A resource facility for kinetic analysis: modeling using the SAAM computer programs.
Foster, D M; Boston, R C; Jacquez, J A; Zech, L
1989-01-01
Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.
The World as Viewed by and with Unpaired Electrons
Eaton, Sandra S.; Eaton, Gareth R.
2012-01-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. PMID:22975244
The world as viewed by and with unpaired electrons.
Eaton, Sandra S; Eaton, Gareth R
2012-10-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Castellano, Isabel; Geleijns, Jacob
After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.
NASA Astrophysics Data System (ADS)
Gibson, Wayne H.; Levesque, Daniel
2000-03-01
This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.
Computer Aided Dosimetry and Verification of Exposure to Radiation
2002-06-01
Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrall, Brian D.; Minard, Kevin R.; Teeguarden, Justin G.
A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNL’s focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterialsmore » or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner.« less
2014-01-01
computational and empirical dosimetric tools [31]. For the computational dosimetry, we employed finite-dif- ference time- domain (FDTD) modeling techniques to...temperature-time data collected for a well exposed to THz radiation using finite-difference time- domain (FDTD) modeling techniques and thermocouples... like )). Alter- ation in the expression of such genes underscores the signif- 62 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 6, NO. 1
PREFACE: Third International Conference on Radiotherapy Gel Dosimetry
NASA Astrophysics Data System (ADS)
DeDeene, Yves; Baldock, Clive
2004-01-01
Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.
Xie, Tianwu; Zaidi, Habib
2016-01-01
The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.
WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, J; Dooley, J; Chang, S
2015-06-15
Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using amore » nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have demonstrated that real-time dosimetry of MRT microbeams is feasible using a nanoscintillator fiber-optic detector with integrated positioning system.« less
NASA Astrophysics Data System (ADS)
Singh, Vishwanath P.; Badiger, N. M.
2014-11-01
Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.
NASA Astrophysics Data System (ADS)
Williamson, Jeffrey F.
2006-09-01
This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205
The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry
NASA Astrophysics Data System (ADS)
Akselrod, M. S.
2013-02-01
The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.
The work programme of EURADOS on internal and external dosimetry.
Rühm, W; Bottollier-Depois, J F; Gilvin, P; Harrison, R; Knežević, Ž; Lopez, M A; Tanner, R; Vargas, A; Woda, C
2018-01-01
Since the early 1980s, the European Radiation Dosimetry Group (EURADOS) has been maintaining a network of institutions interested in the dosimetry of ionising radiation. As of 2017, this network includes more than 70 institutions (research centres, dosimetry services, university institutes, etc.), and the EURADOS database lists more than 500 scientists who contribute to the EURADOS mission, which is to promote research and technical development in dosimetry and its implementation into practice, and to contribute to harmonisation of dosimetry in Europe and its conformance with international practices. The EURADOS working programme is organised into eight working groups dealing with environmental, computational, internal, and retrospective dosimetry; dosimetry in medical imaging; dosimetry in radiotherapy; dosimetry in high-energy radiation fields; and harmonisation of individual monitoring. Results are published as freely available EURADOS reports and in the peer-reviewed scientific literature. Moreover, EURADOS organises winter schools and training courses on various aspects relevant for radiation dosimetry, and formulates the strategic research needs in dosimetry important for Europe. This paper gives an overview on the most important EURADOS activities. More details can be found at www.eurados.org .
Recent Progress in Electromagnetic Absorption and Dosimetry in Biological Systems.
1978-12-21
AEROSPACE M!DICAL RESEARCH LABORATORY NAVAL AIR STATION PENSACOLA, FLORIDA 32508 L4 oj6L I SUMMARY PAGE Ti9(PROSLEM Dosimetry , as a subset of research In...absonce of sound dosimetry design, lacks credibility. This study provides a usable orientation in present and future dosimetric technology through a...leading experiment; while at other times experimental results lead the way. Progress In absorption and dosimetry Is still urderway, and higher degrees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée; McKay, Erin
Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of amore » given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.« less
Garcia, Marie-Paule; Villoing, Daphnée; McKay, Erin; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel
2015-12-01
The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.
NASA Astrophysics Data System (ADS)
Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.
2017-01-01
The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.
Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)
NASA Astrophysics Data System (ADS)
2017-01-01
The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end-to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation hazard prediction. New compact accelerator technologies for the delivery of proton and heavy ion therapy and relevant QA dosimetry instrumentation were an additional focus of MMND 2016. The ITRO program this year was dedicated to clinical aspects of innovative SBRT for cancer treatment. It represented a unique opportunity to learn from didactic lectures as well as case based discussions with world leaders in the field in the relaxed atmosphere of Hobart. As well as the outstanding scientific program, MMND ITRO 2016 included an Australian beach BBQ to celebrate Australia Day on the evening of 26th January and an exciting social program on 29th January followed by the conference dinner and great Australian hospitality. The MMND workshop represents an important next step for improving current cancer treatments with radiation and the development of new radiation based cancer treatments.
Radiation protection and dosimetry issues in the medical applications of ionizing radiation
NASA Astrophysics Data System (ADS)
Vaz, Pedro
2014-11-01
The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate dosimetric assessment of the medical applications of ionizing radiation. In this paper, the aforementioned topics will be reviewed. The current status and the future trends in the implementation of the justification and optimization principles, pillars of the International System of Radiological Protection, in the medical applications of ionizing radiation will be discussed. Prospective views will be provided on the future of the system of radiological protection and on dosimetry issues in the medical applications of ionizing radiation.
Farkas, Árpád; Balásházy, Imre
2015-04-01
A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akselrod, M. S.
The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al{sub 2}O{sub 3}:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties,more » instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.« less
Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry
NASA Astrophysics Data System (ADS)
Akselrod, M. S.
2011-05-01
The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties, instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.
Beard, Brian B; Kainz, Wolfgang
2004-10-13
We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head.
Beard, Brian B; Kainz, Wolfgang
2004-01-01
We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head. PMID:15482601
Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation
NASA Astrophysics Data System (ADS)
Best, S.; Ralston, A.; Suchowerska, N.
2005-12-01
The OneDose™ Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose™ dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose™ patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.
Clinical application of the OneDose Patient Dosimetry System for total body irradiation.
Best, S; Ralston, A; Suchowerska, N
2005-12-21
The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.
Liebmann, M; Poppe, B; von Boetticher, H
2012-06-01
Assessment of suitability for X-ray dosimetry in computed tomography of various ionization chambers, diodes and two-dimensional detector arrays primarily used in radiation therapy. An Oldelft X-ray simulation unit was used to irradiate PTW 60008, 60012 dosimetry diodes, PTW 23332, 31013, 31010, 31006 axial symmetrical ionization chambers, PTW 23343, 34001 plane parallel ionization chambers and PTW Starcheck and 2D-Array seven29 as well as a prototype Farmer chamber with a copper wall. Peak potential was varied from 50 kV up to 125 kV and beam qualities were quantified through half-value-layer measurements. Energy response was investigated free in air as well as in 2 cm depth in a solid water phantom and refers to a manufacturer calibrated PTW 60004 diode for kV-dosimetry. The thimble ionization chambers PTW 31010, 31013, the uncapsuled diode PTW 60012 and the PTW 2D-Array seven29 exhibit an energy response deviation in the investigated energy region of approximately 10% or lower thus proving good usability in X-ray dosimetry if higher spatial resolution is needed or rotational irradiations occur. It could be shown that in radiation therapy routinely used detectors are usable in a much lower energy region. The rotational symmetry is of advantage in computed tomography dosimetry and enables dose profile as well as point dose measurements in a suitable phantom for estimation of organ doses. Additional the PTW 2D-Array seven29 can give a quick overview of radiation fields in non-rotating tasks. © 2012 American Association of Physicists in Medicine.
APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM
A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...
[Verification of the dose delivered to the patient by means of TLD, SC, PID. What future?].
Noël, A
2003-11-01
Among the different possibilities to check the accuracy of the treatment delivered, only in vivo dosimetry ensures the precision of the dose delivered to the patient during the treatment. In 1970-1980, Ruden assessed the use of thermoluminescent dosimetry to perform in vivo measurements at Radiumemmet in Stockholm. Straightforward in its principle but demanding in its implementation, thermoluminescent dosimetry has largely been used. Today, thanks to the work of Rikner, the use of semiconductor detectors allows the general implementation of in vivo dosimetry. Tomorrow, we will use electronic portal imaging device to verify the geometrical patient setup and the dose delivery at the same time. Its implementation remains complex and will need the development of algorithms to compute exit dose or midplane dose using portal in vivo dosimetry. First clinical results show that portal imaging is an accurate alternative for conventional in vivo dosimetry using diodes.
NASA Astrophysics Data System (ADS)
Kocher, D. C.; Smith, J. S.
Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Jeffrey F.
This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as amore » means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.« less
Views of Medical Physics in the United Kingdom and Ireland, 1980.
1981-05-19
as a means of characteriza- tion. Other studies include determination of electron dosimetry in bone tissue, radiological survey of the population dose...addition to Ellis, who heads the department, they are; Radiobiology and Dosimetry Prof. P.RoJ. Burch Dr. A.Jo Walker Medical Electronics and Computing Dr. F...absorptiometry l radiation dosimetry 1 radiothprapy ultrasound scahning 11 20. ASISTRACT (Cal’th"M 601 fwa side "f M1aaeaam’ 4104 fd=ifr by b1106h .Nbie) This
NASA Astrophysics Data System (ADS)
Monthonwattana, S.; Esor, J.; Rungseesumran, T.; Intang, A.
2017-06-01
Optically Stimulated Luminescence (OSL) is the current technique of personal dosimetry changed by Nuclear Technology Service Center instead of Thermoluminescence dosimetry (TLD) because OSL has more advantages, such as repeat reading and elimination of heating process. In this study, OSL was used to test the gamma response characterizations. Detailed OSL investigation on personal dosimetry was carried out in the dose range of 0.2 - 3.0 mSv. The batch homogeneity was 7.66%. R2 value of the linear regression was 0.9997. The difference ratio of angular dependence at ± 60° was 8.7%. Fading of the reading was about 3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.A. Baldwin; F.B.K. Kam; I. Remec
1998-10-01
This report describes the computational methodology for the least-squares adjustment of the dosimetry data from the HSSI 10.OD dosimetry capsule with neutronics calculations. It presents exposure rates at each dosimetry location for the neutron fluence greater than 1.0 MeV, fluence greater than 0.1 MeV, and displacements per atom. Exposure parameter distributions are also described in terms of three- dimensional fitting functions. When fitting functions are used it is suggested that an uncertainty of 6% (1 o) should be associated with the exposure rate values. The specific activity of each dosimeter at the end of irradiation is listed in the Appendix.
Dosimetric Considerations in Radioimmunotherapy and Systemic Radionuclide Therapies: A Review
Loke, Kelvin S. H.; Padhy, Ajit K.; Ng, David C. E.; Goh, Anthony S.W.; Divgi, Chaitanya
2011-01-01
Radiopharmaceutical therapy, once touted as the “magic bullet” in radiation oncology, is increasingly being used in the treatment of a variety of malignancies; albeit in later disease stages. With ever-increasing public and medical awareness of radiation effects, radiation dosimetry is becoming more important. Dosimetry allows administration of the maximum tolerated radiation dose to the tumor/organ to be treated but limiting radiation to critical organs. Traditional tumor dosimetry involved acquiring pretherapy planar scans and plasma estimates with a diagnostic dose of intended radiopharmaceuticals. New advancements in single photon emission computed tomography and positron emission tomography systems allow semi-quantitative measurements of radiation dosimetry thus allowing treatments tailored to each individual patient. PMID:22144871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlateva, Y; Seuntjens, J; El Naqa, I
Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equalmore » to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step towards clinical CE dosimetry.« less
TU-F-201-00: Radiochromic Film Dosimetry Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
TU-F-201-01: General Aspects of Radiochromic Film Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niroomand-Rad, A.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montégiani, Jean-François; Gaudin, Émilie; Després, Philippe
2014-08-15
In peptide receptor radionuclide therapy (PRRT), huge inter-patient variability in absorbed radiation doses per administered activity mandates the utilization of individualized dosimetry to evaluate therapeutic efficacy and toxicity. We created a reliable GPU-calculated dosimetry code (irtGPUMCD) and assessed {sup 177}Lu-octreotate renal dosimetry in eight patients (4 cycles of approximately 7.4 GBq). irtGPUMCD was derived from a brachytherapy dosimetry code (bGPUMCD), which was adapted to {sup 177}Lu PRRT dosimetry. Serial quantitative single-photon emission computed tomography (SPECT) images were obtained from three SPECT/CT acquisitions performed at 4, 24 and 72 hours after {sup 177}Lu-octreotate administration, and registered with non-rigid deformation of CTmore » volumes, to obtain {sup 177}Lu-octreotate 4D quantitative biodistribution. Local energy deposition from the β disintegrations was assumed. Using Monte Carlo gamma photon transportation, irtGPUMCD computed dose rate at each time point. Average kidney absorbed dose was obtained from 1-cm{sup 3} VOI dose rate samples on each cortex, subjected to a biexponential curve fit. Integration of the latter time-dose rate curve yielded the renal absorbed dose. The mean renal dose per administered activity was 0.48 ± 0.13 Gy/GBq (range: 0.30–0.71 Gy/GBq). Comparison to another PRRT dosimetry code (VRAK: Voxelized Registration and Kinetics) showed fair accordance with irtGPUMCD (11.4 ± 6.8 %, range: 3.3–26.2%). These results suggest the possibility to use the irtGPUMCD code in order to personalize administered activity in PRRT. This could allow improving clinical outcomes by maximizing per-cycle tumor doses, without exceeding the tolerable renal dose.« less
Anatomically accurate human child and adult nasal tract models will be used in concert with computationally simulated air flow information to investigate the influence of age-related differences in anatomy on inhalation dosimetry in the upper and lower airways. The findings of t...
New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu-Tsao, S.
Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less
Protracted Low-Dose Ionizing Radiation Effects upon Primate Performance
1977-12-01
61 G. Dosimetry ................................ ............. 74 NTiS Whife Sectle ) U A N O U C E D JUSTIFICATION...AECL facility. Standard dosimetry techniques were utilized during radiation expo- sur.. In addition, extensive preexposure calibration was conducted...During each of the epochs, the five basic variables were deter- mined. These calculations were accomplished on an analog computer, Electronics Associates
Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.
Methods and computer readable medium for improved radiotherapy dosimetry planning
Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.
2005-11-15
Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.
Optical computed tomography in PRESAGE® three-dimensional dosimetry: Challenges and prospective.
Khezerloo, Davood; Nedaie, Hassan Ali; Farhood, Bagher; Zirak, Alireza; Takavar, Abbas; Banaee, Nooshin; Ahmadalidokht, Isa; Kron, Tomas
2017-01-01
With the advent of new complex but precise radiotherapy techniques, the demands for an accurate, feasible three-dimensional (3D) dosimetry system have been increased. A 3D dosimeter system generally should not only have accurate and precise results but should also feasible, inexpensive, and time consuming. Recently, one of the new candidates for 3D dosimetry is optical computed tomography (CT) with a radiochromic dosimeter such as PRESAGE®. Several generations of optical CT have been developed since the 90s. At the same time, a large attempt has been also done to introduce the robust dosimeters that compatible with optical CT scanners. In 2004, PRESAGE® dosimeter as a new radiochromic solid plastic dosimeters was introduced. In this decade, a large number of efforts have been carried out to enhance optical scanning methods. This article attempts to review and reflect on the results of these investigations.
Lee, S Y; Lee, K J
2001-04-01
To develop a personal optically stimulated luminescence (OSL) dosimetry system for mixed radiation fields using alpha-Al2O3:C, a discriminating badge filter system was designed by taking advantage of its optically stimulable properties and energy dependencies. This was done by designing a multi-element badge system for powder layered alpha-Al2O3:C material and an optical reader system based on high-intensity blue light-emitting diode (LED). The design of the multielement OSL dosimeter badge system developed allows the measurement of a personal dose equivalent value Hp(d) in mixed radiation fields of beta and gamma. Dosimetric properties of the personal OSL dosimeter badge system investigated here were the dose response, energy response and multi-readability. Based on the computational simulations and experiments of the proposed dosimeter design, it was demonstrated that a multi-element dosimeter system with an OSL technology based on alpha-Al2O3:C is suitable to obtain personal dose equivalent information in mixed radiation fields.
Monte Carlo simulations in radiotherapy dosimetry.
Andreo, Pedro
2018-06-27
The use of the Monte Carlo (MC) method in radiotherapy dosimetry has increased almost exponentially in the last decades. Its widespread use in the field has converted this computer simulation technique in a common tool for reference and treatment planning dosimetry calculations. This work reviews the different MC calculations made on dosimetric quantities, like stopping-power ratios and perturbation correction factors required for reference ionization chamber dosimetry, as well as the fully realistic MC simulations currently available on clinical accelerators, detectors and patient treatment planning. Issues are raised that include the necessity for consistency in the data throughout the entire dosimetry chain in reference dosimetry, and how Bragg-Gray theory breaks down for small photon fields. Both aspects are less critical for MC treatment planning applications, but there are important constraints like tissue characterization and its patient-to-patient variability, which together with the conversion between dose-to-water and dose-to-tissue, are analysed in detail. Although these constraints are common to all methods and algorithms used in different types of treatment planning systems, they make uncertainties involved in MC treatment planning to still remain "uncertain".
Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.
Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah
2016-01-01
The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.
SU-F-T-562: Validation of EPID-Based Dosimetry for FSRS Commissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Y; Saleh, Z; Obcemea, C
Purpose: The prevailing approach to frameless SRS (fSRS) small field dosimetry is Gafchromic film. Though providing continuous information, its intrinsic uncertainties in fabrication, response, scan, and calibration often make film dosimetry subject to different interpretations. In this study, we explored the feasibility of using EPID portal dosimetry as a viable alternative to film for small field dosimetry. Methods: Plans prescribed a dose of 21 Gy were created on a flat solid water phantom with Eclipse V11 and iPlan for small static square fields (1.0 to 3.0 cm). In addition, two clinical test plans were computed by employing iPlan on amore » CIRS Kesler head phantom for target dimensions of 1.2cm and 2.0cm. Corresponding portal dosimetry plans were computed using the Eclipse TPS and delivered on a Varian TrueBeam machine. EBT-XD film dosimetry was performed as a reference. The isocenter doses were measured using EPID, OSLD, stereotactic diode, and CC01 ion chamber. Results: EPID doses at the center of the square field were higher than Eclipse TPS predicted portal doses, with the mean difference being 2.42±0.65%. Doses measured by EBT-XD film, OSLD, stereotactic diode, and CC01 ion chamber revealed smaller differences (except OSLDs), with mean differences being 0.36±3.11%, 4.12±4.13%, 1.7±2.76%, 1.45±2.37% for Eclipse and −1.36±0.85%, 2.38±4.2%, −0.03±0.50%, −0.27±0.78% for iPlan. The profiles measured by EPID and EBT-XD film resembled TPS (Eclipse and iPlan) predicted ones within 3.0%. For the two clinical test plans, the EPID mean doses at the center of field were 2.66±0.68% and 2.33±0.32% higher than TPS predicted doses. Conclusion: We found that results obtained with EPID portal dosimetry were slightly higher (∼2%) than those obtained with EBT-XD film, diode, and CC01 ion chamber with the exception of OSLDs, but well within IROC tolerance (5.0%). Therefore, EPID has the potential to become a viable real-time alternative method to film dosimetry.« less
Kazakis, Nikolaos A; Tsirliganis, Nestor C; Kitis, George
2014-09-01
Drug sterilization with ionizing radiation is a well-established technology and is gaining ground the last decades due to its numerous advantages. Identification of irradiated drugs would be interesting and, in this respect, the present work aims, for the first time to the authors' best knowledge, to explore whether OSL and TL can be employed as methods for post-sterilization dosimetry on commercial drugs, i.e., as tools for the detection of irradiated drugs. Five widely used drugs, i.e., Daktarin(®), Aspirin(®), Panadol(®), Brufen(®) and Procef(®), are used for this purpose. Preliminary findings are very promising towards the post-sterilization dosimetry and the use of commercial drugs for normal and/or accidental dosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Health physics division annual progress report for period ending June 30, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-01
This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.
aSi EPIDs for the in-vivo dosimetry of static and dynamic beams
NASA Astrophysics Data System (ADS)
Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.
2015-10-01
Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).
MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbott, G.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
Items Supporting the Hanford Internal Dosimetry Program Implementation of the IMBA Computer Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Bihl, Donald E.
2008-01-07
The Hanford Internal Dosimetry Program has adopted the computer code IMBA (Integrated Modules for Bioassay Analysis) as its primary code for bioassay data evaluation and dose assessment using methodologies of ICRP Publications 60, 66, 67, 68, and 78. The adoption of this code was part of the implementation plan for the June 8, 2007 amendments to 10 CFR 835. This information release includes action items unique to IMBA that were required by PNNL quality assurance standards for implementation of safety software. Copie of the IMBA software verification test plan and the outline of the briefing given to new users aremore » also included.« less
Computational model of gamma irradiation room at ININ
NASA Astrophysics Data System (ADS)
Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier
2018-03-01
In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.
Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code
NASA Astrophysics Data System (ADS)
Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.
Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms
NASA Astrophysics Data System (ADS)
Papadimitroulas, P.; Kagadis, G. C.; Ploussi, A.; Kordolaimi, S.; Papamichail, D.; Karavasilis, E.; Syrgiamiotis, V.; Loudos, G.
2015-09-01
The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ˜1010 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition.
NASA Astrophysics Data System (ADS)
Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel
2017-03-01
The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.
MO-B-BRB-00: Three Dimensional Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, T.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiner, L.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceberg, S.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
Innovation and the future of advanced dosimetry: 2D to 5D
NASA Astrophysics Data System (ADS)
Oldham, Mark
2017-05-01
Recent years have witnessed a remarkable evolution in the techniques, capabilities and applications of 3D dosimetry. Initially the goal was simple: to innovate new techniques capable of comprehensively measuring and verifying exquisitely intricate dose distributions from a paradigm changing emerging new therapy, IMRT. Basic questions emerged: how well were treatment planning systems modelling the complex delivery, and how could treatments be verified for safe use on patients? Since that time, equally significant leaps of innovation have continued in the technology of treatment delivery. In addition, clinical practice has been transformed by the addition of on-board imaging capabilities, which tend to hypo-fractionation strategies and margin reduction. The net result is a high stakes treatment setting where the clinical morbidity of any unintended treatment deviation is exacerbated by the combination of highly conformal dose distributions given with reduced margins with fractionation regimens unfriendly to healthy tissue. Not surprisingly this scenario is replete with challenges and opportunities for new and improved dosimetry systems. In particular tremendous interest exists in comprehensive 3D dosimetry systems, and systems that can resolve the dose in moving structures (4D) and even in deforming structures (5D). Despite significant progress in the capability of multi-dimensional dosimetry systems, it is striking that true 3D dosimetry systems are today largely found in academic institutions or specialist clinics. The reasons will be explored. We will highlight innovations occurring both in treatment delivery and in advanced dosimetry methods designed to verify them, and explore current and future opportunities for advanced dosimetry tools in clinical practice and translational research.
Advanced dosimetry systems for the space transport and space station
NASA Technical Reports Server (NTRS)
Wailly, L. F.; Schneider, M. F.; Clark, B. C.
1972-01-01
Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.
Hanford Atomic Products Operation monthly report for March 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-04-20
This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.
Benefits of online in vivo dosimetry for single-fraction total body irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, David J., E-mail: davideaton@nhs.net; Warry, Alison J.; Trimble, Rachel E.
Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013,more » with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources.« less
The polyGeVero® software for fast and easy computation of 3D radiotherapy dosimetry data
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Maras, Piotr
2015-01-01
The polyGeVero® software package was elaborated for calculations of 3D dosimetry data such as the polymer gel dosimetry. It comprises four workspaces designed for: i) calculating calibrations, ii) storing calibrations in a database, iii) calculating dose distribution 3D cubes, iv) comparing two datasets e.g. a measured one with a 3D dosimetry with a calculated one with the aid of a treatment planning system. To accomplish calculations the software was equipped with a number of tools such as the brachytherapy isotopes database, brachytherapy dose versus distance calculation based on the line approximation approach, automatic spatial alignment of two 3D dose cubes for comparison purposes, 3D gamma index, 3D gamma angle, 3D dose difference, Pearson's coefficient, histograms calculations, isodoses superimposition for two datasets, and profiles calculations in any desired direction. This communication is to briefly present the main functions of the software and report on the speed of calculations performed by polyGeVero®.
COMPUTATIONAL TOXICOLOGY: AN IN SILLICO DOSIMETRY MODEL FOR THE ASSESSMENT OF AIR POLLUTANTS
To accurately assess the threat to human health presented by airborne contaminants, it is necessary to know the deposition patterns of particulate matter (PM) within the respiratory system. To provide a foundation for computational toxicology, we have developed an in silico model...
In vivo dosimetry in external beam radiotherapy.
Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester
2013-07-01
In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20∕20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.
2010-01-01
Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529
Inventory of environmental impact models related to energy technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, P.T.; Dailey, N.S.; Johnson, C.A.
The purpose of this inventory is to identify and collect data on computer simulations and computational models related to the environmental effects of energy source development, energy conversion, or energy utilization. Information for 33 data fields was sought for each model reported. All of the information which could be obtained within the time alloted for completion of the project is presented for each model listed. Efforts will be continued toward acquiring the needed information. Readers who are interested in these particular models are invited to contact ESIC for assistance in locating them. In addition to the standard bibliographic information, othermore » data fields of interest to modelers, such as computer hardware and software requirements, algorithms, applications, and existing model validation information, are included. Indexes are provided for contact person, acronym, keyword, and title. The models are grouped into the following categories: atmospheric transport, air quality, aquatic transport, terrestrial food chains, soil transport, aquatic food chains, water quality, dosimetry, and human effects, animal effects, plant effects, and generalized environmental transport. Within these categories, the models are arranged alphabetically by last name of the contact person.« less
The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry
NASA Astrophysics Data System (ADS)
Followill, D. S.; Molineu, H. A.; Lafratta, R.; Ibbott, G. S.
2017-05-01
The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H&N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program.
NASA Astrophysics Data System (ADS)
Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.
2013-07-01
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Rhian Siân, E-mail: rhian.s.davies@wales.nhs.uk; Perrett, Teresa; Powell, Jane
A study was performed to establish whether transrectal ultrasound (TRUS)-based postimplant dosimetry (PID) is both practically feasible and comparable to computed tomography (CT)-based PID, recommended in current published guidelines. In total, 22 patients treated consecutively at a single cancer center with low-dose-rate (LDR) brachytherapy for early-stage prostate cancer had a transrectal ultrasound performed immediately after implant (d0-TRUS) and computed tomography scan 30 days after implant (d30-CT). Postimplant dosimetry planning was performed on both image sets and the results were compared. The interobserver reproducibility of the transrectal ultrasound postimplant dosimetry planning technique was also assessed. It was noticed that there wasmore » no significant difference in mean prostate D{sub 90} (136.5 Gy and 144.4 Gy, p = 0.2197), V{sub 100} (86.4% and 89.1%, p = 0.1480) and V{sub 150} (52.0% and 47.8%, p = 0.1657) for d30-CT and d0-TRUS, respectively. Rectal doses were significantly higher for d0-TRUS than d30-CT. Urethral doses were available with d0-TRUS only. We have shown that d0-TRUS PID is a useful tool for assessing the quality of an implant after low-dose-rate prostate brachytherapy and is comparable to d30-CT PID. There are clear advantages to its use in terms of resource and time efficiency both for the clinical team and the patient.« less
Student Perceptions of an Online Medical Dosimetry Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenards, Nishele, E-mail: lenards.nish@uwlax.ed
2011-07-01
The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled studentsmore » in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.« less
An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.
Riley, K J; Binns, P J; Harling, O K; Albritton, J R; Kiger, W S; Rezaei, A; Sköld, K; Seppälä, T; Savolainen, S; Auterinen, I; Marek, M; Viererbl, L; Nievaart, V A; Moss, R L
2008-12-01
The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.
Chicheportiche, Alexandre; Artoul, Faozi; Schwartz, Arnon; Grozinsky-Glasberg, Simona; Meirovitz, Amichay; Gross, David J; Godefroy, Jeremy
2018-06-19
Peptide receptor radionuclide therapy (PRRT) with [ 177 Lu]-DOTA-TATE is an effective treatment of neuroendocrine tumors (NETs). After each cycle of treatment, patient dosimetry evaluates the radiation dose to the risk organs, kidneys, and bone marrow, the most radiosensitive tissues. Absorbed doses are calculated from the radioactivity in the blood and from single photon emission computed tomography (SPECT) images corrected by computed tomography (CT) acquired after each course of treatment. The aim of this work is to assess whether the dosimetry along all treatment cycles can be calculated using a single CT. We hypothesize that the absorbed doses to the risk organs calculated with a single CT will be accurate enough to correctly manage the patients, i.e., whether or not to continue PRRT. Twenty-four patients diagnosed with metastatic NETs undergoing PRRT with [ 177 Lu]-DOTA-TATE were retrospectively included in this study. We compared radiation doses to the kidneys and bone marrow using two protocols. In the "classical" one, dosimetry is calculated based on a SPECT and a CT after each treatment cycle. In the new protocol, dosimetry is calculated based on a SPECT study after each cycle but with the first acquired CT for all cycles. The decision whether or not to stop PRRT because of unsafe absorbed dose to the risk organs would have been the same had the classical or the new protocol been used. The agreement between the cumulative doses to the kidneys and bone marrow obtained from the two protocols was excellent with Pearson's correlation coefficients r = 0.95 and r = 0.99 (P < 0.0001) and mean relative differences of 5.30 ± 6.20% and 0.48 ± 4.88%, respectively. Dosimetry calculations for a given patient can be done using a single CT registered to serial SPECTs. This new protocol reduces the need for a hybrid camera in the follow-up of patients receiving [ 177 Lu]-DOTA-TATE.
Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade
2014-01-01
This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.
The Mayak Worker Dosimetry System (MWDS-2013): Implementation of the Dose Calculations.
Zhdanov, А; Vostrotin, V; Efimov, А; Birchall, A; Puncher, M
2016-07-15
The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Computer Aided Dosimetry and Verification of Exposure to Radiation
NASA Astrophysics Data System (ADS)
Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise
2002-06-01
In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)
Index extraction for electromagnetic field evaluation of high power wireless charging system.
Park, SangWook
2017-01-01
This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario.
NASA Astrophysics Data System (ADS)
Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina
2015-11-01
A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.
