to measurements of: (1) heterogeneous uptake chemistry of atmospheric trace gases (HCl, H2O2, and N2O5) on aqueous and sulfuric acid droplets; (2) vapor pressure measurements of nitric acid and water over prototypical stratospheric aerosol (nitric acid trihydrate) surfaces; and (3) discharge flow tube kinetic studies of the HO2 radical using isotopic labeling for product channel and mechanistic analysis. Results from each of these areas demonstrate the versatility of TDL absorption spectroscopy for atmospheric chemistry applications.
Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong
2015-01-01
This study presents a methodology that enables a quantitative assessment of green chemistry technologies. The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of "greenness" i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market.
Recycling of Waste Acetone by Fractional Distillation
ERIC Educational Resources Information Center
Weires, Nicholas A.; Johnston, Aubrey; Warner, Don L.; McCormick, Michael M.; Hammond, Karen; McDougal, Owen M.
2011-01-01
Distillation is a ubiquitous technique in the undergraduate organic chemistry curriculum; the technique dates back to ca. 3500 B.C.E. With the emergence of green chemistry in the 1990s, the importance of emphasizing responsible waste management practices for future scientists is paramount. Combining the practice of distillation with the message…
Teachers' Questioning Techniques in Advanced Level Chemistry Lessons: A Tanzanian Perspective
ERIC Educational Resources Information Center
Kira, Ernest; Komba, Sotco; Kafanabo, Eugenia; Tilya, Frank
2013-01-01
This study investigated the extent to which teachers' questioning techniques and the way teachers handled students' responses facilitated students' learning and promoted their thinking skills. The study focused on three secondary schools in Dar es Salaam. The data collection process involved classroom observations during chemistry lessons and…
A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques
ERIC Educational Resources Information Center
Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley
2011-01-01
This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…
Using a Collaborative Critiquing Technique to Develop Chemistry Students' Technical Writing Skills
ERIC Educational Resources Information Center
Carr, Jeremy M.
2013-01-01
The technique, termed "collaborative critiquing", was developed to teach fundamental technical writing skills to analytical chemistry students for the preparation of laboratory reports. This exercise, which can be completed prior to peer-review activities, is novel, highly interactive, and allows students to take responsibility for their…
ERIC Educational Resources Information Center
Leonard, Jack E.
1981-01-01
Describes a sequence of experiments developed at Texas A&M University for use in one-semester and two-semester (nonmajors) organic chemistry courses to teach a maximum number of separation and purification techniques such as distillations, recrystallization, liquid-liquid extraction, and chromatography. (SK)
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.
2016-09-01
Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.
Shape resonances of Be- and Mg- investigated with the method of analytic continuation
NASA Astrophysics Data System (ADS)
Čurík, Roman; Paidarová, I.; Horáček, J.
2018-05-01
The regularized method of analytic continuation is used to study the low-energy negative-ion states of beryllium (configuration 2 s2ɛ p 2P ) and magnesium (configuration 3 s2ɛ p 2P ) atoms. The method applies an additional perturbation potential and requires only routine bound-state multi-electron quantum calculations. Such computations are accessible by most of the free or commercial quantum chemistry software available for atoms and molecules. The perturbation potential is implemented as a spherical Gaussian function with a fixed width. Stability of the analytic continuation technique with respect to the width and with respect to the input range of electron affinities is studied in detail. The computed resonance parameters Er=0.282 eV, Γ =0.316 eV for the 2 p state of Be- and Er=0.188 eV, Γ =0.167 for the 3 p state of Mg- agree well with the best results obtained by much more elaborate and computationally demanding present-day methods.
Loeffler, Johannes R; Ehmki, Emanuel S R; Fuchs, Julian E; Liedl, Klaus R
2016-05-01
Urea derivatives are ubiquitously found in many chemical disciplines. N,N'-substituted ureas may show different conformational preferences depending on their substitution pattern. The high energetic barrier for isomerization of the cis and trans state poses additional challenges on computational simulation techniques aiming at a reproduction of the biological properties of urea derivatives. Herein, we investigate energetics of urea conformations and their interconversion using a broad spectrum of methodologies ranging from data mining, via quantum chemistry to molecular dynamics simulation and free energy calculations. We find that the inversion of urea conformations is inherently slow and beyond the time scale of typical simulation protocols. Therefore, extra care needs to be taken by computational chemists to work with appropriate model systems. We find that both knowledge-driven approaches as well as physics-based methods may guide molecular modelers towards accurate starting structures for expensive calculations to ensure that conformations of urea derivatives are modeled as adequately as possible.
TABULATED EQUIVALENT SDR FLAMELET (TESF) MODEFL
DOE Office of Scientific and Technical Information (OSTI.GOV)
KUNDU, PRITHWISH; AMEEN, mUHSIN MOHAMMED; UNNIKRISHNAN, UMESH
The code consists of an implementation of a novel tabulated combustion model for non-premixed flames in CFD solvers. This novel technique/model is used to implement an unsteady flamelet tabulation without using progress variables for non-premixed flames. It also has the capability to include history effects which is unique within tabulated flamelet models. The flamelet table generation code can be run in parallel to generate tables with large chemistry mechanisms in relatively short wall clock times. The combustion model/code reads these tables. This framework can be coupled with any CFD solver with RANS as well as LES turbulence models. This frameworkmore » enables CFD solvers to run large chemistry mechanisms with large number of grids at relatively lower computational costs. Currently it has been coupled with the Converge CFD code and validated against available experimental data. This model can be used to simulate non-premixed combustion in a variety of applications like reciprocating engines, gas turbines and industrial burners operating over a wide range of fuels.« less
An alternative way to evaluate chemistry-transport model variability
NASA Astrophysics Data System (ADS)
Menut, Laurent; Mailler, Sylvain; Bessagnet, Bertrand; Siour, Guillaume; Colette, Augustin; Couvidat, Florian; Meleux, Frédérik
2017-03-01
A simple and complementary model evaluation technique for regional chemistry transport is discussed. The methodology is based on the concept that we can learn about model performance by comparing the simulation results with observational data available for time periods other than the period originally targeted. First, the statistical indicators selected in this study (spatial and temporal correlations) are computed for a given time period, using colocated observation and simulation data in time and space. Second, the same indicators are used to calculate scores for several other years while conserving the spatial locations and Julian days of the year. The difference between the results provides useful insights on the model capability to reproduce the observed day-to-day and spatial variability. In order to synthesize the large amount of results, a new indicator is proposed, designed to compare several error statistics between all the years of validation and to quantify whether the period and area being studied were well captured by the model for the correct reasons.
Enabling drug discovery project decisions with integrated computational chemistry and informatics
NASA Astrophysics Data System (ADS)
Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.
2017-03-01
Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.
2014-01-01
A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431
Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B
2014-01-14
A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.
NASA Astrophysics Data System (ADS)
Hessley, Rita K.
2000-02-01
In an effort to engage students more deeply in their laboratory work and provide them with valuable learning experiences in the applications and limitations of computational chemistry as a research tool, students are instructed to carry out a computational pre-lab exercise. Before carrying out a laboratory experiment that investigates the mechanism for the formation of N-t-butylbenzamide, students construct and obtain heats of formation for reactants, products, postulated reaction intermediates, and one transition state structure for each proposed mechanism. This is designed as a companion to an open-ended laboratory experiment that hones skills learned early in most traditional organic chemistry courses. The incorporation of a preliminary computational exercise enables students to move beyond guessing what the outcome of the reaction will be. It challenges them to test what they believe they "know" about such fundamental concepts as stability of carbocations, or the significance and utility of thermodynamic data relative to kinetic data. On the basis of their computations and their own experimental data, students then verify or dispute their hypothesis, finally arriving at a defensible and logical conclusion about the course of the reaction mechanism. The manner of implementation of the exercise and typical computational data are described.
The iCSS Chemistry Dashboard is a publicly accessible dashboard provided by the National Center for Computation Toxicology at the US-EPA. It serves a number of purposes, including providing a chemistry database underpinning many of our public-facing projects (e.g. ToxCast and Exp...
NASA Astrophysics Data System (ADS)
Al-Shammari, Abdulrahman G. Alhamzani
2008-10-01
Two approaches to enhance the understanding of organic reaction mechanisms are described. First, a new method for teaching organic reaction mechanisms that can be used in a Computer-Assisted Instruction (CAI) environment is proposed and tested (Chapter 1). The method concentrates upon the important intermediate structures, which are assumed to be on the reaction coordinate, and which can be evaluated and graded by currently available computer techniques. At the same time, the "curved arrows" that show the electron flow in a reaction mechanism are neglected, since they cannot be evaluated and graded with currently available computer techniques. By allowing student practice for learning organic reaction mechanisms using the Curved Arrow Neglect (CAN) method within a "Practice Makes Perfect" CAI method, student performance in the drawing of traditional reaction mechanisms, in which students had to include the "curved arrows" on their written classroom exams, was significantly enhanced. Second, computerized prelaboratory experiments (CPLEX) for organic chemistry laboratory 1 & 2 courses have been created, used, and evaluated (Chapters 2 and 3). These computerized prelabs are unique because they combine both "dry lab" actions with detailed animations of the actual chemistry occurring at the molecular level. The "dry lab" serves to simulate the actual physical manipulations of equipment and chemicals that occur in the laboratory experiment through the use of drag-and-drop computer technology. At the same time, these physical actions are accompanied on a separate part of the computer screen by animations showing the chemistry at the molecular level that is occurring in the experiment. These CPLEX modules were made into Internet accessible modules. The students were allowed to access the CPLEX modules prior to performing the actual laboratory experiment. A detailed evaluation of students' perception of the modules was accomplished via survey methodology during the entire implementation process over the course of three semesters. Results of the survey data indicate that students thought that they better understood the chemical principles and procedures of the laboratory experiment. Interestingly, students prefer the CPLEX prelaboratory materials, compared to the traditional textbooks, by a wide margin (Chapter 2). The utility of CPLEX was further demonstrated by enabling a study of the effectiveness of animated reaction mechanisms to promote student learning. While most instructors believe that animated mechanisms aid student understanding of reactions, there has been no quantitative data to-date to support this view. In this work, a quantitative study, using an experimental/control group study, was conducted to provide data on the effectiveness of animated reaction mechanisms to promote student learning. Analysis of student answers, using an appropriate rubric, demonstrated that there was a statistically significant improvement in students' scores in the mechanistic question of a pre-laboratory quiz in the post-treatment results of the experimental group which had had access to the animated reaction mechanisms (Chapter 3).
Calculation and application of activity discriminants in lead optimization.
Luo, Xincai; Krumrine, Jennifer R; Shenvi, Ashok B; Pierson, M Edward; Bernstein, Peter R
2010-11-01
We present a technique for computing activity discriminants of in vitro (pharmacological, DMPK, and safety) assays and the application to the prediction of in vitro activities of proposed synthetic targets during the lead optimization phase of drug discovery projects. This technique emulates how medicinal chemists perform SAR analysis and activity prediction. The activity discriminants that are functions of 6 commonly used medicinal chemistry descriptors can be interpreted easily by medicinal chemists. Further, visualization with Spotfire allows medicinal chemists to analyze how the query molecule is related to compounds tested previously, and to evaluate easily the relevance of the activity discriminants to the activities of the query molecule. Validation with all compounds synthesized and tested in AstraZeneca Wilmington since 2006 demonstrates that this approach is useful for prioritizing new synthetic targets for synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.
Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis
2014-12-01
We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Using foreground/background analysis to determine leaf and canopy chemistry
NASA Technical Reports Server (NTRS)
Pinzon, J. E.; Ustin, S. L.; Hart, Q. J.; Jacquemoud, S.; Smith, M. O.
1995-01-01
Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis.
Computations of Axisymmetric Flows in Hypersonic Shock Tubes
NASA Technical Reports Server (NTRS)
Sharma, Surendra P.; Wilson, Gregory J.
1995-01-01
A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.
ERIC Educational Resources Information Center
Halpern, Arthur M.; Glendening, Eric D.
2013-01-01
A project for students in an upper-level course in quantum or computational chemistry is described in which they are introduced to the concepts and applications of a high quality, ab initio treatment of the ground-state potential energy curve (PEC) for H[subscript 2] and D[subscript 2]. Using a commercial computational chemistry application and a…
The EPA Comptox Chemistry Dashboard: A Web-Based Data ...