Edema and Seed Displacements Affect Intraoperative Permanent Prostate Brachytherapy Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorp, Hendrik, E-mail: r.westendorp@radiotherapiegroep.nl; Nuver, Tonnis T.; Department of Radiation Oncology, Radiotherapiegroep Behandellocatie Deventer, Deventer
Purpose: We sought to identify the intraoperative displacement patterns of seeds and to evaluate the correlation of intraoperative dosimetry with day 30 for permanent prostate brachytherapy. Methods and Materials: We analyzed the data from 699 patients. Intraoperative dosimetry was acquired using transrectal ultrasonography (TRUS) and C-arm cone beam computed tomography (CBCT). Intraoperative dosimetry (minimal dose to 40%-95% of the volume [D{sub 40}-D{sub 95}]) was compared with the day 30 dosimetry for both modalities. An additional edema-compensating comparison was performed for D{sub 90}. Stranded seeds were linked between TRUS and CBCT using an automatic and fast linking procedure. Displacement patterns weremore » analyzed for each seed implantation location. Results: On average, an intraoperative (TRUS to CBCT) D{sub 90} decline of 10.6% ± 7.4% was observed. Intraoperative CBCT D{sub 90} showed a greater correlation (R{sup 2} = 0.33) with respect to Day 30 than did TRUS (R{sup 2} = 0.17). Compensating for edema, the correlation increased to 0.41 for CBCT and 0.38 for TRUS. The mean absolute intraoperative seed displacement was 3.9 ± 2.0 mm. The largest seed displacements were observed near the rectal wall. The central and posterior seeds showed less caudal displacement than lateral and anterior seeds. Seeds that were implanted closer to the base showed more divergence than seeds close to the apex. Conclusions: Intraoperative CBCT D{sub 90} showed a greater correlation with the day 30 dosimetry than intraoperative TRUS. Edema seemed to cause most of the systematic difference between the intraoperative and day 30 dosimetry. Seeds near the rectal wall showed the most displacement, comparing TRUS and CBCT, probably because of TRUS probe–induced prostate deformation.« less
Fernández-Varea, J M; Andreo, P; Tabata, T
1996-07-01
Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Lee, C; Failla, G
Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less
Wayson, Michael B; Bolch, Wesley E
2018-04-13
Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.
10 CFR 35.630 - Dosimetry equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...
10 CFR 35.630 - Dosimetry equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...
10 CFR 35.630 - Dosimetry equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...
10 CFR 35.630 - Dosimetry equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...
10 CFR 35.630 - Dosimetry equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...
Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts
NASA Technical Reports Server (NTRS)
Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.
2011-01-01
To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute Radiation Assessment Detector. Also, the University of Florida hybrid phantoms, which are flexible in morphometry and positioning, are being explored as alternatives to the current NASA computational phantoms.
Asgharian, B; Price, O T; Oldham, M; Chen, Lung-Chi; Saunders, E L; Gordon, T; Mikheev, V B; Minard, K R; Teeguarden, J G
2014-12-01
Comparing effects of inhaled particles across rodent test systems and between rodent test systems and humans is a key obstacle to the interpretation of common toxicological test systems for human risk assessment. These comparisons, correlation with effects and prediction of effects, are best conducted using measures of tissue dose in the respiratory tract. Differences in lung geometry, physiology and the characteristics of ventilation can give rise to differences in the regional deposition of particles in the lung in these species. Differences in regional lung tissue doses cannot currently be measured experimentally. Regional lung tissue dosimetry can however be predicted using models developed for rats, monkeys, and humans. A computational model of particle respiratory tract deposition and clearance was developed for BALB/c and B6C3F1 mice, creating a cross-species suite of available models for particle dosimetry in the lung. Airflow and particle transport equations were solved throughout the respiratory tract of these mice strains to obtain temporal and spatial concentration of inhaled particles from which deposition fractions were determined. Particle inhalability (Inhalable fraction, IF) and upper respiratory tract (URT) deposition were directly related to particle diffusive and inertial properties. Measurements of the retained mass at several post-exposure times following exposure to iron oxide nanoparticles, micro- and nanoscale C60 fullerene, and nanoscale silver particles were used to calibrate and verify model predictions of total lung dose. Interstrain (mice) and interspecies (mouse, rat and human) differences in particle inhalability, fractional deposition and tissue dosimetry are described for ultrafine, fine and coarse particles.
Dosimetry applications in GATE Monte Carlo toolkit.
Papadimitroulas, Panagiotis
2017-09-01
Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Zakariaee, Seyed Salman; Mesbahi, Asghar; Keshtkar, Ahmad; Azimirad, Vahid
2014-01-01
Polymer gel dosimeter is the only accurate three dimensional (3D) dosimeter that can measure the absorbed dose distribution in a perfect 3D setting. Gel dosimetry by using optical computed tomography (OCT) has been promoted by several researches. In the current study, we designed and constructed a prototype OCT system for gel dosimetry. First, the electrical system for optical scanning of the gel container using a Helium-Neon laser and a photocell was designed and constructed. Then, the mechanical part for two rotational and translational motions was designed and step motors were assembled to it. The data coming from photocell was grabbed by the home-built interface and sent to a personal computer. Data processing was carried out using MATLAB software. To calibrate the system and tune up the functionality of it, different objects was designed and scanned. Furthermore, the spatial and contrast resolution of the system was determined. The system was able to scan the gel dosimeter container with a diameter up to 11 cm inside the water phantom. The standard deviation of the pixels within water flask image was considered as the criteria for image uniformity. The uniformity of the system was about ±0.05%. The spatial resolution of the system was approximately 1 mm and contrast resolution was about 0.2%. Our primary results showed that this system is able to obtain two-dimensional, cross-sectional images from polymer gel samples. PMID:24761377
Hanford Radiological Protection Support Services Annual Report for 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
DE Bihl; JA MacLellan; ML Johnson
1999-05-14
During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.
NASA Astrophysics Data System (ADS)
Faigon, A.; Martinez Vazquez, I.; Carbonetto, S.; García Inza, M.; G
2017-01-01
A floating gate dosimeter was designed and fabricated in a standard CMOS technology. The design guides and characterization are presented. The characterization included the controlled charging by tunneling of the floating gate, and its discharging under irradiation while measuring the transistor drain current whose change is the measure of the absorbed dose. The resolution of the obtained device is close to 1 cGy satisfying the requirements for most radiation therapies dosimetry. Pending statistical proofs, the dosimeter is a potential candidate for wide in-vivo control of radiotherapy treatments.
Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu
2007-01-01
Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.
Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung
2017-12-14
Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and organ-based dosimetry. Errors at the organ-level were -6.71%, 2.17%, and 227.46% for the single VSV, multiple VSV, and organ-based dosimetry, respectively. Conclusion: The multiple VSV approach for heterogeneous media with non-uniform activity distributions offers fast personalized dosimetry at whole-body level, yielding results comparable to those of the direct Monte Carlo approach. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Mountris, K. A.; Bert, J.; Noailly, J.; Rodriguez Aguilera, A.; Valeri, A.; Pradier, O.; Schick, U.; Promayon, E.; Gonzalez Ballester, M. A.; Troccaz, J.; Visvikis, D.
2017-03-01
Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model’s computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10-20% the Day30 urethra D10 dose metric is higher by 4.2%-10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.
Mountris, K A; Bert, J; Noailly, J; Aguilera, A Rodriguez; Valeri, A; Pradier, O; Schick, U; Promayon, E; Ballester, M A Gonzalez; Troccaz, J; Visvikis, D
2017-03-21
Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model's computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10-20% the Day30 urethra D10 dose metric is higher by 4.2%-10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.
Thermoluminescence dosimetry and its applications in medicine--Part 2: History and applications.
Kron, T
1995-03-01
Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of microGy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. Therefore TLD is a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review (Australas. Phys. Eng. Sci. Med. 17: 175-199, 1994).
Three-dimensional illumination procedure for photodynamic therapy of dermatology
NASA Astrophysics Data System (ADS)
Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya
2014-09-01
Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.
Fan-beam scanning laser optical computed tomography for large volume dosimetry
NASA Astrophysics Data System (ADS)
Dekker, K. H.; Battista, J. J.; Jordan, K. J.
2017-05-01
A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.
Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade
2014-01-01
Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101
Index extraction for electromagnetic field evaluation of high power wireless charging system
2017-01-01
This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario. PMID:28708840
A broad-group cross-section library based on ENDF/B-VII.0 for fast neutron dosimetry Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpan, F.A.
2011-07-01
A new ENDF/B-VII.0-based coupled 44-neutron, 20-gamma-ray-group cross-section library was developed to investigate the latest evaluated nuclear data file (ENDF) ,in comparison to ENDF/B-VI.3 used in BUGLE-96, as well as to generate an objective-specific library. The objectives selected for this work consisted of dosimetry calculations for in-vessel and ex-vessel reactor locations, iron atom displacement calculations for reactor internals and pressure vessel, and {sup 58}Ni(n,{gamma}) calculation that is important for gas generation in the baffle plate. The new library was generated based on the contribution and point-wise cross-section-driven (CPXSD) methodology and was applied to one of the most widely used benchmarks, themore » Oak Ridge National Laboratory Pool Critical Assembly benchmark problem. In addition to the new library, BUGLE-96 and an ENDF/B-VII.0-based coupled 47-neutron, 20-gamma-ray-group cross-section library was generated and used with both SNLRML and IRDF dosimetry cross sections to compute reaction rates. All reaction rates computed by the multigroup libraries are within {+-} 20 % of measurement data and meet the U. S. Nuclear Regulatory Commission acceptance criterion for reactor vessel neutron exposure evaluations specified in Regulatory Guide 1.190. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbott, Geoffrey S.; Followill, David S.; Molineu, H. Andrea
The Radiological Physics Center (RPC) has functioned continuously for 38 years to assure the National Cancer Institute and the cooperative groups that institutions participating in multi-institutional trials can be expected to deliver radiation treatments that are clinically comparable to those delivered by other institutions in the cooperative groups. To accomplish this, the RPC monitors the machine output, the dosimetry data used by the institutions, the calculation algorithms used for treatment planning, and the institutions' quality control procedures. The methods of monitoring include on-site dosimetry review by an RPC physicist and a variety of remote audit tools. The introduction of advancedmore » technology clinical trials has prompted several study groups to require participating institutions and personnel to become credentialed, to ensure their familiarity and capability with techniques such as three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, stereotactic body radiotherapy, and brachytherapy. The RPC conducts a variety of credentialing activities, beginning with questionnaires to evaluate an institution's understanding of the protocol and their capabilities. Treatment-planning benchmarks are used to allow the institution to demonstrate their planning ability and to facilitate a review of the accuracy of treatment-planning systems under relevant conditions. The RPC also provides mailable anthropomorphic phantoms to verify tumor dose delivery for special treatment techniques. While conducting these reviews, the RPC has amassed a large amount of data describing the dosimetry at participating institutions. Representative data from the monitoring programs are discussed, and examples are presented of specific instances in which the RPC contributed to the discovery and resolution of dosimetry errors.« less
NASA Astrophysics Data System (ADS)
Bernhardt, J. H.; Kasch, K.-U.; Kaul, A.; Kramer, H.-M.; Noßke, D.; Valentin, J.
This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Glossary.
NASA Astrophysics Data System (ADS)
Hussien, Mohammad
Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionization chamber (IC) array were compared with measurements using 0.125cm3 ion chamber, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes respectively. A methodology for prospectively deriving appropriate gamma index acceptance criteria for detector array systems, via simulation of deliberate changes and receiver operator characteristic (ROC) analysis, has been developed. Results: In the event of clinically relevant delivery introduced changes, the detector array systems evaluated are able to detect some of these changes if suitable gamma index passing criteria, such as 2%/2mm, are used. Different computational approaches can produce variability in the calculation of the gamma index between different software implementations. For the same passing criteria, different devices and software combinations exhibit varying levels of agreement with the Matlab predicted gamma index analysis. This work has found that it is suitable to use a detector array in a dosimetry audit of rotational radiotherapy in place of standard systems of dosimetry such as ion chambers, alanine and film. Comparisons between individual detectors within the 2D-Array against the corresponding ion chamber and alanine measurement showed a statistically significant concordance correlation coefficient (ρc>0.998, p<0.001) with mean difference of -1.1%±1.1% and -0.8%±1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was found that the 2D-Array was more likely to fail in planes where there was a dose discrepancy due to the absolute analysis performed. A follow-up analysis of the library of measured data during the audit found that additional metrics such as the mean gamma index or dose differences over regions of interest can be gleaned from the measured dose distributions. Conclusions: It is important to understand the response and limitations of the gamma index analysis combined with the equipment and software in use. For the same pass-rate criteria, different devices and software combinations exhibit varying levels of agreement with the predicted γ analysis. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. A methodology for being able to prospectively ascertain appropriate gamma index acceptance criteria for the detector array system in use, via simulation of deliberate changes and ROC analysis, has been developed. It has been shown that setting appropriate tolerances can be achieved and should be performed as the methodology takes into account the configuration of the commercial system as well as the software implementation of the gamma index.
Fast protocol for radiochromic film dosimetry using a cloud computing web application.
Calvo-Ortega, Juan-Francisco; Pozo, Miquel; Moragues, Sandra; Casals, Joan
2017-07-01
To investigate the feasibility of a fast protocol for radiochromic film dosimetry to verify intensity-modulated radiotherapy (IMRT) plans. EBT3 film dosimetry was conducted in this study using the triple-channel method implemented in the cloud computing application (Radiochromic.com). We described a fast protocol for radiochromic film dosimetry to obtain measurement results within 1h. Ten IMRT plans were delivered to evaluate the feasibility of the fast protocol. The dose distribution of the verification film was derived at 15, 30, 45min using the fast protocol and also at 24h after completing the irradiation. The four dose maps obtained per plan were compared using global and local gamma index (5%/3mm) with the calculated one by the treatment planning system. Gamma passing rates obtained for 15, 30 and 45min post-exposure were compared with those obtained after 24h. Small differences respect to the 24h protocol were found in the gamma passing rates obtained for films digitized at 15min (global: 99.6%±0.9% vs. 99.7%±0.5%; local: 96.3%±3.4% vs. 96.3%±3.8%), at 30min (global: 99.5%±0.9% vs. 99.7%±0.5%; local: 96.5%±3.2% vs. 96.3±3.8%) and at 45min (global: 99.2%±1.5% vs. 99.7%±0.5%; local: 96.1%±3.8% vs. 96.3±3.8%). The fast protocol permits dosimetric results within 1h when IMRT plans are verified, with similar results as those reported by the standard 24h protocol. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Hanford Atomic Products Operation monthly report for February 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-21
This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.
Hanford Laboratories monthly activities report, March 1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-04-15
The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.
Hanford Laboratories Operation monthly activities report, September 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1960-10-15
This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Laboratories monthly activities report, August 1963
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1963-09-16
This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Laboratories Operation monthly activities report, November 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1962-12-14
This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields
NASA Astrophysics Data System (ADS)
McNiven, Andrea L.
The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.
Evaluation of a 3D diamond detector for medical radiation dosimetry
NASA Astrophysics Data System (ADS)
Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.
2017-01-01
Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.
Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre-clinical and clinical patients and large dosimetric differences resulted when using conventional organ-level methods and the patient-specific voxelized methods described in this work. The dosimetric impact of various steps in the 3D voxelized dosimetry process were evaluated including quantitative imaging acquisition, image coregistration, voxel resampling, ROI contouring, CT-based material segmentation, and pharmacokinetic fitting. Finally, a multi-objective treatment planning optimization framework was developed for multi-radiopharmaceutical combination therapies.
Analysis of regional radiotherapy dosimetry audit data and recommendations for future audits
Palmer, A; Mzenda, B; Kearton, J; Wills, R
2011-01-01
Objectives Regional interdepartmental dosimetry audits within the UK provide basic assurances of the dosimetric accuracy of radiotherapy treatments. Methods This work reviews several years of audit results from the South East Central audit group including megavoltage (MV) and kilovoltage (kV) photons, electrons and iodine-125 seeds. Results Apart from some minor systematic errors that were resolved, the results of all audits have been within protocol tolerances, confirming the long-term stability and agreement of basic radiation dosimetric parameters between centres in the audit region. There is some evidence of improvement in radiation dosimetry with the adoption of newer codes of practice. Conclusion The value of current audit methods and the limitations of peer-to-peer auditing is discussed, particularly the influence of the audit schedule on the results obtained, where no “gold standard” exists. Recommendations are made for future audits, including an essential requirement to maintain the monitoring of basic fundamental dosimetry, such as MV photon and electron output, but audits must also be developed to include new treatment technologies such as image-guided radiotherapy and address the most common sources of error in radiotherapy. PMID:21159805
Kazakis, Nikolaos A; Tsirliganis, Nestor C; Kitis, George
2015-11-01
Drug sterilization with ionizing radiation is a well-established technology, which is constantly extending to several products due to its numerous advantages, since it allows the heat-free sterilization of heat-sensitive pharmaceutical preparations. In a previous study, the possibility to identify irradiated solid-state drugs by means of OSL and TL was examined with very promising findings. In the same respect, the present work aims, for the first time to the authors' best knowledge, to explore whether TL can be employed as a method for post-sterilization dosimetry on commercial liquid-state drugs, by studying the properties of their glass containers. Two different types of glass containers (bottle and ampoule) of two widely used liquid drugs, i.e., Hexalen® and Voltaren®, are used for this purpose. Both glass containers exhibit a linear TL dose response for doses up to 6kGy with a stable behavior through time, while no significant sensitization of the main peaks is observed. Thus, preliminary findings are very promising towards the post-sterilization dosimetry of liquid drugs and the use of the containers of commercial liquid drugs for normal and/or accidental dosimetry. Copyright © 2015 Elsevier Ltd. All rights reserved.
The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry
NASA Astrophysics Data System (ADS)
Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley
2011-08-01
Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in skeletal size, individual organ masses and total fetal masses. The resulting series of fetal hybrid computational phantoms is applicable to organ-level and bone-level internal and external radiation dosimetry for human fetuses of various ages and weight percentiles
Hanford Laboratories monthly activities report, February 1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1964-03-16
This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.
Hanford Atomic Products Operation monthly report for June 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-07-28
This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Atomic Products Operation monthly report, January 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-24
This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.
2004-04-01
There is a need to develop approaches for assessing risk associated with acute exposures to a broad-range of chemical agents and to rapidly determine the potential implications to human health. Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantitate dosimetry utilizing readily obtainable body fluids, such as saliva. Saliva has been used to evaluate a broad range of biomarkers, drugs, and environmental contaminants including heavy metals and pesticides. To advance the application of non-invasive biomonitoring a microfluidic/ electrochemical device has also been developed for the analysis of lead (Pb), using square wave anodic stripping voltammetry. Themore » system demonstrates a linear response over a broad concentration range (1 2000 ppb) and is capable of quantitating saliva Pb in rats orally administered acute doses of Pb-acetate. Appropriate pharmacokinetic analyses have been used to quantitate systemic dosimetry based on determination of saliva Pb concentrations. In addition, saliva has recently been used to quantitate dosimetry following exposure to the organophosphate insecticide chlorpyrifos in a rodent model system by measuring the major metabolite, trichloropyridinol, and saliva cholinesterase inhibition following acute exposures. These results suggest that technology developed for non-invasive biomonitoring can provide a sensitive, and portable analytical tool capable of assessing exposure and risk in real-time. By coupling these non-invasive technologies with pharmacokinetic modeling it is feasible to rapidly quantitate acute exposure to a broad range of chemical agents. In summary, it is envisioned that once fully developed, these monitoring and modeling approaches will be useful for accessing acute exposure and health risk.« less
Gnesin, Silvano; Canetti, Laurent; Adib, Salim; Cherbuin, Nicolas; Silva Monteiro, Marina; Bize, Pierre; Denys, Alban; Prior, John O; Baechler, Sebastien; Boubaker, Ariane
2016-11-01
90 Y-microsphere selective internal radiation therapy (SIRT) is a valuable treatment in unresectable hepatocellular carcinoma (HCC). Partition-model predictive dosimetry relies on differential tumor-to-nontumor perfusion evaluated on pretreatment 99m Tc-macroaggregated albumin (MAA) SPECT/CT. The aim of this study was to evaluate agreement between the predictive dosimetry of 99m Tc-MAA SPECT/CT and posttreatment dosimetry based on 90 Y time-of-flight (TOF) PET/CT. We compared the 99m Tc-MAA SPECT/CT results for 27 treatment sessions (25 HCC patients, 41 tumors) with 90 Y SIRT (7 glass spheres, 20 resin spheres) and the posttreatment 90 Y TOF PET/CT results. Three-dimensional voxelized dose maps were computed from the 99m Tc-MAA SPECT/CT and 90 Y TOF PET/CT data. Mean absorbed dose ([Formula: see text]) was evaluated to compute the predicted-to-actual dose ratio ([Formula: see text]) in tumor volumes (TVs) and nontumor volumes (NTVs) for glass and resin spheres. The Lin concordance ([Formula: see text]) was used to measure accuracy ([Formula: see text]) and precision (ρ). Administered activity ranged from 0.8 to 1.9 GBq for glass spheres and from 0.6 to 3.4 GBq for resin spheres, and the respective TVs ranged from 2 to 125 mL and from 6 to 1,828 mL. The mean dose [Formula: see text] was 240 Gy for glass and 122 Gy for resin in TVs and 72 Gy for glass and 47 Gy for resin in NTVs. [Formula: see text] was 1.46 ± 0.58 (0.65-2.53) for glass and 1.16 ± 0.41 (0.54-2.54) for resin, and the respective values for [Formula: see text] were 0.88 ± 0.15 (0.56-1.00) and 0.86 ± 0.2 (0.58-1.35). DR variability was substantially lower in NTVs than in TVs. The Lin concordance between [Formula: see text] and [Formula: see text] (resin) was significantly better for tumors larger than 150 mL than for tumors 150 mL or smaller ([Formula: see text] = 0.93 and [Formula: see text] = 0.95 vs. [Formula: see text] = 0.57 and [Formula: see text] = 0.93; P < 0.05). In 90 Y radioembolization of HCC, predictive dosimetry based on 99m Tc-MAA SPECT/CT provided good estimates of absorbed doses calculated from posttreatment 90 Y TOF PET/CT for tumor and nontumor tissues. The low variability of [Formula: see text] demonstrates that pretreatment dosimetry is particularly suitable for minimizing radiation-induced hepatotoxicity. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Rajon, Didier Alain
Radiation damage to the hematopoietic bone marrow is clearly defined as the limiting factor to the development of internal emitter therapies. Current dosimetry models rely on chord-length distributions measured through the complex microstructure of the trabecular bone regions of the skeleton in which most of the active marrow is located. Recently, Nuclear Magnetic Resonance (NMR) has been used to obtain high-resolution three-dimensional (3D) images of small trabecular bone samples. These images have been coupled with computer programs to estimate dosimetric parameters such as chord-length distributions, and energy depositions by monoenergetic electrons. This new technique is based on the assumption that each voxel of the image is assigned either to bone tissue or to marrow tissue after application of a threshold value. Previous studies showed that this assumption had important consequences on the outcome of the computer calculations. Both the chord-length distribution measurements and the energy deposition calculations are subject to voxel effects that are responsible for large discrepancies when applied to mathematical models of trabecular bone. The work presented in this dissertation proposes first a quantitative study of the voxel effects. Consensus is that the voxelized representation of surfaces should not be used as direct input to dosimetry computer programs. Instead we need a new technique to transform the interfaces into smooth surfaces. The Marching Cube (MC) algorithm was used and adapted to do this transformation. The initial image was used to generate a continuous gray-level field throughout the image. The interface between bone and marrow was then simulated by the iso-gray-level surface that corresponds to a predetermined threshold value. Calculations were then performed using this new representation. Excellent results were obtained for both the chord-length distribution and the energy deposition measurements. Voxel effects were reduced to an acceptable level and the discrepancies found when using the voxelized representation of the interface were reduced to a few percent. We conclude that this new model should be used every time one performs dosimetry estimates using NMR images of trabecular bone samples.
Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology
NASA Astrophysics Data System (ADS)
Andersen, Claus E.
2011-05-01
Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.
Real-time computed tomography dosimetry during ultrasound-guided brachytherapy for prostate cancer.
Kaplan, Irving D; Meskell, Paul; Oldenburg, Nicklas E; Saltzman, Brian; Kearney, Gary P; Holupka, Edward J
2006-01-01
Ultrasound-guided implantation of permanent radioactive seeds is a treatment option for localized prostate cancer. Several techniques have been described for the optimal placement of the seeds in the prostate during this procedure. Postimplantation dosimetric calculations are performed after the implant. Areas of underdosing can only be corrected with either an external beam boost or by performing a second implant. We demonstrate the feasibility of performing computed tomography (CT)-based postplanning during the ultrasound-guided implant and subsequently correcting for underdosed areas. Ultrasound-guided brachytherapy is performed on a modified CT table with general anesthesia. The postplanning CT scan is performed after the implant, while the patient is still under anesthesia. Additional seeds are implanted into "cold spots," and the resultant dosimetry confirmed with CT. Intraoperative postplanning was successfully performed. Dose-volume histograms demonstrated adequate dose coverage during the initial implant, but on detailed analysis, for some patients, areas of underdosing were observed either at the apex or the peripheral zone. Additional seeds were implanted to bring these areas to prescription dose. Intraoperative postplanning is feasible during ultrasound-guided brachytherapy for prostate cancer. Although the postimplant dose-volume histograms for all patients, before the implantation of additional seeds, were adequate according to the American Brachytherapy Society criteria, specific critical areas can be underdosed. Additional seeds can then be implanted to optimize the dosimetry and reduce the risk of underdosing areas of cancer.
In vitro dosimetry of agglomerates
NASA Astrophysics Data System (ADS)
Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.
2014-06-01
Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d
Air density correction in ionization dosimetry.
Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M
2004-05-21
Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leichner, P.K.
This report summarizes research in beta-particle dosimetry, quantitative single-photon emission computed tomography (SPECT), the clinical implementation of these two areas of research in radioimmunotherapy (RIT), and postgraduate training provided since the inception of this grant on July 15, 1989. To improve beta-particle dosimetry, a point source function was developed that is valid for a wide range of beta emitters. Analytical solutions for beta-particle dose rates within out outside slabs of finite thickness were validated in experimental tumors and are now being used in clinical RIT. Quantitative SPECT based on the circular harmonic transform (CHT) algorithm was validated in phantom, experimental,more » and clinical studies. This has led to improved macrodosimetry in clinical RIT. In dosimetry at the multi-cellular level studies were made of the HepG2 human hepatoblastoma grown subcutaneously in nude mice. Histologic sections and autoradiographs were prepared to quantitate activity distributions of radiolabeled antibodies. Absorbed-dose calculations are being carried out for {sup 131}I and {sup 90}Y beta particles for these antibody distributions.« less
Hanford Laboratories Operation monthly activities report, August 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1959-09-15
This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.
Hanford Laboratories Operation monthly activities report, September 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1961-10-16
This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.
Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms -more » takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and female phantoms were further developed from the 50th percentile phantoms through adjustments in the body contour to match the total body masses given in CDC pediatric growth curves. The resulting six NURBS phantoms, male and female phantoms representing their 10th, 50th, and 90th weight percentiles, were used to investigate the influence of body fat distributions on internal organ doses following CT imaging. The phantoms were exposed to multislice chest and abdomen helical CT scans, and in-field organ absorbed doses were calculated. The results demonstrated that the use of traditional stylized phantoms yielded organ dose estimates that deviate from those given by the UF reference hybrid phantoms by up to a factor of 2. The study also showed that use of reference, or 50th percentile, phantoms to assess organ doses in underweight 15-year-old children would not lead to significant organ dose errors (typically less than 10%). However, more significant errors were noted (up to {approx}30%) when reference phantoms are used to represent overweight children in CT imaging dosimetry. These errors are expected to only further increase as one considers CT organ doses in overweight and obese individuals of the adult patient population, thus emphasizing the advantages of patient-sculptable phantom technology.« less
Agent-Based Computational Modeling to Examine How Individual Cell Morphology Affects Dosimetry
Cell-based models utilizing high-content screening (HCS) data have applications for predictive toxicology. Evaluating concentration-dependent effects on cell fate and state response is a fundamental utilization of HCS data.Although HCS assays may capture quantitative readouts at ...
Unifying dose specification between clinical BNCT centers in the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, K. J.; Binns, P. J.; Harling, O. K.
2008-04-15
A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comision Nacional de Energia Atomica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.
NASA Astrophysics Data System (ADS)
Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud
2015-10-01
Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and 18F, 99mTc, 131I and 177Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the 99mTc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.
Sanchez-Garcia, Manuel; Gardin, Isabelle; Lebtahi, Rachida; Dieudonné, Arnaud
2015-10-21
Two collapsed cone (CC) superposition algorithms have been implemented for radiopharmaceutical dosimetry of photon emitters. The straight CC (SCC) superposition method uses a water energy deposition kernel (EDKw) for each electron, positron and photon components, while the primary and scatter CC (PSCC) superposition method uses different EDKw for primary and once-scattered photons. PSCC was implemented only for photons originating from the nucleus, precluding its application to positron emitters. EDKw are linearly scaled by radiological distance, taking into account tissue density heterogeneities. The implementation was tested on 100, 300 and 600 keV mono-energetic photons and (18)F, (99m)Tc, (131)I and (177)Lu. The kernels were generated using the Monte Carlo codes MCNP and EGSnrc. The validation was performed on 6 phantoms representing interfaces between soft-tissues, lung and bone. The figures of merit were γ (3%, 3 mm) and γ (5%, 5 mm) criterions corresponding to the computation comparison on 80 absorbed doses (AD) points per phantom between Monte Carlo simulations and CC algorithms. PSCC gave better results than SCC for the lowest photon energy (100 keV). For the 3 isotopes computed with PSCC, the percentage of AD points satisfying the γ (5%, 5 mm) criterion was always over 99%. A still good but worse result was found with SCC, since at least 97% of AD-values verified the γ (5%, 5 mm) criterion, except a value of 57% for the (99m)Tc with the lung/bone interface. The CC superposition method for radiopharmaceutical dosimetry is a good alternative to Monte Carlo simulations while reducing computation complexity.
NASA Astrophysics Data System (ADS)
Jansen, Jan T. M.; Shrimpton, Paul C.
2016-07-01
The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of ±6% and ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.
2015-06-15
The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Undermore » the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan parameters. This session will review the results and summarize the individualized doses to major organs and the mean effective dose and CTDIvol estimate for 66,157 PA chest and 23,773 CT examinations respectively, using size-dependent computational phantoms coupled with Monte Carlo calculations. Learning Objectives: Review and summarize relevant NLST findings and conclusions. Understand the scope and scale of the NLST specific to participant dosimetry. Provide a comprehensive review of NLST participant dosimetry assessments. Summarize the results of an investigation providing individualized organ dose estimates for NLST participant cohorts.« less
DeWerd, Larry A; Huq, M Saiful; Das, Indra J; Ibbott, Geoffrey S; Hanson, William F; Slowey, Thomas W; Williamson, Jeffrey F; Coursey, Bert M
2004-03-01
Low dose rate brachytherapy is being used extensively for the treatment of prostate cancer. As of September 2003, there are a total of thirteen 125I and seven 103Pd sources that have calibrations from the National Institute of Standards and Technology (NIST) and the Accredited Dosimetry Calibration Laboratories (ADCLs) of the American Association of Physicists in Medicine (AAPM). The dosimetry standards for these sources are traceable to the NIST wide-angle free-air chamber. Procedures have been developed by the AAPM Calibration Laboratory Accreditation Subcommittee to standardize quality assurance and calibration, and to maintain the dosimetric traceability of these sources to ensure accurate clinical dosimetry. A description of these procedures is provided to the clinical users for traceability purposes as well as to provide guidance to the manufacturers of brachytherapy sources and ADCLs with regard to these procedures.
Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.
2009-09-30
The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less
TH-A-BRC-02: AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetsch, S.
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
Results from a Prototype Proton-CT Head Scanner
NASA Astrophysics Data System (ADS)
Johnson, R. P.; Bashkirov, V. A.; Coutrakon, G.; Giacometti, V.; Karbasi, P.; Karonis, N. T.; Ordoñez, C. E.; Pankuch, M.; Sadrozinski, H. F.-W.; Schubert, K. E.; Schulte, R. W.
We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods.
In Vitro Exposure Systems and Dosimetry Assessment Tools ...