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data driven approaches that integrate chemistry, exposure and biological data. As an outcome of these efforts the National Center for Computational Toxicology (NCCT) has measured, assembled and delivered an enormous quantity and diversity of data for the environmental sciences including high-throughput in vitro screening data, in vivo and functional use data, exposure models and chemical databases with associated properties. A series of software applications and databases have been produced over the past decade to deliver these data but recent developments have focused on the development of a new software architecture that assembles the resources into a single platform. A new web application, the CompTox Chemistry Dashboard provides access to data associated with ~720,000 chemical substances. These data include experimental and predicted physicochemical property data, bioassay screening data associated with the ToxCast program, product and functional use information and a myriad of related data of value to environmental scientists. The dashboard provides chemical-based searching based on chemical names, synonyms and CAS Registry Numbers. Flexible search capabilities allow for chemical identificati
TEACHER-PRODUCED INSTRUCTIONAL FILMS IN CHEMISTRY, 8MM AND SUPER 8.
ERIC Educational Resources Information Center
O'CONNOR, ROD; SLABAUGH, WENDELL
TECHNIQUES FOR PRODUCING 8MM INSTRUCTIONAL FILMS IN CHEMISTRY ARE PRESENTED. IN PART I A PHILOSOPHY OF TEACHER-PRODUCED FILMS IS DEVELOPED, EMPHASIZING THE VALUE OF THE LOCAL SETTING, AND CUSTOM-MADE CONTENTS. APPLICATIONS SUGGESTED ARE (1) TECHNIQUE INSTRUCTION, (2) FILMED EXPERIMENTS, (3) INSTRUMENT FAMILIARIZATION, (4) LECTURE AIDS, AND (5)…
ERIC Educational Resources Information Center
Duxbury, Mark
2004-01-01
An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…
NASA Astrophysics Data System (ADS)
Anam, Kishorekumar T.; Curtis, Michael P.; Irfan, Muhammad J.; Johnson, Michael P.; Royer, Andrew P.; Shahmohammadi, Kianor; Vinod, Thottumkara K.
2002-05-01
This four-week project-based laboratory exercise, developed for advanced organic chemistry students, involves a one-pot synthesis of m-terphenyls. Chemistry of aryl diazonium salts and Grignard reagents and reactivity of aryne intermediates toward nucleophilic reagents form the reaction chemistry basis for the project. The project exposes students to a number of important laboratory techniques (thin-layer chromatography, gas chromatography-mass spectrometry, and column chromatography) for monitoring reaction progress and product isolation. A variety of spectroscopic techniques, including IR, 1H NMR, 13C NMR, and attached proton test are used for product characterization. Students are also introduced to a useful empirical relationship to help predict (with considerable accuracy) the 13C chemical shift values of carbon atoms of substituted benzenes.
Deep learning for computational chemistry.
Goh, Garrett B; Hodas, Nathan O; Vishnu, Abhinav
2017-06-15
The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non-neural networks state-of-the-art models across disparate research topics, and deep neural network-based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a valuable tool for computational chemistry. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. ...
19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. (4/12/62) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...
Chemistry laboratory safety manual available
NASA Technical Reports Server (NTRS)
Elsbrock, R. G.
1968-01-01
Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-01-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
Surveys of research in the Chemistry Division, Argonne National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazis, B.M.
1992-11-01
Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.
Barone, Vincenzo; Biczysko, Malgorzata; Puzzarini, Cristina
2015-05-19
For many years, scientists suspected that the interstellar medium was too hostile for organic species and that only a few simple molecules could be formed under such extreme conditions. However, the detection of approximately 180 molecules in interstellar or circumstellar environments in recent decades has changed this view dramatically. A rich chemistry has emerged, and relatively complex molecules such as C60 and C70 are formed. Recently, researchers have also detected complex organic and potentially prebiotic molecules, such as amino acids, in meteorites and in other space environments. Those discoveries have further stimulated the debate on the origin of the building blocks of life in the universe. Many efforts continue to focus on the physical, chemical, and astrophysical processes by which prebiotic molecules can be formed in the interstellar dust and dispersed to Earth or to other planets.Spectroscopic techniques, which are widely used to infer information about molecular structure and dynamics, play a crucial role in the investigation of planetary atmosphere and the interstellar medium. Increasingly these astrochemical investigations are assisted by quantum-mechanical calculations of structures as well as spectroscopic and thermodynamic properties, such as transition frequencies and reaction enthalpies, to guide and support observations, line assignments, and data analysis in these new and chemically complicated situations. However, it has proved challenging to extend accurate quantum-chemical computational approaches to larger systems because of the unfavorable scaling with the number of degrees of freedom (both electronic and nuclear).In this Account, we show that it is now possible to compute physicochemical properties of building blocks of biomolecules with an accuracy rivaling that of the most sophisticated experimental techniques, and we summarize specific contributions from our groups. As a test case, we present the underlying computational machinery through the investigation of oxirane. We describe how we determine the molecular structure and then how we characterize the rotational and IR spectra, the most important issues for a correct theoretical description and a proper comparison with experiment. Next, we analyze the spectroscopic properties of representative building blocks of DNA bases (uracil and pyrimidine) and of proteins (glycine and glycine dipeptide analogue).Solvation, surface chemistry (dust fraction, adsorption, desorption), and inter- and intramolecular interactions, such as self-organization and self-interaction, are important molecular processes for understanding astrochemistry. Using the specific cases of uracil dimers and glycine adsorbed on silicon grains, we also illustrate approaches in which we treat different regions, interactions, or effects at different levels of sophistication.
Report on the NEACT Conference: "The Chemistry Lab and Its Future."
ERIC Educational Resources Information Center
Pickering, Miles
1988-01-01
Reports on the session at the New England Association of Chemistry Teachers meeting on chemistry laboratories in March 1987. Speakers included Leonard K. Nash and Audrey Champagne on values and goals; Howard Ende on regulation; Stanley Smith and Jerry Bell on the uses of computers; and Miles Pickering on the human dimension. (CW)
ERIC Educational Resources Information Center
Gilliom, Richard D.
1989-01-01
Concentrates on the semiempirical methods MINDO/3, MNDO, and AMI available in the program AMPAC from the Quantum Chemistry Program Exchange at Indiana University. Uses charged ions in the teaching of computational chemistry. Finds that semiempirical methods are accurate enough for the general use of the bench chemist. (MVL)
ConfChem Conference on Select 2016 BCCE Presentations: Twentieth Year of the OLCC
ERIC Educational Resources Information Center
Belford, Robert E.
2017-01-01
The ACS CHED Committee on Computers in Chemical Education (CCCE) ran the first intercollegiate OnLine Chemistry Course (OLCC) on Environmental and Industrial Chemistry in 1996, and is offering the seventh OLCC on Cheminformatics and Public Compound Databases: An Introduction to Big Data in Chemistry in 2017. This Communication summarizes the past,…
Guo, Jianxin; Kumar, Sandeep; Prashad, Amarnauth; Starkey, Jason; Singh, Satish K
2014-07-01
To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.
Opportunities for research in aerothermodynamics
NASA Technical Reports Server (NTRS)
Graham, R. W.
1983-01-01
"Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.
Electrowetting for Digital Microfluidics
NASA Astrophysics Data System (ADS)
Hunt, Tom; Adamson, Kristi; Issadore, David; Westervelt, Robert
2006-03-01
Droplet based chemistry promises to greatly impact biomedical research, providing new avenues for high throughput, low volume assays such as drug screening. Electrowetting on Dielectric (EWOD) is an excellent technique for manipulating microscopic drops of liquid. EWOD uses buried electrodes to locally change the surface energy between a droplet and a substrate. We present microfabricated devices for moving droplets with EWOD. One example of such a device consists of a series of 16 interdigitated electrodes, decreasing in size from 1mm to 20 microns. Each electrode is addressable by an independent, computer controlled, high voltage supply. This work made possible by a gift from Phillip Morris and the NSEC NSF grant PHY-0117795.
Ab initio quantum chemistry: methodology and applications.
Friesner, Richard A
2005-05-10
This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.
Conductance of single microRNAs chains related to the autism spectrum disorder
NASA Astrophysics Data System (ADS)
Oliveira, J. I. N.; Albuquerque, E. L.; Fulco, U. L.; Mauriz, P. W.; Sarmento, R. G.; Caetano, E. W. S.; Freire, V. N.
2014-09-01
The charge transport properties of single-stranded microRNAs (miRNAs) chains associated to autism disorder were investigated. The computations were performed within a tight-binding model, together with a transfer matrix technique, with ionization energies and hopping parameters obtained by quantum chemistry method. Current-voltage (I× V) curves of twelve miRNA chains related to the autism spectrum disorders were calculated and analysed. We have obtained both semiconductor and insulator behavior, and a relationship between the current intensity and the autism-related miRNA bases sequencies, suggesting that a kind of electronic biosensor can be developed to distinguish different profiles of autism disorders.
Analytical Chemistry: A Literary Approach
NASA Astrophysics Data System (ADS)
Lucy, Charles A.
2000-04-01
The benefits of incorporating real-world examples of chemistry into lectures and lessons is reflected by the recent inclusion of the Teaching with Problems and Case Studies column in this Journal. However, these examples lie outside the experience of many students, and so much of the impact of "real-world" examples is lost. This paper provides an anthology of references to analytical chemistry techniques from history, popular fiction, and film. Such references are amusing to both instructor and student. Further, the fictional descriptions can serve as a focal point for discussions of a technique's true capabilities and limitations.
Extrapolating bound state data of anions into the metastable domain
NASA Astrophysics Data System (ADS)
Feuerbacher, Sven; Sommerfeld, Thomas; Cederbaum, Lorenz S.
2004-10-01
Computing energies of electronically metastable resonance states is still a great challenge. Both scattering techniques and quantum chemistry based L2 methods are very time consuming. Here we investigate two more economical extrapolation methods. Extrapolating bound states energies into the metastable region using increased nuclear charges has been suggested almost 20 years ago. We critically evaluate this attractive technique employing our complex absorbing potential/Green's function method that allows us to follow a bound state into the continuum. Using the 2Πg resonance of N2- and the 2Πu resonance of CO2- as examples, we found that the extrapolation works suprisingly well. The second extrapolation method involves increasing of bond lengths until the sought resonance becomes stable. The keystone is to extrapolate the attachment energy and not the total energy of the system. This method has the great advantage that the whole potential energy curve is obtained with quite good accuracy by the extrapolation. Limitations of the two techniques are discussed.
ERIC Educational Resources Information Center
Yuriev, Elizabeth; Naidu, Som; Schembri, Luke S.; Short, Jennifer L.
2017-01-01
To scaffold the development of problem-solving skills in chemistry, chemistry educators are exploring a variety of instructional techniques. In this study, we have designed, implemented, and evaluated a problem-solving workflow--''Goldilocks Help''. This workflow builds on work done in the field of problem solving in chemistry and provides…
What is bioinformatics? A proposed definition and overview of the field.
Luscombe, N M; Greenbaum, D; Gerstein, M
2001-01-01
The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.
Industrial Chemistry: A Series of New Courses at the Undergraduate Level.
ERIC Educational Resources Information Center
Jasinski, Jerry P.; Miller, Robert E.
1985-01-01
Describes four courses in the undergraduate bachelor of science program in industrial chemistry at Keene State College (NH). They are (1) introduction to industrial chemistry; (2) polymers--synthesis and separation techniques; (3) inorganic industrial processes; and (4) organic industrial processes. (JN)
Cluster Models of Metal-Seeded Energetic Materials
1997-01-31
cannot be formed by this plasma chemistry because the metals are less reactive. Plasma chemistry reactions for these metals lead to addition to... plasma chemistry method, but they are produced readily from composite sample (metal film on carbon rod) vaporization. Another technique we have used with
Teaching Chemical Technique: A Review of the Literature.