In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re
Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziegner, Markus, E-mail: Markus.Ziegner.fl@ait.ac.at; Schmitz, Tobias; Hampel, Gabriele
2014-11-01
Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition ofmore » the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural modifications in the thermal column irradiation channel or the use of different irradiation sites than the thermal column, e.g., the beam tubes.« less
Introduction of a deformable x-ray CT polymer gel dosimetry system
NASA Astrophysics Data System (ADS)
Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.
2018-04-01
This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the validation of deformable dose accumulation algorithms.
Computational dosimetry for grounded and ungrounded human models due to contact current
NASA Astrophysics Data System (ADS)
Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao
2013-08-01
This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.
Verification of eye lens dose in IMRT by MOSFET measurement.
Wang, Xuetao; Li, Guangjun; Zhao, Jianling; Song, Ying; Xiao, Jianghong; Bai, Sen
2018-04-17
The eye lens is recognized as one of the most radiosensitive structures in the human body. The widespread use of intensity-modulated radiotherapy (IMRT) complicates dose verification and necessitates high standards of dose computation. The purpose of this work was to assess the computed dose accuracy of eye lens through measurements using a metal-oxide-semiconductor field-effect transistor (MOSFET) dosimetry system. Sixteen clinical IMRT plans of head and neck patients were copied to an anthropomorphic head phantom. Measurements were performed using the MOSFET dosimetry system based on the head phantom. Two MOSFET detectors were imbedded in the eyes of the head phantom as the left and the right lens, covered by approximately 5-mm-thick paraffin wax. The measurement results were compared with the calculated values with a dose grid size of 1 mm. Sixteen IMRT plans were delivered, and 32 measured lens doses were obtained for analysis. The MOSFET dosimetry system can be used to verify the lens dose, and our measurements showed that the treatment planning system used in our clinic can provide adequate dose assessment in eye lenses. The average discrepancy between measurement and calculation was 6.7 ± 3.4%, and the largest discrepancy was 14.3%, which met the acceptability criterion set by the American Association of Physicists in Medicine Task Group 53 for external beam calculation for multileaf collimator-shaped fields in buildup regions. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Unifying dose specification between clinical BNCT centers in the Americas.
Riley, K J; Binns, P J; Harling, O K; Kiger, W S; González, S J; Casal, M R; Longhino, J; Larrieu, O A Calzetta; Blaumann, H R
2008-04-01
A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comisión Nacional de Energía Atómica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.
The Future of Medical Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Robert D., E-mail: robert_adams@med.unc.edu
2015-07-01
The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values.more » Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.« less
Inhaled reactive gases typically cause respiratory tract toxicity with a prominent proximal to distal lesion pattern. This pattern is largely driven by airflow and interspecies differences between rodents and humans result from factors such as airway architecture, ventilation ra...
Updates on EPA’s High-Throughput Exposure Forecast (ExpoCast) Research Project (CPCP)
Recent research advances by the ORD ExpoCast project (CSS Rapid Exposure and Dosimetry) are presented to the computational toxicology community in the context of prioritizing chemicals on a risk-basis using joint ExpoCast and ToxCast predictions. Recent publications by Wambaugh e...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, D; Kost, S; Pickens, D
Purpose: To assess the utility of optically stimulated luminescent (OSL) dosimeter technology in calibrating and validating a Monte Carlo radiation transport code for computed tomography (CT). Methods: Exposure data were taken using both a standard CT 100-mm pencil ionization chamber and a series of 150-mm OSL CT dosimeters. Measurements were made at system isocenter in air as well as in standard 16-cm (head) and 32-cm (body) CTDI phantoms at isocenter and at the 12 o'clock positions. Scans were performed on a Philips Brilliance 64 CT scanner for 100 and 120 kVp at 300 mAs with a nominal beam width ofmore » 40 mm. A radiation transport code to simulate the CT scanner conditions was developed using the GEANT4 physics toolkit. The imaging geometry and associated parameters were simulated for each ionization chamber and phantom combination. Simulated absorbed doses were compared to both CTDI{sub 100} values determined from the ion chamber and to CTDI{sub 100} values reported from the OSLs. The dose profiles from each simulation were also compared to the physical OSL dose profiles. Results: CTDI{sub 100} values reported by the ion chamber and OSLs are generally in good agreement (average percent difference of 9%), and provide a suitable way to calibrate doses obtained from simulation to real absorbed doses. Simulated and real CTDI{sub 100} values agree to within 10% or less, and the simulated dose profiles also predict the physical profiles reported by the OSLs. Conclusion: Ionization chambers are generally considered the standard for absolute dose measurements. However, OSL dosimeters may also serve as a useful tool with the significant benefit of also assessing the radiation dose profile. This may offer an advantage to those developing simulations for assessing radiation dosimetry such as verification of spatial dose distribution and beam width.« less
MR and CT image fusion for postimplant analysis in permanent prostate seed implants.
Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto
2004-12-01
To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, R.
The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Undermore » the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan parameters. This session will review the results and summarize the individualized doses to major organs and the mean effective dose and CTDIvol estimate for 66,157 PA chest and 23,773 CT examinations respectively, using size-dependent computational phantoms coupled with Monte Carlo calculations. Learning Objectives: Review and summarize relevant NLST findings and conclusions. Understand the scope and scale of the NLST specific to participant dosimetry. Provide a comprehensive review of NLST participant dosimetry assessments. Summarize the results of an investigation providing individualized organ dose estimates for NLST participant cohorts.« less
Three-dimensional radiation dosimetry based on optically-stimulated luminescence
NASA Astrophysics Data System (ADS)
Sadel, M.; Høye, E. M.; Skyt, P. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.
2017-05-01
A new approach to three-dimensional (3D) dosimetry based on optically-stimulated luminescence (OSL) is presented. By embedding OSL-active particles into a transparent silicone matrix (PDMS), the well-established dosimetric properties of an OSL material are exploited in a 3D-OSL dosimeter. By investigating prototype dosimeters in standard cuvettes in combination with small test samples for OSL readers, it is shown that a sufficient transparency of the 3D-OSL material can be combined with an OSL response giving an estimated >10.000 detected photons in 1 second per 1mm3 voxel of the dosimeter at a dose of 1 Gy. The dose distribution in the 3D-OSL dosimeters can be directly read out optically without the need for subsequent reconstruction by computational inversion algorithms. The dosimeters carry the advantages known from personal-dosimetry use of OSL: the dose distribution following irradiation can be stored with minimal fading for extended periods of time, and dosimeters are reusable as they can be reset, e.g. by an intense (bleaching) light field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Herrick, A; Hoke, S
Purpose: A new readout technology based on pulsed optically stimulating luminescence is introduced (microSTARii, Landauer, Inc, Glenwood, IL60425). This investigation searches for approaches that maximizes the dosimetry accuracy in clinical applications. Methods: The sensitivity of each optically stimulated luminescence dosimeter (OSLD) was initially characterized by exposing it to a given radiation beam. After readout, the luminescence signal stored in the OSLD was erased by exposing its sensing area to a 21W white LED light for 24 hours. A set of OSLDs with consistent sensitivities was selected to calibrate the dose reader. Higher order nonlinear curves were also derived from themore » calibration readings. OSLDs with cumulative doses below 15 Gy were reused. Before an in-vivo dosimetry, the OSLD luminescence signal was erased with the white LED light. Results: For a set of 68 manufacturer-screened OSLDs, the measured sensitivities vary in a range of 17.3%. A sub-set of the OSLDs with sensitivities within ±1% was selected for the reader calibration. Three OSLDs in a group were exposed to a given radiation. Nine groups were exposed to radiation doses ranging from 0 to 13 Gy. Additional verifications demonstrated that the reader uncertainty is about 3%. With an external calibration function derived by fitting the OSLD readings to a 3rd-order polynomial, the dosimetry uncertainty dropped to 0.5%. The dose-luminescence response curves of individual OSLDs were characterized. All curves converge within 1% after the sensitivity correction. With all uncertainties considered, the systematic uncertainty is about 2%. Additional tests emulating in-vivo dosimetry by exposing the OSLDs under different radiation sources confirmed the claim. Conclusion: The sensitivity of individual OSLD should be characterized initially. A 3rd-order polynomial function is a more accurate representation of the dose-luminescence response curve. The dosimetry uncertainty specified by the manufacturer is 4%. Following the proposed approach, it can be controlled to 2%.« less
Xie, Tianwu; Kuster, Niels; Zaidi, Habib
2017-07-13
Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT'IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18 F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18 F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18 F-Amino acids, 18 F-Brain receptor substances, 18 F-FDG, 18 F-L-DOPA and 18 F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.
NASA Astrophysics Data System (ADS)
Xie, Tianwu; Kuster, Niels; Zaidi, Habib
2017-08-01
Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT’IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parra, Pamela Ochoa, E-mail: lapochoap@unal.edu.co; Veloza, Stella
The radiotracer called {sup 68}Ga-labelled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]Ga-PSMA-HBED-CC) is a novel radiophar-maceutical for the detection of prostate cancer lesions by positron emission tomography (PET) imaging. Setting up a cost-effective manual synthesis of this radiotracer and making its clinical translation in Colombia will require two important elements: the evaluation of the procedure to yield a consistent product, meeting standards of radio-chemical purity and low toxicity and then, the evaluation of the radiation dosimetry. In this paper a protocol to extrapolate the biokinetic model made in normal mice to humans by using the computer software for internal dose assessment OLINDA/EXM® is presented asmore » an accurate and standardized method for the calculation of radiation dosimetry estimates.« less
NASA Astrophysics Data System (ADS)
Mañeru, Fernando; Abós, Dolores; Bragado, Laura; Fuentemilla, Naiara; Caudepón, Fernando; Pellejero, Santiago; Miquelez, Santiago; Rubio, Anastasio; Goñi, Elena; Hernández-Vitoria, Araceli
2017-12-01
Dosimetry in liver radioembolization with 90Y microspheres is a fundamental tool, both for the optimization of each treatment and for improving knowledge of the treatment effects in the tissues. Different options are available for estimating the administered activity and the tumor/organ dose, among them the so-called partition method. The key factor in the partition method is the tumor/normal tissue activity uptake ratio (T/N), which is obtained by a single-photon emission computed tomography (SPECT) scan during a pre-treatment simulation. The less clear the distinction between healthy and tumor parenchyma within the liver, the more difficult it becomes to estimate the T/N ratio; therefore the use of the method is limited. This study presents a methodology to calculate the T/N ratio using global information from the SPECT. The T/N ratio is estimated by establishing uptake thresholds consistent with previously performed volumetry. This dose calculation method was validated against 3D voxel dosimetry, and was also compared with the standard partition method based on freehand regions of interest (ROI) outlining on SPECT slices. Both comparisons were done on a sample of 20 actual cases of hepatocellular carcinoma treated with resin microspheres. The proposed method and the voxel dosimetry method yield similar results, while the ROI-based method tends to over-estimate the dose to normal tissues. In addition, the variability associated with the ROI-based method is more extreme than the other methods. The proposed method is simpler than either the ROI or voxel dosimetry approaches and avoids the subjectivity associated with the manual selection of regions.
Shared Dosimetry Error in Epidemiological Dose-Response Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less
Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)
2005-06-01
l2O3:C OSL dosimeters . Overall design is based on similar systems described earlier by Justus et al. (1999) and Huston et al. (2001). Similar apparatus...Radioisotope Contamination 4. Pre-Positioned Physical Dosimeters C. Assessment of Emerging Dosimetry Technologies 1. Biological Measurements 2. Physico...architectures for radiation dose assessment tools. • Focus initial studies on defining the role of pre-positioned dosimeters , optimizing the size and
De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G Allan; Yoshizumi, Terry T
2008-08-01
Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies.
Application of MOSFET Detectors for Dosimetry in Small Animal Radiography Using Short Exposure Times
De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G. Allan; Yoshizumi, Terry T.
2008-01-01
Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies. PMID:18666818
New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.
Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R
2006-01-01
At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.
Bikson, Marom; Brunoni, Andre R; Charvet, Leigh E; Clark, Vincent P; Cohen, Leonardo G; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J; Frohlich, Flavio; Kappenman, Emily S; Lim, Kelvin O; Loo, Colleen; Mantovani, Antonio; McMullen, David P; Parra, Lucas C; Pearson, Michele; Richardson, Jessica D; Rumsey, Judith M; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M; Woods, Adam J; Lisanby, Sarah H
Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. Published by Elsevier Inc.
Bikson, Marom; Brunoni, Andre R.; Charvet, Leigh E.; Clark, Vincent P.; Cohen, Leonardo G.; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J.; Frohlich, Flavio; Kappenman, Emily S.; Lim, Kelvin O.; Loo, Colleen; Mantovani, Antonio; McMullen, David P.; Parra, Lucas C.; Pearson, Michele; Richardson, Jessica D.; Rumsey, Judith M.; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M.; Woods, Adam J.; Lisanby, Sarah H.
2018-01-01
Background Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. Objective This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. Methods The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Results Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. Conclusions These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. PMID:29398575
Dosimetric measurements and comparison studies in digital imaging system
NASA Astrophysics Data System (ADS)
Jung, Ji-Young; Kim, Hee-Joung; Lee, Chang-Lae; Cho, Hyo-Min; Nam, Sora
2008-03-01
Number of radiologic exams using digital imaging systems has rapidly increased with advanced imaging technologies. However, it has not been paid attention to the radiation dose in clinical situations. It was the motivation to study radiation dosimetry in the DR system. The objective of this study was to measure beam quality and patient's dose using DR system and to compare them to both IEC standard and IAEA guidelines. The measured average dose for chest and abdomen was 1.376 mGy and 9.501 mGy, respectively, compared to 0.4 mGy and 10.0 mGy in IAEA guidelines. The results also indicated that the DR system has a lower radiation beam quality than that of the IEC standard. The results showed that the patients may be exposed higher radiation for chest exams and lower radiation for abdomen exams using DR system. IAEA Guidelines were prepared based on western people which may be different weight and height for patients compared them to Korean. In conclusion, a new guideline for acceptable DR dosimetry for Korean patients may need to be developed with further studies for large populations. We believe that this research greatly help to introduce the importance of the dosimetry in diagnostic radiology in Korea. And, a development of database for dosimetry in diagnostic radiology will become an opportunity of making aware of radiation safety of medical examination to patient.
Lee, S Y; Kim, B H; Lee, K J
2001-06-01
Significant advances have been made in recent years to improve measurement technology and performance of phosphor materials in the fields of optically stimulated luminescence (OSL) dosimetry. Pulsed and continuous wave OSL studies recently carried out on alpha-Al2O3:C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of the study is to propose a new personal dosimetry system using alpha-Al2O3:C by taking advantage of its optical properties and energy dependencies. In the process of the study, a new dose assessment algorithm was developed using artificial neural networks in hopes of achieving a higher degree of accuracy and precision in personal OSL dosimetry system. The original hypothesis of this work is that the spectral information of X- and gamma-ray fields may be obtained by the analysis of the response of a multi-element system. In this study, a feedforward neural network using the error back-propagation method with Bayesian optimization was applied for the response unfolding procedure. The validation of the proposed algorithm was investigated by unfolding the 10 measured responses of alpha-Al2O3:C for arbitrarily mixed photon fields which range from 20 to 662 keV. c2001 Elsevier Science Ltd. All rights reserved.
Magnetic Fluid Hyperthermia for Bladder Cancer: A Preclinical Dosimetry Study
Oliveira, Tiago R.; Stauffer, Paul R.; Lee, Chen-Ting; Landon, Chelsea D.; Etienne, Wiguins; Ashcraft, Kathleen A.; McNerny, Katie L.; Mashal, Alireza; Nouls, John; Maccarini, Paolo F.; Beyer, Wayne F.; Inman, Brant; Dewhirst, Mark W.
2014-01-01
Purpose This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with Magnetic Fluid Hyperthermia (MFH), performed by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. Materials and Methods The bladders of twenty-five female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42°C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fiberoptic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterization method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. Results Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1°C/min to a steady-state of 42°C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. Conclusion These data demonstrate that our MFH system with magnetite-based nanoparticles provide well-localized heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues. PMID:24050253
Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging.
Persson, Morten; El Ali, Henrik H; Binderup, Tina; Pfeifer, Andreas; Madsen, Jacob; Rasmussen, Palle; Kjaer, Andreas
2014-03-01
(64)Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of (64)Cu-DOTA-AE105. Five mice received iv tail injection of (64)Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22 h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22 h was scaled to human value based on a difference between organ and body weights. The scaled values were then exported to OLINDA software for computation of the human absorbed doses. The residence times as well as effective dose equivalent for male and female could be obtained for each organ. To validate this approach, of human projection using mouse data, five mice received iv tail injection of another (64)Cu-DOTA peptide-based tracer, (64)Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using (64)Cu-DOTA-TATE. Human estimates of (64)Cu-DOTA-AE105 revealed the heart wall to receive the highest dose (0.0918 mSv/MBq) followed by the liver (0.0815 mSv/MBq), All other organs/tissue were estimated to receive doses in the range of 0.02-0.04 mSv/MBq. The mean effective whole-body dose of (64)Cu-DOTA-AE105 was estimated to be 0.0317 mSv/MBq. Relatively good correlation between human predicted and observed dosimetry estimates for (64)Cu-DOTA-TATE was found. Importantly, the effective whole body dose was predicted with very high precision (predicted value: 0.0252 mSv/Mbq, Observed value: 0.0315 mSv/MBq) thus validating our approach for human dosimetry estimation. Favorable dosimetry estimates together with previously reported uPAR PET data fully support human testing of (64)Cu-DOTA-AE105. Copyright © 2014 Elsevier Inc. All rights reserved.
Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.
Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L
2014-10-01
For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.
1998-04-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less
The Importance of Dosimetry Standardization in Radiobiology
Desrosiers, Marc; DeWerd, Larry; Deye, James; Lindsay, Patricia; Murphy, Mark K; Mitch, Michael; Macchiarini, Francesca; Stojadinovic, Strahinja; Stone, Helen
2013-01-01
Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies. PMID:26401441
Effectiveness evaluation of existing noise controls in a deep shaft underground mine.
Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R; Lee, Vivien; Hu, Chengcheng
2015-01-01
Noise exposures and hearing loss in the mining industry continue to be a major problem, despite advances in noise control technologies. This study evaluated the effectiveness of engineering, administrative, and personal noise controls using both traditional and in-ear dosimetry by job task, work shift, and five types of earplug. The noise exposures of 22 miners performing deep shaft-sinking tasks were evaluated during 56 rotating shifts in an underground mine. Miners were earplug-insertion trained, earplug fit-tested, and monitored utilizing traditional and in-ear dosimetry. The mean TWA8 noise exposure via traditional dosimetry was 90.1 ± 8.2 dBA, while the mean in-ear TWA8 was 79.6 ± 13.8 dBA. The latter was significantly lower (p < 0.05) than the Mine Safety and Health Administration (MSHA) personal exposure limit (PEL) of 90 dBA. Dosimetry mean TWA8 noise exposures for bench blowing (103.5 ± 0.9 dBA), jumbo drill operation (103.0 ± 0.8 dBA), and mucking tasks (99.6 ± 4.7 dBA) were significantly higher (p < 0.05) than other tasks. For bench blowing, cable pulling, grinding, and jumbo drill operation tasks, the mean in-ear TWA8 was greater than 85 dBA. Those working swing shift had a significantly higher (p < 0.001) mean TWA8 noise exposure (95.4 ± 7.3 dBA) than those working day shift. For percent difference between traditional vs. in-ear dosimetry, there was no significant difference among types of earplug used. Reflective of occupational hearing loss rate trends across the mining industry, this study found that, despite existing engineering and administrative controls, noise exposure levels exceeded regulatory limits, while the addition of personal hearing protection limited excessive exposures.
Sohrabi, Mehdi; Parsi, Masoumeh; Sina, Sedigheh
2018-05-17
A diagnostic reference level is an advisory dose level set by a regulatory authority in a country as an efficient criterion for protection of patients from unwanted medical exposure. In computed tomography, the direct dose measurement and data collection methods are commonly applied for determination of diagnostic reference levels. Recently, a new quality-control-based dose survey method was proposed by the authors to simplify the diagnostic reference-level determination using a retrospective quality control database usually available at a regulatory authority in a country. In line with such a development, a prospective dual-purpose quality control dosimetry protocol is proposed for determination of diagnostic reference levels in a country, which can be simply applied by quality control service providers. This new proposed method was applied to five computed tomography scanners in Shiraz, Iran, and diagnostic reference levels for head, abdomen/pelvis, sinus, chest, and lumbar spine examinations were determined. The results were compared to those obtained by the data collection and quality-control-based dose survey methods, carried out in parallel in this study, and were found to agree well within approximately 6%. This is highly acceptable for quality-control-based methods according to International Atomic Energy Agency tolerance levels (±20%).
Woliner-van der Weg, Wietske; Schoffelen, Rafke; Hobbs, Robert F; Gotthardt, Martin; Goldenberg, David M; Sharkey, Robert M; Slump, Cornelis H; van der Graaf, Winette Ta; Oyen, Wim Jg; Boerman, Otto C; Sgouros, George; Visser, Eric P
2015-12-01
Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.
WE-AB-BRB-05: Toward a 2D Water-Equivalent Dosimetry Panel Using KCl:Eu2+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazur, T; Wang, Y; Li, H
Purpose: KCl:Eu2+ storage phosphor shows promise for radiation therapy dosimetry. The purpose of this work is to investigate several important aspects of this material for potential commercial use. Methods: KCl:Eu2+ chips were fabricated and a conformal coating using Parylene was applied. Material’s dose response in a 6 MV beam was investigated using Monte-Carlo simulations. We attempted to micronize the materials using a spiral jet mill. As we did not have a water-free glovebox, we used commercially available non-hygroscopic BaFBr0.85I0.15:Eu2+ computed radiography material to test if a homogeneous panel can be made using micron-sized phosphors. Results: Dosimeters remained intact and showedmore » no change in PSL intensity after eight hrs of submersion in water. We then optically bleached the samples for reuse, irradiated and immersed for another 24 hrs. We observed marginal worsening of the PSL signal for both the soaked and un-soaked chips. By contrast, we were unable to measure PSL intensity of the un-coated pellets due to these pellets dissolving within minutes of being immersed in water. MC data indicate that the micron-sized KCl:Eu2+ is predicted to have a nearly water-equivalent response. KCl:Eu2+ particles with a median size of 3 microns can be produced using a jet mill, which could be reduced further if necessary. While the particles tend to agglomerate over time when stored in a desiccator, they still possess favorable d50’s and d99’s even after 100 minutes, providing an adequate time window for making a panel via tape casting. A panel cast using optimized methods exhibits nearly perfect particle arrangement. Conclusions: Data shown here support ongoing efforts in fabricating a reusable, high resolution dosimetry panel in a water-free glovebox using micron-sized KCl:Eu2+ particles separated by water-equivalent polymers. The conformal coating thereafter will provide good humidity resistance. HL is the founder of DoseImaging, LLC that is exclusively dedicated to commercializing this technology.« less
NASA Astrophysics Data System (ADS)
Wayson, Michael B.; Bolch, Wesley E.
2018-04-01
Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.
Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system
NASA Astrophysics Data System (ADS)
Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald
2005-03-01
The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR can only be properly accounted for by image-based, patient-specific treatment planning, as has been common in external beam radiation therapy for many years. MINERVA offers 3D Monte Carlo-based MTR treatment planning as its first integrated operational capability. The new MINERVA system will ultimately incorporate capabilities for a comprehensive list of radiation therapies. In progress are modules for external beam photon-electron therapy and boron neutron capture therapy (BNCT). Brachytherapy and proton therapy are planned. Through the open application programming interface (API), other groups can add their own modules and share them with the community.
Applying an analytical method to study neutron behavior for dosimetry
NASA Astrophysics Data System (ADS)
Shirazi, S. A. Mousavi
2016-12-01
In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Quon, H; McNutt, T
2016-06-15
Purpose: To determine if the accumulated parotid dosimetry using planning CT to daily CBCT deformation and dose re-calculation can predict for radiation-induced xerostomia. Methods: To track and dosimetrically account for the effects of anatomical changes on the parotid glands, we propagated physicians’ contours from planning CT to daily CBCT using a deformable registration with iterative CBCT intensity correction. A surface mesh for each OAR was created with the deformation applied to the mesh to obtain the deformed parotid volumes. Daily dose was computed on the deformed CT and accumulated to the last fraction. For both the accumulated and the plannedmore » parotid dosimetry, we tested the prediction power of different dosimetric parameters including D90, D50, D10, mean, standard deviation, min/max dose to the combined parotids and patient age to severe xerostomia (NCI-CTCAE grade≥2 at 6 mo follow-up). We also tested the dosimetry to parotid sub-volumes. Three classification algorithms, random tree, support vector machine, and logistic regression were tested to predict severe xerostomia using a leave-one-out validation approach. Results: We tested our prediction model on 35 HN IMRT cases. Parameters from the accumulated dosimetry model demonstrated an 89% accuracy for predicting severe xerostomia. Compared to the planning dosimetry, the accumulated dose consistently demonstrated higher prediction power with all three classification algorithms, including 11%, 5% and 30% higher accuracy, sensitivity and specificity, respectively. Geometric division of the combined parotid glands into superior-inferior regions demonstrated ∼5% increased accuracy than the whole volume. The most influential ranked features include age, mean accumulated dose of the submandibular glands and the accumulated D90 of the superior parotid glands. Conclusion: We demonstrated that the accumulated parotid dosimetry using CT-CBCT registration and dose re-calculation more accurately predicts for severe xerostomia and that the superior portion of the parotid glands may be particularly important in predicting for severe xerostomia. This work was supported in part by NIH/NCI under grant R42CA137886 and in part by Toshiba big data research project funds.« less
NASA Astrophysics Data System (ADS)
O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.
2016-12-01
An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) but did not follow results from skeletal models based upon assumptions of an infinite expanse of trabecular spongiosa.
Adler, Stephen; Mena, Esther; Kurdziel, Karen; Maltzman, Julia; Wallin, Bruce; Hoffman, Kimberly; Pastan, Ira; Paik, Chang Hum; Choyke, Peter; Hassan, Raffit
2015-01-01
Amatuximab is a chimeric high-affinity monoclonal IgG1/k antibody targeting mesothelin that is being developed for treatment of mesothelin-expressing cancers. Considering the ongoing clinical development of amatuximab in these cancers, our objective was to characterize the biodistribution, and dosimetry of 111Indium (111In) radiolabelled amatuximab in mesothelin-expressing cancers. Between October 2011 and February 2013, six patients including four with malignant mesothelioma and two with pancreatic adenocarcinoma underwent Single Photon Emission Computed Tomography-Computed Tomography (SPECT/CT) imaging following administration of 111In amatuximab. SPECT/CT images were obtained at 2–4 hours, 24–48 hours and 96–168 hours after radiotracer injection. In all patients, tumor to background ratios (TBR) consistently met or exceeded an uptake of 1.2 (range 1.2–62.0) which is considered the minimum TBR that can be visualized. TBRs were higher in tumors of patients with mesothelioma than pancreatic adenocarcinoma. 111In-amatuximab uptake was noted in both primary tumors and metastatic sites. The radiotracer dose was generally well-tolerated and demonstrated physiologic uptake in the heart, liver, kidneys and spleen. This is the first study to show tumor localization of an anti-mesothelin antibody in humans. Our results show that 111In-amatuximab was well tolerated with a favorable dosimetry profile. It localizes to mesothelin expressing cancers with a higher uptake in mesothelioma than pancreatic cancer. PMID:25756664
Naval Surface Warfare Center Dahlgren Division Technical Digest. Advanced Materials Technology
1993-09-01
of Prins1 2’h3 ated TL glow curve plus a contribution from and Novakov ,12 these peaks are interpreted to the phototransfer process. arise from the... Novakov , T., "X-ray Photoelectron Spectra cist in the Radiation and Molecular Orbital Interpretation of the Valence Dosimetry Group. Since Band
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.
Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood
2016-01-01
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
Nuclear medicine in clinical urology and nephrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tauxe, W.N.; Dubousky, E.V.
This book presents explanations of current procedures involving the kidney with information of the performance of each test, its rationale, and interpretation. The information covers all currently used radiopharmaceuticals, radiation dosimetry, instrumentation, test protocols, and mathematical principles of pathophysiology as they relate to nuclear medicine studies. Information is provided on which radiopharmaceutical, instrument, or computer application to use, and when.
Reactor Dosimetry State of the Art 2008
NASA Astrophysics Data System (ADS)
Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan
2009-08-01
Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G. Williams, A. P. Ribaric and T. Schnauber. Agile high-fidelity MCNP model development techniques for rapid mechanical design iteration / J. A. Kulesza.Extension of Raptor-M3G to r-8-z geometry for use in reactor dosimetry applications / M. A. Hunter, G. Longoni and S. L. Anderson. In vessel exposure distributions evaluated with MCNP5 for Atucha II / J. M. Longhino, H. Blaumann and G. Zamonsky. Atucha I nuclear power plant azimutal ex-vessel flux profile evaluation / J. M. Longhino ... [et al.]. UFTR thermal column characterization and redesign for maximized thermal flux / C. Polit and A. Haghighat. Activation counter using liquid light-guide for dosimetry of neutron burst / M. Hayashi ... [et al.]. Control rod reactivity curves for the annular core research reactor / K. R. DePriest ... [et al.]. Specification of irradiation conditions in VVER-440 surveillance positions / V. Kochkin ... [et al.]. Simulations of Mg-Ar ionisation and TE-TE ionisation chambers with MCNPX in a straightforward gamma and beta irradiation field / S. Nievaart ... [et al.]. The change of austenitic stainless steel elements content in the inner parts of VVER-440 reactor during operation / V. Smutný, J. Hep and P. Novosad. Fast neutron environmental spectrometry using disk activation / G. Lövestam ... [et al.]. Optimization of the neutron activation detector location scheme for VVER-lOOO ex-vessel dosimetry / V. N. Bukanov ... [et al.]. Irradiation conditions for surveillance specimens located into plane containers installed in the WWER-lOOO reactor of unit 2 of the South-Ukrainian NPP / O. V. Grytsenko. V. N. Bukanov and S. M. Pugach. Conformity between LRO mock-ups and VVERS NPP RPV neutron flux attenuation / S. Belousov. Kr. Ilieva and D. Kirilova. FLUOLE: a new relevant experiment for PWR pressure vessel surveillance / D. Beretz ... [et al.]. Transport of neutrons and photons through the iron and water layers / M. J. Kost'ál ... [et al.]. Condition evaluation of spent nuclear fuel assemblies from the first-generation nuclear-powered submarines by gamma scanning / A. F. Usatyi. L. A. Serdyukova and B. S. Stepennov -- Oral session 3: Power plant surveillance. Upgraded neutron dosimetry procedure for VVER-440 surveillance specimens / V. Kochkin ... [et al.]. Neutron dosimetry on the full-core first generation VVER-440 aimed to reactor support structure load evaluation / P. Borodkin ... [et al.]. Ex-vessel neutron dosimetry programs for PWRs in Korea / C. S. Yoo. B. C. Kim and C. C. Kim. Comparison of irradiation conditions of VVER-1000 reactor pressure vessel and surveillance specimens for various core loadings / V. N. Bukanov ... [et al.]. Re-evaluation of dosimetry in the new surveillance program for the Loviisa 1 VVER-440 reactor / T. Serén -- Oral session 4: Benchmarks, intercomparisons and adjustment methods. Determination of the neutron parameter's uncertainties using the stochastic methods of uncertainty propagation and analysis / G. Grégoire ... [et al.].Covariance matrices for calculated neutron spectra and measured dosimeter responses / J. G. Williams ... [et al.]. The role of dosimetry at the high flux reactor / S. C. van der Marek ... [et al.]. Calibration of a manganese bath relative to Cf-252 nu-bar / D. M. Gilliam, A. T. Yue and M. Scott Dewey. Major upgrade of the reactor dosimetry interpretation methodology used at the CEA: general principle / C. Destouches ... [et al.] -- Oral session 5: power plant surveillance. The role of ex-vessel neutron dosimetry in reactor vessel surveillance in South Korea / B.-C. Kim ... [et al.]. Spanish RPV surveillance programmes: lessons learned and current activities / A. Ballesteros and X. Jardí. Atucha I nuclear power plant extended dosimetry and assessment / H. Blaumann ... [et al.]. Monitoring of radiation load of pressure vessels of Russian VVER in compliance with license amendments / G. Borodkin ... [et al.] -- Poster session 2: Test reactors, accelerators and advanced systems; cross sections, nuclear data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of nuclides - 2008 / T. Golashvili -- Oral session 6: Test reactors, accelerators and advanced systems. Neutronic analyses in support of the HFIR beamline modifications and lifetime extension / I. Remec and E. D. Blakeman. Characterization of neutron test facilities at Sandia National Laboratories / D. W. Vehar ... [et al.]. LYRA irradiation experiments: neutron metrology and dosimetry / B. Acosta and L. Debarberis. Calculated neutron and gamma-ray spectra across the prismatic very high temperature reactor core / J. W. Sterbentz. Enhancement of irradiation capability of the experimental fast reactor joyo / S. Maeda ... [et al.]. Neutron spectrum analyses by foil activation method for high-energy proton beams / C. H. Pyeon ... [et al.] -- Oral session 7: Cross sections, nuclear data, damage correlations. Investigation of new reaction cross-section evaluations in order to update and extend the IRDF-2002 reactor dosimetry library / É. M. Zsolnay, H. J. Nolthenius and A. L. Nichols. A novel approach towards DPA calculations / A. Hogenbirk and D. F. Da Cruz. A new ENDFIB-VII.O based multigroup cross-section library for reactor dosimetry / F. A. Alpan and S. L. Anderson. Activities at the NEA for dosimetry applications / H. Henriksson and I. Kodeli. Validation and verification of covariance data from dosimetry reaction cross-section evaluations / S. Badikov. Status of the neutron cross section standards / A. D. Carlson -- Oral session 8: transport calculations. A dosimetry assessment for the core restraint of an advanced gas cooled reactor / D. A. Thornton ... [et al.]. Neutron dosimetry study in the region of the support structure of a VVER-1000 type reactor / G. Borodkin ... [et al.]. SNS moderator poison design and experiment validation of the moderator performance / W. Lu ... [et al.]. Analysis of OSIRIS in-core surveillance dosimetry for GONDOLE steel irradiation program by using TRIPOLI-4 Monte Carlo code / Y. K. Lee and F. Malouch.Reactor dosimetry applications using RAPTOR-M3G: a new parallel 3-D radiation transport code / G. Longoni and S. L. Anderson.