ERIC Educational Resources Information Center
DeMeo, Stephen
2001-01-01
Determines through an historical review of the literature some of the most effective ways to teach manipulative skills in chemistry. Reviews chemical education journals, laboratory manuals, early American chemistry textbooks, analytical chemistry texts, and science education textbooks and journals that address instructional methods for teaching…
Grinvald, A
1992-01-01
Long standing questions related to brain mechanisms underlying perception can finally be resolved by direct visualization of the architecture and function of mammalian cortex. This advance has been accomplished with the aid of two optical imaging techniques with which one can literally see how the brain functions. The upbringing of this technology required a multi-disciplinary approach integrating brain research with organic chemistry, spectroscopy, biophysics, computer sciences, optics and image processing. Beyond the technological ramifications, recent research shed new light on cortical mechanisms underlying sensory perception. Clinical applications of this technology for precise mapping of the cortical surface of patients during neurosurgery have begun. Below is a brief summary of our own research and a description of the technical specifications of the two optical imaging techniques. Like every technique, optical imaging also suffers from severe limitations. Here we mostly emphasize some of its advantages relative to all alternative imaging techniques currently in use. The limitations are critically discussed in our recent reviews. For a series of other reviews, see Cohen (1989).
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…
Time-Filtered Navier-Stokes Approach and Emulation of Turbulence-Chemistry Interaction
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Wey, Thomas; Shih, Tsan-Hsing
2013-01-01
This paper describes the time-filtered Navier-Stokes approach capable of capturing unsteady flow structures important for turbulent mixing and an accompanying subgrid model directly accounting for the major processes in turbulence-chemistry interaction. They have been applied to the computation of two-phase turbulent combustion occurring in a single-element lean-direct-injection combustor. Some of the preliminary results from this computational effort are presented in this paper.
Over the last several years, there has been increased pressure to utilize novel technologies derived from computational chemistry, molecular biology and systems biology in toxicological risk assessment. This new area has been referred to as "Computational Toxicology". Our resear...
4th Penn State Bioinorganic Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krebs, Carsten
The research area of biological inorganic chemistry encompasses a wide variety of subfields, including molecular biology, biochemistry, biophysics, inorganic chemistry, analytical chemistry, physical chemistry, and theoretical chemistry, as well as many different methods, such as biochemical characterization of enzymes, reaction kinetics, a plethora of spectroscopic techniques, and computational methods. The above methods are combined to understand the formation, function, and regulation of the many metallo-cofactors found in Nature as well as to identify novel metallo-cofactors. Many metalloenzyme-catalyzed reactions are extremely complex, but are of fundamental importance to science and society. Examples include (i) the reduction of the chemically inert molecule,more » dinitrogen, to ammonia by the enzyme nitrogenase (this reaction is fundamental for the production of nitrogen fertilizers); (ii) the oxidation of water to dioxygen by the Mn4Ca cluster found in photosystem II; and (iii) myriad reactions in which aliphatic, inert C-H bonds are cleaved for subsequent functionalization of the carbon atoms (the latter reactions are important in the biosynthesis of many natural products). Because of the broad range of areas and techniques employed in this field, research in bioinorganic chemistry is typically carried out collaboratively between two or more research groups. It is of paramount importance that researchers working in this field have a good, basic, working knowledge of many methods and approaches employed in the field, in order to design and discuss experiments with collaborators. Therefore, the training of students working in bioinorganic chemistry is an important aspect of this field. Hugely successful “bioinorganic workshops” were offered in the 1990s at The University of Georgia. These workshops laid the foundation for many of the extant collaborative research efforts in this area today. The large and diverse group of bioinorganic chemists at The Pennsylvania State University and our unique laboratory space are well suited for the continuation of such training workshops. The co-principal investigators of this award lead these efforts. After a smaller “trial workshop” in 2010, the Penn State bioinorganic group, led by the co-PIs, offers these workshops biennially. The 2012, 2014, and 2016 workshops provided training to 123, 162, and 153 participants, respectively, by offering (i) a series of lectures given by faculty experts on the given topic, (ii) hands-on training in small groups by experts in the various methods, and (iii) sharing research results of the participants by oral and poster presentations. The centerpiece of the workshops is the hands-on training, in which approximately half of the participants from all ranks (undergraduate students to faculty) served as teachers. In this section, the traditional roles of teachers and students were sometimes reversed to the extent that undergraduate students taught faculty in the students' areas of specialty. We anticipate that these workshops will facilitate research in bioinorganic chemistry and will help establish future collaborations among “workshop alumni” to carry out cutting-edge research in bioinorganic chemistry that will address many important topics relevant to our society.« less
A Multi-Technique Forensic Experiment for a Nonscience-Major Chemistry Course
ERIC Educational Resources Information Center
Szalay, Paul S.; Zook-Gerdau, Lois Anne; Schurter, Eric J.
2011-01-01
This multi-technique experiment with a forensic theme was developed for a nonscience-major chemistry course. The students are provided with solid samples and informed that the samples are either cocaine or a combination of drugs designed to mimic the stimulant and anesthetic qualities of cocaine such as caffeine and lidocaine. The students carry…
ERIC Educational Resources Information Center
Martin, Christopher B.; Schmidt, Monica; Soniat, Michael
2011-01-01
A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…
Computer Series, 13: Bits and Pieces, 11.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1982-01-01
Describes computer programs (with ordering information) on various topics including, among others, modeling of thermodynamics and economics of solar energy, radioactive decay simulation, stoichiometry drill/tutorial (in Spanish), computer-generated safety quiz, medical chemistry computer game, medical biochemistry question bank, generation of…
Anastasia, Mario; Allevi, Pietro; Colombo, Raffaele; Giannini, Elios
2007-10-01
This paper demonstrates that the crystallization of 3beta-acetoxy-14alpha,15alpha-epoxy-5alpha-cholest-8-en-7-one from methanol affords the 3beta-acetoxy-9alpha-methoxy-15alpha-hydroxycholest-8(14)-en-7-one. The structure of this steroid, which shows an apparently anomalous UV absorption maximum, is determined by high field NMR experiments, supporting the coupling constant values assignments and the NOE contacts by a conformational study through theoretical calculations at the B3LYP/6-31G* level. The computational study also justifies the observed UV absorption of the steroid, thus demonstrating the usefulness of computer chemistry in providing support for the identification of unknown compounds.
Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor
NASA Astrophysics Data System (ADS)
Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik
2017-11-01
Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.
OCRA, a Mobile Learning Prototype for Understanding Chemistry Concepts
ERIC Educational Resources Information Center
Shariman, Tenku Putri Norishah; Talib, Othman
2017-01-01
This research studies the effects of an interactive multimedia mobile learning application on students' understanding of chemistry concepts. The Organic Chemistry Reaction Application (OCRA), a mobile learning prototype with touch screen commands, was applied in this research. Through interactive multimedia techniques, students can create and…
Duct flow nonuniformities for Space Shuttle Main Engine (SSME)
NASA Technical Reports Server (NTRS)
1987-01-01
A three-duct Space Shuttle Main Engine (SSME) Hot Gas Manifold geometry code was developed for use. The methodology of the program is described, recommendations on its implementation made, and an input guide, input deck listing, and a source code listing provided. The code listing is strewn with an abundance of comments to assist the user in following its development and logic. A working source deck will be provided. A thorough analysis was made of the proper boundary conditions and chemistry kinetics necessary for an accurate computational analysis of the flow environment in the SSME fuel side preburner chamber during the initial startup transient. Pertinent results were presented to facilitate incorporation of these findings into an appropriate CFD code. The computation must be a turbulent computation, since the flow field turbulent mixing will have a profound effect on the chemistry. Because of the additional equations demanded by the chemistry model it is recommended that for expediency a simple algebraic mixing length model be adopted. Performing this computation for all or selected time intervals of the startup time will require an abundance of computer CPU time regardless of the specific CFD code selected.
Delivering The Benefits of Chemical-Biological Integration in ...
Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intention of this research program is to quickly evaluate thousands of chemicals for potential risk but with much reduced cost relative to historical approaches. This work involves computational and data driven approaches including high-throughput screening, modeling, text-mining and the integration of chemistry, exposure and biological data. We have developed a number of databases and applications that are delivering on the vision of developing a deeper understanding of chemicals and their effects on exposure and biological processes that are supporting a large community of scientists in their research efforts. This presentation will provide an overview of our work to bring together diverse large scale data from the chemical and biological domains, our approaches to integrate and disseminate these data, and the delivery of models supporting computational toxicology. This abstract does not reflect U.S. EPA policy. Presentation at ACS TOXI session on Computational Chemistry and Toxicology in Chemical Discovery and Assessement (QSARs).
[Methods of cholesterol determination: conventional procedure or "dry chemistry"?].
Riesen, W; Keller, H
1990-06-01
The search for the cardiovascular risk factor cholesterol should essentially be done in the physicians' laboratory. The majority of such analyses is performed by 'dry' chemistry tests. This review compares this technique with conventional methods for the determination of cholesterol. The reagents and the reaction mechanisms are principally the same for both techniques, i.e. fully enzymatic methods are used. In 'dry' chemistry the reagents are fixed on a solid carrier. The reactive state is provided by the liquid of the specimen. Two principles are employed: the technique of strips which is already utilised in urinary analysis and the system of multiple film layers as it is common in color-film technique. Three already introduced systems are discussed: the Seralyzer (Ames), the Ektachem (Kodak), and the Reflotron (Boehringer, Mannheim), and one system which is still in evaluation (the Clinistat, Ames). All the systems give a good agreement provided that they are operated by well-trained operators. Problems arise with quality control, since matrix effects are particularly important. The exactitude of the results depends on the calibration. Both, the Reflotron and the Clinistat are calibrated by the manufactories himself, the employer has no influence and is entirely dependent on the reliability of the producer. Although clinical chemistry analyses are facilitated by 'dry' chemistry it is by no means devoid of risks because the errors are more difficult to recognize.
Usage and applications of Semantic Web techniques and technologies to support chemistry research
2014-01-01
Background The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. Results This paper presents three examples of how Semantic Web techniques and technologies can be used in order to support chemistry research: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. Conclusions We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild’s fourth “grand challenge”. PMID:24855494
Usage and applications of Semantic Web techniques and technologies to support chemistry research.
Borkum, Mark I; Frey, Jeremy G
2014-01-01
The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. THIS PAPER PRESENTS THREE EXAMPLES OF HOW SEMANTIC WEB TECHNIQUES AND TECHNOLOGIES CAN BE USED IN ORDER TO SUPPORT CHEMISTRY RESEARCH: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild's fourth "grand challenge".
ERIC Educational Resources Information Center
Tofan, Daniel C.
2009-01-01
This paper describes an upper-level undergraduate and graduate-level course on computers in chemical education that was developed and offered for the first time in Fall 2007. The course provides future chemistry teachers with exposure to current software tools that can improve productivity in teaching, curriculum development, and education…
Zdravkovski, Zoran
2014-01-01
The development and availability of personal computers and software as well as printing techniques in the last twenty years have made a profound change in the publication of scientific journals. Additionally, the Internet in the last decade has revolutionized the publication process to the point of changing the basic paradigm of printed journals. The Macedonian Journal of Chemistry and Chemical Engineering in its 40-year history has adopted and adapted to all these transformations. In order to keep up with the inevitable changes, as editor-in-chief I felt my responsibility was to introduce an electronic editorial managing of the journal. The choice was between commercial and open source platforms, and because of the limited funding of the journal we chose the latter. We decided on Open Journal Systems, which provided online submission and management of all content, had flexible configuration--requirements, sections, review process, etc., had options for comprehensive indexing, offered various reading tools, had email notification and commenting ability for readers, had an option for thesis abstracts and was installed locally. However, since there is limited support it requires a moderate computer knowledge/skills and effort in order to set up. Overall, it is an excellent editorial platform and a convenient solution for journals with a low budget or journals that do not want to spend their resources on commercial platforms or simply support the idea of open source software.
of NREL's Computational Science Center, where he uses electronic structure calculations and other introductory chemistry and physical chemistry. Research Interests Electronic structure and dynamics in the quantum/classical molecular dynamics simulation|Coupling of molecular electronic structure to
Chemistry, physics and time: the computer modelling of glassmaking.
Martlew, David
2003-01-01
A decade or so ago the remains of an early flat glass furnace were discovered in St Helens. Continuous glass production only became feasible after the Siemens Brothers demonstrated their continuous tank furnace at Dresden in 1870. One manufacturer of flat glass enthusiastically adopted the new technology and secretly explored many variations on this theme during the next fifteen years. Study of the surviving furnace remains using today's computer simulation techniques showed how, in 1887, that technology was adapted to the special demands of window glass making. Heterogeneous chemical reactions at high temperatures are required to convert the mixture of granular raw materials into the homogeneous glass needed for windows. Kinetics (and therefore the economics) of glassmaking is dominated by heat transfer and chemical diffusion as refractory grains are converted to highly viscous molten glass. Removal of gas bubbles in a sufficiently short period of time is vital for profitability, but the glassmaker must achieve this in a reaction vessel which is itself being dissolved by the molten glass. Design and operational studies of today's continuous tank furnaces need to take account of these factors, and good use is made of computer simulation techniques to shed light on the way furnaces behave and how improvements may be made. This paper seeks to show how those same techniques can be used to understand how the early Siemens continuous tank furnaces were designed and operated, and how the Victorian entrepreneurs succeeded in managing the thorny problems of what was, in effect, a vulnerable high temperature continuous chemical reactor.