A parameterization method and application in breast tomosynthesis dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinhua; Zhang, Da; Liu, Bob
2013-09-15
Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized usingmore » a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA protocol and in the UK, European, and IAEA dosimetry protocols. Microsoft Excel™ spreadsheets are provided for the convenience of readers.« less
WE-B-207-00: CT Lung Cancer Screening Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Undermore » the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan parameters. This session will review the results and summarize the individualized doses to major organs and the mean effective dose and CTDIvol estimate for 66,157 PA chest and 23,773 CT examinations respectively, using size-dependent computational phantoms coupled with Monte Carlo calculations. Learning Objectives: Review and summarize relevant NLST findings and conclusions. Understand the scope and scale of the NLST specific to participant dosimetry. Provide a comprehensive review of NLST participant dosimetry assessments. Summarize the results of an investigation providing individualized organ dose estimates for NLST participant cohorts.« less
Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies.
Lopci, Egesta; Chiti, Arturo; Castellani, Maria Rita; Pepe, Giovanna; Antunovic, Lidija; Fanti, Stefano; Bombardieri, Emilio
2011-05-01
The technological advances in imaging and production of radiopharmaceuticals are driving an innovative way of evaluating the targets for antineoplastic therapies. Besides the use of imaging to better delineate the volume of external beam radiation therapy in oncology, modern imaging techniques are able to identify targets for highly specific medical therapies, using chemotherapeutic drugs and antiangiogenesis molecules. Moreover, radionuclide imaging is able to select targets for radionuclide therapy and to give the way to in vivo dose calculation to target tissues and to critical organs. This contribution reports the main studies published on matched pairs dosimetry with (124)I/(131)I- and (86)Y/(90)Y-labelled radiopharmaceuticals, with an emphasis on metaiodobenzylguanidine (MIBG) and monoclonal antibodies.
Experimental Procedures for Sensitive and Reproducible In Situ EPR Tooth Dosimetry
Williams, Benjamin B.; Sucheta, Artur; Dong, Ruhong; Sakata, Yasuko; Iwasaki, Akinori; Burke, Gregory; Grinberg, Oleg; Lesniewski, Piotr; Kmiec, Maciej; Swartz, Harold M.
2007-01-01
In vivo electron paramagnetic resonance (EPR) tooth dosimetry provides a means for non-invasive retrospective assessment of personal radiation exposure. While there is a clear need for such capabilities following radiation accidents, the most pressing need for the development of this technology is the heightened likelihood of terrorist events or nuclear conflicts. This technique will enable such measurements to be made at the site of an incident, while the subject is present, to assist emergency personnel as they perform triage for the affected population. At Dartmouth Medical School this development is currently being tested with normal volunteers with irradiated teeth placed in their mouths and with patients who have undergone radiation therapy. Here we describe progress in practical procedures to provide accurate and reproducible in vivo dose estimates. PMID:18591989
Computer Model Of Fragmentation Of Atomic Nuclei
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
NASA Astrophysics Data System (ADS)
Marshall, Emily L.; Borrego, David; Tran, Trung; Fudge, James C.; Bolch, Wesley E.
2018-03-01
Epidemiologic data demonstrate that pediatric patients face a higher relative risk of radiation induced cancers than their adult counterparts at equivalent exposures. Infants and children with congenital heart defects are a critical patient population exposed to ionizing radiation during life-saving procedures. These patients will likely incur numerous procedures throughout their lifespan, each time increasing their cumulative radiation absorbed dose. As continued improvements in long-term prognosis of congenital heart defect patients is achieved, a better understanding of organ radiation dose following treatment becomes increasingly vital. Dosimetry of these patients can be accomplished using Monte Carlo radiation transport simulations, coupled with modern anatomical patient models. The aim of this study was to evaluate the performance of the University of Florida/National Cancer Institute (UF/NCI) pediatric hybrid computational phantom library for organ dose assessment of patients that have undergone fluoroscopically guided cardiac catheterizations. In this study, two types of simulations were modeled. A dose assessment was performed on 29 patient-specific voxel phantoms (taken as representing the patient’s true anatomy), height/weight-matched hybrid library phantoms, and age-matched reference phantoms. Two exposure studies were conducted for each phantom type. First, a parametric study was constructed by the attending pediatric interventional cardiologist at the University of Florida to model the range of parameters seen clinically. Second, four clinical cardiac procedures were simulated based upon internal logfiles captured by a Toshiba Infinix-i Cardiac Bi-Plane fluoroscopic unit. Performance of the phantom library was quantified by computing both the percent difference in individual organ doses, as well as the organ dose root mean square values for overall phantom assessment between the matched phantoms (UF/NCI library or reference) and the patient-specific phantoms. The UF/NCI hybrid phantoms performed at percent differences of between 15% and 30% for the parametric set of irradiation events. Among internal logfile reconstructed procedures, the UF/NCI hybrid phantoms performed with RMS organ dose values between 7% and 29%. Percent improvement in organ dosimetry via the use of hybrid library phantoms over the reference phantoms ranged from 6.6% to 93%. The use of a hybrid phantom library, Monte Carlo radiation transport methods, and clinical information on irradiation events provide a means for tracking organ dose in these radiosensitive patients undergoing fluoroscopically guided cardiac procedures. This work was supported by Advanced Laboratory for Radiation Dosimetry Studies, University of Florida, American Association of University Women, National Cancer Institute Grant 1F31 CA159464.
TH-A-BRC-00: New Task Groups for External Beam QA: An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miften, M.
2016-06-15
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
TH-A-BRC-01: AAPM TG-135U1 QA for Robotic Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterich, S.
AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics Survey of possible calibration protocols for calibration of Gamma Stereotactic Radiosurgery (GSR) devices Overview of modern Quality Assurance techniques for GSR AAPM TG-218 Tolerance Levels and Methodologies for IMRT Verification QA - Moyed Miften Patient-specific IMRT QA measurement is a process designed to identify discrepancies between calculated and delivered doses. Error tolerance limits are not well-defined or consistently applied across centers. The AAPM TG-218 report has been prepared to improve the understanding and consistency of this process by providing recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Learning Objectives: Review measurement methods and methodologies for absolute dose verification Provide recommendations on delivery methods, data interpretation, the use of analysis routines and choice of tolerance limits for IMRT QA Sonja Dieterich has a research agreement with Sun Nuclear Inc. Steven Goetsch is a part-time consultant for Elekta.« less
Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.
Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam
2018-04-21
Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor
2013-01-01
This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677
Shared dosimetry error in epidemiological dose-response analyses
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less
Characterization of the nanoDot OSLD dosimeter in CT.
Scarboro, Sarah B; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C; Zhang, Di; McNitt-Gray, Michael; Kry, Stephen F
2015-04-01
The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80-140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.
Effect of contrast media on megavoltage photon beam dosimetry.
Rankine, Ashley W; Lanzon, Peter J; Spry, Nigel A
2008-01-01
The purpose of this study was to quantify changes in photon beam dosimetry caused by using contrast media during computed tomography (CT) simulation and determine if the resulting changes are clinically significant. The effect of contrast on dosimetry was first examined for a single 6-MV photon beam incident on a plane phantom with a structure of varying electron densities (rho(e)) and thickness. Patient studies were then undertaken in which CT data sets were collected with and without contrast for 6 typical patients. Three patients received IV contrast (Optiray-240) only and 3 received IV plus oral (Gastrograffin) contrast. Each patient was planned using conformal multifield techniques in accordance with the department standards. Two methods were used to compare the effect of contrast on dosimetry for each patient. The phantom analysis showed that the change in dose at the isocenter for a single 10 x 10 cm2 6-MV photon beam traversing 10 cm of a contrast-enhanced structure with rho(e) 1.22 was 7.0% (1.22 was the highest average rho(e) observed in the patient data). As a result of using contrast, increases in rho(e) were observed in structures for the 6 patients studied. Consequently, when using contrast-enhanced CT data for multifield planning, increases in dose at the isocenter and in critical structures were observed up to 2.1% and 2.5%, respectively. Planning on contrast-enhanced CT images may result in an increase in dose of up to 2.1% at the isocenter, which would generally be regarded as clinically insignificant. If, however, a critical organ is in close proximity to the planning target volume (PTV) and is planned to receive its maximum allowable dose, planning on contrast-enhanced CT images may result in that organ receiving dose beyond the recommended tolerance. In these instances, pre-contrast CT data should be used for dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Reilly, S; Maynard, M; Marshall, E
Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletalmore » regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)« less
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.
2003-05-01
The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.
Lockhart, A Craig; Liu, Yongjian; Dehdashti, Farrokh; Laforest, Richard; Picus, Joel; Frye, Jennifer; Trull, Lauren; Belanger, Stefanie; Desai, Madhuri; Mahmood, Syed; Mendell, Jeanne; Welch, Michael J; Siegel, Barry A
2016-06-01
The purpose of this study was to evaluate the safety, dosimetry, and apparent receptor occupancy (RO) of [(64)Cu]DOTA-patritumab, a radiolabeled monoclonal antibody directed against HER3/ERBB3 in subjects with advanced solid tumors. Dosimetry subjects (n = 5) received [(64)Cu]DOTA-patritumab and underwent positron emission tomography (PET)/X-ray computed tomography (CT) at 3, 24, and 48 h. Evaluable RO subjects (n = 3 out of 6) received [(64)Cu]DOTA-patritumab at day 1 and day 8 (after 9.0 mg/kg patritumab) followed by PET/CT at 24 h post-injection. Endpoints included safety, tumor uptake, and efficacy. The tumor SUVmax (± SD) was 5.6 ± 4.5, 3.3 ± 1.7, and 3.0 ± 1.1 at 3, 24, and 48 h in dosimetry subjects. The effective dose and critical organ dose (liver) averaged 0.044 ± 0.008 mSv/MBq and 0.46 ± 0.086 mGy/MBq, respectively. In RO subjects, tumor-to-blood ratio decreased from 1.00 ± 0.32 at baseline to 0.57 ± 0.17 after stable patritumab, corresponding to a RO of 42.1 ± 3. [(64)Cu]DOTA-patritumab was safe. These limited results suggest that this PET-based method can be used to determine tumor-apparent RO.
Andersen, Claus E; Nielsen, Søren Kynde; Greilich, Steffen; Helt-Hansen, Jakob; Lindegaard, Jacob Christian; Tanderup, Kari
2009-03-01
A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.
Self‐expanding stent effects on radiation dosimetry in esophageal cancer
Francis, Samual R.; Wang, Brian; Williams, Greg V.; Cox, Kristen; Adler, Douglas G.; Shrieve, Dennis C.; Salter, Bill J.
2013-01-01
It is the purpose of this study to evaluate how self‐expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post‐stent CT simulation scan. Three methods were used to represent pre‐stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post‐stent dosimetry for each patient was compared to approximated pre‐stent dosimetry. For each of the three pre‐stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p‐values <0.02) than those estimated in the post‐stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre‐stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose‐volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry. PACS number: 87.55.dk PMID:23835387
Fixed, object-specific intensity compensation for cone beam optical CT radiation dosimetry
NASA Astrophysics Data System (ADS)
Dekker, Kurtis H.; Hazarika, Rubin; Silveira, Matheus A.; Jordan, Kevin J.
2018-03-01
Optical cone beam computed tomography (CT) scanning of radiochromic gel dosimeters, using a CCD camera and a low stray light convergent source, provides fast, truly 3D radiation dosimetry with high accuracy. However, a key limiting factor in radiochromic gel dosimetry at large (⩾10 cm diameter) volumes is the initial attenuation of the dosimeters. It is not unusual to observe a 5–10× difference in signal intensity through the dosimeter center versus through the surrounding medium in pre-irradiation images. Thus, all dosimetric information in a typical experiment is measured within the lower 10%–20% of the camera sensor’s range, and re-use of gels is often not possible due to a lack of transmission. To counteract this, in this note we describe a simple method to create source compensators by printing on transparent films. This technique, which is easily implemented and inexpensive, is an optical analogue to the bowtie filter in x-ray CT. We present transmission images and solution phantom reconstructions to demonstrate that (1) placing compensators beyond the focal zone of the imaging lens prevents high spatial frequency features of the printed films from generating reconstruction artifacts, and (2) object-specific compensation considerably reduces the range of intensities measured in projection images. This will improve the measurable dose range in optical CT dosimetry, and will enable imaging of larger gel volumes (∼15 cm diameter). Additionally, it should enable re-use of dosimeters by printing a new compensator for a second experiment.
Self-expanding stent effects on radiation dosimetry in esophageal cancer.
Francis, Samual R; Anker, Christopher J; Wang, Brian; Williams, Greg V; Cox, Kristen; Adler, Douglas G; Shrieve, Dennis C; Salter, Bill J
2013-07-08
It is the purpose of this study to evaluate how self-expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post-stent CT simulation scan. Three methods were used to represent pre-stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post-stent dosimetry for each patient was compared to approximated pre-stent dosimetry. For each of the three pre-stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p-values < 0.02) than those estimated in the post-stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre-stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose-volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry.
Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...
A practical three-dimensional dosimetry system for radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Pengyi; Adamovics, John; Oldham, Mark
2006-10-15
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE trade mark sign dosimeter ({approx}90% of radius). The EBT and PRESAGE trade mark sign distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE trade mark sign optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
NASA Astrophysics Data System (ADS)
Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.
2013-12-01
In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.
Evaluation of six TPS algorithms in computing entrance and exit doses.
Tan, Yun I; Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun; Elliott, Alex
2014-05-08
Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%-3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison.
PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)
NASA Astrophysics Data System (ADS)
Thwaites, David; Baldock, Clive
2013-06-01
IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of radiation therapy treatment through improved clinical dosimetry to investigate and understand the dosimetric challenges of modern radiation treatments to provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry to energise and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D and semi-3D dosimetry techniques We believe the conference program, with its excellent range of expert and specialist speakers, met these objectives. Thanks are due to all invited speakers for their participation, to the Local Organising Committee members for all their hard work in making the conference happen, particularly the small core administrative support group, and to the range of academic, organisation and commercial sponsors who generously supported the meeting. The Scientific Committee members are also thanked for reviewing the submitted manuscripts and for assisting in the editorial process. Finally, all who travelled to Sydney, Australia for the meeting are acknowledged for choosing to attend and contribute to making this a successful conference. Local Conference Organising Committee David Thwaites (Conference Convener) Clive Baldock Leanne Price Elizabeth Starkey May Whitaker Peter Greer Lois Holloway Phil Vial Robin Hill Conference Scientific Committee Sven Back (Sweden) Clive Baldock (Australia) Cheng-Shie Wuu (USA) Yves de Deene (Belgium) Simon Doran (UK) Geoffrey Ibbott (USA) Andrew Jirasek (Canada) Kevin Jordan (Canada) Martin Lepage (Canada) Mark Oldham (USA) Evangelos Pappas (Greece) John Schreiner (Canada) David Thwaites (Australia) David ThwaitesClive Baldock DirectorExecutive Dean Institute of Medical PhysicsFaculty of Science School of PhysicsMacquarie University University of SydneyNorth Ryde NSW 2006NSW 2109 AustraliaAustralia The PDF also contains the conference program.
1994-10-01
dosimetry services using thermoluminescent dosimeters ( TLDs ) to meet 10 CFR 19, 20, 30-36, 40 and 70; to proNide dosimetry service for environmental...USAF Personnel Dosimetry Branch. Once it is determined that area or external dosimetry is necessary, request the number of TLDs required by FAX or letter... dosimetry , Request TLDs 2 - 4 weeks in advance and always designate a control badge. The Radiation Dosimetry Branch thanks you in advance for doing everything
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.
In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.
2011-02-15
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.« less
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.
2011-01-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments. PMID:21452716
DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M
2011-02-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.
Zoppetti, Nicola; Andreuccetti, Daniele; Bellieni, Carlo; Bogi, Andrea; Pinto, Iole
2011-12-01
Portable - or "laptop" - computers (LCs) are widely and increasingly used all over the world. Since LCs are often used in tight contact with the body even by pregnant women, fetal exposures to low frequency magnetic fields generated by these units can occur. LC emissions are usually characterized by complex waveforms and are often generated by the main AC power supply (when connected) and by the display power supply sub-system. In the present study, low frequency magnetic field emissions were measured for a set of five models of portable computers. For each of them, the magnetic flux density was characterized in terms not just of field amplitude, but also of the so called "weighted peak" (WP) index, introduced in the 2003 ICNIRP Statement on complex waveforms and confirmed in the 2010 ICNIRP Guidelines for low frequency fields. For the model of LC presenting the higher emission, a deeper analysis was also carried out, using numerical dosimetry techniques to calculate internal quantities (current density and in-situ electric field) with reference to a digital body model of a pregnant woman. Since internal quantities have complex waveforms too, the concept of WP index was extended to them, considering the ICNIRP basic restrictions defined in the 1998 Guidelines for the current density and in the 2010 Guidelines for the in-situ electric field. Induced quantities and WP indexes were computed using an appropriate original formulation of the well known Scalar Potential Finite Difference (SPFD) numerical method for electromagnetic dosimetry in quasi-static conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry
NASA Astrophysics Data System (ADS)
Xie, Tianwu; Kuster, Niels; Zaidi, Habib
2017-04-01
Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.
A reusable OSL-film for 2D radiotherapy dosimetry
NASA Astrophysics Data System (ADS)
Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt
2017-11-01
Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film’s reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after ‘beam on’ or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min-1) over the 20 min measured, and limited angular dependence ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film’s measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after irradiation. Inside the (IMRT) treatment fields residual energy dependent effects were not observed. Novelty and significance: Implementing a reusable optical stimulated luminescence (OSL) film for radiotherapy dosimetry would enable user-friendly, sub(mm) resolution 2D dosimetry with instantaneous read-out. Radiology OSL-films have a strong energy dependent response which hampers accurate dosimetry. The current work reports measurements with a first 2D OSL-film tailored to the radiotherapy needs: including an improved water equivalent composition. The dosimeter adds the ability for sub-mm resolution repeated measurements to the portfolio of radiotherapy dosimetry.
A reusable OSL-film for 2D radiotherapy dosimetry.
Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt
2017-10-19
Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff ). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film's reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after 'beam on' or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min -1 ) over the 20 min measured, and limited angular dependence ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film's measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after irradiation. Inside the (IMRT) treatment fields residual energy dependent effects were not observed. Novelty and significance: Implementing a reusable optical stimulated luminescence (OSL) film for radiotherapy dosimetry would enable user-friendly, sub(mm) resolution 2D dosimetry with instantaneous read-out. Radiology OSL-films have a strong energy dependent response which hampers accurate dosimetry. The current work reports measurements with a first 2D OSL-film tailored to the radiotherapy needs: including an improved water equivalent composition. The dosimeter adds the ability for sub-mm resolution repeated measurements to the portfolio of radiotherapy dosimetry.
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
End-to-end tests using alanine dosimetry in scanned proton beams
NASA Astrophysics Data System (ADS)
Carlino, A.; Gouldstone, C.; Kragl, G.; Traneus, E.; Marrale, M.; Vatnitsky, S.; Stock, M.; Palmans, H.
2018-03-01
This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the ‘quenching’ effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.
2002-11-01
of CaF2:Mn and A120 3 TLDs for gamma-ray dosimetry ). In addition, DRDC Ottawa has recently substantially expanded its efforts in radiation dosimetry ...use of any real- time electronic dosimeter. Foils have long been proposed and used for criticality dosimetry (as well as for general monitoring of...ray Dosimetry DRDC Ottawa offers a number (over five) of various thermoluminescence dosimetry ( TLD ) systems. The choice of any particular TLD depends
Hurtado, Jorge L; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L; Bolch, Wesley E
2012-03-01
Currently, two classes of computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible, but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms called hybrid phantoms takes advantage of the best features of stylized and voxel phantoms-flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-y-old Korean volunteer and a 25-y-old U.S. female patient, respectively, with supplemental high-resolution CT images of the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention and International Commission on Radiation Protection, respectively. Finally, two hybrid adult male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from the NURBS phantoms at resolutions of 0.158 × 0.158 × 0.158 cm and 0.126 × 0.126 × 0.126 cm for the male and female, respectively. To highlight the flexibility of the hybrid phantoms, graphical displays are given of (1) underweight and overweight adult male phantoms, (2) a sitting position for the adult female phantom, and (3) extraction and higher-resolution voxelization of the small intestine for localized dosimetry of mucosal and stem cell layers. These phantoms are used to model radioactively contaminated individuals and to then assess time-dependent detector count rate thresholds corresponding to 50, 250, and 500 mSv effective dose, as might be needed during in-field radiological triage by first responders or first receivers.
Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter
NASA Astrophysics Data System (ADS)
Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min
2013-09-01
The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.
Bretin, F; Bahri, M A; Bernard, C; Warnock, G; Aerts, J; Mestdagh, N; Buchanan, T; Otoul, C; Koestler, F; Mievis, F; Giacomelli, F; Degueldre, C; Hustinx, R; Luxen, A; Seret, A; Plenevaux, A; Salmon, E
2015-08-01
[(18)F]UCB-H is a novel radiotracer with a high affinity for synaptic vesicle glycoprotein 2A (SV2A), a protein expressed in synaptic vesicles. SV2A is the binding site of levetiracetam, a "first-in-class" antiepileptic drug with a distinct but still poorly understood mechanism of action. The objective of this study was to determine the biodistribution and radiation dosimetry of [(18)F]UCB-H in a human clinical trial and to establish injection limits according to biomedical research guidelines. Additionally, the clinical radiation dosimetry results were compared to estimations in previously published preclinical data. Dynamic whole body positron emission tomography/X-ray computed tomography (PET/CT) imaging was performed over approximately 110 min on five healthy male volunteers after injection of 144.5 ± 7.1 MBq (range, 139.1-156.5 MBq) of [(18)F]UCB-H. Major organs were delineated on CT images, and time-activity curves were obtained from co-registered dynamic PET emission scans. The bladder could only be delineated on PET images. Time-integrated activity coefficients were calculated as area under the curve using trapezoidal numerical integration. Urinary excretion data based on PET activities including voiding was also simulated using the dynamic bladder module of OLINDA/EXM. The radiation dosimetry was calculated using OLINDA/EXM. The effective dose to the OLINDA/EXM 70-kg standard male was 1.54 × 10(-2) ± 6.84 × 10(-4) millisieverts (mSv)/MBq, with urinary bladder wall, gallbladder wall, and the liver receiving the highest absorbed dose. The brain, the tracer's main organ of interest, received an absorbed dose of 1.89 × 10(-2) ± 2.32 × 10(-3) mGy/MBq. This first human dosimetry study of [(18)F]UCB-H indicated that the tracer shows similar radiation burdens to widely used common clinical tracers. Single injections of at maximum 672 MBq for US practice and 649 MBq for European practice keep radiation exposure below recommended limits. Recently published preclinical dosimetry data extrapolated from mice provided satisfactory prediction of total body and effective dose but showed significant differences in organ absorbed doses compared to human data.
Brady, S L; Kaufman, R A
2012-06-01
The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ~25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy(-1) versus the CT scatter phantom 29.2 ± 1.0 mV cGy(-1) and FIA with x-ray 29.9 ± 1.1 mV cGy(-1) methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ~3000 mV. The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual use for phantom dosimetry, a measurement error ~12% will be reflected in the dosimetry results. The calibration process must emulate the eventual CT dosimetry process by matching or excluding scatter when calibrating the MOSFETs. Finally, the authors recommend that the MOSFETs are energy calibrated approximately every 2500-3000 mV. © 2012 American Association of Physicists in Medicine.
Thermoluminescent dosimetry in veterinary diagnostic radiology.
Hernández-Ruiz, L; Jimenez-Flores, Y; Rivera-Montalvo, T; Arias-Cisneros, L; Méndez-Aguilar, R E; Uribe-Izquierdo, P
2012-12-01
This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements.
Lu, Gray; Marsh, Steven; Damet, Jerome; Carbonez, Pierre; Laban, John; Bateman, Christopher; Butler, Anthony; Butler, Phil
2017-06-01
Spectral computed tomography (CT) is an up and coming imaging modality which shows great promise in revealing unique diagnostic information. Because this imaging modality is based on X-ray CT, it is of utmost importance to study the radiation dose aspects of its use. This study reports on the implementation and evaluation of a Monte Carlo simulation tool using TOPAS for estimating dose in a pre-clinical spectral CT scanner known as the MARS scanner. Simulated estimates were compared with measurements from an ionization chamber. For a typical MARS scan, TOPAS estimated for a 30 mm diameter cylindrical phantom a CT dose index (CTDI) of 29.7 mGy; CTDI was measured by ion chamber to within 3% of TOPAS estimates. Although further development is required, our investigation of TOPAS for estimating MARS scan dosimetry has shown its potential for further study of spectral scanning protocols and dose to scanned objects.
Simulation of the neutron flux in the irradiation facility at RA-3 reactor.
Bortolussi, S; Pinto, J M; Thorp, S I; Farias, R O; Soto, M S; Sztejnberg, M; Pozzi, E C C; Gonzalez, S J; Gadan, M A; Bellino, A N; Quintana, J; Altieri, S; Miller, M
2011-12-01
A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comisión Nacional de Energía Atómica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fleetwood, Daniel M. (Editor)
1990-01-01
Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, single-event upset and latchup, isolation technologies, device and integrated circuit effects and hardening, spacecraft charging and electromagnetic effects.
The Role of Dosimetry in High-Quality EMI Risk Assessment
2006-09-14
wireless communication usage and exposure to different parts of the body (especially for children and foetuses ), including multiple exposure from...Calculation of induced electric fields in pregnant women and in the foetus is urgently needed. Very little computation has been carried out on...advanced models of the pregnant human and the foetus with appropriate anatomical modelling. It is important to assess possible enhanced induction of
Development of the two Korean adult tomographic computational phantoms for organ dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun
2006-02-15
Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, andmore » manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm{sup 3} for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian), and stylized ORNL phantom. The armless KTMAN-1 can be applied to dosimetry for computed tomography or lateral x-ray examination, while the whole body KTMAN-2 can be used for radiation protection dosimetry.« less
Steel, Jared; Stewart, Allan; Satory, Philip
2009-09-01
Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the electron beam SSD increased the penumbra width (defined as the lateral distance of the 80% and 20% isodose contours) by 8-10 mm at the depths of 10-20 mm. Mean photon beam penumbra width increased with increased MLC stepping, and the mean MLC penumbra was approximately 1.5 times greater than that across the corresponding Cerrobend shielding. Intraleaf dose discrepancy in the direction orthogonal to the beam edge also increased with MLC stepping. The weighted DDVH comparison techniques allowed the composite dosimetry resulting from the interplay of the abovementioned variables to be ranked. The MLC dosimetry ranked as good or better than that resulting from beam matching with Cerrobend for all except large field overlaps (-2.5 mm gap). The results for the linear-weighted DDVH comparison suggest that optimal MLC abutment dosimetry results from an optical surface gap of around 1 +/- 0.5 mm. Furthermore, this appears reasonably lenient to abutment gap variation, such as that arising from uncertainty in beam markup or other setup errors.
Metwaly, M; Glegg, M; Baggarley, S P; Elliott, A
2015-01-01
Objective: This study describes a two dimensional electronic portal imaging device (EPID) transit dosimetry model that can predict either: (1) in-phantom exit dose, or (2) EPID transit dose, for treatment verification. Methods: The model was based on a quadratic equation that relates the reduction in intensity to the equivalent path length (EPL) of the attenuator. In this study, two sets of quadratic equation coefficients were derived from calibration dose planes measured with EPID and ionization chamber in water under reference conditions. With two sets of coefficients, EPL can be calculated from either EPID or treatment planning system (TPS) dose planes. Consequently, either the in-phantom exit dose or the EPID transit dose can be predicted from the EPL. The model was tested with two open, five wedge and seven sliding window prostate and head and neck intensity-modulated radiation therapy (IMRT) fields on phantoms. Results were analysed using absolute gamma analysis (3%/3 mm). Results: The open fields gamma pass rates were >96.8% for all comparisons. For wedge and IMRT fields, comparisons between predicted and TPS-computed in-phantom exit dose resulted in mean gamma pass rate of 97.4% (range, 92.3–100%). As for the comparisons between predicted and measured EPID transit dose, the mean gamma pass rate was 97.5% (range, 92.6–100%). Conclusion: An EPID transit dosimetry model that can predict in-phantom exit dose and EPID transit dose was described and proven to be valid. Advances in knowledge: The described model is practical, generic and flexible to encourage widespread implementation of EPID dosimetry for the improvement of patients' safety in radiotherapy. PMID:25969867
EFFECTIVE DOSE IN TWO DIFFERENT DENTAL CBCT SYSTEMS: NEWTOM VGi AND PLANMECA 3D MID.