ERIC Educational Resources Information Center
School Science Review, 1985
1985-01-01
Presents biology, chemistry, physics, and health activities, experiments, demonstrations, and computer programs. Includes mechanism of stomatal opening, using aquatic plants to help demonstrate chemical buffering, microbial activity/contamination in milk samples, computer computation of fitness scores, reservoir project, complexes of transition…
Quality assurance for health and environmental chemistry: 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautier, M.A.; Gladney, E.S.; Koski, N.L.
1991-10-01
This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1990.
ERIC Educational Resources Information Center
Toh, Chee-Seng
2007-01-01
A project is described which incorporates nonlaboratory research skills in a graduate level course on analytical chemistry. This project will help students to grasp the basic principles and concepts of modern analytical techniques and also help them develop relevant research skills in analytical chemistry.
Nuclear Overhauser Effect Spectroscopy: An Advanced Undergraduate Experiment
ERIC Educational Resources Information Center
Huggins, Michael T.; Billimoria, Freida
2007-01-01
The stereochemical features of molecules can have far reaching effects in many areas of science including medicinal chemistry, materials chemistry, and supramolecular chemistry. There have been many techniques developed over the years to determine the absolute configuration of alkenes: the R,S configuration of chiral centers and the most stable…
Combinatorial invariants and covariants as tools for conical intersections.
Ryb, Itai; Baer, Roi
2004-12-01
The combinatorial invariant and covariant are introduced as practical tools for analysis of conical intersections in molecules. The combinatorial invariant is a quantity depending on adiabatic electronic states taken at discrete nuclear configuration points. It is invariant to the phase choice (gauge) of these states. In the limit that the points trace a loop in nuclear configuration space, the value of the invariant approaches the corresponding Berry phase factor. The Berry phase indicates the presence of an odd or even number of conical intersections on surfaces bounded by these loops. Based on the combinatorial invariant, we develop a computationally simple and efficient method for locating conical intersections. The method is robust due to its use of gauge invariant nature. It does not rely on the landscape of intersecting potential energy surfaces nor does it require the computation of nonadiabatic couplings. We generalize the concept to open paths and combinatorial covariants for higher dimensions obtaining a technique for the construction of the gauge-covariant adiabatic-diabatic transformation matrix. This too does not make use of nonadiabatic couplings. The importance of using gauge-covariant expressions is underlined throughout. These techniques can be readily implemented by standard quantum chemistry codes. (c) 2004 American Institute of Physics.
ERIC Educational Resources Information Center
Yaman, Fatma; Ayas, Alipasa
2015-01-01
Although concept maps have been used as alternative assessment methods in education, there has been an ongoing debate on how to evaluate students' concept maps. This study discusses how to evaluate students' concept maps as an assessment tool before and after 15 computer-based Predict-Observe-Explain (CB-POE) tasks related to acid-base chemistry.…
NASA Technical Reports Server (NTRS)
Kumar, A.; Graves, R. A., Jr.; Weilmuenster, K. J.
1980-01-01
A vectorized code, EQUIL, was developed for calculating the equilibrium chemistry of a reacting gas mixture on the Control Data STAR-100 computer. The code provides species mole fractions, mass fractions, and thermodynamic and transport properties of the mixture for given temperature, pressure, and elemental mass fractions. The code is set up for the electrons H, He, C, O, N system of elements. In all, 24 chemical species are included.
Computational materials chemistry for carbon capture using porous materials
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Huang, Runhong; Malani, Ateeque; Babarao, Ravichandar
2017-11-01
Control over carbon dioxide (CO2) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO2 capture are discussed.
Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates.
Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo
2017-03-14
The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.
A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer
NASA Technical Reports Server (NTRS)
Drummond, J. Philip
1988-01-01
Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy.
ERIC Educational Resources Information Center
Bazley, Isabel J.; Erie, Ellen A.; Feiereisel, Garrett M.; LeWarne, Christopher J.; Peterson, Jack M.; Sandquist, Katherine L.; Oshin, Kayode D.; Zeller, Matthias
2018-01-01
An integrated laboratory experiment applying concepts and techniques from organic chemistry, inorganic chemistry, and instrumental analysis is presented for use in the undergraduate curriculum. This experiment highlights the synthesis, characterization, and use of tris(2-pyridylmethyl)amine (TPMA) to make complexes with different metal salts. It…
Development of high performance scientific components for interoperability of computing packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulabani, Teena Pratap
2008-01-01
Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achievedmore » by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.« less
Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, M. E.; Liu, Y.; Vinokur, M.; Olsen, T.
2003-01-01
An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.
Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, Mike E.; Liu, Yen; Vinokur, M.; Olsen, Tom
2004-01-01
An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.
Computational Chemistry of Adhesive Bonds
NASA Technical Reports Server (NTRS)
Phillips, Donald H.
1999-01-01
This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena; Antokhin, Pavel
2016-04-01
The work is devoted to data assimilation algorithm for atmospheric chemistry transport and transformation models. In the work a control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the constrained minimum of the target functional combining a control function norm with a norm of the misfit between measured data and its model-simulated analog. Transport and transformation processes model is acting as a constraint. The constrained minimization problem is solved with Euler-Lagrange variational principle [1] which allows reducing it to a system of direct, adjoint and control function estimate relations. This provides a physically-plausible structure of the resulting analysis without model error covariance matrices that are sought within conventional approaches to data assimilation. High dimensionality of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the data assimilation algorithms. Computational issues with complicated models can be solved by using a splitting technique. Within this approach a complex model is split to a set of relatively independent simpler models equipped with a coupling procedure. In a fine-grained approach data assimilation is carried out quasi-independently on the separate splitting stages with shared measurement data [2]. In integrated schemes data assimilation is carried out with respect to the split model as a whole. We compare the two approaches both theoretically and numerically. Data assimilation on the transport stage is carried out with a direct algorithm without iterations. Different algorithms to assimilate data on nonlinear transformation stage are compared. In the work we compare data assimilation results for both artificial and real measurement data. With these data we study the impact of transformation processes and data assimilation to the performance of the modeling system [3]. The work has been partially supported by RFBR grant 14-01-00125 and RAS Presidium II.4P. References: [1] Penenko V.V., Tsvetova E.A., Penenko A.V. Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry // IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, v 51 , p. 311 - 319 [2] A.V. Penenko and V.V. Penenko. Direct data assimilation method for convection-diffusion models based on splitting scheme. Computational technologies, 19(4):69-83, 2014. [3] A. Penenko; V. Penenko; R. Nuterman; A. Baklanov and A. Mahura Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 968076 (November 19, 2015); doi:10.1117/12.2206008;http://dx.doi.org/10.1117/12.2206008
INVESTIGATING ENVIRONMENTAL SINKS OF MACROLIDE ANTIBIOTICS WITH ANALYTICAL CHEMISTRY
Possible environmental sinks (wastewater effluents, biosolids, sediments) of macrolide antibiotics (i.e., azithromycin, roxithromycin and clarithromycin)are investigated using state-of-the-art analytical chemistry techniques.
NASA Technical Reports Server (NTRS)
Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules
2016-01-01
We present the Efficient CH4-CO-OH (ECCOH) chemistry module that allows for the simulation of the methane, carbon monoxide, and hydroxyl radical (CH4-CO- OH) system, within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4-CO-OH system, which primarily determines the global atmospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to methane, CO, and OH, and the concomitant impacts on climate. We implemented the ECCOH chemistry module in the NASA GEOS-5 atmospheric global circulation model (AGCM), performed multiple sensitivity simulations of the CH4-CO-OH system over 2 decades, and evaluated the model output with surface and satellite data sets of methane and CO. The favorable comparison of output from the ECCOH chemistry module (as configured in the GEOS- 5 AGCM) with observations demonstrates the fidelity of the module for use in scientific research.
NASA Astrophysics Data System (ADS)
Holmes, Jon L.; Gettys, Nancy S.
2000-01-01
We begin 2000 with a message about our plans for JCE Software and what you will be seeing in this column as the year progresses. Floppy Disk --> CD-ROM Most software today is distributed on CD-ROM or by downloading from the Internet. Several new computers no longer include a floppy disk drive as "standard equipment". Today's software no longer fits on one or two floppies (the installation software alone can require two disks) and the cost of reproducing and distributing several disks is prohibitive. In short, distribution of software on floppy disks is no longer practical. Therefore, JCE Software will distribute all new software publications on CD-ROM rather than on disks. Regular Issues --> Collections Distribution of all our software on CD-ROM allows us to extend our concept of software collections that we started with the General Chemistry Collection. Such collections will contain all the previously published software that is still "in print" (i.e., is compatible with current operating systems and hardware) and any new programs that fall under the topic of the collection. Proposed topics in addition to General Chemistry currently include Advanced Chemistry, Instrument and Laboratory Simulations, and Spectroscopy. Eventually, all regular issues will be replaced by these collections, which will be updated annually or semiannually with new programs and updates to existing programs. Abstracts for all new programs will continue to appear in this column when a collection or its update is ready for publication. We will continue to offer special issues of single larger programs (e.g. Periodic Table Live!, Chemistry Comes Alive! volumes) on CD-ROM and video on videotape. Connect with Your Students outside Class JCE Software has always offered network licenses to allow instructors to make our software available to students in computer labs, but that model no longer fits the way many instructors and students work with computers. Many students (or their families) own a personal computer allowing them much more flexibility than a campus computer lab. Many instructors utilize the World Wide Web, creating HTML pages for students to use. JCE Software has options available to take advantage of both of these developments. Software Adoption To provide students who own computers access to JCE Software programs, consider adopting one or more of our CD-ROMs as you would a textbook. The General Chemistry Collection has been adopted by several general chemistry courses. We can arrange to bundle CDs with laboratory manuals or to be sold separately to students through the campus bookstore. The cost per CD can be quite low (as little as $5) when large numbers are ordered, making this a cost-effective method of allowing students access to the software they need whenever and wherever they desire. Web-Ready Publications Several JCE Software programs use HTML to present the material. Viewed with the ubiquitous Internet Browser, HTML is compatible with both Mac OS and Windows (as well most other current operating systems) and provides a flexible hypermedia interface that is familiar to an increasing number of instructors and students. HTML-based publications are also ready for use on local intranets, with appropriate licensing, and can be readily incorporated into other HTML-based materials. Already published in this format are: Chemistry Comes Alive!, Volumes 1 and 2 (Special Issues 18 and 21), Flying over Atoms (Special Issue 19), and Periodic Table Live! Second Edition (Special Issue 17). Solid State Resources Second Edition (Special Issue 12) and Chemistry Comes Alive!, Volume 3 (Special Issue 23) will be available soon. Other submissions being developed in HTML format include ChemPages Laboratory and Multimedia General Chemistry Problems. Contact the JCE Software office to learn about licensing alternatives that take advantage of the World Wide Web. Periodic Table Live! 2nd ed. is one of JCE Software's "Web-ready" publications. Publication Plans for 2000 We have several exciting new issues planned for publication in the coming year. Chemistry Comes Alive! The Chemistry Comes Alive! (CCA!) series continues with additional CD-ROMs for Mac OS and Windows. Each volume in this series contains video and animations of chemical reactions that can be easily incorporated into your own computer-based presentations. Our digital video now uses state-of-the-art compression that yields higher quality video with smaller file sizes and data rates more suited for WWW delivery. Video for Periodic Table Live! 2nd edition, Chemistry Comes Alive! Volumes 3, ChemPages Laboratory, and Multimedia General Chemistry Problems use this new format. We will be releasing updates of CCA! Volumes 1 and 2 to take advantage of this new technology. We are very pleased with the results and think you will be also. The reaction of aluminum with chlorine is included in Chemistry Comes Alive! Volume 3. ChemPages Laboratory ChemPages Laboratory, developed by the New Traditions Curriculum Project at the University of Wisconsin-Madison, is an HTML-based CD-ROM for Mac OS and Windows that contains lessons and tutorials to prepare introductory chemistry students to work in the laboratory. It includes text, photographs, computer graphics, animations, digital video, and voice narration to introduce students to the laboratory equipment and procedures. ChemPages Laboratory teaches introductory chemistry students about laboratory instruments, equipment, and procedures. Versatile Video Video demonstrating the "drinking bird" is included in the Chemistry Comes Alive! video collection. Video from this collection can be incorporated into many other projects. As an example, David Whisnant has used the drinking bird in his Multimedia General Chemistry Problems, where students view the video and are asked to explain why the bird bobs up and down. JCE Software anticipates publication of Multimedia General Chemistry Problems on CD-ROM for Mac OS and Windows in 2000. It will be "Web-ready". General Chemistry Collection, 4th Edition The General Chemistry Collection will be revised early in the summer and CDs will be shipped in time for fall adoptions. The 4th edition will include JCE Software publications for general chemistry published in 1999, as well as any programs for general chemistry accepted in 2000. Regular Issues We have had many recent submissions and submissions of work in progress. In 2000 we will work with the authors and our peer-reviewers to complete and publish these submissions individually or as part of a software collection on CD-ROM. An Invitation In collaboration with JCE Online we plan to make available in 2000 more support files for JCE Software. These will include not only troubleshooting tips and technical support notes, but also supporting information submitted by users such as lessons, specific assignments, and activities using JCE Software publications. All JCE Software users are invited to contribute to this area. Get in touch with JCE Software and let us know how you are using our materials so that we can share your ideas with others! Although the word software is in our name, many of our publications are not traditional software. We also publish video on videotape, videodisc, and CD-ROM and electronic documents (Mathcad and Mathematica, spreadsheet files and macros, HTML documents, and PowerPoint presentations). Most chemistry instructors who use a computer in their teaching have created or considered creating one or more of these for their classes. If you have an original computer presentation, electronic document, animation, video, or any other item that is not printed text it is probably an appropriate submission for JCE Software. By publishing your work in any branch of the Journal of Chemical Education, you will share your efforts with chemistry instructors and students all over the world and get professional recognition for your achievements. All JCE Software publications are Y2K compliant.