Ghaedizirgar, Mohammad; Faghihi, Reza; Paydar, Reza; Sina, Sedigheh
2017-11-01
Cone beam computed tomography, CBCT, is a kind of CT scanner producing conical diverging X-rays, in which a large area of a two-dimensional detector is irradiated in each rotation. Different investigations have been performed on dosimetry of dental CBCT. As there is no special protocol for dental CBCT, CT scan protocols are used for dosimetry. The purpose of this study is measurement of dose to head and neck organs in two CBCT systems, i.e. Planmeca 3D Mid (PM) and NewTom VGi (NT), using thermoluminescence dosimetry and Rando phantom. The thermoluminescent dosimetry (TLD)-100 chips were put at the position of different organs of the head and neck. Two TLD-100 chips were inserted at each position, the dose values were measured for several different field sizes, i.e. 8 × 8, 12 × 8 and 15 × 15 cm2 for NewTom, and 10 × 10 and 20 × 17 cm2 for Planmeca systems. According to the results, the average effective dose in PM is much more than the NT system in the same field size, because of the greater mAs values. For routine imaging protocols used for NT, the effective dose values are 70, 73 and 121 µSv for 8 × 8, 12 × 8 and 15 × 15 cm2 field sizes, respectively. In PM, the effective dose in 10 × 10 cm2 and 17 × 20 cm2 is 259 and 341 µSv, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MO-D-BRD-01: Memorial to Bengt Bjarngard - Memorial Lecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I
We lost a legendary medical physicist, Dr. Bengt Erik Bjarngard, to angiosarcoma an aggressive type of cancer. He devoted his life to providing improved methods of radiation treatment for this devastating disease over the last 36 years. Bengt was born in a rural village of Bjarnum in southern Sweden, located near forest and is known for its furniture making. He migrated to USA at the age of 35 and was recruited by Dr. Samuel Hellman to lead a group of physicists that became the “mecca of medical physics” known as the Joint Center of Radiation Therapy (JCRT) at Harvard Medicalmore » School in Boston. Bengt mentored some of the best physicists in the country, and many of our modern treatments go back to the early days of research at the JCRT. These accomplishments, dating from 1969–1989, include: dose optimization using computer control; soft wedges; stereotactic radiosurgery (SRS); total-body irradiation (TBI); CT-planning; and radiation dosimetry. Bengt worked at Brown University in Rhode Island and at the University of Pennsylvania in Philadelphia, where he provided major contributions in radiation dosimetry, specifically with the head scatter model. He advocated superior calculation algorithm through the Helax treatment planning system that was on par from most commercial systems. Bengt served as AAPM president in 1979 and was a recipient of the Coolidge Award in 1998. He had a lifelong love of nature, retiring in 2000 from the University of Pennsylvania to take care of his 200 acres of homestead forest in Maine. His legacy continues through his contributions to radiation dosimetry. This session, on small field dosimetry, is a small tribute to his memory. Further details can be found in his obituary in Med Phy, 41(4), 040801, 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Xu, X
Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based onmore » Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)« less
Online 3D EPID-based dose verification: Proof of concept.
Spreeuw, Hanno; Rozendaal, Roel; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben; van Herk, Marcel
2016-07-01
Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5-10 s irradiation time. A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.
Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H
2009-05-01
The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.
NASA Astrophysics Data System (ADS)
Xu, X. George; Bednarz, Bryan; Paganetti, Harald
2008-07-01
It has been long known that patients treated with ionizing radiation carry a risk of developing a second cancer in their lifetimes. Factors contributing to the recently renewed concern about the second cancer include improved cancer survival rate, younger patient population as well as emerging treatment modalities such as intensity-modulated radiation treatment (IMRT) and proton therapy that can potentially elevate secondary exposures to healthy tissues distant from the target volume. In the past 30 years, external-beam treatment technologies have evolved significantly, and a large amount of data exist but appear to be difficult to comprehend and compare. This review article aims to provide readers with an understanding of the principles and methods related to scattered doses in radiation therapy by summarizing a large collection of dosimetry and clinical studies. Basic concepts and terminology are introduced at the beginning. That is followed by a comprehensive review of dosimetry studies for external-beam treatment modalities including classical radiation therapy, 3D-conformal x-ray therapy, intensity-modulated x-ray therapy (IMRT and tomotherapy) and proton therapy. Selected clinical data on second cancer induction among radiotherapy patients are also covered. Problems in past studies and controversial issues are discussed. The needs for future studies are presented at the end.
Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications
NASA Technical Reports Server (NTRS)
Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.;
2014-01-01
The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.
A measurement of the radiation dose to LDEF by passive dosimetry
NASA Technical Reports Server (NTRS)
Blake, J. B.; Imamoto, S. S.
1993-01-01
The results from a pair of thermoluminescent dosimeter experiments flown aboard the Long Duration Exposure Facility (LDEF) show an integrated dose several times smaller than that predicted by the NASA environmental models for shielding thicknesses much greater than 0.10 gm/sq cm aluminum. For thicknesses between 0.01 and 0.1 gm/sq cm, the measured dose was in agreement with predictions. The Space and Environment Technology Center of The Aerospace Corporation fielded two related experiments on LDEF to measure the energetic radiation dose by means of passive dosimetry. The sensors were LiF thermoluminescent dosimeters mounted behind various thicknesses of shielding. The details of the experiment are described first, followed by the results of the observations. A comparison is made with the predictions based upon the NASA environmental models and the actual mission profile flown by LDEF; conclusions follow.
Impact of Radiation Biology on Fundamental Insights in Biology
DOE R&D Accomplishments Database
Setlow, Richard B.
1982-07-27
Research supported by OHER [Office of Health and Environmental Research] and its predecessors has as one of its major goals an understanding of the effects of radiation at low doses and dose rates on biological systems, so as to predict their effects on humans. It is not possible to measure such effects directly. They must be predicted from basic knowledge on how radiation affects cellular components such as DNA and membranes and how cells react to such changes. What is the probability of radiation producing human mutations and what are the probabilities of radiation producing cancer? The end results of such studies are radiation exposure standards for workers and for the general population. An extension of these goals is setting standards for exposure to chemicals involved in various energy technologies. This latter problem is much more difficult because chemical dosimetry is a primitive state compared to radiation dosimetry.
Development of a high resolution voxelised head phantom for medical physics applications.
Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W
2017-01-01
Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Stepanenko, Valeriy F; Hoshi, Masaharu; Dubasov, Yuriy V; Sakaguchi, Aya; Yamamoto, Masayoshi; Orlov, Mark Y; Bailiff, Ian K; Ivannikov, Alexander I; Skvortsov, Valeriy G; Iaskova, Elena K; Kryukova, Irina G; Zhumadilov, Kassym S; Endo, Satoru; Tanaka, Kenichi; Apsalikov, Kazbek N; Gusev, Boris I
2006-02-01
Spatial distributions of soil contamination by 137Cs (89 sampling points) and 239+240Pu (76 points) near and within Dolon village were analyzed. An essential exponential decrease of contamination was found in Dolon village: the distance of a half reduction in contamination is about 0.87-1.25 km (in a northwest-southeast direction from the supposed centerline of the radioactive trace). This fact is in agreement with the available exposure rate measurements near Dolon (September 1949 archive data): on the basis of a few measurements the pattern of the trace was estimated to comprise a narrow 2 km corridor of maximum exposure rate. To compare computed external doses in air with local dose estimates by retrospective luminescence dosimetry (RLD) the gradient of radioactive soil contamination within the village was accounted for. The computed dose associated with the central axis of the trace was found to be equal to 2260 mGy (calculations based on archive exposure rate data). Local doses near the RLD sampling points (southeast of the village) were calculated to be in the range 466-780 mGy (averaged value: 645+/-70 mGy), which is comparable with RLD data (averaged value 460+/-92 mGy with range 380-618 mGy). A comparison of the computed mean dose in the settlement with dose estimates by ESR tooth enamel dosimetry makes it possible to estimate the "upper level" of the "shielding and behavior" factor in dose reduction for inhabitants of Dolon village which was found to be 0.28+/-0.068.
In vivo dosimetry in UK external beam radiotherapy: current and future usage.
MacDougall, Niall D; Graveling, Michael; Hansen, Vibeke N; Brownsword, Kevin; Morgan, Andrew
2017-04-01
Towards Safer Radiotherapy recommended that radiotherapy (RT) centres should have protocols in place for in vivo dosimetry (IVD) monitoring at the beginning of patient treatment courses (Donaldson S. Towards safer radiotherapy. R Coll Radiol 2008). This report determines IVD implementation in the UK in 2014, the methods used and makes recommendations on future use. Evidence from peer-reviewed journals was used in conjunction with the first survey of UK RT centre IVD practice since the publication of Towards Safer Radiotherapy. In March 2014, profession-specific questionnaires were sent to radiographer, clinical oncologist and physics staff groups in each of the 66 UK RT centres. Response rates from each group were 74%, 45% and 74%, respectively. 73% of RT centres indicated that they performed IVD. Diodes are the most popular IVD device. Thermoluminescent dosimeter (TLD) is still in use in a number of centres but not as a sole modality, being used in conjunction with diodes and/or electronic portal imaging device (EPID). The use of EPID dosimetry is increasing and is considered of most potential value for both geometric and dosimetric verification. Owing to technological advances, such as electronic data transfer, independent monitor unit checking and daily image-guided radiotherapy, the overall risk of adverse treatment events in RT has been substantially reduced. However, the use of IVD may prevent a serious radiation incident. Point dose IVD is not considered suited to the requirements of verifying advanced RT techniques, leaving EPID dosimetry as the current modality likely to be developed as a future standard. Advances in knowledge: An updated perspective on UK IVD use and provision of professional guidelines for future implementation.
In vivo dosimetry in UK external beam radiotherapy: current and future usage
Graveling, Michael; Hansen, Vibeke N; Brownsword, Kevin; Morgan, Andrew
2017-01-01
Objective: Towards Safer Radiotherapy recommended that radiotherapy (RT) centres should have protocols in place for in vivo dosimetry (IVD) monitoring at the beginning of patient treatment courses (Donaldson S. Towards safer radiotherapy. R Coll Radiol 2008). This report determines IVD implementation in the UK in 2014, the methods used and makes recommendations on future use. Methods: Evidence from peer-reviewed journals was used in conjunction with the first survey of UK RT centre IVD practice since the publication of Towards Safer Radiotherapy. In March 2014, profession-specific questionnaires were sent to radiographer, clinical oncologist and physics staff groups in each of the 66 UK RT centres. Results: Response rates from each group were 74%, 45% and 74%, respectively. 73% of RT centres indicated that they performed IVD. Diodes are the most popular IVD device. Thermoluminescent dosimeter (TLD) is still in use in a number of centres but not as a sole modality, being used in conjunction with diodes and/or electronic portal imaging device (EPID). The use of EPID dosimetry is increasing and is considered of most potential value for both geometric and dosimetric verification. Conclusion: Owing to technological advances, such as electronic data transfer, independent monitor unit checking and daily image-guided radiotherapy, the overall risk of adverse treatment events in RT has been substantially reduced. However, the use of IVD may prevent a serious radiation incident. Point dose IVD is not considered suited to the requirements of verifying advanced RT techniques, leaving EPID dosimetry as the current modality likely to be developed as a future standard. Advances in knowledge: An updated perspective on UK IVD use and provision of professional guidelines for future implementation. PMID:28205452
An Integrating Dosimeter for Pulsed Radiation,
1983-12-01
obtained using 10 MeV electrons from a linear accelerator and placing the TLDs in an aluminum package equivalent to the thickness of the pin diode * --. and...Radiation Dosimetry System overcomes this problem by electronic - ally integrating the output of a pin diode. The integrator section of the system...for publication. APPROVED: BOBBY L. BUCHANAN, Chief Radiation Hardened Electronics Technology Branch V-. Solid State Sciences Division APPROVED
Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption
2008-12-01
PDT is currently in worldwide multicenter clinical trials for the localized prostate cancer therapy. The available results indicate that PDT employing...advanced laser fiber technology and sophisticated light dosimetry is able to treat localized prostate cancer in an effective and safe way. The...combination of photosensitization with current chemotherapy or other new drug therapies will further improve its treatment for the localized prostate
Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption
2007-12-01
anticancer drug effectiveness. PDT is currently in worldwide multicenter clinical trials for the localized prostate cancer therapy. The available results...indicate that PDT employing advanced laser fiber technology and sophisticated light dosimetry is able to treat localized prostate cancer in an...treatment for localized prostate cancer patients that accounts for more than 90% of total prostate cancer population. 15. SUBJECT TERMS Photodynamic
Barrett's esophagus: endoscopic treatments II
Greenwald, Bruce D.; Lightdale, Charles J.; Abrams, Julian A.; Horwhat, John D.; Chuttani, Ram; Komanduri, Srinadh; Upton, Melissa P.; Appelman, Henry D.; Shields, Helen M.; Shaheen, Nicholas J.; Sontag, Stephen J.
2013-01-01
The following on endoscopic treatments of Barrett's esophagus includes commentaries on animal experiments on cryotherapy; indications for cryotherapy, choice of dosimetry, number of sessions, and role in Barrett's esophagus and adenocarcinoma; recent technical developments of RFA technology and long-term effects; the comparative effects of diverse ablation procedures and the rate of recurrence following treatment; and the indications for treatment of dysplasia and the role of radiofrequency ablation. PMID:21950812
Pediatric Phantom Dosimetry of Kodak 9000 Cone-beam Computed Tomography.
Yepes, Juan F; Booe, Megan R; Sanders, Brian J; Jones, James E; Ehrlich, Ygal; Ludlow, John B; Johnson, Brandon
2017-05-15
The purpose of the study was to evaluate the radiation dose of the Kodak 9000 cone-beam computed tomography (CBCT) device for different anatomical areas using a pediatric phantom. Absorbed doses resulting from maxillary and mandibular region three by five cm CBCT volumes of an anthropomorphic 10-year-old child phantom were acquired using optical stimulated dosimetry. Equivalent doses were calculated for radiosensitive tissues in the head and neck area, and effective dose for maxillary and mandibular examinations were calculated following the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Of the mandibular scans, the salivary glands had the highest equivalent dose (1,598 microsieverts [μSv]), followed by oral mucosa (1,263 μSv), extrathoracic airway (pharynx, larynx, and trachea; 859 μSv), and thyroid gland (578 μSv). For the maxilla, the salivary glands had the highest equivalent dose (1,847 μSv), followed closely by oral mucosa (1,673 μSv), followed by the extrathoracic airway (pharynx, larynx, and trachea; 1,011 μSv) and lens of the eye (202 μSv). Compared to previous research of the Kodak 9000, completed with the adult phantom, a child receives one to three times more radiation for mandibular scans and two to 10 times more radiation for maxillary scans.
CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.
Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong
2016-09-01
Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
10 CFR 835.1304 - Nuclear accident dosimetry.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...
10 CFR 835.1304 - Nuclear accident dosimetry.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...
10 CFR 835.1304 - Nuclear accident dosimetry.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...
10 CFR 835.1304 - Nuclear accident dosimetry.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...
10 CFR 835.1304 - Nuclear accident dosimetry.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...
Characterization of the nanoDot OSLD dosimeter in CT
Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.
2015-01-01
Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD. PMID:25832070
Characterization of the nanoDot OSLD dosimeter in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarboro, Sarah B.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030; The Methodist Hospital, Houston, Texas 77030
Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dosemore » linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahpoor, M; Abbasi, M; Sen, A
Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-Tmore » scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning on a day to day basis.« less
Effect of respiratory motion on internal radiation dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205
Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic anatomical model provides more accurate internal radiation dosimetry estimates for the lungs and abdominal organs based on realistic modeling of respiratory motion. This work also contributes to a better understanding of model-induced uncertainties in internal radiation dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, W.N.; Kellogg, L.S.; Matsumoto, W.Y.
1988-05-01
This report is in response to a request from Westinghouse Hanford Company (WHC) that the PNL National Dosimetry Center (NDC) perform physics-dosimetry analyses (E > MeV) for N Reactor Pressure Tubes 2954 and 3053. As a result of these analyses, and recommendations for additional studies, two physics-dosimetry re-evaluations for Pressure Tube 1165 were also accomplished. The primary objective of Pacific Northwest Laboratories' (PNL) National Dosimetry Center (NDC) physics-dosimetry work for N Reactor was to provide FERRET-SAND II physics-dosimetry results to assist in the assessment of neutron radiation-induced changes in the physical and mechanical properties of N Reactor pressure tubes. 15more » refs., 6 figs., 5 tabs.« less
2009-03-01
environment II.A: Characterization of dosimetry in IMRT radiobiological experiment phantom using TLDs and film. (7-10 mos.) Objectives: 1... dosimetry with TLDs and film. (8-10 mos.) 4. Analysis of measured dosimetry with TLDs and film compared to predicted dosimetry from treatment...cells were). Dosimetry in the phantom was assessed with film and monitor units were calculated accordingly to deliver the desired dose. Once in
Characterising an aluminium oxide dosimetry system.
Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor
2015-09-01
In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.
The view from the trenches: part 2-technical considerations for EPR screening.
Nicolalde, Roberto J; Gougelet, Robert M; Rea, Michael; Williams, Benjamin B; Dong, Ruhong; Kmiec, Maciej M; Lesniewski, Piotr N; Swartz, Harold M
2010-02-01
There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders' feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders' recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods.
Zink, F E; McCollough, C H
1994-08-01
The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.
Robinson, Andrew P; Tipping, Jill; Cullen, David M; Hamilton, David; Brown, Richard; Flynn, Alex; Oldfield, Christopher; Page, Emma; Price, Emlyn; Smith, Andrew; Snee, Richard
2016-12-01
Patient-specific absorbed dose calculations for molecular radiotherapy require accurate activity quantification. This is commonly derived from Single-Photon Emission Computed Tomography (SPECT) imaging using a calibration factor relating detected counts to known activity in a phantom insert. A series of phantom inserts, based on the mathematical models underlying many clinical dosimetry calculations, have been produced using 3D printing techniques. SPECT/CT data for the phantom inserts has been used to calculate new organ-specific calibration factors for (99m) Tc and (177)Lu. The measured calibration factors are compared to predicted values from calculations using a Gaussian kernel. Measured SPECT calibration factors for 3D printed organs display a clear dependence on organ shape for (99m) Tc and (177)Lu. The observed variation in calibration factor is reproduced using Gaussian kernel-based calculation over two orders of magnitude change in insert volume for (99m) Tc and (177)Lu. These new organ-specific calibration factors show a 24, 11 and 8 % reduction in absorbed dose for the liver, spleen and kidneys, respectively. Non-spherical calibration factors from 3D printed phantom inserts can significantly improve the accuracy of whole organ activity quantification for molecular radiotherapy, providing a crucial step towards individualised activity quantification and patient-specific dosimetry. 3D printed inserts are found to provide a cost effective and efficient way for clinical centres to access more realistic phantom data.
Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body
Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
SU-C-BRD-07: The Radiological Physics Center (RPC): 45 Years of Improving Radiotherapy Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Followill, D; Lowenstein, J; Molineu, A
Purpose: The RPC, established in 1968 has contributed to the development, conduct, and QA of NCI funded multi-institutional cooperative group clinical trials and institutions, primarily in the USA/Canada and 242 other countries, participating in trials. Methods: The RPC QA program components were designed to audit the radiation dose calculation chain from the NIST traceable reference beam calibration, to inclusion of dosimetry parameters used to calculate tumor doses, to the delivery of the radiation dose. The QA program included: 1) remote TLD/OSLD audit of machine output, 2) on-site dosimetry review visits, 3) credentialing for advanced technologies, and 4) review of patientmore » treatment records. The RPC presented and published their findings to the radiation oncology community. Results: The number of institutions monitored by the RPC increased from around 1200 in the late 90s, to ∼2000 in 2013. There were over 4000 megavoltage therapy machines and ∼28,000 therapy beams in the 1991 institutions monitored by the RPC by the end of 2013. Within the 14,000 photon, electron and proton beam outputs remotely monitored with TLD/OSLD annually, between 10-20% of the institutions have one or more beams outside the RPC 5% criterion. Dosimetry site visits to photon and proton centers continue to result in 2-4 recommendations affecting key dosimetry parameters that impact patient treatment times. One in four patient treatment records reviewed by the RPC have their dose data corrected by >5% before trial groups use them for outcomes analysis. Twelve of fourteen clinically active proton centers are approved to participate in NCI funded clinical trials. The RPC published 222 peer reviewed articles since 1972. Conclusion: Findings from the RPC suggest that human errors continue to play a role in radiotherapy discrepancies and without the RPC independent QA program, the number of undetected errors and time elapsed before their discovery would have been greater. Work supported by MGH C06 CA059267 and grants CA10953, CA081647 awarded by NCI, DHHS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, M. L.; Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3001
Purpose: There are a range of genetic and nongenetic factors influencing the elemental composition of different human tissues. The elemental composition of cancerous tissues frequently differs from healthy tissue of the same organ, particularly in high-Z trace element concentrations. For this reason, one could suggest that this may be exploited in diagnostics and perhaps even influence dosimetry. Methods: In this work, for the first time, effective atomic numbers are computed for common cancerous and healthy tissues using a robust, energy-dependent approach between 10 keV and 100 MeV. These are then quantitatively compared within the context of diagnostics and dosimetry. Results:more » Differences between effective atomic numbers of healthy and diseased tissues are found to be typically less than 10%. Fibrotic tissues and calcifications of the breast exhibit substantial (tens to hundreds of percent) differences to healthy tissue. Expectedly, differences are most pronounced in the photoelectric regime and consequently most relevant for kV imaging/therapy and radionuclides with prominent low-energy peaks. Cancerous tissue of the testes and stomach have lower effective atomic numbers than corresponding healthy tissues, while diseased tissues of the other organ sites typically have higher values. Conclusions: As dose calculation approaches improve in accuracy, there may be an argument for the explicit inclusion of pathologies. This is more the case for breast, penile, prostate, nasopharyngeal, and stomach cancer, less so for testicular and kidney cancer. The calculated data suggest dual-energy computed tomography could potentially improve lesion identification in the aforementioned organs (with the exception of testicular cancer), with most import in breast imaging. Ultimately, however, the differences are very small. It is likely that the assumption of a generic 'tissue ramp' in planning will be sufficient for the foreseeable future, and that the Z differences do not notably aid lesion detection beyond that already facilitated by differences in mass density.« less
Computational high-resolution heart phantoms for medical imaging and dosimetry simulations
NASA Astrophysics Data System (ADS)
Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos
2011-09-01
Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user-defined stenoses, can be used to obtain clinically realistic projection images with the Monte Carlo code penMesh for optimizing imaging and dosimetry.
SU-F-T-434: Development of a Fan-Beam Optical Scanner Using CMOS Array for Small Field Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, E; Warmington, L; Watanabe, Y
Purpose: To design and construct a second generation optical computed tomography (OCT) system using a fan-beam with a CMOS array detector for the 3D dosimetry with polymer gel and radiochromic solid dosimeters. The system was specifically designed for the small field dosimetry. Methods: The optical scanner used a fan-beam laser, which was produced from a collimated red laser beam (λ=620 nm) with a 15-degree laser-line generating lens. The fan-beam was sent through an index-matching bath which holds the sample stage and a sample. The emerging laser light was detected with a 2.54 cm-long CMOS array detector (512 elements). The samplemore » stage rotated through the full 360 degree projection angles at 0.9-degree increments. Each projection was normalized to the unirradiated sample at the projection angle to correct for imperfections in the dosimeter. A larger sample could be scanned by using a motorized mirror and linearly translating the CMOS detector. The height of the sample stage was varied for a full 3D scanning. The image acquisition and motor motion was controlled by a computer. The 3D image reconstruction was accomplished by a fan-beam reconstruction algorithm. All the software was developed inhouse with MATLAB. Results: The scanner was used on both PRESAGE and PAGAT gel dosimeters. Irreconcilable refraction errors were seen with PAGAT because the fan beam laser line refracted away from the detector when the field was highly varying in 3D. With PRESAGE, this type of error was not seen. Conclusion: We could acquire tomographic images of dose distributions by the new OCT system with both polymer gel and radiochromic solid dosimeters. Preliminary results showed that the system was more suited for radiochromic solid dosimeters since the radiochromic dosimeters exhibited minimal refraction and scattering errors. We are currently working on improving the image quality by thorough characterization of the OCT system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakhalkar, H. S.; Oldham, M.
2008-01-15
This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less
Evaluation of six TPS algorithms in computing entrance and exit doses
Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun P.; Elliott, Alex
2014-01-01
Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%‐3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.N‐, 87.53.Bn PMID:24892349
NASA Astrophysics Data System (ADS)
Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.
2017-11-01
One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation when compared to the UF/NCI Computational Phantom Library.
The Latin American Biological Dosimetry Network (LBDNet).
García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M
2016-09-01
Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reference dosimeter system of the iaea
NASA Astrophysics Data System (ADS)
Mehta, Kishor; Girzikowsky, Reinhard
1995-09-01
Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.
Computer Simulation of Breast Cancer Screening
2001-07-01
21. Tompkins PA, Abreu CC, Carroll FE, Xiao therapeutic medical physics. Med Phys 14. Gentry JR, DeWerd LA. TLD measure- QF, MacDonald CA. Use of...capillary op- 1996; 23:1997-2005. ments of in vivo mammographic expo- tics as a beam intensifier for a Compton 28. Hammerstein GR, Miller DW, White DR...cm), and was only poorly correlated thicker slices. with breast thickness (r2 0.159). The For comparison images and dosimetry , magnification factor
NASA Technical Reports Server (NTRS)
Ochoa, Agustin, Jr. (Editor)
1989-01-01
Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.
Currently, little justification is provided for nanomaterial testing concentrations in in vitro assays. The in vitro concentrations typically used may be higher than those experienced by exposed humans. Selection of concentration levels for hazard evaluation based on real-world e...
Topical Review: Polymer gel dosimetry
Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J
2010-01-01
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, A; Poli, G; Beykan, S
Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for methodmore » development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be used as a standard format for data collection, organization, as well as for dosimetry research and software development.« less
Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy
Bradley, David; Nisbet, Andrew
2014-01-01
The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier‐like effects and to provide reliable dosimetric results. We have demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film and a commercial flatbed scanner is a viable method for brachytherapy dose distribution measurement, and uncertainties may be reduced with triple‐channel dosimetry and specific film scan and evaluation methodologies. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:25207417
Clinical EPR: Unique Opportunities and Some Challenges
Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan
2014-01-01
Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333
Xu, X. George
2014-01-01
Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most well-known phantoms were developed and used in practice. Some of the information covered in this review has not been previously reported, for example, the CAM and CAF phantoms developed in 1970s for space radiation applications. The author also clarifies confusion about “population-average” prospective dosimetry needed for radiological protection under the current ICRP radiation protection system and “individualized” retrospective dosimetry often performed for medical physics studies. To illustrate the impact of computational phantoms, a section of this article is devoted to examples from the author’s own research group. Finally the author explains an unexpected finding during the course of preparing for this article that the phantoms from the past 50 years followed a pattern of exponential growth. The review ends on a brief discussion of future research needs (A supplementary file “3DPhantoms.pdf” to Figure 15 is available for download that will allow a reader to interactively visualize the phantoms in 3D). PMID:25144730
Xu, X George
2014-09-21
Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most well-known phantoms were developed and used in practice. Some of the information covered in this review has not been previously reported, for example, the CAM and CAF phantoms developed in 1970s for space radiation applications. The author also clarifies confusion about 'population-average' prospective dosimetry needed for radiological protection under the current ICRP radiation protection system and 'individualized' retrospective dosimetry often performed for medical physics studies. To illustrate the impact of computational phantoms, a section of this article is devoted to examples from the author's own research group. Finally the author explains an unexpected finding during the course of preparing for this article that the phantoms from the past 50 years followed a pattern of exponential growth. The review ends on a brief discussion of future research needs (a supplementary file '3DPhantoms.pdf' to figure 15 is available for download that will allow a reader to interactively visualize the phantoms in 3D).
Quantitative imaging for clinical dosimetry
NASA Astrophysics Data System (ADS)
Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik
2006-12-01
Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.
Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F
2004-01-01
The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.
Ban, Nobuhiko; Takahashi, Fumiaki; Ono, Koji; Hasegawa, Takayuki; Yoshitake, Takayasu; Katsunuma, Yasushi; Sato, Kaoru; Endo, Akira; Kai, Michiaki
2011-07-01
A web-based dose computation system, WAZA-ARI, is being developed for patients undergoing X-ray CT examinations. The system is implemented in Java on a Linux server running Apache Tomcat. Users choose scanning options and input parameters via a web browser over the Internet. Dose coefficients, which were calculated in a Japanese adult male phantom (JM phantom) are called upon user request and are summed over the scan range specified by the user to estimate a normalised dose. Tissue doses are finally computed based on the radiographic exposure (mA s) and the pitch factor. While dose coefficients are currently available only for limited CT scanner models, the system has achieved a high degree of flexibility and scalability without the use of commercial software.
Evaluation of [18F]Mefway biodistribution and dosimetry based on whole-body PET imaging of mice.
Constantinescu, Cristian C; Sevrioukov, Evgueni; Garcia, Adriana; Pan, Min-Liang; Mukherjee, Jogeshwar
2013-04-01
[(18)F]Mefway is a novel radiotracer specific to the serotonin 5-HT1A receptor class. In preparation for using this tracer in humans, we have performed whole-body PET studies in mice to evaluate the biodistribution and dosimetry of [(18)F]Mefway. Six mice (three females and three males) received IV injections of [(18)F]Mefway and were scanned for 2 h in an Inveon-dedicated PET scanner. Each animal also received a high-resolution CT scan using an Inveon CT. The CT images were used to draw volume of interest on the following organs: the brain, large intestine, stomach, heart, kidneys, liver, lungs, pancreas, bone, spleen, testes, thymus, gallbladder, uterus, and urinary bladder. All organ time-activity curves without decay correction were normalized to the injected activity. The area under the normalized curves was then used to compute the residence times in each organ. Data were analyzed using PMOD and Matlab software. The absorbed doses in mouse organs were computed using the RAdiation Dose Assessment Resource animal models for dose assessment. The residence times in mouse organs were converted to human values using scale factors based on differences between organ and body weights. OLINDA/EXM 1.1 software was used to compute the absorbed human doses in multiple organs for both female and male phantoms. The highest mouse residence times were found in the liver, urinary bladder, and kidneys. The largest doses in mice were found in the urinary bladder (critical organ), kidney, and liver for both females and males, indicating primary elimination via urinary system. The projected human effective doses were 1.21E - 02 mSv/MBq for the adult female model and 1.13E - 02 mSv/MBq for the adult male model. The estimated human biodistribution of [(18)F]Mefway was similar to that of [(11)C]WAY 100,635, a 5-HT1A tracer for which dosimetry has been evaluated in humans. The elimination of radiotracer was primarily via the kidney and urinary bladder with the urinary bladder being the critical organ. Whole-body mouse imaging can be used as a preclinical tool to provide initial estimates of the absorbed doses of [(18)F]Mefway in humans.
Relationship between student selection criteria and learner success for medical dosimetry students
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Jamie, E-mail: jabaker@mdanderson.org; Tucker, Debra; Raynes, Edilberto
Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees)more » and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.« less
Relationship between student selection criteria and learner success for medical dosimetry students.
Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela
2016-01-01
Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Properties of Principal TL (Thermoluminescence) Dosimeters.
1983-10-01
thermoluminescence dosimetry ( TLD ) emerged as the preferred means because of convenience of batch evaluation, reusability, large detection range, linearity and...personnel dosimetry , thermoluminescence dosimetry has emerged as a superior technique due to its manifold advantages over other methods of dose...their suitability for dosimetry . A brief description of important TL materials and their properties is documented in this report. DD ,JN 1473 EDITION 0
AFRRI Neutron Dosimetry and Radiobiology Conference
1988-11-09
Neutron Dosimetry and Radiobiology 8 - 9 November 1988 Sponsored by Defense Nuclear Agency ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE...neutron radiation is less amenable to amelioration by chemical radioprotectants and more difficult to assess by means of physical dosimetry . These...neutron dosimetry and radiobiology we have witnessed in the past several years,could not have been possible without the sustained efforts of many
Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.-Stelson, A.T.; Stabin, M.G.; Sparks, R.B.
1999-01-01
This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.
Moran, Paul R.
1976-01-01
The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.
NASA Astrophysics Data System (ADS)
Lavoie, Lindsey K.
The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT imaging has been presented. These measurements are especially important in keeping with the ALARA (as low as reasonably achievable) principle. While diagnostic information from CT imaging is valuable and necessary, the dose to patients is always a consideration. This methodology aids in this important task. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Technical considerations for implementation of x-ray CT polymer gel dosimetry.
Hilts, M; Jirasek, A; Duzenli, C
2005-04-21
Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.
NASA Astrophysics Data System (ADS)
Hautot, Felix; Dubart, Philippe; Bacri, Charles-Olivier; Chagneau, Benjamin; Abou-Khalil, Roger
2017-09-01
New developments in the field of robotics and computer vision enables to merge sensors to allow fast realtime localization of radiological measurements in the space/volume with near-real time radioactive sources identification and characterization. These capabilities lead nuclear investigations to a more efficient way for operators' dosimetry evaluation, intervention scenarii and risks mitigation and simulations, such as accidents in unknown potentially contaminated areas or during dismantling operations
Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki
2015-08-01
A dosimetry system for computed tomography (CT) examinations, named WAZA-ARI, is being developed to accurately assess radiation doses to patients in Japan. For dose calculations in WAZA-ARI, organ doses were numerically analyzed using average adult Japanese male (JM) and female (JF) phantoms with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the photon energy distribution of emitted photons and dose profiles on the table for some multi-detector row CT (MDCT) devices. Numerical analyses using a source model in PHITS could specifically take into account emissions of x rays from the tube to the table with attenuation of photons through a beam-shaping filter for each MDCT device based on the experiment results. The source model was validated by measuring the CT dose index (CTDI). Numerical analyses with PHITS revealed a concordance of organ doses with body sizes of the JM and JF phantoms. The organ doses in the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculations in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model (THRA1 phantom). The results imply that numerical analyses using the Japanese phantoms and specified source models can give reasonable estimates of dose for MDCT devices for typical Japanese adults.
Numerical assessment of low-frequency dosimetry from sampled magnetic fields
NASA Astrophysics Data System (ADS)
Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo
2018-01-01
Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Richard A; Minard, Kevin R; Kabilan, Senthil
The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflows calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions inmore » rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.« less
Numerical assessment of low-frequency dosimetry from sampled magnetic fields.
Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo
2017-12-29
Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.
Design and Calibration of a X-Ray Millibeam
2005-12-01
developed for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride thermoluminescent dosimetry ( TLD ), and EBT GafChromic...thermoluminescent dosimetry ( TLD ), and EBT GafChromic film to characterize the spatial distribution and accuracy of the doses produced by the Faxitron. A...absorbed dose calibration factors for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride (LiF) TLD , and EBT GafChromic film. The
A software to digital image processing to be used in the voxel phantom development.
Vieira, J W; Lima, F R A
2009-11-15
Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image, this is saved as a JPEG file in the Windows default; when it involves an image stack, the output binary file is denominated SGI (Simulações Gráficas Interativas (Interactive Graphic Simulations), an acronym already used in other publications of the GDN/CNPq.
Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A
2017-02-01
Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Next-generation services for e-traceability to ionizing radiation national standards
NASA Astrophysics Data System (ADS)
Desrosiers, Marc F.; Klemick, Mark; Puhl, James M.; Uchida, David; Mallis, Steven
2004-09-01
An Internet-based system for fast, remote certification of high-dose radiation sources against the US national standard is being constructed at the National Institute of Standards and Technology (NIST). The new service will establish traceability (through transfer dosimetry) in real time at a lower cost by using automated routines and the Internet. A prototype of this service was successfully demonstrated in 2000 at the American Society for Testing and Materials (ASTM) Dosimetry Workshop in San Diego. Despite this impressive accomplishment, new developments demanded that several aspects of the service be modified. The new service has been completely redesigned to address these new demands and ensure greater accessibility. A description of the hardware and software configurations of this service as well as the communication and information management aspects will be presented. The Internet-based transfer certification program will provide industry with 24-h, 7-day-per-week, on-demand certifications, immediate turnaround times, and lower cost, ultimately improving the quality of the manufacturing process.
Residential radon exposure and risk of lung cancer in Missouri.
Alavanja, M C; Lubin, J H; Mahaffey, J A; Brownson, R C
1999-01-01
OBJECTIVES: This study investigated residential radon exposure and lung cancer risk, using both standard radon dosimetry and a new radon monitoring technology that, evidence suggests, is a better measure of cumulative radon exposure. METHODS: Missouri women (aged 30 to 84 years) newly diagnosed with primary lung cancer during the period January 1, 1993, to January 31, 1994, were invited to participate in this population-based case-control study. Both indoor air radon detectors and CR-39 alpha-particle detectors (surface monitors) were used. RESULTS: When surface monitors were used, a significant trend in lung cancer odds ratios was observed for 20-year time-weighted-average radon concentrations. CONCLUSIONS: When surface monitors were used, but not when standard radon dosimetry was used, a significant lung cancer risk was found for radon concentrations at and above the action level for mitigation of houses currently used in the United States (148 Bqm-3). The risk was below the action level used in Canada (750 Bqm-3) and many European countries (200-400 Bqm-3). PMID:10394313
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
Seed Placement in Permanent Breast Seed Implant Brachytherapy: Are Concerns Over Accuracy Valid?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Daniel, E-mail: dmorton@bccancer.bc.ca; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia; Hilts, Michelle
Purpose: To evaluate seed placement accuracy in permanent breast seed implant brachytherapy (PBSI), to identify any systematic errors and evaluate their effect on dosimetry. Methods and Materials: Treatment plans and postimplant computed tomography scans for 20 PBSI patients were spatially registered and used to evaluate differences between planned and implanted seed positions, termed seed displacements. For each patient, the mean total and directional seed displacements were determined in both standard room coordinates and in needle coordinates relative to needle insertion angle. Seeds were labeled according to their proximity to the anatomy within the breast, to evaluate the influence of anatomicmore » regions on seed placement. Dosimetry within an evaluative target volume (seroma + 5 mm), skin, breast, and ribs was evaluated to determine the impact of seed placement on the treatment. Results: The overall mean (±SD) difference between implanted and planned positions was 9 ± 5 mm for the aggregate seed population. No significant systematic directional displacements were observed for this whole population. However, for individual patients, systematic displacements were observed, implying that intrapatient offsets occur during the procedure. Mean displacements for seeds in the different anatomic areas were not found to be significantly different from the mean for the entire seed population. However, small directional trends were observed within the anatomy, potentially indicating some bias in the delivery. Despite observed differences between the planned and implanted seed positions, the median (range) V{sub 90} for the 20 patients was 97% (66%-100%), and acceptable dosimetry was achieved for critical structures. Conclusions: No significant trends or systematic errors were observed in the placement of seeds in PBSI, including seeds implanted directly into the seroma. Recorded seed displacements may be related to intrapatient setup adjustments. Despite observed seed displacements, acceptable postimplant dosimetry was achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlateva, Yana; Seuntjens, Jan; El Naqa, Issam
Purpose: To advance towards clinical Cherenkov emission (CE)-based dosimetry by investigating beam-specific effects on Monte Carlo-calculated electron-beam stopping power-to-CE power ratios (SCRs), addressing electron beam quality specification in terms of CE, and validating simulations with measurements. Methods: The EGSnrc user code SPRRZnrc, used to calculate Spencer-Attix stopping-power ratios, was modified to instead calculate SCRs. SCRs were calculated for 6- to 22-MeV clinical electron beams from Varian TrueBeam, Clinac 21EX, and Clinac 2100C/D accelerators. Experiments were performed with a 20-MeV electron beam from a Varian TrueBeam accelerator, using a diffraction grating spectrometer with optical fiber input and a cooled back-illuminated CCD.more » A fluorophore was dissolved in the water to remove CE signal anisotropy. Results: It was found that angular spread of the incident beam has little effect on the SCR (≤ 0.3% at d{sub max}), while both the electron spectrum and photon contamination increase the SCR at shallow depths and decrease it at large depths. A universal data fit of R{sub 50} in terms of C{sub 50} (50% CE depth) revealed a strong linear dependence (R{sup 2} > 0.9999). The SCR was fit with a Burns-type equation (R{sup 2} = 0.9974, NRMSD = 0.5%). Below-threshold incident radiation was found to have minimal effect on beam quality specification (< 0.1%). Experiments and simulations were in good agreement. Conclusions: Our findings confirm the feasibility of the proposed CE dosimetry method, contingent on computation of SCRs from additional accelerators and on further experimental validation. This work constitutes an important step towards clinical high-resolution out-of-beam CE dosimetry.« less
Moni, Janaki; Graves-Ditman, Maria; Cederna, Paul; Griffith, Kent; Krueger, Editha A; Fraass, Benedick A; Pierce, Lori J
2004-01-01
Postmastectomy breast reconstruction can be accomplished utilizing tissue expanders and implants. However, in patients who require postoperative radiotherapy, the complication rate with tissue expander/implant reconstruction can exceed 50%. One potential cause of this high complication rate may be the metallic port in the tissue expander producing altered dosimetry in the region of the metallic device. The purpose of this study was to quantify the radiation dose distribution in the vicinity of the metallic port and determine its potential contribution to this extremely high complication rate. The absolute dosimetric effect of the tissue expander's metallic port was quantified using film and thermoluminescent dosimetry (TLD) studies with a single beam incident on a metallic port extracted from an expander. TLD measurements were performed at 11 reproducible positions on an intact expander irradiated with tangential fields. A computed tomography (CT)-based treatment plan without inhomogeneity corrections was used to derive expected doses for all TLD positions. Multiple irradiation experiments were performed for all TLD data. Confidence intervals for the dose at TLD sites with the metallic port in place were compared to the expected dose at the site without the metallic port. Film studies did not reveal a significant component of scatter around the metallic port. TLD studies of the extracted metallic port revealed highest doses within the casing of the metallic port and no consistent increased dose at the surface of the expander. No excess dose due to the metallic port in the expander was noted with the phantom TLD data. Based upon these results, it does not appear that the metallic port in tissue expanders significantly contributes to the high complication rate experienced in patients undergoing tissue expander breast reconstruction and receiving radiation therapy. Strategies designed to reduce the breast reconstruction complication rate in this clinical setting will need to focus on factors other than adjusting the dosimetry around the tissue expander metallic port.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsanea, F; Kudchadker, R; Usama, M
Purpose: To evaluate the accuracy and usefulness of plastic scintillation detectors used for skin dosimetry of patients undergoing passive scatter proton therapy. Methods: Following an IRB approved protocol, six patients undergoing passively scattered proton beam therapy for prostate cancer were selected for in vivo skin dosimetry using the Exradin W1 plastic scintillator. The detector was calibrated on a Cobalt-60 unit, and phantom measurements in the proton beam with the W1 and a calibrated parallel plate ion chamber were used to account for the under-response due to high LET at energies used for treatment. Measurements made in a heated water tankmore » were used to account for temperature dependence. For in vivo measurements, the W1 is fixed to the patient’s skin with medical tape in the center of each of two laterally opposed treatment fields. Measurements will be performed once per week for each patient for the duration of treatment, for a total of thirty six measurements. The measured dose will be compared to the expected dose, extracted from the Eclipse treatment planning system. The average difference over all measurements and per-patient will be computed, as well as standard deviations. Results: The calibrated detector exhibited a 7% under-response in 225 and 250 MeV beams, and a 4% under-response when used at 37 °C (relative to the response at the calibration temperature of 20 °C). Patient measurements are ongoing. Conclusion: The Exradin W1 plastic scintillator detector is a strong candidate for in vivo skin dosimetry in passively scattered proton beams as PSDs are water equivalent and very small (2mm in diameter), permitting accurate measurements that do not perturb the delivered dose. This project was supported in part by award number CA182450 from the National Cancer Institute.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xue; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan; Frey, Kirk
2014-05-01
Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL)more » was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.« less
2015-01-01
In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano–bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose–response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology. PMID:25093451
THE VIEW FROM THE TRENCHES: PART 2–TECHNICAL CONSIDERATIONS FOR EPR SCREENING
Nicolalde, Roberto J.; Gougelet, Robert M.; Rea, Michael; Williams, Benjamin B.; Dong, Ruhong; Kmiec, Maciej M.; Lesniewski, Piotr N.; Swartz, Harold M.
2014-01-01
There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders’ feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders’ recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods. PMID:20065674
MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kry, S.
This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less
MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Hsu-Chi; Phalen, R.F.; Chang, I.
1995-12-01
The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Althoughmore » this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.« less
Christensen, Nana L.; Jakobsen, Steen; Schacht, Anna C.; Munk, Ole L.; Alstrup, Aage K. O.; Tolbod, Lars P.; Harms, Hendrik J.; Nielsen, Søren
2017-01-01
Introduction: Despite the decades long use of [11C]palmitate positron emission tomography (PET)/computed tomography in basic metabolism studies, only personal communications regarding dosimetry and biodistribution data have been published. Methods: Dosimetry and biodistribution studies were performed in 2 pigs and 2 healthy volunteers by whole-body [11C]palmitate PET scans. Metabolite studies were performed in 40 participants (healthy and with type 2 diabetes) under basal and hyperinsulinemic conditions. Metabolites were estimated using 2 approaches and subsequently compared: Indirect [11C]CO2 release and parent [11C]palmitate measured by a solid-phase extraction (SPE) method. Finally, myocardial fatty acid uptake was calculated in a patient cohort using input functions derived from individual metabolite correction compared with population-based metabolite correction. Results: In humans, mean effective dose was 3.23 (0.02) µSv/MBq, with the liver and myocardium receiving the highest absorbed doses. Metabolite correction using only [11C]CO2 estimates underestimated the fraction of metabolites in studies lasting more than 20 minutes. Population-based metabolite correction showed excellent correlation with individual metabolite correction in the cardiac PET validation cohort. Conclusion: First, mean effective dose of [11C]palmitate is 3.23 (0.02) µSv/MBq in humans allowing multiple scans using ∼300 MBq [11C]palmitate, and secondly, population-based metabolite correction compares well with individual correction. PMID:29073808
Broughton, David P; Waker, Anthony J
2017-05-01
Neutron dosimetry in reactor fields is currently mainly conducted with unwieldy flux monitors. Tissue Equivalent Proportional Counters (TEPCs) have been shown to have the potential to improve the accuracy of neutron dosimetry in these fields, and Multi-Element Tissue Equivalent Proportional Counters (METEPCs) could reduce the size of instrumentation required to do so. Complexity of current METEPC designs has inhibited their use beyond research. This work proposes a novel hemispherical counter with a wireless anode ball in place of the traditional anode wire as a possible solution for simplifying manufacturing. The hemispherical METEPC element was analyzed as a single TEPC to first demonstrate the potential of this new design by evaluating its performance relative to the reference spherical TEPC design and a single element from a cylindrical METEPC. Energy deposition simulations were conducted using the Monte Carlo code PHITS for both monoenergetic 2.5 MeV neutrons and the neutron energy spectrum of Cf-D2O moderated. In these neutron fields, the hemispherical counter appears to be a good alternative to the reference spherical geometry, performing slightly better than the cylindrical counter, which tends to underrespond to H*(10) for the lower neutron energies of the Cf-D2O moderated field. These computational results are promising, and if follow-up experimental work demonstrates the hemispherical counter works as anticipated, it will be ready to be incorporated into an METEPC design.
VVER-440 and VVER-1000 reactor dosimetry benchmark - BUGLE-96 versus ALPAN VII.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duo, J. I.
2011-07-01
Document available in abstract form only, full text of document follows: Analytical results of the vodo-vodyanoi energetichesky reactor-(VVER-) 440 and VVER-1000 reactor dosimetry benchmarks developed from engineering mockups at the Nuclear Research Inst. Rez LR-0 reactor are discussed. These benchmarks provide accurate determination of radiation field parameters in the vicinity and over the thickness of the reactor pressure vessel. Measurements are compared to calculated results with two sets of tools: TORT discrete ordinates code and BUGLE-96 cross-section library versus the newly Westinghouse-developed RAPTOR-M3G and ALPAN VII.0. The parallel code RAPTOR-M3G enables detailed neutron distributions in energy and space in reducedmore » computational time. ALPAN VII.0 cross-section library is based on ENDF/B-VII.0 and is designed for reactor dosimetry applications. It uses a unique broad group structure to enhance resolution in thermal-neutron-energy range compared to other analogous libraries. The comparison of fast neutron (E > 0.5 MeV) results shows good agreement (within 10%) between BUGLE-96 and ALPAN VII.O libraries. Furthermore, the results compare well with analogous results of participants of the REDOS program (2005). Finally, the analytical results for fast neutrons agree within 15% with the measurements, for most locations in all three mockups. In general, however, the analytical results underestimate the attenuation through the reactor pressure vessel thickness compared to the measurements. (authors)« less
2003-06-18
Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...34Digital Mammography Breast Dosimetry Using Copper- Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs )" Author: LT John J. Tomon...Title of Thesis: " Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent
Development of a Multileaf Collimator for Proton Radiotherapy
2010-06-01
generated and compared to the dosimetry derived from radiochromic media. TLDS may be inserted into the phantom to further confirm the technique. Finally...of dosimetry systems for scanned beams: (FY 2006-2009). We are investigating dosimetry systems for use with scanned beams and will either purchase a...group Research in Monte Carlo Simulations and Dosimetry Studies of Proton Therapy Rulon Mayer, PhD Energetic protons used to damage tumors
Technical Note: A novel interdigital transparent thin-film detector for medical dosimetry.
Brivio, Davide; Sajo, Erno; Zygmanski, Piotr
2017-05-01
A new type of thin-film interdigital detector (TFID) for medical dosimetry is investigated. The focus of this study was to characterize the detector response as a function of detector geometry in an attempt to optimize it and to understand the underlying radio-electrical effects leading to signal formation. We characterize the detector response to kilovoltage x-ray beams used in fluoroscopy and computed tomography. Each element (pixel) of the detector is composed of conductive intercombing digits deposited on a thin-film dielectric substrate by nanofabrication or using a printing process. The detector is practically transparent to x-ray radiation, yet it generates sufficient signal for many types of medical dosimetry and quality assurance tasks. The thin-film detector has negligible surface mass density (about 2.5 mg/cm 2 for a 1-μm-thick Cu TFID on 12.5-μm-thick Kapton substrate) and it is conformable to curved geometries found in the medical x-ray equipment or on patient skin surface. The prototype detectors were made using glass and Kapton substrates with copper-copper and copper-aluminum interdigits. Although in principle the detector can be operated without any external bias voltage when the digits are made of disparate materials (e.g., Cu-Al), we also characterized the detector properties under small electric fields via its current-voltage curve (IV curve). Using 120 kVp, 25 mA x-ray beam with 10V external bias, the Cu-Cu detector response was about 0.2 nA/cm 2 . We also measured a one-dimensional transmitted dose profile for a phantom under fluoroscopic x-rays and found relatively good agreement with a commercial photodiode (XR R12-0191, IBA Dosimetry). We demonstrated the potential of TFID detectors for kilovoltage dosimetry and we defined its optimal geometry. For digits made of the same material and for digit width equal to the separation between them, we found that the thin-film detector has optimal performance when the distance between the digit centers is about 1 mm, while in the fixed digit width cases we observed that the signal is higher when their edge-to-edge separation is as small as possible. © 2017 American Association of Physicists in Medicine.
Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari
2009-11-01
The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.
Online 3D EPID-based dose verification: Proof of concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreeuw, Hanno; Rozendaal, Roel, E-mail: r.rozenda
Purpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of thismore » study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. Methods: The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. Results: The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5–10 s irradiation time. Conclusions: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu; Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Mein, Stewart
Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning systemmore » (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We have validated the dosimetric accuracy of a commercial MRgIMRT system using high-resolution 3D techniques. We have demonstrated for the first time that hybrid 3D remote dosimetry is a comprehensive and feasible approach to commissioning MRgIMRT. This may provide better sensitivity in error detection compared with standard 2-dimensional measurements and could be used when implementing complex new magnetic resonance guided radiation therapy technologies.« less
Nonuniform Irradiation of the Canine Intestine. 2. Dosimetry
1990-01-01
irradiation is accurate assessment In vivo dosimetry was done using Harshaw (Solon, Ohio) TLD - 100 lith- of the injury after either accidental or... vivo TLD dosimetry system allowed measure- 5 and 6. The dose was determined from the median TLD ment of the °Co dose deposited in the canine small...provide replicate measurements. Two separate dosimetry tubes were deveoped (Fig. 1). The first contained 30 TLD cap- doses (1). Nevertheless, current
Thermoluminescence Dosimetry (TLD) and its Application in Medical Physics
NASA Astrophysics Data System (ADS)
Azorín Nieto, Juan
2004-09-01
Radiation dosimetry is fundamental in Medical Physics, involving patients and phantom dosimetry. In both cases thermoluminescence dosimetry (TLD) is the most appropriate technique for measuring the absorbed dose. In this paper thermoluminescence phenomenon as well as the use of TLD in radiodiagnosis and radiotherapy for in vivo or in phantom measurements is discussed. Some results of measurements made in radiotherapy and radiodiagnosis using home made LiF:Mg,Cu,P+PTFE TLD are presented.
EURADOS strategic research agenda: vision for dosimetry of ionising radiation
Rühm, W.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Vanhavere, F.; Alves, J.; Bottollier Depois, J. F.; Fattibene, P.; Knežević, Ž.; Lopez, M. A.; Mayer, S.; Miljanić, S.; Neumaier, S.; Olko, P.; Stadtmann, H.; Tanner, R.; Woda, C.
2016-01-01
Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises—based on input from EURADOS Working Groups (WGs) and Voting Members—five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758
Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, E.W.; Wu, C.F.; Goff, T.E.
1993-12-31
The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less
NASA Astrophysics Data System (ADS)
González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
2017-11-01
The influence of the various sources of noise on the uncertainty in radiochromic film (RCF) dosimetry using single channel and multichannel methods is investigated in this work. These sources of noise are extracted from pixel value (PV) readings and dose maps. Pieces of an RCF were each irradiated to different uniform doses, ranging from 0 to 1092 cGy. Then, the pieces were read at two resolutions (72 and 150 ppp) with two flatbed scanners: Epson 10000XL and Epson V800, representing two states of technology. Noise was extracted as described in ISO 15739 (2013), separating its distinct constituents: random noise and fixed pattern (FP) noise. Regarding the PV maps, FP noise is the main source of noise for both models of digitizer. Also, the standard deviation of the random noise in the 10000XL model is almost twice that of the V800 model. In the dose maps, the FP noise is smaller in the multichannel method than in the single channel ones. However, random noise is higher in this method, throughout the dose range. In the multichannel method, FP noise is reduced, as a consequence of this method’s ability to eliminate channel independent perturbations. However, the random noise increases, because the dose is calculated as a linear combination of the doses obtained by the single channel methods. The values of the coefficients of this linear combination are obtained in the present study, and the root of the sum of their squares is shown to range between 0.9 and 1.9 over the dose range studied. These results indicate the random noise to play a fundamental role in the uncertainty of RCF dosimetry: low levels of random noise are required in the digitizer to fully exploit the advantages of the multichannel dosimetry method. This is particularly important for measuring high doses at high spatial resolutions.
Review on the characteristics of radiation detectors for dosimetry and imaging
NASA Astrophysics Data System (ADS)
Seco, Joao; Clasie, Ben; Partridge, Mike
2014-10-01
The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general discussion of the application of detectors for x-ray nuclear medicine and ion beam imaging and dosimetry is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergstrom, P
Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source inmore » the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersaudy, Pierric, E-mail: pierric.kersaudy@orange.com; Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux; ESYCOM, Université Paris-Est Marne-la-Vallée, 5 boulevard Descartes, 77700 Marne-la-Vallée
2015-04-01
In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representationmore » of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem.« less
2006-09-01
wireless communication usage and exposure to different parts of the body (especially for children and foetuses ), including multiple exposure from...Calculation of induced electric fields in pregnant women and in the foetus is urgently needed. Very little computation has been carried out on...advanced models of the pregnant human and the foetus with appropriate anatomical modelling. It is important to assess possible enhanced induction of
Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.
Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel
2014-10-07
Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7 ± 3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.
Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system
NASA Astrophysics Data System (ADS)
Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel
2014-10-01
Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7 ± 3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Q; Juang, T; Bache, S
2014-06-15
Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindricalmore » dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D dosimetry system shows promise, but further work is required to validate and investigate accuracy and artifacts. This work was supported by NIH R01CA100835.« less
WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, M.
Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less
WE-AB-BRB-03: Real-Time Volumetric Scintillation Dosimetry for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddar, S.
Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less
WE-AB-BRB-01: Memorial Introduction; Storage Phosphor Panels for Radiation Therapy Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.
Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less
Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.
Kim, Jeonghyun; Salvatore, Giovanni A; Araki, Hitoshi; Chiarelli, Antonio M; Xie, Zhaoqian; Banks, Anthony; Sheng, Xing; Liu, Yuhao; Lee, Jung Woo; Jang, Kyung-In; Heo, Seung Yun; Cho, Kyoungyeon; Luo, Hongying; Zimmerman, Benjamin; Kim, Joonhee; Yan, Lingqing; Feng, Xue; Xu, Sheng; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Paik, Ungyu; Rogers, John A
2016-08-01
Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have "skin-like" properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics.
Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography
Ludlow, John B.; Walker, Cameron
2013-01-01
Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904
Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les
2015-12-01
We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.
Frandsen, Michael W.; Wessol, Daniel E.; Wheeler, Floyd J.
2001-01-16
Methods and computer executable instructions are disclosed for ultimately developing a dosimetry plan for a treatment volume targeted for irradiation during cancer therapy. The dosimetry plan is available in "real-time" which especially enhances clinical use for in vivo applications. The real-time is achieved because of the novel geometric model constructed for the planned treatment volume which, in turn, allows for rapid calculations to be performed for simulated movements of particles along particle tracks there through. The particles are exemplary representations of neutrons emanating from a neutron source during BNCT. In a preferred embodiment, a medical image having a plurality of pixels of information representative of a treatment volume is obtained. The pixels are: (i) converted into a plurality of substantially uniform volume elements having substantially the same shape and volume of the pixels; and (ii) arranged into a geometric model of the treatment volume. An anatomical material associated with each uniform volume element is defined and stored. Thereafter, a movement of a particle along a particle track is defined through the geometric model along a primary direction of movement that begins in a starting element of the uniform volume elements and traverses to a next element of the uniform volume elements. The particle movement along the particle track is effectuated in integer based increments along the primary direction of movement until a position of intersection occurs that represents a condition where the anatomical material of the next element is substantially different from the anatomical material of the starting element. This position of intersection is then useful for indicating whether a neutron has been captured, scattered or exited from the geometric model. From this intersection, a distribution of radiation doses can be computed for use in the cancer therapy. The foregoing represents an advance in computational times by multiple factors of time magnitudes.
[Wireless digital radiography detectors in the emergency area: an efficacious solution].
Garrido Blázquez, M; Agulla Otero, M; Rodríguez Recio, F J; Torres Cabrera, R; Hernando González, I
2013-01-01
To evaluate the implementation of a flat panel digital radiolography (DR) system with WiFi technology in an emergency radiology area in which a computed radiography (CR) system was previously used. We analyzed aspects related to image quality, radiation dose, workflow, and ergonomics. We analyzed the results obtained with the CR and WiFi DR systems related with the quality of images analyzed in images obtained using a phantom and after radiologists' evaluation of radiological images obtained in real patients. We also analyzed the time required for image acquisition and the workflow with the two technological systems. Finally, we analyzed the data related to the dose of radiation in patients before and after the implementation of the new equipment. Image quality improved in both the tests carried out with a phantom and in radiological images obtained in patients, which increased from 3 to 4.5 on a 5-point scale. The average time required for image acquisition decreased by 25 seconds per image. The flat panel required less radiation to be delivered in practically all the techniques carried out using automatic dosimetry, although statistically significant differences were found in only some of the techniques (chest, thoracic spine, and lumbar spine). Implementing the WiFi DR system has brought benefits. Image quality has improved and the dose of radiation to patients has decreased. The new system also has advantages in terms of functionality, ergonomics, and performance. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
The emulsion chamber technology experiment
NASA Technical Reports Server (NTRS)
Gregory, John C.
1992-01-01
Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.
[The use of polymer gel dosimetry to measure dose distribution around metallic implants].
Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa
2014-10-01
A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.
Perfluorocarbon Nanoparticles:. A Theranostic Platform Technology
NASA Astrophysics Data System (ADS)
Lanza, Gregory M.; Winter, Patrick M.; Caruthers, Shelton D.; Hughes, Michael S.; Hu, Grace; Pan, Dipanjan; Schmieder, Anne H.; Pham, Christine; Wickline, Samuel A.
2013-09-01
Nanomedicine clearly offers unique tools to address intractable medical problems in cancer and cardiovascular disease from entirely new perspectives. Among the theranostic options emerging in this new wave of biotechnology development, the perfluorocarbon nanoparticles have shown robust potential in vivo for diagnosing, characterizing, treating and following proliferating cancers, progressive atherosclerosis, rheumatoid arthritis and much more. These molecular imaging agents have been demonstrated for use with ultrasound, MRI, CT, and SPECT/CT. Moreover, the synergism of imaging for confirmation of therapeutic delivery, for dosimetry, and for noninvasively following early treatment responses is discussed. Image-guided drug delivery based on nanotechnology is emerging as a powerful clinical opportunity, and PFC nanoparticles are among the leading technologies reaching clinical testing today with this potential.
2003-03-01
facility and Mr. Joseph Talnagi of the Ohio State Research Reactor facility for their personal guidance and insight into reactor dosimetry and neutron...62 Test C1: Dosimetry ..................................................................................................... 63 Special...66 Annex A-3. Preliminary Dosimetry Calculations
2008-05-21
Albedo Dosimetry TLDs that are used for neutron or neutron-photon personnel dosimetry are albedo dosimeters. The word albedo simply means the proportion... dosimetry . When LiF: MCP is exposed to thermal neutron irradiation, there is no obvious change in the glow curve shape. In the case of TLD -100, the...LiF: MCP undergoes compared to TLD -100. Therefore, LET results in significant variations in TL output for LiF: MCP. Limitations of Albedo Dosimetry
1987-04-01
and would still be well under 10(C. .% % p., I V a- E p - -12 - IABLE 8 (a) TLD results for phantom dosimetry - all values shown are measured charge...SAI. Conclusions The current DREO dosimetry system-consisting of bubble, CR39 and TLD dosimeters - has proven capable of producing meaningful results at...MC FILE CoPy’ Defence nationale 00 ANTHROPOMORPHIC PHANTOM RADIATION DOSIMETRY AT THE NATO STANDARD OREFERENCE POINT AT ABERDEEN PROVING GROUND by T
Quantitative evaluation of patient-specific quality assurance using online dosimetry system
NASA Astrophysics Data System (ADS)
Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk
2018-01-01
In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).