Industrial medicinal chemistry insights: neuroscience hit generation at Janssen.
Tresadern, Gary; Rombouts, Frederik J R; Oehlrich, Daniel; Macdonald, Gregor; Trabanco, Andres A
2017-10-01
The role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed. Modern medicinal chemistry is responsible for integrating innovation throughout early drug discovery, including new screening paradigms, computational approaches, novel synthetic chemistry, gene-family screening, investigating routes of delivery, and so on. In this Foundation Review, we show how a successful medicinal chemistry team has a broad impact and requires multidisciplinary expertise in these areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
de Berg, Kevin C.
2008-01-01
Eight chemistry textbooks written from 1758 to 1891 have been analyzed for the way they present the chemistry of the oxides of tin. This analysis gives insight into the foundation of a number of chemical ideas such as nomenclature and composition used in modern chemistry. Four major preparation techniques for the production of tin oxides emerge…
Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina
2010-03-01
Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.
Dunn, Michael F.
2013-01-01
Conspectus NMR crystallography – the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry – offers unprecedented insight into three-dimensional, chemically-detailed structure. From its initial role in refining diffraction data of organic and inorganic solids, NMR crystallography is now being developed for application to active sites in biomolecules, where it reveals chemically-rich detail concerning the interactions between enzyme site residues and the reacting substrate that is not achievable when X-ray, NMR, or computational methodologies are applied in isolation. For example, typical X-ray crystal structures (1.5 to 2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate, but do not directly identify the protonation state of either. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them, only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but rely on chemical details that must be specified. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which models of the active site can be developed using computational chemistry; these models can be distinguished by comparison of their calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at highest resolution. In this Account, we detail our first steps in the development of NMR crystallography for application to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation. PMID:23537227
A new family Jacobian solver for global three-dimensional modeling of atmospheric chemistry
NASA Astrophysics Data System (ADS)
Zhao, Xuepeng; Turco, Richard P.; Shen, Mei
1999-01-01
We present a new technique to solve complex sets of photochemical rate equations that is applicable to global modeling of the troposphere and stratosphere. The approach is based on the concept of "families" of species, whose chemical rate equations are tightly coupled. Variations of species concentrations within a family can be determined by inverting a linearized Jacobian matrix representing the family group. Since this group consists of a relatively small number of species the corresponding Jacobian has a low order (a minimatrix) compared to the Jacobian of the entire system. However, we go further and define a super-family that is the set of all families. The super-family is also solved by linearization and matrix inversion. The resulting Super-Family Matrix Inversion (SFMI) scheme is more stable and accurate than common family approaches. We discuss the numerical structure of the SFMI scheme and apply our algorithms to a comprehensive set of photochemical reactions. To evaluate performance, the SFMI scheme is compared with an optimized Gear solver. We find that the SFMI technique can be at least an order of magnitude more efficient than existing chemical solvers while maintaining relative errors in the calculations of 15% or less over a diurnal cycle. The largest SFMI errors arise at sunrise and sunset and during the evening when species concentrations may be very low. We show that sunrise/sunset errors can be minimized through a careful treatment of photodissociation during these periods; the nighttime deviations are negligible from the point of view of acceptable computational accuracy. The stability and flexibility of the SFMI algorithm should be sufficient for most modeling applications until major improvements in other modeling factors are achieved. In addition, because of its balanced computational design, SFMI can easily be adapted to parallel computing architectures. SFMI thus should allow practical long-term integrations of global chemistry coupled to general circulation and climate models, studies of interannual and interdecadal variability in atmospheric composition, simulations of past multidecadal trends owing to anthropogenic emissions, long-term forecasting associated with projected emissions, and sensitivity analyses for a wide range of physical and chemical parameters.
Mathematical challenges from theoretical/computational chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
The committee believes that this report has relevance and potentially valuable suggestions for a wide range of readers. Target audiences include: graduate departments in the mathematical and chemical sciences; federal and private agencies that fund research in the mathematical and chemical sciences; selected industrial and government research and development laboratories; developers of software and hardware for computational chemistry; and selected individual researchers. Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical scientists and computational/theoretical chemists. In Chapter 4 the committee has assembledmore » a representative, but not exhaustive, survey of research opportunities. Most of these are descriptions of important open problems in computational/theoretical chemistry that could gain much from the efforts of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist. Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if collaborative work is to be encouraged between the mathematical and the chemical communities. Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could promote accelerated progress at this interface. Recognizing that bothersome language issues can inhibit prospects for collaborative research at the interface between distinctive disciplines, the committee has attempted throughout to maintain an accessible style, in part by using illustrative boxes, and has included at the end of the report a glossary of technical terms that may be familiar to only a subset of the target audiences listed above.« less
NASA Technical Reports Server (NTRS)
Shaffer, R. M.
1973-01-01
A detailed description is given of the methods of choose the duplication film and chemistry currently used in the NASA-ERTS Ground Data Handling System. The major ERTS photographic duplication goals are given as background information to justify the specifications for the desirable film/chemistry combination. Once these specifications were defined, a quantitative evaluation program was designed and implemented to determine if any recommended combinations could meet the ERTS laboratory specifications. The specifications include tone reproduction, granularity, MTF and cosmetic effects. A complete description of the techniques used to measure the test response variables is given. It is anticipated that similar quantitative techniques could be used on other programs to determine the optimum film/chemistry consistent with the engineering goals of the program.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1987-01-01
Describes two experiments in college chemistry which use microcomputers. One experiment deals with chemical oscillations, while the other involves colorimeter titration with laser excitation and computer-interfaced endpoint detection. (TW)
Kostal, Jakub; Voutchkova-Kostal, Adelina
2016-01-19
Using computer models to accurately predict toxicity outcomes is considered to be a major challenge. However, state-of-the-art computational chemistry techniques can now be incorporated in predictive models, supported by advances in mechanistic toxicology and the exponential growth of computing resources witnessed over the past decade. The CADRE (Computer-Aided Discovery and REdesign) platform relies on quantum-mechanical modeling of molecular interactions that represent key biochemical triggers in toxicity pathways. Here, we present an external validation exercise for CADRE-SS, a variant developed to predict the skin sensitization potential of commercial chemicals. CADRE-SS is a hybrid model that evaluates skin permeability using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines reactivity with skin proteins via quantum-mechanical modeling. The results were promising with an overall very good concordance of 93% between experimental and predicted values. Comparison to performance metrics yielded by other tools available for this endpoint suggests that CADRE-SS offers distinct advantages for first-round screenings of chemicals and could be used as an in silico alternative to animal tests where permissible by legislative programs.
Online Chemistry Modules: Interaction and Effective Faculty Facilitation
ERIC Educational Resources Information Center
Slocum, Laura E.; Towns Marcy Hamby; Zielinski, Theresa Julia
2004-01-01
Computer supported collaborative learning, cooperative learning combined with electronic communication, physical chemistry online modules, use of discussion boards, its advantages and limitations are experimented and discussed. The most important finding is the example of effective online faculty facilitation and interaction.
ERIC Educational Resources Information Center
Cheung, Derek
2009-01-01
Secondary school chemistry teachers' understanding of chemical equilibrium was investigated through interviews using the think-aloud technique. The interviews were conducted with twelve volunteer chemistry teachers in Hong Kong. Their teaching experience ranged from 3 to 18 years. They were asked to predict what would happen to the equilibrium…
Medicinal chemistry in drug discovery in big pharma: past, present and future.
Campbell, Ian B; Macdonald, Simon J F; Procopiou, Panayiotis A
2018-02-01
The changes in synthetic and medicinal chemistry and related drug discovery science as practiced in big pharma over the past few decades are described. These have been predominantly driven by wider changes in society namely the computer, internet and globalisation. Thoughts about the future of medicinal chemistry are also discussed including sharing the risks and costs of drug discovery and the future of outsourcing. The continuing impact of access to substantial computing power and big data, the use of algorithms in data analysis and drug design are also presented. The next generation of medicinal chemists will communicate in ways that reflect social media and the results of constantly being connected to each other and data. Copyright © 2017. Published by Elsevier Ltd.
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...
1994-02-01
within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3
Open source molecular modeling.
Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan
2016-09-01
The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Jones, C. E.
1972-01-01
Describes various parts of a mini car and their chemical composition. Useful information is included for science teachers to relate basic chemistry concepts and techniques with their application in automobile industry. (PS)
Computer Series, 29: Bits and Pieces, 10.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1982-01-01
Describes computer programs (available from authors) including molecular input to computer, programs for quantum chemistry, library orientation to technical literature, plotting potentiometric titration data, simulating oscilloscope curves, organic qualitative analysis with dynamic graphics, extended Huckel calculations, and calculator programs…
ERIC Educational Resources Information Center
Moore, John W., Ed.