Dose computation for therapeutic electron beams
NASA Astrophysics Data System (ADS)
Glegg, Martin Mackenzie
The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).
The physics of small megavoltage photon beam dosimetry.
Andreo, Pedro
2018-02-01
The increased interest during recent years in the use of small megavoltage photon beams in advanced radiotherapy techniques has led to the development of dosimetry recommendations by different national and international organizations. Their requirement of data suitable for the different clinical options available, regarding treatment units and dosimetry equipment, has generated a considerable amount of research by the scientific community during the last decade. The multiple publications in the field have led not only to the availability of new invaluable data, but have also contributed substantially to an improved understanding of the physics of their dosimetry. This work provides an overview of the most important aspects that govern the physics of small megavoltage photon beam dosimetry. Copyright © 2017 Elsevier B.V. All rights reserved.
Hickling, Susannah; Lei, Hao; Hobson, Maritza; Léger, Pierre; Wang, Xueding; El Naqa, Issam
2017-02-01
The aim of this work was to experimentally demonstrate the feasibility of x-ray acoustic computed tomography (XACT) as a dosimetry tool in a clinical radiotherapy environment. The acoustic waves induced following a single pulse of linear accelerator irradiation in a water tank were detected with an immersion ultrasound transducer. By rotating the collimator and keeping the transducer stationary, acoustic signals at varying angles surrounding the field were detected and reconstructed to form an XACT image. Simulated XACT images were obtained using a previously developed simulation workflow. Profiles extracted from experimental and simulated XACT images were compared to profiles measured with an ion chamber. A variety of radiation field sizes and shapes were investigated. XACT images resembling the geometry of the delivered radiation field were obtained for fields ranging from simple squares to more complex shapes. When comparing profiles extracted from simulated and experimental XACT images of a 4 cm × 4 cm field, 97% of points were found to pass a 3%/3 mm gamma test. Agreement between simulated and experimental XACT images worsened when comparing fields with fine details. Profiles extracted from experimental XACT images were compared to profiles obtained through clinical ion chamber measurements, confirming that the intensity of XACT images is related to deposited radiation dose. Seventy-seven percent of the points in a profile extracted from an experimental XACT image of a 4 cm × 4 cm field passed a 7%/4 mm gamma test when compared to an ion chamber measured profile. In a complicated puzzle-piece shaped field, 86% of the points in an XACT extracted profile passed a 7%/4 mm gamma test. XACT images with intensity related to the spatial distribution of deposited dose in a water tank were formed for a variety of field sizes and shapes. XACT has the potential to be a useful tool for absolute, relative and in vivo dosimetry. © 2016 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Baldock, C.
2017-05-01
John Gore’s seminal 1984 paper on gel dosimetry spawned a vibrant research field ranging from fundamental science through to clinical applications. A preliminary bibliometric study was undertaken of the gel dosimetry family of publications inspired by, and resulting from, Gore’s original 1984 paper to determine active growth areas, research trends and hot topics from Gore’s paper up to and including 2016. Themes and trends of the gel dosimetry research field were bibliometrically explored by way of co-occurrence term maps using the titles and abstracts text corpora from the Web of Science database for all relevant papers from 1984 to 2016. Visualisation of similarities was used by way of the VOSviewer visualisation tool to generate cluster maps of gel dosimetry knowledge domains and the associated citation impact of topics within the domains. Heat maps were then generated to assist in the understanding of active growth areas, research trends, and emerging and hot topics in gel dosimetry.
EURADOS strategic research agenda: vision for dosimetry of ionising radiation.
Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C
2016-02-01
Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Haller, J.; Wilkens, V.
2017-03-01
The objective of this work was to create highly stable therapeutic ultrasound fields with well-known exposimetry and dosimetry parameters that are reproducible and hence predictable with well-known uncertainties. Such well- known and reproducible fields would allow validation and secondary calibrations of different measuring capabilities, which is already a widely accepted strategy for diagnostic fields. For this purpose, a reference setup was established that comprises two therapeutic ultrasound sources (one High-Intensity Therapeutic Ultrasound (HITU) source and one physiotherapy-like source), standard rf electronics for signal creation, and computer-controlled feedback to stabilize the input voltage. The short- and longtime stability of the acoustic output were evaluated - for the former, measurements over typical laboratory measurement time periods (i.e. some seconds or minutes) of the input voltage stability with and without feedback control were performed. For the latter, measurements of typical acoustical exposimetry parameters were performed bimonthly over one year. The measurement results show that the short- and the longtime stability of the reference setup are very good and that it is especially significantly improved in comparison to a setup without any feedback control.
NASA Astrophysics Data System (ADS)
Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.
2014-05-01
The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.
NASA Technical Reports Server (NTRS)
Colborn, B. L.; Armstrong, T. W.
1992-01-01
A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.
Developing of an automation for therapy dosimetry systems by using labview software
NASA Astrophysics Data System (ADS)
Aydin, Selim; Kam, Erol
2018-06-01
Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. Therefore it is very important to provide reliable, accurate and fast calibration services for therapy dosimeters since the radiation dose delivered to a radiotherapy patient is directly related to accuracy and reliability of these devices. In this study, we report the performance of in-house developed computer controlled data acquisition and monitoring software for the commercially available radiation therapy electrometers. LabVIEW® software suite is used to provide reliable, fast and accurate calibration services. The software also collects environmental data such as temperature, pressure and humidity in order to use to use these them in correction factor calculations. By using this software tool, a better control over the calibration process is achieved and the need for human intervention is reduced. This is the first software that can control frequently used dosimeter systems, in radiation thereapy field at hospitals, such as Unidos Webline, Unidos E, Dose-1 and PC Electrometers.
MAGIC polymer gel for dosimetric verification in boron neutron capture therapy
Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli
2007-01-01
Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463
Water equivalent path length measurement in proton radiotherapy using time resolved diode dosimetry
Gottschalk, B.; Tang, S.; Bentefour, E. H.; Cascio, E. W.; Prieels, D.; Lu, H.-M.
2011-01-01
Purpose: To verify water equivalent path length (WEPL) before treatment in proton radiotherapy using time resolved in vivo diode dosimetry. Methods: Using a passively scattered range modulated proton beam, the output of a diode driving a fast current-to-voltage amplifier is recorded at a number of depths in a water tank. At each depth, a burst of overlapping single proton pulses is observed. The rms duration of the burst is computed and the resulting data set is fitted with a cubic polynomial. Results: When the diode is subsequently set to an arbitrary depth and the polynomial is used as a calibration curve, the “unknown” depth is determined within 0.3 mm rms. Conclusions: A diode or a diode array, placed (for instance) in the rectum in conjunction with a rectal balloon, can potentially determine the WEPL at that point, just prior to treatment, with submillimeter accuracy, allowing the beam energy to be adjusted. The associated unwanted dose is about 0.2% of a typical single fraction treatment dose. PMID:21626963
NASA Astrophysics Data System (ADS)
Schreiner, L. J.
2017-05-01
For seventeen years a community of basic and clinical scientists and researchers has been meeting bi-annually to promote the clinical advance of techniques to measure radiation dose in three dimensions. The interest in this dosimetry was motivated by its promise as an effective methodology for 3D measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. Each of the International Conferences on 3D Radiation Dosimetry resulted in the publication of informative proceedings [1-8], the majority openly available on the internet. The proceedings included papers that: i) reviewed the basic science of the radiation sensitive materials used to accumulate the dose information, ii) introduced the science and engineering of the imaging systems required to read the information out, iii) described the work flows and systems required for efficient dosimetry, iv) reported the protocols required for reproducible dosimetry, and v) showed examples of clinical use illustrating advantage and limitations of the dosimetry. This paper is intended to use the framework provided by these proceedings to review the current 3D chemical dosimeters available and to discuss the requirements for their use. The paper describes how 3D dosimetry can complement other dose delivery validation approaches available in the clinic. It closes with some personal reflections of how the motivation for, and practice of, 3D dosimetry have changed (or not) over the years.
Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations
Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza
2014-01-01
Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829
Dosimetry of ionising radiation in modern radiation oncology
NASA Astrophysics Data System (ADS)
Kron, Tomas; Lehmann, Joerg; Greer, Peter B.
2016-07-01
Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.
SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, M; University of California, San Diego, La Jolla, CA; Graves, Y
Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is ablemore » to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.« less
Slimani, Faiçal A A; Hamdi, Mahdjoub; Bentourkia, M'hamed
2018-05-01
Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package. Copyright © 2018 Elsevier Ltd. All rights reserved.
Antolak, J A; Cundiff, J H; Ha, C S
1998-01-01
The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended.
Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N
2017-01-01
Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development. PMID:28396725
INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1997-04-01
This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.
Factors Affecting the Quality of Tooth Enamel for In Vivo EPR-Based Retrospective Biodosimetry
Desmet, Céline M.; Levêque, Philippe; Gallez, Bernard
2016-01-01
In vivo electron paramagnetic resonance biodosimetry on tooth enamel is likely to be an important technology for triage of overexposed individuals after a major radiological incident. The accuracy and robustness of the technique relies on various properties of the enamel such as the geometry of the tooth, the presence of restorations, whitening treatments or exposition to sunlight. Those factors are reviewed, and their influence on dosimetry specifically for triage purposes is discussed. PMID:27473693
NASA Technical Reports Server (NTRS)
1987-01-01
Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.
Thermoluminescent dosimetry in rotary-dual technique of the total skin electron irradiation.
Piotrowski, T; Fundowicz, D; Pawlaczyk, M; Malicki, J
2003-01-01
The aim of the study was to discuss the results of thermoluminescent dosimetry (TLD) in rotary-dual technique of the total skin electron irradiation (TSEI RD), to confirm beam calibration and monitor unit calculations and to provide data for making clinical decisions. Between May 2001 and April 2002, in 3 cases of mycosis fungoides, 736 dosimetric checks were performed in 34 points at the skin. CaF2:MnTLD-400 cubes (1/8"x1/8"x0.015") were used for in vivo dosimetry. Doses were computed and analyzed for all locations. Percent of described dose and SD for the following localizations from 34 points were: anterior abdomen (reference point) 100+/-6%, upper back 100+/-8%, right calf 98+/-10%, left foot (mid dorsum) 97+/-8%, posterior neck 93+/-6%, right hand (mid dorsum) 78+/-10%, hand fingers 57+/-10%, top of right shoulder 56+/-14%, left groin 35+/-20%, perineum 22+/-17%. The correlations between patient's height and measured doses were sufficient for the following localizations: scalp (top rear), occiput, elbows, hand fingers and hands (mid dorsum). The correlations between obesity index and measured doses were sufficient for the following localizations: shoulders and lateral neck, groins, and perineum. Dosimetric checks at the reference point confirm that our beam calibration technique and monitor unit calculation are accurate. TLD shows that for some parts of the skin such as shoulder, hands and perineum boost fields were required. The correlations with obesity index and height for several sites suggest that boost fields must be customized for each patient.
Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe
2007-11-15
To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.
3D-printed surface mould applicator for high-dose-rate brachytherapy
NASA Astrophysics Data System (ADS)
Schumacher, Mark; Lasso, Andras; Cumming, Ian; Rankin, Adam; Falkson, Conrad B.; Schreiner, L. John; Joshi, Chandra; Fichtinger, Gabor
2015-03-01
In contemporary high-dose-rate brachytherapy treatment of superficial tumors, catheters are placed in a wax mould. The creation of current wax models is a difficult and time consuming proces.The irradiation plan can only be computed post-construction and requires a second CT scan. In case no satisfactory dose plan can be created, the mould is discarded and the process is repeated. The objective of this work was to develop an automated method to replace suboptimal wax moulding. We developed a method to design and manufacture moulds that guarantee to yield satisfactory dosimetry. A 3D-printed mould with channels for the catheters designed from the patient's CT and mounted on a patient-specific thermoplastic mesh mask. The mould planner was implemented as an open-source module in the 3D Slicer platform. Series of test moulds were created to accommodate standard brachytherapy catheters of 1.70mm diameter. A calibration object was used to conclude that tunnels with a diameter of 2.25mm, minimum 12mm radius of curvature, and 1.0mm open channel gave the best fit for this printer/catheter combination. Moulds were created from the CT scan of thermoplastic mesh masks of actual patients. The patient-specific moulds have been visually verified to fit on the thermoplastic meshes. The masks were visually shown to fit onto the thermoplastic meshes, next the resulting dosimetry will have to be compared with treatment plans and dosimetry achieved with conventional wax moulds in order to validate our 3D printed moulds.
Image guided IMRT dosimetry using anatomy specific MOSFET configurations.
Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad
2008-06-23
We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans.
Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images
Frey, Eric C.; Humm, John L.; Ljungberg, Michael
2012-01-01
The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429
A comparison of two methods of in vivo dosimetry for a high energy neutron beam.
Blake, S W; Bonnett, D E; Finch, J
1990-06-01
Two methods of in vivo dosimetry have been compared in a high energy neutron beam. These were activation dosimetry and thermoluminescence dosimetry (TLD). Their suitability was determined by comparison with estimates of total dose, obtained using a tissue equivalent ionization chamber. Measurements were made on the central axis and a profile of a 10 x 10 cm square field and also behind a shielding block in order to simulate conditions of clinical use. The TLD system was found to provide the best estimate of total dose.
Radiation dosimetry for quality control of food preservation and disinfestation
NASA Astrophysics Data System (ADS)
McLaughlin, W. L.; Miller, A.; Uribe, R. M.
In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.
NASA Astrophysics Data System (ADS)
Soares, Christopher
2006-03-01
In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.
Specific issues in small animal dosimetry and irradiator calibration
Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel
2013-01-01
Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967
Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.
Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios
2015-05-08
The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.
NASA Astrophysics Data System (ADS)
Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).
Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study
NASA Astrophysics Data System (ADS)
Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.
2012-03-01
Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the newborn nuclear medicine patient based upon the UF hybrid computational phantom. Photon dose response functions, photon and electron SAFs, and tables of radionuclide S values for the newborn child--both male and female--are given in a series of four electronic annexes available at stacks.iop.org/pmb/57/1433/mmedia. These values can be applied to optimization studies of image quality and stochastic risk for this most vulnerable class of pediatric patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S; Kaufman, R
Purpose: To analyze CT radiation dosimetry trends in a pediatric population imaged with modern (2004-2013) CT technology Methods: The institutional review board approved this retrospective review. Two cohorts of pediatric patients that received CT scans for treatment or surveillance for Wilms tumor (n=73) or Neuroblastoma (n=74) from 2004–2013 were included in this study. Patients were scanned during this time period on a GE Ultra (8 slice; 2004–2007), a GE VCT (2008–2011), or a GE VCT-XTe (2011–2013). Each patient's individual or combined chest, abdomen, and pelvic CT exams (n=4138) were loaded onto a PACS workstation (Intelerad, Canada) and measured to calculatemore » their effective diameter and SSDE. Patient SSDE was used to estimate patient organ dosimetry based on previously published data. Patient's organ dosimetry were sorted by gender, weight, age, scan protocol (i.e., chest, abdomen, or pelvis), and CT scanner technology and averaged accordingly to calculate population averaged absolute and effective dose values. Results: Patient radiation dose burden calculated for all genders, weights, and ages decreased at a rate of 0.2 mSv/year (4.2 mGy/year; average organ dose) from 2004–2013; overall levels decreased by 50% from 3.0 mSv (60.0 mGy) to 1.5 mSv (25.9 mGy). Patient dose decreased at equal rates for both male and female, and for individual scan protocols. The greatest dose savings was found for patients between 0–4 years old (65%) followed by 5-9 years old (45%), 10–14 years old (30%), and > 14 years old (21%). Conclusion: Assuming a linear-nothreshold model, there always will be potential risk of cancer induction from CT. However, as demonstrated among these patient populations, effective and organ dose has decreased over the last decade; thus, potential risk of long-term side effects from pediatric CT examinations has also been reduced.« less
Abdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT.
Gear, Jonathan I; Cummings, Craig; Craig, Allison J; Divoli, Antigoni; Long, Clive D C; Tapner, Michael; Flux, Glenn D
2016-12-01
The use of selective internal radiation therapy (SIRT) is rapidly increasing, and the need for quantification and dosimetry is becoming more widespread to facilitate treatment planning and verification. The aim of this project was to develop an anthropomorphic phantom that can be used as a validation tool for post-SIRT imaging and its application to dosimetry. The phantom design was based on anatomical data obtained from a T1-weighted volume-interpolated breath-hold examination (VIBE) on a Siemens Aera 1.5 T MRI scanner. The liver, lungs and abdominal trunk were segmented using the Hermes image processing workstation. Organ volumes were then uploaded to the Delft Visualization and Image processing Development Environment for smoothing and surface rendering. Triangular meshes defining the iso-surfaces were saved as stereo lithography (STL) files and imported into the Autodesk® Meshmixer software. Organ volumes were subtracted from the abdomen and a removable base designed to allow access to the liver cavity. Connection points for placing lesion inserts and filling holes were also included. The phantom was manufactured using a Stratasys Connex3 PolyJet 3D printer. The printer uses stereolithography technology combined with ink jet printing. Print material is a solid acrylic plastic, with similar properties to polymethylmethacrylate (PMMA). Measured Hounsfield units and calculated attenuation coefficients of the material were shown to also be similar to PMMA. Total print time for the phantom was approximately 5 days. Initial scans of the phantom have been performed with Y-90 bremsstrahlung SPECT/CT, Y-90 PET/CT and Tc-99m SPECT/CT. The CT component of these images compared well with the original anatomical reference, and measurements of volume agreed to within 9 %. Quantitative analysis of the phantom was performed using all three imaging techniques. Lesion and normal liver absorbed doses were calculated from the quantitative images in three dimensions using the local deposition method. 3D printing is a flexible and cost-efficient technology for manufacture of anthropomorphic phantom. Application of such phantoms will enable quantitative imaging and dosimetry methodologies to be evaluated, which with optimisation could help improve outcome for patients.
Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar
2004-10-21
Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.
NASA Astrophysics Data System (ADS)
Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar
2004-10-01
Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.
This report summarizes the status of specific inhalation dosimetry procedures for gases as outlined in U.S. EPA’s 1994 Methods for Derivation of Inhalation Reference Concentrations and Applications of Inhalation Dosimetry (U.S. EPA 1994) and reviews recent scientific advances in...
NASA Astrophysics Data System (ADS)
Pogue, Brian W.; Davis, Scott C.; Kanick, Stephen C.; Maytin, Edward V.; Pereira, Stephen P.; Palanisami, Akilan; Hasan, Tayyaba
2016-03-01
Photodynamic therapy can be a highly complex treatment with more than one parameter to control, or in some cases it is easily implemented with little control other than prescribed drug and light values. The role of measured dosimetry as related to clinical adoption has not been as successful as it could have been, and part of this may be from the conflicting goals of advocating for as many measurements as possible for accurate control, versus companies and clinical adopters advocating for as few measurements as possible, to keep it simple. An organized approach to dosimetry selection is required, which shifts from mechanistic measurements in pre-clinical and early phase I trials, towards just those essential dose limiting measurements and a focus on possible surrogate measures in phase II/III trials. This essential and surrogate approach to dosimetry should help successful adoption of clinical PDT if successful. The examples of essential dosimetry points and surrogate dosimetry tools which might be implemented in phase II and higher trials are discussed for solid tissue PDT with verteporfin and skin lesion treatment with aminolevulinc acid.
Chemical dosimetry system for criticality accidents.
Miljanić, Saveta; Ilijas, Boris
2004-01-01
Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.
How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Ensor, Joe E.; Pasciak, Alexander S.
Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromicmore » film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone beam computed tomography or acquisition runs acquired at large primary gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±35% for embolization procedures. Reference air kerma can be used without modification to set notification limits and substantial radiation dose levels, provided the displayed reference air kerma is accurate. These results can reasonably be extended to similar procedures, including vascular and interventional oncology. Considering these results, film dosimetry is likely an unnecessary effort for these types of procedures when indirect dose metrics are available.« less
Internal dosimetry technical basis manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-20
The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophicalmore » discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.« less
Woda, Clemens; Bassinet, Céline; Trompier, François; Bortolin, Emanuela; Della Monaca, Sara; Fattibene, Paola
2009-01-01
The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.
Retrospective dosimetry analyses of reactor vessel cladding samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.
2011-07-01
Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combinedmore » with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, G.A.
2011-07-01
Document available in abstract form only, full text of document follows: The dosimetry from the H. B. Robinson Unit 2 Pressure Vessel Benchmark is analyzed with a suite of Westinghouse-developed codes and data libraries. The radiation transport from the reactor core to the surveillance capsule and ex-vessel locations is performed by RAPTOR-M3G, a parallel deterministic radiation transport code that calculates high-resolution neutron flux information in three dimensions. The cross-section library used in this analysis is the ALPAN library, an Evaluated Nuclear Data File (ENDF)/B-VII.0-based library designed for reactor dosimetry and fluence analysis applications. Dosimetry is evaluated with the industry-standard SNLRMLmore » reactor dosimetry cross-section data library. (authors)« less
NASA Astrophysics Data System (ADS)
Lee, Choonik
A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very crucial in understanding the radiation risks of the patients undergoing computed tomography. Finally, nuclear medicine simulations were performed by calculating specific absorbed fractions for multiple target-source organ pairs via Monte Carlo simulations. Specific absorbed fractions were calculated for both photon and electron so that they can be used to calculated radionuclide S-values. All of the results were tabulated for future uses and example dose assessment was performed for selected nuclides administered in nuclear medicine.
NASA Astrophysics Data System (ADS)
Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan
2003-05-01
New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.
TH-A-204-00: Key Dosimetry Data - Impact of New ICRU Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV xrays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline for adoption of the ICRU recommendations.« less
TH-A-204-01: Part I - Key Data for Ionizing-Radiation Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzer, S.
The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV x-rays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline for adoption of the ICRU recommendations.« less
Fell, T P
2007-01-01
The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts--the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES.
The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation
Napier, B. A.
2017-03-17
The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.
Dosimetry analyses of the Ringhals 3 and 4 reactor pressure vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulesza, J.A.; Fero, A.H.; Rouden, J.
2011-07-01
A comprehensive series of neutron dosimetry measurements consisting of surveillance capsules, reactor pressure vessel cladding samples, and ex-vessel neutron dosimetry has been analyzed and compared to the results of three-dimensional, cycle-specific neutron transport calculations for the Ringhals Unit 3 and Unit 4 reactors in Sweden. The comparisons show excellent agreement between calculations and measurements. The measurements also demonstrate that it is possible to perform retrospective dosimetry measurements using the {sup 93}Nb (n,n') {sup 93m}Nb reaction on samples of 18-8 austenitic stainless steel with only trace amounts of elemental niobium. (authors)
The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, B. A.
The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.
NASA Astrophysics Data System (ADS)
McCurdy, B. M. C.
2013-06-01
An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y M; Han, B; Xing, L
2016-06-15
Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less
Thomas, Silke; Kühnlein, Anja; Heinrich, Sabine; Praml, Georg; von Kries, Rüdiger; Radon, Katja
2008-11-04
Despite the increase of mobile phone use in the last decade and the growing concern whether mobile telecommunication networks adversely affect health and well-being, only few studies have been published that focussed on children and adolescents. Especially children and adolescents are important in the discussion of adverse health effects because of their possibly higher vulnerability to radio frequency electromagnetic fields. We investigated a possible association between exposure to mobile telecommunication networks and well-being in children and adolescents using personal dosimetry. A population-based sample of 1.498 children and 1.524 adolescents was assembled for the study (response 52%). Participants were randomly selected from the population registries of four Bavarian (South of Germany) cities and towns with different population sizes. During a Computer Assisted Personal Interview data on participants' well-being, socio-demographic characteristics and potential confounder were collected. Acute symptoms were assessed three times during the study day (morning, noon, evening).Using a dosimeter (ESM-140 Maschek Electronics), we obtained an exposure profile over 24 hours for three mobile phone frequency ranges (measurement interval 1 second, limit of determination 0.05 V/m) for each of the participants. Exposure levels over waking hours were summed up and expressed as mean percentage of the ICNIRP (International Commission on Non-Ionizing Radiation Protection) reference level. In comparison to non-participants, parents and adolescents with a higher level of education who possessed a mobile phone and were interested in the topic of possible adverse health effects caused by mobile telecommunication network frequencies were more willing to participate in the study. The median exposure to radio frequency electromagnetic fields of children and adolescents was 0.18% and 0.19% of the ICNIRP reference level respectively. In comparison to previous studies this is one of the first to assess the individual level of exposure to mobile telecommunication networks using personal dosimetry, enabling objective assessment of exposure from all sources and longer measurement periods. In total, personal dosimetry was proofed to be a well accepted tool to study exposure to mobile phone frequencies in epidemiologic studies including health effects on children and adolescents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, B; Kanal, K; Dickinson, R
2014-06-15
Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structuredmore » Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as provides two-dimensional angulation dose maps for angiography/interventional procedures. Conclusion: REMS implementation has streamlined and consolidated the dosimetry data collection and analysis process at our institutions while eliminating manual entry error and providing immediate alerting and access to dosimetry data to both physicists and physicians. Brent Stewart has funded research through GE Healthcare.« less
NASA Astrophysics Data System (ADS)
Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming
2008-07-01
The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential pathways to improve the VCH phantom have also been briefly addressed. This work pertains to VCH-based systematic multi-particle dose investigations and will contribute to comparative dosimetry studies of ICRP standardized voxel phantoms in the near future.
NASA Astrophysics Data System (ADS)
Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed
2018-03-01
Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.
ESR dosimetry for atomic bomb survivors and radiologic technologists
NASA Astrophysics Data System (ADS)
Tatsumi-Miyajima, Junko
1987-06-01
An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.
TREE Preferred Procedures, Selected Electronic Parts.
1982-01-31
presented. Chapter 5 covers dosimetry and environmental correlation procedures. Neutron measurements, photon and electron measurements, and pulse...complications from nonuniformity of dose and to provide accurate dosimetry , exposures should be performed under conditions of electron equi- librium. Unless...nonconducting dosimetry materials or test articles are exposed to intense electron beams characteristic of flash X-ray machines, the effect of the potential
Verification of an on line in vivo semiconductor dosimetry system for TBI with two TLD procedures.
Sánchez-Doblado, F; Terrón, J A; Sánchez-Nieto, B; Arráns, R; Errazquin, L; Biggs, D; Lee, C; Núñez, L; Delgado, A; Muñiz, J L
1995-01-01
This work presents the verification of an on line in vivo dosimetry system based on semiconductors. Software and hardware has been designed to convert the diode signal into absorbed dose. Final verification was made in the form of an intercomparison with two independent thermoluminiscent (TLD) dosimetry systems, under TBI conditions.
Develop real-time dosimetry concepts and instrumentation for long term missions
NASA Technical Reports Server (NTRS)
Braby, L. A.
1981-01-01
The development of a rugged portable dosimetry system, based on microdosimetry techniques, which will measure dose and evaluate dose equivalent in a mixed radiation field is described. Progress in the desired dosimetry system can be divided into three distinct areas: development of the radiation detector, and electron system are presented. The mathematical techniques required are investigated.
Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.
2003-01-03
This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.
Calibration of a mosfet detection system for 6-MV in vivo dosimetry.
Scalchi, P; Francescon, P
1998-03-01
Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used.
On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.
Chen, Z; Agostinelli, A; Nath, R
1998-03-01
The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable's spatial configuration were altered during the two-polarity measurements. This suggests that automatic scanning systems with unshielded cables should not be used in TSET ionization chamber dosimetry. However, the data did show that an unshielded cable may be used in TSET ionization chamber dosimetry if the size of cable-induced error in a given TSET beam is pre-evaluated and the measurement is carefully conducted. When such an evaluation has not been performed, additional shielding should be applied to the cable being used, making measurements at multiple points difficult.
Das, Subinoy; Maeso, Patricia A; Figueroa, Ramon E; Senior, Brent A; Delgaudio, John M; Sillers, Michael J; Schlosser, Rod J; Kountakis, Stilianos E
2008-01-01
This study was performed to assess the feasibility of using intraoperative computed tomography (CT) to provide real-time updates to image guidance systems (IGSs) during surgery. The xCAT ENT portable intraoperative CT scanner (Xoran Technologies, Ann Arbor, MI) was used to acquire scans before, midway, and at the end of six cadaver dissections during the Southern States Rhinology Course, Augusta, GA, in October 2006. These scans were used to recalibrate three different IGSs used during the dissection. Time measurements were recorded and dosimetry was obtained from the cornea, sphenoid sinus (near the optic chiasm), and from the operative field during acquisition of the images. IGS accuracy was determined at the skull base and lamina papyracea. Surgeons were interviewed on benefits of real-time updates to the IGS after completion of dissections. The xCAT ENT scanner was compatible with all three IGS platforms. The average time to update the IGS was 13 minutes. Radiation doses to the cornea were 620 mrad per scan, and optic chiasm was 800 mrad/scan. The accuracy at the anterior skull base improved from 1.58 to 0.62 mm (p=0.026). The accuracy at the posterior skull base improved from 1.46 to 0.71 mm (p=0.014). The accuracy at the lamina was not significantly changed. Intraoperative portable CT scanning with real-time IGS updates is feasible and likely would add little additional time. Accuracy is improved at the skull base. Prospective studies on actual patients are warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goke, Sarah Hayes; Elliott, Nathan Ryan
The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program.more » The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.« less
ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.
Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L
2012-06-07
Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca
2015-04-15
Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measuredmore » over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring ADCL conformance with National Institute of Standards and Technology standards. This study shows that N{sub D,w} coefficients measured at different ADCLs are statistically equivalent, especially considering reasonable uncertainties. This analysis of N{sub D,w} coefficients also allows identification of chamber types that can be considered stable enough for accurate reference dosimetry.« less
Behrsing, Holger; Hill, Erin; Raabe, Hans; Tice, Raymond; Fitzpatrick, Suzanne; Devlin, Robert; Pinkerton, Kent; Oberdörster, Günter; Wright, Chris; Wieczorek, Roman; Aufderheide, Michaela; Steiner, Sandro; Krebs, Tobias; Asgharian, Bahman; Corley, Richard; Oldham, Michael; Adamson, Jason; Li, Xiang; Rahman, Irfan; Grego, Sonia; Chu, Pei-Hsuan; McCullough, Shaun; Curren, Rodger
2017-07-01
In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide. 2017 FRAME.
NASA Astrophysics Data System (ADS)
Buranurak, S.; Andersen, C. E.
2017-06-01
Radiotherapy technologies have improved for several decades aiming to effectively destroy cancerous tissues without overdosing surrounding healthy tissues. In order to fulfil this requirement, accurate and precise dosimetry systems play an important role. Throughout the years, ionization chambers have been used as a standard detector for basic linear accelerator calibrations and reference dosimetry in hospitals. However, they are not ideal for all treatment modalities: and limitations and difficulties have been reported in case of (i) small treatment fields, (ii) strong magnetic field used in the new hybrid MRI LINAC/cobalt systems, and (iii) in vivo measurements due to safety-issues related to the high operating voltage. Fiber optically coupled luminescence detectors provide a promising supplement to ionization chambers by offering the capability of real-time in vivo dose monitoring with high time resolution. In particular, the all-optical nature of these detectors is an advantage for in vivo measurements due to the absence of high voltage supply or electrical wire that could cause harm to the patient or disturb the treatment. Basically, fiber-coupled luminescence detector systems function by radiation-induced generation of radioluminescence from a sub-mm size organic/inorganic phosphor. A thin optical fiber cable is used for guiding the radioluminescence to a photomultiplier tube or similar sensitive light detection systems. The measured light intensity is proportional to dose rate. Throughout the years, developments and research of the fiber detector systems have undergone in several groups worldwide. In this article, the in-house developed fiber detector systems based on two luminescence phosphors of (i) BCF-60 polystyrene-based organic plastic scintillator and (ii) carbon-doped aluminum oxide crystal (Al2O3:C) are reviewed with comparison to the same material-based systems reported in the literature. The potential use of these detectors for reference-class dosimetry in radiotherapy will be discussed with a particular emphasis on uses in small and large MV photon fields.