1986-01-01
Presents six brief articles dealing with the use of computers in teaching various topics in chemistry. Describes hardware and software applications which relate to protein graphics, computer simulated metabolism, interfaces between microcomputers and measurement devices, courseware available for spectrophotometers, and the calculation of elemental…
D’Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora
2015-01-01
Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning courses using instrumentation, data-collection, data-storage, statistical-modeling analysis, visualization, and computational techniques. In this revised curriculum, students begin with a traditional set of biology, chemistry, physics, and mathematics major core-requirements, a geographic information systems (GIS) course, a choice of an instrumental analysis course or a statistical analysis systems (SAS) programming course, and then, students can add major-electives that further add depth and value to their future post-graduate specialty areas. Open-sourced georeferenced census, health and health disparity data were coupled with GIS and SAS tools, in a public health surveillance system project, based on US county zip-codes, to develop use-cases for chronic adult obesity where income, poverty status, health insurance coverage, education, and age were categorical variables. Across the 48 contiguous states, obesity rates are found to be directly proportional to high poverty and inversely proportional to median income and educational achievement. For the State of Delaware, age and educational attainment were found to be limiting obesity risk-factors in its adult population. Furthermore, the 2004–2010 obesity trends showed that for two of the less densely populated Delaware counties; Sussex and Kent, the rates of adult obesity were found to be progressing at much higher proportions when compared to the national average. PMID:26191337
Rusyn, Ivan; Greene, Nigel
2018-02-01
The field of experimental toxicology is rapidly advancing by incorporating novel techniques and methods that provide a much more granular view into the mechanisms of potential adverse effects of chemical exposures on human health. The data from various in vitro assays and computational models are useful not only for increasing confidence in hazard and risk decisions, but also are enabling better, faster and cheaper assessment of a greater number of compounds, mixtures, and complex products. This is of special value to the field of green chemistry where design of new materials or alternative uses of existing ones is driven, at least in part, by considerations of safety. This article reviews the state of the science and decision-making in scenarios when little to no data may be available to draw conclusions about which choice in green chemistry is "safer." It is clear that there is no "one size fits all" solution and multiple data streams need to be weighed in making a decision. Moreover, the overall level of familiarity of the decision-makers and scientists alike with new assessment methodologies, their validity, value and limitations is evolving. Thus, while the "impact" of the new developments in toxicology on the field of green chemistry is great already, it is premature to conclude that the data from new assessment methodologies have been widely accepted yet. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
D'Souza, Malcolm J; Kashmar, Richard J; Hurst, Kent; Fiedler, Frank; Gross, Catherine E; Deol, Jasbir K; Wilson, Alora
Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning courses using instrumentation, data-collection, data-storage, statistical-modeling analysis, visualization, and computational techniques. In this revised curriculum, students begin with a traditional set of biology, chemistry, physics, and mathematics major core-requirements, a geographic information systems (GIS) course, a choice of an instrumental analysis course or a statistical analysis systems (SAS) programming course, and then, students can add major-electives that further add depth and value to their future post-graduate specialty areas. Open-sourced georeferenced census, health and health disparity data were coupled with GIS and SAS tools, in a public health surveillance system project, based on US county zip-codes, to develop use-cases for chronic adult obesity where income, poverty status, health insurance coverage, education, and age were categorical variables. Across the 48 contiguous states, obesity rates are found to be directly proportional to high poverty and inversely proportional to median income and educational achievement. For the State of Delaware, age and educational attainment were found to be limiting obesity risk-factors in its adult population. Furthermore, the 2004-2010 obesity trends showed that for two of the less densely populated Delaware counties; Sussex and Kent, the rates of adult obesity were found to be progressing at much higher proportions when compared to the national average.
Clinical chemistry through Clinical Chemistry: a journal timeline.
Rej, Robert
2004-12-01
The establishment of the modern discipline of clinical chemistry was concurrent with the foundation of the journal Clinical Chemistry and that of the American Association for Clinical Chemistry in the late 1940s and early 1950s. To mark the 50th volume of this Journal, I chronicle and highlight scientific milestones, and those within the discipline, as documented in the pages of Clinical Chemistry. Amazing progress has been made in the field of laboratory diagnostics over these five decades, in many cases paralleling-as well as being bolstered by-the rapid pace in the development of computer technologies. Specific areas of laboratory medicine particularly well represented in Clinical Chemistry include lipids, endocrinology, protein markers, quality of laboratory measurements, molecular diagnostics, and general advances in methodology and instrumentation.
Ferrante, Michele; Blackwell, Kim T.; Migliore, Michele; Ascoli, Giorgio A.
2012-01-01
The identification and characterization of potential pharmacological targets in neurology and psychiatry is a fundamental problem at the intersection between medicinal chemistry and the neurosciences. Exciting new techniques in proteomics and genomics have fostered rapid progress, opening numerous questions as to the functional consequences of ligand binding at the systems level. Psycho- and neuro-active drugs typically work in nerve cells by affecting one or more aspects of electrophysiological activity. Thus, an integrated understanding of neuropharmacological agents requires bridging the gap between their molecular mechanisms and the biophysical determinants of neuronal function. Computational neuroscience and bioinformatics can play a major role in this functional connection. Robust quantitative models exist describing all major active membrane properties under endogenous and exogenous chemical control. These include voltage-dependent ionic channels (sodium, potassium, calcium, etc.), synaptic receptor channels (e.g. glutamatergic, GABAergic, cholinergic), and G protein coupled signaling pathways (protein kinases, phosphatases, and other enzymatic cascades). This brief review of neuromolecular medicine from the computational perspective provides compelling examples of how simulations can elucidate, explain, and predict the effect of chemical agonists, antagonists, and modulators in the nervous system. PMID:18855673
Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial
Miller, Benjamin T.; Singh, Rishi P.; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S.; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R.; Woodcock, H. Lee
2014-01-01
This article describes the development, implementation, and use of web-based “lessons” to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that “point and click” simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988
NASA Technical Reports Server (NTRS)
Levine, J. N.
1971-01-01
A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.
Web-based computational chemistry education with CHARMMing I: Lessons and tutorial.
Miller, Benjamin T; Singh, Rishi P; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R; Woodcock, H Lee
2014-07-01
This article describes the development, implementation, and use of web-based "lessons" to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click" simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance.
NASA Astrophysics Data System (ADS)
1996-02-01
Computational Chemistry for the Masses Not long ago, chemical computation was considered a specialty area requiring extensive computer knowledge, power, and time. Over the past decade, however, it has changed from the arcane pursuit of a few advanced university researchers in the area of physical chemistry to a familiar tool used by a wide range of chemists. Nevertheless, it has required its practitioners to have extensive knowledge of computer programming and a thorough understanding of theoretical chemical concepts and as a result usually was reserved for the graduate curriculum. Now a further metamorphosis is in progress, as computational chemistry moves into the undergraduate curriculum, often using off-the-shelf software--commercial packages or adaptations of them that are readily shared by their creators. As we put this issue together, we realized that many of the articles involved sophisticated computations that would not have been possible a few years ago in the courses described. Further, the hard and software used was widely available at a reasonable cost. Some of the articles focus on the teaching of computational methods and others simply incorporate it as a facet in their overall strategy; however, taken together, they reflect a strong trend to utilize a diverse set of readily available methods and products in the undergraduate curriculum. The most familiar recent use of computational chemistry is the computer design of molecules in organic, medicinal, and biochemistry. However, computational chemistry is useful for inorganic chemists as well and is now migrating to undergraduate courses. Lipkowitz, Pearl, Robertson, and Schultz (page 105) make a strong case for its inclusion and present a two-week component they have developed for their senior-level laboratory course. Comba and Zimmer (page 108) offer a review of inorganic molecular mechanics calculations, which is designed for the novice and includes the basic equations, their application to inorganic molecules, and a discussion of the how to evaluate the reliability of the results. A computational experiment has been specifically designed for the undergraduate laboratory by Bakalbassis, Stiakaki, Tsipis, and Tsipis (page 111). The students use an atom-superposition and electron-delocalization molecular orbital model to predict the structural, spectroscopic, and energetic properties of highly ionic metal-containing systems. The exercise introduces students to the value of computational experiments as an alternative to wet-lab work and teaches enough quantum theory to make them comfortable with current literature. For teachers of organic chemistry, Delaware and Fountain (page 116) analyze how models can actually hinder learning in the introductory course if presented passively and describe how to use computer visualizations of reactions in an active, cooperative learning mode. They argue that these computational exercises need to be embedded in a carefully planned learning system to be effective. In similar fashion, Sauers (page 114) finds that a computer-assisted molecular modeling experiment is an effective way of making the concept of "steric interactions" more accessible. The theoretical number of isomers and derivatives of organic compounds is another concept difficult to visualize, and the calculations that would used for enumeration are complex enough that they are not usually brought into the undergraduate curriculum. However, Novak (page 120) demonstrates that widely available PC software, such as Mathematica, can be used by undergraduates along with the Polya enumeration method to enumerate derivatives and see the connection between these numbers and the symmetry of the parent molecule. A different use of computational software in biochemistry than the usual computer-assisted design of molecules is the main focus of a Computer Series article by Letkeman (page 165), who models the complex interactions of metal ions in human blood serum.
Kalashnikov, A O; Ivanyuk, G Yu; Mikhailova, J A; Sokharev, V A
2017-07-31
We have developed an approach for automatic 3D geological mapping based on conversion of chemical composition of rocks to mineral composition by logical computation. It allows to calculate mineral composition based on bulk rock chemistry, interpolate the mineral composition in the same way as chemical composition, and, finally, build a 3D geological model. The approach was developed for the Kovdor phoscorite-carbonatite complex containing the Kovdor baddeleyite-apatite-magnetite deposit. We used 4 bulk rock chemistry analyses - Fe magn , P 2 O 5 , CO 2 and SiO 2 . We used four techniques for prediction of rock types - calculation of normative mineral compositions (norms), multiple regression, artificial neural network and developed by logical evaluation. The two latter became the best. As a result, we distinguished 14 types of phoscorites (forsterite-apatite-magnetite-carbonate rock), carbonatite and host rocks. The results show good convergence with our petrographical studies of the deposit, and recent manually built maps. The proposed approach can be used as a tool of a deposit genesis reconstruction and preliminary geometallurgical modelling.
de la Vega de León, Antonio; Bajorath, Jürgen
2016-09-01
The concept of chemical space is of fundamental relevance for medicinal chemistry and chemical informatics. Multidimensional chemical space representations are coordinate-based. Chemical space networks (CSNs) have been introduced as a coordinate-free representation. A computational approach is presented for the transformation of multidimensional chemical space into CSNs. The design of transformation CSNs (TRANS-CSNs) is based upon a similarity function that directly reflects distance relationships in original multidimensional space. TRANS-CSNs provide an immediate visualization of coordinate-based chemical space and do not require the use of dimensionality reduction techniques. At low network density, TRANS-CSNs are readily interpretable and make it possible to evaluate structure-activity relationship information originating from multidimensional chemical space.
Unraveling the benzocaine-receptor interaction at molecular level using mass-resolved spectroscopy.
Aguado, Edurne; León, Iker; Millán, Judith; Cocinero, Emilio J; Jaeqx, Sander; Rijs, Anouk M; Lesarri, Alberto; Fernández, José A
2013-10-31
The benzocaine-toluene cluster has been used as a model system to mimic the interaction between the local anesthetic benzocaine and the phenylalanine residue in Na(+) channels. The cluster was generated in a supersonic expansion of benzocaine and toluene in helium. Using a combination of mass-resolved laser-based experimental techniques and computational methods, the complex was fully characterized, finding four conformational isomers in which the molecules are bound through N-H···π and π···π weak hydrogen bonds. The structures of the detected isomers closely resemble those predicted for benzocaine in the inner pore of the ion channels, giving experimental support to previously reported molecular chemistry models.
Concepts and applications of "natural computing" techniques in de novo drug and peptide design.
Hiss, Jan A; Hartenfeller, Markus; Schneider, Gisbert
2010-05-01
Evolutionary algorithms, particle swarm optimization, and ant colony optimization have emerged as robust optimization methods for molecular modeling and peptide design. Such algorithms mimic combinatorial molecule assembly by using molecular fragments as building-blocks for compound construction, and relying on adaptation and emergence of desired pharmacological properties in a population of virtual molecules. Nature-inspired algorithms might be particularly suited for bioisosteric replacement or scaffold-hopping from complex natural products to synthetically more easily accessible compounds that are amenable to optimization by medicinal chemistry. The theory and applications of selected nature-inspired algorithms for drug design are reviewed, together with practical applications and a discussion of their advantages and limitations.
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Johanson, G. A.
1972-01-01
Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.
Tabulated Combustion Model Development For Non-Premixed Flames
NASA Astrophysics Data System (ADS)
Kundu, Prithwish
Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1D diffusion flame solver. The proposed model did not use progress variables like the traditional chemistry tabulation methods. The resulting model demonstrated an order of magnitude computational speed up over the RIF model. The results were validated across a wide range of operating conditions for diesel injections and the results were in close agreement to those of the experimental data. History of scalar dissipation rates plays a very important role in non premixed flames. However, tabulated methods have not been able to incorporate this physics in their models. A comparative approach is developed that can quantify these effects and find correlations with flow variables. A new model is proposed to include these effects in tabulated combustion models. The model is initially validated for 1D counterflow diffusion flame problems at engine conditions. The model is further implemented and validated in a 3D RANS code across a range of operating conditions for spray flames.
Hopkins) Summary of data on computational modeling and experimental validation of correlations between targetr chemistries and carry out plasma etching assessment 2014: Jane Chang (UCLA) Non-PFC plasma varying physiochemical ENs 2013: Shyam Aravamudhan (NC A&T) Non-PFC plasma chemistries for patterning
Implementation of Finite Rate Chemistry Capability in OVERFLOW
NASA Technical Reports Server (NTRS)
Olsen, M. E.; Venkateswaran, S.; Prabhu, D. K.