FX-25 and FX-100 Propagation Experiments.
1982-07-01
Radiochromic Foil Dosimetry Blue cellophane is one of the most widely used radiochromic film dosimeters.6 Blue cellophane exposed to an intense electron ...shown in Fig. 18, Appendix B. Thermoluminescent Dosimetry Lithium flouride thermoluminescent dosimeters ( TLDs ) were on a limited number of shots to...corroboration of the current distribution included radiochromic-film dosimetry , TLD arrays, and openshutter photography. Because of our discovery of the
TRIAGE of Irradiated Personnel
1996-09-25
Vivo Electron Paramagnetic Resonance, Electron Spin Resonance (EPR, ESR) for In Vivo Dosimetry Under Field Conditions Dr. Harold M. Swartz Dartmouth...Force Medical Center Andrews Air Force Base, MD • Status and Limitations of Physical Dosimetry in the Field Environment David A. Schauer, LCDR, MSC...USN Naval Dosimetry Center Navy Environmental Health Center Detachment Bethesda, MD • NATO Policy and Guidance on Antiemetic Usage Robert Kehlet
Hanford internal dosimetry program manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.
1989-10-01
This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.
USAFSAM Review and Analysis of Radiofrequency Radiation Bioeffects Literature: Second Report.
1982-05-01
10 Cellular 11 Mechanisms of interaction 12 Environmental 13 Medical applications 14 Review 15 Ecological 16 Physical methods/dosimetry 17 Other 18...APPLICATIONS List of Analyses ......... .................... 137 (14) REVIEW List of Analyses ......... .................... 138 (16) PHYSICAL METHODS/DOSIMETRY...physiological 10 Cellular 11 Mechanisms of interaction 12 Environmental 13 Medical applications 14 Review 15 Ecological 16 Physical methods/dosimetry 17
To maximize the value of toxicological data in development of human health risk assessment models of inhaled elongated mineral particles, improvements in human dosimetry modeling are needed. In order to extend the dosimetry model of deposited fibers (Asgharian et aI., Johnson 201...
In vivo thermoluminescence dosimetry for total body irradiation.
Palkosková, P; Hlavata, H; Dvorák, P; Novotný, J; Novotný, J
2002-01-01
An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).
Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F
2016-09-01
In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
3D dosimetry by optical-CT scanning
NASA Astrophysics Data System (ADS)
Oldham, Mark
2006-12-01
The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.
Nuclear accident dosimetry intercomparison studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, C.S.
1989-09-01
Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less
Hänscheid, Heribert; Canzi, Cristina; Eschner, Wolfgang; Flux, Glenn; Luster, Markus; Strigari, Lidia; Lassmann, Michael
2013-07-01
The EANM Dosimetry Committee Series "Standard Operational Procedures for Pre-Therapeutic Dosimetry" (SOP) provides advice to scientists and clinicians on how to perform patient-specific absorbed dose assessments. This particular SOP describes how to tailor the therapeutic activity to be administered for radioiodine therapy of benign thyroid diseases such as Graves' disease or hyperthyroidism. Pretherapeutic dosimetry is based on the assessment of the individual (131)I kinetics in the target tissue after the administration of a tracer activity. The present SOP makes proposals on the equipment to be used and guides the user through the measurements. Time schedules for the measurement of the fractional (131)I uptake in the diseased tissue are recommended and it is shown how to calculate from these datasets the therapeutic activity necessary to administer a predefined target dose in the subsequent therapy. Potential sources of error are pointed out and the inherent uncertainties of the procedures depending on the number of measurements are discussed. The theoretical background and the derivation of the listed equations from compartment models of the iodine kinetics are explained in a supplementary file published online only.
Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens
2017-01-01
In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.
Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.
2015-01-01
The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218
Hu, B; Wang, Y; Zealey, W
2009-12-01
A commercial Optical Stimulated Luminescence (OSL) dosimetry system developed by Landauer was tested to analyse the possibility of using OSL dosimetry for external beam radiotherapy planning checks. Experiments were performed to determine signal sensitivity, dose response range, beam type/energy dependency, reproducibility and linearity. Optical annealing processes to test OSL material reusability were also studied. In each case the measurements were converted into absorbed dose. The experimental results show that OSL dosimetry provides a wide dose response range, good linearity and reproducibility for the doses up to 800cGy. The OSL output is linear with dose up to 600cGy range showing a maximum deviation from linearity of 2.0% for the doses above 600cGy. The standard deviation in response of 20 dosimeters was 3.0%. After optical annealing using incandescent light, the readout intensity decreased by approximately 98% in the first 30 minutes. The readout intensity, I, decreased after repeated optical annealing as a power law, given by I infinity t (-1.3). This study concludes that OSL dosimetry can provide an alternative dosimetry technique for use in in-vivo dosimetry if rigorous measurement protocols are established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid
Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less
Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.
Hourdakis, Constantine J; Boziari, A
2008-04-01
Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a useful tool for the improvement of quality in radiotherapy. It succeeded to disseminate the IAEA TRS-398 protocol in nearly all radiotherapy centers achieving homogenization and consistency of dosimetry within the country. Also, it detected discrepancies in dosimetry and provided guidance and recommendations to eliminate sources of errors. Finally, it proved that quality assurance programs, periodic quality control tests, maintenance and service play an important role for achieving accuracy and safe operation in radiotherapy.
NASA Astrophysics Data System (ADS)
Dance, D. R.; Young, K. C.
2014-05-01
The UK, European and IAEA protocols for breast dosimetry in mammography use tabulations of conversion factors, which relate measurements of incident air kerma to the mean glandular dose to the breast. To supplement the existing tabulations, a Monte Carlo computer program has been used to calculate conversion factors for the high-energy spectra used for contrast enhanced digital mammography. The calculations were made for the x-ray spectra from a tungsten target (tube voltage range 40-50 kV) filtered by 0.28, 0.30 and 0.32 mm of copper, and from molybdenum and rhodium targets (tube voltage range 40-49 kV), each filtered by 0.30 mm of copper. The g-factors for all of these spectra were plotted for each breast thickness as a function of half value layer (HVL) and were found to lie on smooth curves within 0.3%. These reflect the fact that the characteristic x-rays present in the spectra from molybdenum and rhodium are heavily filtered and all the spectra are essentially Bremsstrahlung. As a consequence, the s-factor previously used in the dosimetry protocols to adjust for different target/filter combinations can be taken as unity for all of the spectra considered. Tables of g-factors and c-factors are provided for breast thicknesses in the range 20-110 mm and HVLs in the range 2.4-3.6 mm of aluminium. The tables of c-factors are given for breast glandularities in the range 0.1%-100% and for typical glandularities for women in the age bands 40-49 and 50-64 attending the UK national breast screening programme.
GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications
NASA Astrophysics Data System (ADS)
Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris
2015-07-01
In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Daniel, E-mail: Daniel.Pham@petermac.org; Kron, Tomas; Foroudi, Farshad
2013-10-01
Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist'smore » discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.« less
Amato, Ernesto; Campennì, Alfredo; Leotta, Salvatore; Ruggeri, Rosaria M; Baldari, Sergio
2016-06-01
Radioiodine therapy is an effective and safe treatment of hyperthyroidism due to Graves' disease, toxic adenoma, toxic multinodular goiter. We compared the outcomes of a traditional calculation method based on an analytical fit of the uptake curve and subsequent dose calculation with the MIRD approach, and an alternative computation approach based on a formulation implemented in a public-access website, searching for the best timing of radioiodine uptake measurements in pre-therapeutic dosimetry. We report about sixty-nine hyperthyroid patients that were treated after performing a pre-therapeutic dosimetry calculated by fitting a six-point uptake curve (3-168h). In order to evaluate the results of the radioiodine treatment, patients were followed up to sixty-four months after treatment (mean 47.4±16.9). Patient dosimetry was then retrospectively recalculated with the two above-mentioned methods. Several time schedules for uptake measurements were considered, with different timings and total number of points. Early time schedules, sampling uptake up to 48h, do not allow to set-up an accurate treatment plan, while schedules including the measurement at one week give significantly better results. The analytical fit procedure applied to the three-point time schedule 3(6)-24-168h gave results significantly more accurate than the website approach exploiting either the same schedule, or the single measurement at 168h. Consequently, the best strategy among the ones considered is to sample the uptake at 3(6)-24-168h, and carry out an analytical fit of the curve, while extra measurements at 48 and 72h lead only marginal improvements in the accuracy of therapeutic activity determination. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Image guided IMRT dosimetry using anatomy specific MOSFET configurations
Norrlinger, Bern; Heaton, Robert; Islam, Mohammad
2008-01-01
We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobileMOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within −0.26±0.88% and 0.06±1.94% (1σ) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X‐Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47±2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans. PACS number: 87.55.Qr
Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.
2016-01-01
Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427
Kim, Michele M; Penjweini, Rozhin; Gemmell, Nathan R; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S; Hadfield, Robert H; Wilson, Brian C; Zhu, Timothy C
2016-12-06
Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT-light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([³ O ₂])-to calculate the amount of reacted singlet oxygen ([¹ O ₂] rx ), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime ( τ Δ and τ t ), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [¹ O ₂] rx was compared to SOED-calculated [¹ O ₂] rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [¹ O ₂] rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula.
Personnel neutron dosimetry using electrochemically etched CR-39 foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankins, D.E.; Homann, S.; Westermark, J.
1986-09-17
A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less
Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A
2015-03-01
HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.
Electrocardiogram‐gated coronary CT angiography dose estimates using ImPACT
Asada, Yasuki; Matsubara, Kosuke; Suzuki, Shouichi; Koshida, Kichiro; Matsunaga, Yuta; Haba, Tomonobu; Kawaguchi, Ai; Toyama, Hiroshi; Kato, Ryoichi
2016-01-01
The primary study objective was to assess radiation doses using a modified form of the Imaging Performance Assessment of Computed Tomography (CT) scanner (ImPACT) patient dosimetry for cardiac applications on an Aquilion ONE ViSION Edition scanner, including the Ca score, target computed tomography angiography (CTA), prospective CTA, continuous CTA/cardiac function analysis (CFA), and CTA/CFA modulation. Accordingly, we clarified the CT dose index (CTDI) to determine the relationship between heart rate (HR) and X‐ray exposure. As a secondary objective, we compared radiation doses using modified ImPACT, a whole‐body dosimetry phantom study, and the k‐factor method to verify the validity of the dose results obtained with modified ImPACT. The effective dose determined for the reference person (4.66 mSv at 60 beats per minute (bpm) and 33.43 mSv at 90 bpm) were approximately 10% less than those determined for the phantom study (5.28 mSv and 36.68 mSv). The effective doses according to the k‐factor (0.014 mSv·mGy−1·cm−1; 2.57 mSv and 17.10 mSv) were significantly lower than those obtained with the other two methods. In the present study, we have shown that ImPACT, when modified for cardiac applications, can assess both absorbed and effective doses. The results of our dose comparison indicate that modified ImPACT dose assessment is a promising and practical method for evaluating coronary CTA. PACS number(s): 87.57.Q‐, 87.59.Dj, 87.57.uq PMID:27455500
Corley, Richard A.
2012-01-01
Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models. PMID:22584687
Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.
2015-01-01
Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408
NASA Technical Reports Server (NTRS)
Coakley, Peter G. (Editor)
1988-01-01
The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.
Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin
Kim, Jeonghyun; Salvatore, Giovanni A.; Araki, Hitoshi; Chiarelli, Antonio M.; Xie, Zhaoqian; Banks, Anthony; Sheng, Xing; Liu, Yuhao; Lee, Jung Woo; Jang, Kyung-In; Heo, Seung Yun; Cho, Kyoungyeon; Luo, Hongying; Zimmerman, Benjamin; Kim, Joonhee; Yan, Lingqing; Feng, Xue; Xu, Sheng; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Paik, Ungyu; Rogers, John A.
2016-01-01
Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have “skin-like” properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics. PMID:27493994
ESR/Alanine gamma-dosimetry in the 10-30 Gy range.
Fainstein, C; Winkler, E; Saravi, M
2000-05-01
We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for gamma-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in gamma-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.
1993-12-01
on Panasonic TLD . Panasonic Industrial Company; Secaucus, New Jersey. 5. Thurlow, Ronald M. "Neutron Dosimetry Using a Panasonic Thermoluminescent...Radiation Dosimetry Branch Brooks Air Force Base San Antonio, Texas 78235 Final Report for: AFOSR Summer Research Program Armstrong Laboratory Sponsored...Associate Radiation Dosimetry Branch Armstrong Laboratory Abstract In an attempt to improve personnel monitoring for neutron emissions, Panasonic has
Cullings, Harry M
2012-03-01
The Radiation Effects Research Foundation (RERF) uses a dosimetry system to calculate radiation doses received by the Japanese atomic bomb survivors based on their reported location and shielding at the time of exposure. The current system, DS02, completed in 2003, calculates detailed doses to 15 particular organs of the body from neutrons and gamma rays, using new source terms and transport calculations as well as some other improvements in the calculation of terrain and structural shielding, but continues to use methods from an older system, DS86, to account for body self-shielding. Although recent developments in models of the human body from medical imaging, along with contemporary computer speed and software, allow for improvement of the calculated organ doses, before undertaking changes to the organ dose calculations, it is important to evaluate the improvements that can be made and their potential contribution to RERF's research. The analysis provided here suggests that the most important improvements can be made by providing calculations for more organs or tissues and by providing a larger series of age- and sex-specific models of the human body from birth to adulthood, as well as fetal models.
Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography.
Ludlow, John B; Walker, Cameron
2013-12-01
The increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern about the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Effective doses resulting from various combinations of field of view size and field location comparing child and adult anthropomorphic phantoms with the recently introduced i-CAT FLX cone-beam computed tomography unit (Imaging Sciences, Hatfield, Pa) were measured with optical stimulated dosimetry using previously validated protocols. Scan protocols included high resolution (360° rotation, 600 image frames, 120 kV[p], 5 mA, 7.4 seconds), standard (360°, 300 frames, 120 kV[p], 5 mA, 3.7 seconds), QuickScan (180°, 160 frames, 120 kV[p], 5 mA, 2 seconds), and QuickScan+ (180°, 160 frames, 90 kV[p], 3 mA, 2 seconds). Contrast-to-noise ratio was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Child phantom doses were on average 36% greater than adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than standard protocols for the child (P = 0.0167) and adult (P = 0.0055) phantoms. The 13 × 16-cm cephalometric fields of view ranged from 11 to 85 μSv in the adult phantom and 18 to 120 μSv in the child phantom for the QuickScan+ and standard protocols, respectively. The contrast-to-noise ratio was reduced by approximately two thirds when comparing QuickScan+ with standard exposure parameters. QuickScan+ effective doses are comparable with conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off might be acceptable for certain diagnostic tasks such as interim assessment of treatment results. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Radioiodine: the classic theranostic agent.
Silberstein, Edward B
2012-05-01
Radioiodine has the distinction of being the first theranostic agent in our armamentarium. Millennia were required to discover that the agent in orally administered seaweed and its extracts, which had been shown to cure neck swelling due to thyromegaly, was iodine, first demonstrated to be a new element in 1813. Treatment of goiter with iodine began at once, but its prophylactic value to prevent a common form of goiter took another century. After Enrico Fermi produced the first radioiodine, (128)I, in 1934, active experimentation in the United States and France delineated the crucial role of iodine in thyroid metabolism and disease. (130)I and (131)I were first employed to treat thyrotoxicosis by 1941, and thyroid cancer in 1943. After World War II, (131)I became widely available at a reasonable price for diagnostic testing and therapy. The rectilinear scanner of Cassen and Curtis (Science 1949;110:94-95), and a dedicated gamma camera invented by Anger (Nature 1952;170:200-201), finally permitted the diagnostic imaging of thyroid disease, with (131)I again the radioisotope of choice, although there were short-lived attempts to employ (125)I and (132)I for this purpose. (123)I was first produced in 1949 but did not become widely available until about 1982, 10 years after a production technique eliminated high-energy (124)I contamination. I continues to be the radioiodine of choice for the diagnosis of benign thyroid disease, whereas (123)I and (131)I are employed in the staging and detection of functioning thyroid cancer. (124)I, a positron emitter, can produce excellent anatomically correlated images employing positron emission tomography/computed tomography equipment and has the potential to enhance heretofore imperfect dosimetric studies in determining the appropriate administered activity to ablate/treat thyroid cancer. Issues of acceptable measuring error in thyroid cancer dosimetry and the role in (131)I therapy of tumor heterogeneity, tumor hypoxia, and kinetics must be overcome, and long-term outcome studies following (131)I given based on this new dosimetry must be completed before the nuclear medicine community will be able to predictably cure our thyroid cancer patients with this technology. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelletier, C; Jung, J; Lee, C
2015-06-15
Purpose: To quantify the dosimetric uncertainty due to organ position errors when using height and weight as phantom selection criteria in the UF/NCI Hybrid Phantom Library for the purpose of out-of-field organ dose reconstruction. Methods: Four diagnostic patient CT images were used to create 7-field IMRT plans. For each patient, dose to the liver, right lung, and left lung were calculated using the XVMC Monte Carlo code. These doses were taken to be the ground truth. For each patient, the phantom with the most closely matching height and weight was selected from the body size dependent phantom library. The patientmore » plans were then transferred to the computational phantoms and organ doses were recalculated. Each plan was also run on 4 additional phantoms with reference heights and or weights. Maximum and mean doses for the three organs were computed, and the DVHs were extracted and compared. One sample t-tests were performed to compare the accuracy of the height and weight matched phantoms against the additional phantoms in regards to both maximum and mean dose. Results: For one of the patients, the height and weight matched phantom yielded the most accurate results across all three organs for both maximum and mean doses. For two additional patients, the matched phantom yielded the best match for one organ only. In 13 of the 24 cases, the matched phantom yielded better results than the average of the other four phantoms, though the results were only statistically significant at the .05 level for three cases. Conclusion: Using height and weight matched phantoms does yield better results in regards to out-of-field dosimetry than using average phantoms. Height and weight appear to be moderately good selection criteria, though this selection criteria failed to yield any better results for one patient.« less
Dosimetry procedures for an industrial irradiation plant
NASA Astrophysics Data System (ADS)
Grahn, Ch.
Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.
NASA Astrophysics Data System (ADS)
Xu, X. George; Taranenko, Valery; Zhang, Juying; Shi, Chengyu
2007-12-01
Fetuses are extremely radiosensitive and the protection of pregnant females against ionizing radiation is of particular interest in many health and medical physics applications. Existing models of pregnant females relied on simplified anatomical shapes or partial-body images of low resolutions. This paper reviews two general types of solid geometry modeling: constructive solid geometry (CSG) and boundary representation (BREP). It presents in detail a project to adopt the BREP modeling approach to systematically design whole-body radiation dosimetry models: a pregnant female and her fetus at the ends of three gestational periods of 3, 6 and 9 months. Based on previously published CT images of a 7-month pregnant female, the VIP-Man model and mesh organ models, this new set of pregnant female models was constructed using 3D surface modeling technologies instead of voxels. The organ masses were adjusted to agree with the reference data provided by the International Commission on Radiological Protection (ICRP) and previously published papers within 0.5%. The models were then voxelized for the purpose of performing dose calculations in identically implemented EGS4 and MCNPX Monte Carlo codes. The agreements of the fetal doses obtained from these two codes for this set of models were found to be within 2% for the majority of the external photon irradiation geometries of AP, PA, LAT, ROT and ISO at various energies. It is concluded that the so-called RPI-P3, RPI-P6 and RPI-P9 models have been reliably defined for Monte Carlo calculations. The paper also discusses the needs for future research and the possibility for the BREP method to become a major tool in the anatomical modeling for radiation dosimetry.
Initial Nuclear Radiation Hardness Validation Test
2008-11-03
d. Dosimetry from the GDR environment. The TLDs should be placed as indicated in the section above and their location used to determine the... electronics to levels which will account for: all error terms in dosimetry and data recording, response differences in microcircuits due to different...the internal gamma dose environment of an LRU. d. Dosimetry from the gamma dose environment. The TLDs should be placed as indicated in the
1991-09-01
2 2. Dosimetry ............................................. 4 C. OVERVIEW OF EXPERIMENT............................... 5 11. ELECTRON BEAM...From these measurements, the dose was calculated and then compared to a measured dose obtained from TLD dosimetry . Technical 5 problems with the...LINAC precluded TLD dosimetry from being accomplished during the first run and, therefore, was performed on the second run only. After irradiation, a NaI
Improvement and Analysis of the Radiation Response of RADFET Dosimeters
1992-06-15
TLD ), silicon p-i-n diode responses and silicon calorimetry (AWE Dosimetry Service). Intensive preparations were made by REM and the experiments were...SUB-GROUP dose: RADFET : tactical dosimetry silicon : metal-oxide- 0705 emiconductor (MOS) field effect transistor (FET) : silicon Idioxide space...1.1 Principle of a dosimetry system, based on the RADFET (radiation-sensitive field-effect transistor) (a) microscopic cross-section of chip (b) chip
Characterization of the Radiological Environment at J-Village during Operation Tomodachi
2013-02-01
individual as compared to those for the helicopter crew members (Appendix A). 3.2.2. Other Relevant Dosimetry Results Thermoluminescent dosimeter ( TLD ...internal monitoring results are available for 14 of these individuals. External dosimetry data (EPD and TLD ) showed that the maximum recorded dose for an...Washington, DC. http://www.NNSAResponseData.net. Accessed December 7. USAFCRD (U. S. Air Force Center for Radiation Dosimetry ), 2011. Electronic Pocket
AFRRI Reports, April-June 1990
1990-07-01
described in detail in the companion paper (4). In vivo dosimetry was done using Harshaw (Solon, Ohio) TLD -100 lith- ium fluoride thermoluminescent...provide replicate measurements. Two separate dosimetry tubes were developed (Fig. 1). The first contained 30 TLD cap- sules loaded in a 90-cm length...situ Dosimetry Tube 55 3 LIF TLDs In gelatin capsule TUBEB LIF TLDs Nylon Balls Steel Ball Epoxy Plug I Scale 3 cm - J FIG. I
The Effect of Irradiation on Bone Remodelling and the Structural Integrity of the Vertebral Column
1990-01-01
thermoluminescent dosimetry calculations were also used. Seventy-four lithium fluoride thermoluminescent dosimeters ( TLDs ) were selected from 120...and thermoluminescent dosimetry ( TLD ) were used to evaluate the actual doses administered. The TLD analysis was completed with five strips of five...professional help with the dose administration and the dosimetry . And especially to my husband. Kevin, without whose help and encouragement I could not have
[Automatic Extraction and Analysis of Dosimetry Data in Radiotherapy Plans].
Song, Wei; Zhao, Di; Lu, Hong; Zhang, Biyun; Ma, Jun; Yu, Dahai
To improve the efficiency and accuracy of extraction and analysis of dosimetry data in radiotherapy plans for a batch of patients. With the interface function provided in Matlab platform, a program was written to extract the dosimetry data exported from treatment planning system in DICOM RT format and exported the dose-volume data to an Excel file with the SPSS compatible format. This method was compared with manual operation for 14 gastric carcinoma patients to validate the efficiency and accuracy. The output Excel data were compatible with SPSS in format, the dosimetry data error for PTV dose interval of 90%-98%, PTV dose interval of 99%-106% and all OARs were -3.48E-5 ± 3.01E-5, -1.11E-3 ± 7.68E-4, -7.85E-5 ± 9.91E-5 respectively. Compared with manual operation, the time required was reduced from 5.3 h to 0.19 h and input error was reduced from 0.002 to 0. The automatic extraction of dosimetry data in DICOM RT format for batch patients, the SPSS compatible data exportation, quick analysis were achieved in this paper. The efficiency of clinical researches based on dosimetry data analysis of large number of patients will be improved with this methods.
Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields.
Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela
2016-06-21
An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform's size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke's brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.
A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment.
Palmer, Antony L; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew
2015-02-01
To undertake the first multicentre fully 'end to end' dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. The mean difference between planned and measured dose at Point A was -0.6% for plastic applicators and -3.0% for metal applicators, at standard uncertainty 3.0% (k=1). Isodose distributions agreed within 1mm over a dose range 2-16Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. The concept of 'end to end' dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields
NASA Astrophysics Data System (ADS)
Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela
2016-06-01
An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform’s size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke’s brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.
Self-report and long-term field measures of MP3 player use: how accurate is self-report?
Portnuff, C D F; Fligor, B J; Arehart, K H
2013-02-01
This study was designed to evaluate the usage patterns of portable listening device (PLD) listeners, and the relationships between self-report measures and long-term dosimetry measures of listening habits. This study used a descriptive correlational design. Participants (N = 52) were 18-29 year old men and women who completed surveys. A randomly assigned subset (N = 24) of participants had their listening monitored by dosimetry for one week. Median weekly noise doses reported and measured through dosimetry were low (9-93%), but 14.3% of participants reported exceeding a 100% noise dose weekly. When measured by dosimetry, 16.7% of participants exceeded a 100% noise dose weekly. The self-report question that best predicted the dosimetry-measured dose asked participants to report listening duration and usual listening level on a visual-analog scale. This study reports a novel dosimetry system that can provide accurate measures of PLD use over time. When not feasible, though, the self-report question described could provide a useful research or clinical tool to estimate exposure from PLD use. Among the participants in this study, a small but substantial percentage of PLD users incurred exposure from PLD use alone that increases their risk of music-induced hearing loss.
Portal dosimetry for VMAT using integrated images obtained during treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedford, James L., E-mail: James.Bedford@icr.ac.uk; Hanson, Ian M.; Hansen, Vibeke Nordmark
2014-02-15
Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantommore » thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and field shape, but less sensitive to errors in gantry angle or phantom position. Conclusions: This method of predicting integrated portal images provides a convenient means of verifying dose delivered using VMAT, with minimal image acquisition and data processing requirements.« less
Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification
NASA Astrophysics Data System (ADS)
Vandecasteele, Jan; De Deene, Yves
2013-09-01
A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.
TH-A-204-02: Part II - Worldwide Radiation Metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, M.
The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV x-rays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and timeline for adoption of the ICRU recommendations.« less
Twenty new ISO standards on dosimetry for radiation processing
NASA Astrophysics Data System (ADS)
Farrar, H., IV
2000-03-01
Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have not yet been submitted to the ISO, and six more dosimetry standards are under development.
Stone, Nelson N; Hong, Suzanne; Lo, Yeh-Chi; Howard, Victor; Stock, Richard G
2003-01-01
To compare the results of intraoperative dosimetry with those of CT-based postimplant dosimetry in patients undergoing prostate seed implantation. Seventy-seven patients with T1-T3 prostate cancer received an ultrasound-guided permanent seed implant (36 received (125)I, 7 (103)Pd, and 34 a partial (103)Pd implant plus external beam radiation therapy). The implantation was augmented with an intraoperative dosimetric planning system. After the peripheral needles were placed, 5-mm axial images were acquired into the treatment planning system. Soft tissue structures (prostate, urethra, and rectum) were contoured, and exact needle positions were registered. Seeds were placed with an applicator, and their positions were entered into the planning system. The dose distributions for the implant were calculated after interior needle and seed placement. Postimplant dosimetry was performed 1 month later on the basis of CT imaging. Prostate and urethral doses were compared, by using paired t tests, for the real-time dosimetry in the operating room (OR) and the postimplant dosimetry. The mean preimplant prostate volume was 39.8 cm(3), the postneedle planning volume was 41.5 cm(3) (p<0.001), and the 1-month CT volume was 43.6 cm(3) (p<0.001). The mean difference between the OR dose received by 90% of the prostate (D(90)) and the CT D(90) was 3.4% (95% confidence interval, 2.5-6.6%; p=0.034). The mean dose to 30% of the urethra was 120% of prescription in the OR and 138% on CT. The mean difference was 18% (95% confidence interval, 13-24%; p<0.001). Although small differences exist between the OR and CT dosimetry results, these data suggest that this intraoperative implant dosimetric representation system provides a close match to the actual delivered doses. These data support the use of this system to modify the implant during surgery to achieve more consistent dosimetry results.
Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry
NASA Astrophysics Data System (ADS)
Kramer, R.; Cassola, V. F.; Andrade, M. E. A.; de Araújo, M. W. C.; Brenner, D. J.; Khoury, H. J.
2017-02-01
The purpose of bowtie filters in CT scanners is to homogenize the x-ray intensity measured by the detectors in order to improve the image quality and at the same time to reduce the dose to the patient because of the preferential filtering near the periphery of the fan beam. For CT dosimetry, especially for Monte Carlo calculations of organ and tissue absorbed doses to patients, it is important to take the effect of bowtie filters into account. However, material composition and dimensions of these filters are proprietary. Consequently, a method for bowtie filter simulation independent of access to proprietary data and/or to a specific scanner would be of interest to many researchers involved in CT dosimetry. This study presents such a method based on the weighted computer tomography dose index, CTDIw, defined in two cylindrical PMMA phantoms of 16 cm and 32 cm diameter. With an EGSnrc-based Monte Carlo (MC) code, ratios CTDIw/CTDI100,a were calculated for a specific CT scanner using PMMA bowtie filter models based on sigmoid Boltzmann functions combined with a scanner filter factor (SFF) which is modified during calculations until the calculated MC CTDIw/CTDI100,a matches ratios CTDIw/CTDI100,a, determined by measurements or found in publications for that specific scanner. Once the scanner-specific value for an SFF has been found, the bowtie filter algorithm can be used in any MC code to perform CT dosimetry for that specific scanner. The bowtie filter model proposed here was validated for CTDIw/CTDI100,a considering 11 different CT scanners and for CTDI100,c, CTDI100,p and their ratio considering 4 different CT scanners. Additionally, comparisons were made for lateral dose profiles free in air and using computational anthropomorphic phantoms. CTDIw/CTDI100,a determined with this new method agreed on average within 0.89% (max. 3.4%) and 1.64% (max. 4.5%) with corresponding data published by CTDosimetry (www.impactscan.org) for the CTDI HEAD and BODY phantoms, respectively. Comparison with results calculated using proprietary data for the PHILIPS Brilliance 64 scanner showed agreement on average within 2.5% (max. 5.8%) and with data measured for that scanner within 2.1% (max. 3.7%). Ratios of CTDI100,c/CTDI100, p for this study and corresponding data published by CTDosimetry (www.impactscan.org) agree on average within about 11% (max. 28.6%). Lateral dose profiles calculated with the proposed bowtie filter and with proprietary data agreed within 2% (max. 5.9%), and both calculated data agreed within 5.4% (max. 11.2%) with measured results. Application of the proposed bowtie filter and of the exactly modelled filter to human phantom Monte Carlo calculations show agreement on the average within less than 5% (max. 7.9%) for organ and tissue absorbed doses.
An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-06-01
The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom
Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.
2017-01-01
Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787