2004-01-01
An implementation of both finite rate and equilibrium chemistry have been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flow fields. The implementation builds on the computational efficiency and geometric generality of the solver.
Evaluation of Three Instructional Methods for Teaching General Chemistry.
ERIC Educational Resources Information Center
Jackman, Lance E.; And Others
1987-01-01
Reports on a study designed to determine the relative effectiveness of different instructional approaches on chemistry laboratory achievement. Investigated differences in achievement in spectrophotometry among college freshmen who received either traditional, learning cycle, or computer simulation instruction. Results indicated that students…
Code of Federal Regulations, 2013 CFR
2013-01-01
... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY... four food chemistry analytes (protein, moisture, fat, and salt); or a determination by FSIS that a.... For purposes of computing the comparison mean, a laboratory's “result” for a food chemistry analyte is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY... four food chemistry analytes (protein, moisture, fat, and salt); or a determination by FSIS that a.... For purposes of computing the comparison mean, a laboratory's “result” for a food chemistry analyte is...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY... four food chemistry analytes (protein, moisture, fat, and salt); or a determination by FSIS that a.... For purposes of computing the comparison mean, a laboratory's “result” for a food chemistry analyte is...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY... four food chemistry analytes (protein, moisture, fat, and salt); or a determination by FSIS that a.... For purposes of computing the comparison mean, a laboratory's “result” for a food chemistry analyte is...
UNDERSTANDING, DERIVING, AND COMPUTING BUFFER CAPACITY
Derivation and systematic calculation of buffer capacity is a topic that seems often to be neglected in chemistry courses and given minimal treatment in most texts. However, buffer capacity is very important in the chemistry of natural waters and potable water. It affects corro...
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...
Computer-Based Learning in Chemistry Classes
ERIC Educational Resources Information Center
Pietzner, Verena
2014-01-01
Currently not many people would doubt that computers play an essential role in both public and private life in many countries. However, somewhat surprisingly, evidence of computer use is difficult to find in German state schools although other countries have managed to implement computer-based teaching and learning in their schools. This paper…
Use of Computer-Based Case Studies in a Problem-Solving Curriculum.
ERIC Educational Resources Information Center
Haworth, Ian S.; And Others
1997-01-01
Describes the use of three case studies, on computer, to enhance problem solving and critical thinking among doctoral pharmacy students in a physical chemistry course. Students are expected to use specific computer programs, spreadsheets, electronic mail, molecular graphics, word processing, online literature searching, and other computer-based…
Developing Computer Model-Based Assessment of Chemical Reasoning: A Feasibility Study
ERIC Educational Resources Information Center
Liu, Xiufeng; Waight, Noemi; Gregorius, Roberto; Smith, Erica; Park, Mihwa
2012-01-01
This paper reports a feasibility study on developing computer model-based assessments of chemical reasoning at the high school level. Computer models are flash and NetLogo environments to make simultaneously available three domains in chemistry: macroscopic, submicroscopic, and symbolic. Students interact with computer models to answer assessment…
NASA Astrophysics Data System (ADS)
Thakkar, Ajit J.
2017-09-01
This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.
Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole
2015-05-12
Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.
Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.
1989-01-01
The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.
Minkara, Mona S; Weaver, Michael N; Gorske, Jim; Bowers, Clifford R; Merz, Kenneth M
2015-08-11
There exists a sparse representation of blind and low-vision students in science, technology, engineering and mathematics (STEM) fields. This is due in part to these individuals being discouraged from pursuing STEM degrees as well as a lack of appropriate adaptive resources in upper level STEM courses and research. Mona Minkara is a rising fifth year graduate student in computational chemistry at the University of Florida. She is also blind. This account presents efforts conducted by an expansive team of university and student personnel in conjunction with Mona to adapt different portions of the graduate student curriculum to meet Mona's needs. The most important consideration is prior preparation of materials to assist with coursework and cumulative exams. Herein we present an account of the first four years of Mona's graduate experience hoping this will assist in the development of protocols for future blind and low-vision graduate students in computational chemistry.
Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.
Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P
2011-04-01
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Spectroscopy, colorimetry, and biological chemistry in the nineteenth century.
Rinsler, M G
1981-01-01
The development of colorimetry and spectroscopy in the nineteenth century is described. An account is given of the application of their techniques to biological chemistry during that period. PMID:7014652
Universal programmable quantum circuit schemes to emulate an operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daskin, Anmer; Grama, Ananth; Kollias, Giorgos
Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantummore » complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.« less
Palomino, Robert M.; Hamlyn, Rebecca; Liu, Zongyuan; ...
2017-04-27
In this paper we provide a summary of the recent development of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and its application to catalytic surface chemistry. The methodology as well as significant advantages and challenges associated with this novel technique are described. Details about specific examples of using AP-XPS to probe surface chemistry under working reaction conditions for a number of reactions are explained: CO oxidation, water-gas shift (WGS), CO 2 hydrogenation, dry reforming of methane (DRM) and ethanol steam reforming (ESR). In conclusion, we discuss insights into the future development of the AP-XPS technique and its applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomino, Robert M.; Hamlyn, Rebecca; Liu, Zongyuan
In this paper we provide a summary of the recent development of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and its application to catalytic surface chemistry. The methodology as well as significant advantages and challenges associated with this novel technique are described. Details about specific examples of using AP-XPS to probe surface chemistry under working reaction conditions for a number of reactions are explained: CO oxidation, water-gas shift (WGS), CO 2 hydrogenation, dry reforming of methane (DRM) and ethanol steam reforming (ESR). In conclusion, we discuss insights into the future development of the AP-XPS technique and its applications.
NASA Astrophysics Data System (ADS)
Long, M. S.; Yantosca, R.; Nielsen, J.; Linford, J. C.; Keller, C. A.; Payer Sulprizio, M.; Jacob, D. J.
2014-12-01
The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been reengineered to serve as a platform for a range of computational atmospheric chemistry science foci and applications. Development included modularization for coupling to general circulation and Earth system models (ESMs) and the adoption of co-processor capable atmospheric chemistry solvers. This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of GEOS-Chem scientific code to permit seamless transition from the GEOS-Chem stand-alone serial CTM to deployment as a coupled ESM module. In this manner, the continual stream of updates contributed by the CTM user community is automatically available for broader applications, which remain state-of-science and directly referenceable to the latest version of the standard GEOS-Chem CTM. These developments are now available as part of the standard version of the GEOS-Chem CTM. The system has been implemented as an atmospheric chemistry module within the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for weak and strong scalability and performance with a tropospheric oxidant-aerosol simulation. Results confirm that the GEOS-Chem chemical operator scales efficiently for any number of processes. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemical operator means that the relative cost goes down with increasing number of processes, making fine-scale resolution simulations possible.
NASA Astrophysics Data System (ADS)
Graves, A. Palmer
This study examines the effect of increasing the visual complexity used in computer assisted instruction in general chemistry. Traditional recitation instruction was used as a control for the experiment. One tutorial presented a chemistry topic using 3-D animation showing molecular activity and symbolic representation of the macroscopic view of a chemical phenomenon. A second tutorial presented the same topic but simultaneously presented students with a digital video movie showing the phenomena and 3-D animation showing the molecular view of the phenomena. This experimental set-up was used in two different experiments during the first semester of college level general chemistry course. The topics covered were the molecular effect of heating water through the solid-liquid phase change and the kinetic molecular theory used in explaining pressure changes. The subjects used in the experiment were 236 college students enrolled in a freshman chemistry course at a large university. The data indicated that the simultaneous presentation of digital video, showing the solid to liquid phase change of water, with a molecular animation, showing the molecular behavior during the phase change, had a significant effect on student particulate understanding when compared to traditional recitation. Although the effect of the KMT tutorial was not statistically significant, there was a positive effect on student particulate understanding. The use of computer tutorial also had a significant effect on student attitude toward their comprehension of the lesson.
Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.
Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y
2012-12-01
Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Preface: phys. stat. sol. (b) 243/5
NASA Astrophysics Data System (ADS)
Artacho, Emilio; Beck, Thomas L.; Hernández, Eduardo
Between 20 and 24 June 2005 the Centre Européen de Calcul Atomique et Moléculaire - or CECAM, as it is more widely known - hosted a workshop entitled State-of-the-art, developments and perspectives of real-space electronic structure methods in condensed-matter and chemical physics, organized with the support of CECAM itself and the ?k network. The workshop was attended by some forty participants coming from fifteen countries, and about thirty presentations were given. The workshop provided a lively forum for the discussion of recent methodological developments in electronic structure calculations, ranging from linear-scaling methods, mesh techniques, time-dependent density functional methods, and a long etcetera, which had been our ultimate objective when undertaking its organization.The first-principles simulation of solids, liquids and complex matter in general has jumped in the last few years from the relatively confined niches in condensed matter and materials physics and in quantum chemistry, to cover most of the sciences, including nano, bio, geo, environmental sciences and engineering. This effect has been propitiated by the ability of simulation techniques to deal with an ever larger degree of complexity. Although this is partially to be attributed to the steady increase in computer power, the main factor behind this change has been the coming of age of the main theoretical framework for most of the simulations performed today, together with an extremely active development of the basic algorithms for its computer implementation. It is this latter aspect that is the topic of this special issue of physica status solidi.There is a relentless effort in the scientific community seeking to achieve not only higher accuracy, but also more efficient, cost-effective and if possible simpler computational methods in electronic structure calculations [1]. From the early 1990s onwards there has been a keen interest in the computational condensed matter and chemical physics communities in methods that had the potential to overcome the unfavourable scaling of the computational cost with the system size, implicit in the momentum-space formalism familiar to solid-state physicists and the quantum chemistry approaches more common in chemical physics and physical chemistry. This interest was sparkled by the famous paper in which Weitao Yang [2] introduced the Divide and Conquer method. Soon afterwards several practical schemes aiming to achieve linear-scaling calculations, by exploiting what Walter Kohn called most aptly the near-sightedness of quantum mechanics [3], were proposed and explored (for a review on linear-scaling methods, see [4]). This search for novel, more efficient and better scaling algorithms proved to be fruitful in more than one way. Not only was it the start of several packages which are well-known today (such as Siesta, Conquest, etc.), but it also leads to new ways of representing electronic states and orbitals, such as grids [5, 6], wavelets [7], finite elements, etc. Also, the drive to exploit near-sightedness attracted computational solid state physicists to the type of atomic-like basis functions traditionally used in the quantum chemistry community. At the same time computational chemists learnt about plane waves and density functional theory, and thus a fruitful dialogue was started between two communities that hitherto had not had much contact.Another interesting development that has begun to take place over the last decade or so is the convergence of several branches of science, notably physics, chemistry and biology, at the nanoscale. Experimentalists in all these different fields are now performing highly sophisticated measurements on systems of nanometer size, the kind of systems that us theoreticians can address with our computational methods, and this convergence of experiment and theory at this scale has also been very fruitful, particularly in the fields of electronic transport and STM image simulation. It is now quite common to find papers at the cutting edge of nanoscience and nanotechnology co-authored by experimentalists and theorists, and it can only be expected that this fruitful interplay between theory and experiment will increase in the future.It was considerations such as these that moved us to propose to CECAM and ?k the celebration of a workshop devoted to the discussion of recent developments in electronic structure techniques, a proposal that was enthusiastically received, not just by CECAM and ?k, but also by our invited speakers and participants. Interest in novel electronic structure methods is now as high as ever, and we are therefore very happy that physica status solidi has given us the opportunity to devote a special issue to the topics covered in the workshop. This special issue of physica status solidi gathers invited contributions from several attendants to the workshop, contributions that are representative of the range of topics and issues discussed then, including progress in linear scaling methods, electronic transport, simulation of STM images, time-dependent DFT methods, etc. It rests for us to thank all the contributors to this special issue for their efforts, CECAM and ?k for funding the workshop, physica status solidi for agreeing to devote this special issue to the workshop, and last but not least Emmanuelle and Emilie, the CECAM secretaries, for their invaluable practical help in putting this workshop together
[Latest development in mass spectrometry for clinical application].
Takino, Masahiko
2013-09-01
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.
The Computer Revolution and Physical Chemistry.
ERIC Educational Resources Information Center
O'Brien, James F.
1989-01-01
Describes laboratory-oriented software programs that are short, time-saving, eliminate computational errors, and not found in public domain courseware. Program availability for IBM and Apple microcomputers is included. (RT)
ERIC Educational Resources Information Center
Lewis, Scott E.
2014-01-01
Considerable effort in chemistry education research has been dedicated to developing and evaluating reform pedagogies designed to improve student success in general chemistry. Policy recommendations propose adoption of these techniques as a means to increase the number of science graduates, however there is the potential that the impact of these…
ERIC Educational Resources Information Center
Monga, Vishakha; Bussie`re, Guillaume; Crichton, Paul; Daswani, Sailesh
2016-01-01
Interdisciplinary experiments are being offered in upper-division chemistry laboratory courses in an attempt to encourage students to make a connection between techniques learned in one discipline to affirm chemical principles that form the basis of chemical reactions in another chemistry discipline. A new interdisciplinary experiment is described…
Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory
ERIC Educational Resources Information Center
Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno
2015-01-01
Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…
The role of analytical chemistry in Niger Delta petroleum exploration: a review.
Akinlua, Akinsehinwa
2012-06-12
Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.
The CompTox Chemistry Dashboard - A Community Data Resource for Environmental Chemistry
Despite an abundance of online databases providing access to chemical data, there is increasing demand for high-quality, structure-curated, open data to meet the various needs of the environmental sciences and computational toxicology communities. The U.S. Environmental Protectio...
Integrating Mathematics into the Introductory Biology Laboratory Course
ERIC Educational Resources Information Center
White, James D.; Carpenter, Jenna P.
2008-01-01
Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…
What a Chemist Needs to Know--Other than Chemistry.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1980
1980-01-01
Recommends a range of courses of study which may be important for one pursuing a career in chemistry. Discusses courses in computer science, statistics, public speaking, technical writing, mathematics, physics, economics, market research, psychology, chemical engineering, toxicology, history, foreign language, and science history. (CS)
Calcium Isotope Analysis with "Peak Cut" Method on Column Chemistry
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhang, Z.; Liu, F.; Li, X.
2017-12-01
To eliminate isobaric interferences from elemental and molecular isobars (e.g., 40K+, 48Ti+, 88Sr2+, 24Mg16O+, 27Al16O+) on Ca isotopes during mass determination, samples should be purified through ion-exchange column chemistry before analysis. However, large Ca isotopic fractionation has been observed during column chemistry (Russell and Papanastassiou, 1978; Zhu et al., 2016). Therefore, full recovery during column chemistry is greatly needed, otherwise uncertainties would be caused by poor recovery (Zhu et al., 2016). Generally, matrix effects could be enhanced by full recovery, as other elements might overlap with Ca cut during column chemistry. Matrix effects and full recovery are difficult to balance and both need to be considered for high-precision analysis of stable Ca isotopes. Here, we investigate the influence of poor recovery on δ44/40Ca using TIMS with the double spike technique. The δ44/40Ca values of IAPSO seawater, ML3B-G and BHVO-2 in different Ca subcats (e.g., 0-20, 20-40, 40-60, 60-80, 80-100%) with 20% Ca recovery on column chemistry display limited variation after correction by the 42Ca-43Ca double spike technique with the exponential law. Notably, δ44/40Ca of each Ca subcut is quite consistent with δ44/40Ca of Ca cut with full recovery within error. Our results indicate that the 42Ca-43Ca double spike technique can simultaneously correct both of the Ca isotopic fractionation that occurred during column chemistry and thermal ionization mass spectrometry (TIMS) determination properly, because both of the isotopic fractionation occurred during analysis follow the exponential law well. Therefore, we propose the "peak cut" method on Ca column chemistry for samples with complex matrix effects. Briefly, for samples with low Ca contents, we can add the double spike before column chemistry, and only collect the middle of the Ca eluate and abandon the both sides of Ca eluate that might overlap with other elements (e.g., K, Sr). This method would eliminate matrix effects and improve efficiency for the column chemistry.
ADVANCED COMPUTATIONAL METHODS IN DOSE MODELING
The overall goal of the EPA-ORD NERL research program on Computational Toxicology (CompTox) is to provide the Agency with the tools of modern chemistry, biology, and computing to improve quantitative risk assessments and reduce uncertainties in the source-to-adverse outcome conti...
Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...
The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are currently over 200 chemicals with high GWP reported by the Intergovernmental Panel on Climate Change, World Meteorological Organization, or Environmental Protection Agency, there may be hundreds of additional chemicals that may also have significant GWP. Evaluation of various approaches to estimate radiative efficiency (RE) and atmospheric lifetime will help to refine GWP estimates for compounds where no measured IR spectrum is available. This study compares values of RE calculated using computational chemistry techniques for 235 chemical compounds against the best available values. It is important to assess the reliability of the underlying computational methods for computing RE to understand the sources of deviations from the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models. The values derived using these models are found to be in reasonable agreement with reported RE values (though significant improvement is obtained through scaling). The effect of varying the computational method and basis set used to calculate the frequency data is also discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed values of RE in this study. Deviations of
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, Kuo-Huey
1997-01-01
The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.
Computing protein infrared spectroscopy with quantum chemistry.
Besley, Nicholas A
2007-12-15
Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.
Routine operation of an Elliott 903 computer in a clinical chemistry laboratory
Whitby, L. G.; Simpson, D.
1973-01-01
Experience gained in the last four years concerning the capabilities and limitations of an 8K Elliott 903 (18-bit word) computer with magnetic tape backing store in the routine operation of a clinical chemistry laboratory is described. Designed as a total system, routine operation has latterly had to be confined to data acquisition and process control functions, due primarily to limitations imposed by the choice of hardware early in the project. In this final report of a partially successful experiment the opportunity is taken to review mistakes made, especially at the start of the project, to warn potential computer users of pitfalls to be avoided. PMID:4580240
Turbulent reacting flow computations including turbulence-chemistry interactions
NASA Technical Reports Server (NTRS)
Narayan, J. R.; Girimaji, S. S.
1992-01-01
A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.
ERIC Educational Resources Information Center
Mihindo, W. Jane; Wachanga, S.W.; Anditi, Z. O.
2017-01-01
Science education should help develop student's interest in science as today's society depends largely on output of science and technology. Chemistry is one of the branches of science. Chemistry education helps to expand the pupil's knowledge of the universe and of his/her position in it. It helps in the appreciation and enjoyment of nature and…
Susaki, Etsuo A; Ueda, Hiroki R
2016-01-21
Organism-level systems biology aims to identify, analyze, control and design cellular circuits in organisms. Many experimental and computational approaches have been developed over the years to allow us to conduct these studies. Some of the most powerful methods are based on using optical imaging in combination with fluorescent labeling, and for those one of the long-standing stumbling blocks has been tissue opacity. Recently, the solutions to this problem have started to emerge based on whole-body and whole-organ clearing techniques that employ innovative tissue-clearing chemistry. Here, we review these advancements and discuss how combining new clearing techniques with high-performing fluorescent proteins or small molecule tags, rapid volume imaging and efficient image informatics is resulting in comprehensive and quantitative organ-wide, single-cell resolution experimental data. These technologies are starting to yield information on connectivity and dynamics in cellular circuits at unprecedented resolution, and bring us closer to system-level understanding of physiology and diseases of complex mammalian systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.; Streett, C. L.; Hussaini, M. Y.
1987-01-01
Standard techniques used to model chemically-reacting flows require an artificial viscosity for stability in the presence of strong shocks. The resulting shock is smeared over at least three computational cells, so that the thickness of the shock is dictated by the structure of the overall mesh and not the shock physics. A gas passing through a strong shock is thrown into a nonequilibrium state and subsequently relaxes down over some finite distance to an equilibrium end state. The artificial smearing of the shock envelops this relaxation zone which causes the chemical kinetics of the flow to be altered. A method is presented which can investigate these issues by following the chemical kinetics and flow kinetics of a gas passing through a fully resolved shock wave at hypersonic Mach numbers. A nonequilibrium chemistry model for air is incorporated into a spectral multidomain Navier-Stokes solution method. Since no artificial viscosity is needed for stability of the multidomain technique, the precise effect of this artifice on the chemical kinetics and relevant flow features can be determined.
ERIC Educational Resources Information Center
Newland, Robert J.; And Others
1988-01-01
Reviews four organic chemistry computer programs and three books. Software includes: (1) NMR Simulator 7--for IBM or Macintosh, (2) Nucleic Acid Structure and Synthesis--for IBM, (3) Molecular Design Editor--for Apple II, and (4) Synthetic Adventure--for Apple II and IBM. Book topics include physical chemistry, polymer pioneers, and the basics of…
The Application of Computational Chemistry to Problems in Mass Spectrometry
Quantum chemistry is capable of calculating a wide range of electronic and thermodynamic properties of interest to a chemist or physicist. Calculations can be used both to predict the results of future experiments and to aid in the interpretation of existing results. This paper w...
Theoretical Chemistry Comes Alive: Full Partner with Experiment.
ERIC Educational Resources Information Center
Goddard, William A., III
1985-01-01
The expected thrust for theoretical chemistry in the next decade will be to combine knowledge of fundamental chemical steps/interactions with advances in chemical dynamics, irreversible statistical mechanics, and computer technology to produce simulations of chemical systems with reaction site competition. A sample simulation (using the enzyme…
GenIce: Hydrogen-Disordered Ice Generator.
Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki
2018-01-05
GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Sievertsen, Niels; Carreira, Erick M
2018-02-01
Mobile devices such as smartphones are carried in the pockets of university students around the globe and are increasingly cheap to come by. These portable devices have evolved into powerful and interconnected handheld computers, which, among other applications, can be used as advanced learning tools and providers of targeted, curated content. Herein, we describe Apoc Social (Advanced Problems in Organic Chemistry Social), a mobile application that assists both learning and teaching college-level organic chemistry both in the classroom and on the go. With more than 750 chemistry exercises available, Apoc Social facilitates collaborative learning through discussion boards and fosters enthusiasm for complex organic chemistry.
Computer Series, 83. Bits and Pieces, 34.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1987-01-01
Contains seven articles about computer applications to chemistry instruction. Includes descriptions of a three-dimensional animation of a potential energy surface, numerical solutions of kinetic equations, applications for spectroscopy courses, a computer-controlled experiment on the tin/lead solid/liquid phase diagram, an inexpensive thermistor…
ERIC Educational Resources Information Center
Batt, Russell H., Ed.
1989-01-01
Discussed are some uses of computers in chemistry classrooms. Described are: (1) interactive chromatographic analysis software; (2) computer interface for a digital frequency-period-counter-ratio meter and analog interface based on a voltage-to-frequency converter; and (3) use of spectrometer/microcomputer arrangement for teaching atomic theory.…
Computational Nanotechnology Molecular Electronics, Materials and Machines
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.
Effects of the Use of Two Visual Methods in Teaching College Chemistry to Non-Science Majors.
ERIC Educational Resources Information Center
Koechel, Loretta
This was a quantified study on the learning of certain theoretical topics in general chemistry as influenced by two methods of visual technique (single concept films, overhead projections). Four classes of chemistry students (non-science majors) registered in sections on a random basis, participated. Objective, multiple choice tests on each of the…
ERIC Educational Resources Information Center
Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.
2017-01-01
[Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…
Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel
ERIC Educational Resources Information Center
Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.
2015-01-01
A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…
Chemistry Is Dead. Long Live Chemistry!
Lavis, Luke D
2017-10-03
Chemistry, once king of fluorescence microscopy, was usurped by the field of fluorescent proteins. The increased demands of modern microscopy techniques on the "photon budget" require better and brighter fluorophores, causing a renewed interest in synthetic dyes. Here, we review the recent advances in biochemistry, protein engineering, and organic synthesis that have allowed a triumphant return of chemical fluorophores to modern biological imaging.
Survey of application of radiation to preparative chemistry
NASA Technical Reports Server (NTRS)
Philipp, W. H.
1973-01-01
The use of radiation for preparative chemistry in liquid solutions is investigated. General principles are presented and preparations involving reduction, oxidation, polymerization, and decomposition are given. The use of various solvents, water, other inorganic liquids and organic liquids for this purpose is discussed. Finally, a commentary is made on some specific applications where radiation chemistry as a preparative technique may be useful.
ERIC Educational Resources Information Center
Blechle, Joshua M.
2016-01-01
Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…
ERIC Educational Resources Information Center
Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.
2008-01-01
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…