Sample records for computational flow analysis

  1. Computational Analysis of Human Blood Flow

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  2. Computational Flow Analysis of a Left Ventricular Assist Device

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan; Benkowski, Robert

    1995-01-01

    Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.

  3. Computer code for preliminary sizing analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    This mean diameter flow analysis uses a stage average velocity diagram as the basis for the computational efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last stage absolute and relative Mach numbers. An analysis is presented along with a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA-TN-D-6702. These modifications improve modeling rigor and extend code applicability.

  4. Finite element analysis and computer graphics visualization of flow around pitching and plunging airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.

    1973-01-01

    A general computational method for analyzing unsteady flow around pitching and plunging airfoils was developed. The finite element method was applied in developing an efficient numerical procedure for the solution of equations describing the flow around airfoils. The numerical results were employed in conjunction with computer graphics techniques to produce visualization of the flow. The investigation involved mathematical model studies of flow in two phases: (1) analysis of a potential flow formulation and (2) analysis of an incompressible, unsteady, viscous flow from Navier-Stokes equations.

  5. Computational Analysis of the G-III Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  6. A grid-embedding transonic flow analysis computer program for wing/nacelle configurations

    NASA Technical Reports Server (NTRS)

    Atta, E. H.; Vadyak, J.

    1983-01-01

    An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.

  7. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  8. Computational methods for unsteady transonic flows

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Thomas, J. L.

    1987-01-01

    Computational methods for unsteady transonic flows are surveyed with emphasis on prediction. Computational difficulty is discussed with respect to type of unsteady flow; attached, mixed (attached/separated) and separated. Significant early computations of shock motions, aileron buzz and periodic oscillations are discussed. The maturation of computational methods towards the capability of treating complete vehicles with reasonable computational resources is noted and a survey of recent comparisons with experimental results is compiled. The importance of mixed attached and separated flow modeling for aeroelastic analysis is discussed, and recent calculations of periodic aerodynamic oscillations for an 18 percent thick circular arc airfoil are given.

  9. Software Aids Visualization of Computed Unsteady Flow

    NASA Technical Reports Server (NTRS)

    Kao, David; Kenwright, David

    2003-01-01

    Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.

  10. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two

  11. Computational analysis of the SSME fuel preburner flow

    NASA Technical Reports Server (NTRS)

    Wang, T. S.; Farmer, R. C.

    1986-01-01

    A computational fluid dynamics model which simulates the steady state operation of the SSME fuel preburner is developed. Specifically, the model will be used to quantify the flow factors which cause local hot spots in the fuel preburner in order to recommend experiments whereby the control of undesirable flow features can be demonstrated. The results of a two year effort to model the preburner are presented. In this effort, investigating the fuel preburner flowfield, the appropriate transport equations were numerically solved for both an axisymmetric and a three-dimensional configuration. Continuum's VAST (Variational Solution of the Transport equations) code, in conjunction with the CM-1000 Engineering Analysis Workstation and the NASA/Ames CYBER 205, was used to perform the required calculations. It is concluded that the preburner operational anomalies are not due to steady state phenomena and must, therefore, be related to transient operational procedures.

  12. Computational analysis of an axial flow pediatric ventricular assist device.

    PubMed

    Throckmorton, Amy L; Untaroiu, Alexandrina; Allaire, Paul E; Wood, Houston G; Matherne, Gaynell Paul; Lim, David Scott; Peeler, Ben B; Olsen, Don B

    2004-10-01

    Longer-term (>2 weeks) mechanical circulatory support will provide an improved quality of life for thousands of pediatric cardiac failure patients per year in the United States. These pediatric patients suffer from severe congenital or acquired heart disease complicated by congestive heart failure. There are currently very few mechanical circulatory support systems available in the United States as viable options for this population. For that reason, we have designed an axial flow pediatric ventricular assist device (PVAD) with an impeller that is fully suspended by magnetic bearings. As a geometrically similar, smaller scaled version of our axial flow pump for the adult population, the PVAD has a design point of 1.5 L/min at 65 mm Hg to meet the full physiologic needs of pediatric patients. Conventional axial pump design equations and a nondimensional scaling technique were used to estimate the PVAD's initial dimensions, which allowed for the creation of computational models for performance analysis. A computational fluid dynamic analysis of the axial flow PVAD, which measures approximately 65 mm in length by 35 mm in diameter, shows that the pump will produce 1.5 L/min at 65 mm Hg for 8000 rpm. Fluid forces (approximately 1 N) were also determined for the suspension and motor design, and scalar stress values remained below 350 Pa with maximum particle residence times of approximately 0.08 milliseconds in the pump. This initial design demonstrated acceptable performance, thereby encouraging prototype manufacturing for experimental validation.

  13. Integration of lyoplate based flow cytometry and computational analysis for standardized immunological biomarker discovery.

    PubMed

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R; Nestle, Frank O

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.

  14. Integration of Lyoplate Based Flow Cytometry and Computational Analysis for Standardized Immunological Biomarker Discovery

    PubMed Central

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A. Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R.; Nestle, Frank O.

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases. PMID:23843942

  15. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  16. Computational domain discretization in numerical analysis of flow within granular materials

    NASA Astrophysics Data System (ADS)

    Sosnowski, Marcin

    2018-06-01

    The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.

  17. Computational flow development for unsteady viscous flows: Foundation of the numerical method

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Spehert, T.

    1978-01-01

    A procedure is presented for effective consideration of viscous effects in computational development of high Reynolds number flows. The procedure is based on the interpretation of the Navier-Stokes equations as vorticity transport equations. The physics of the flow was represented in a form suitable for numerical analysis. Lighthill's concept for flow development for computational purposes was adapted. The vorticity transport equations were cast in a form convenient for computation. A statement for these equations was written using the method of weighted residuals and applying the Galerkin criterion. An integral representation of the induced velocity was applied on the basis of the Biot-Savart law. Distribution of new vorticity, produced at wing surfaces over small computational time intervals, was assumed to be confined to a thin region around the wing surfaces.

  18. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  19. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors andmore » the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.« less

  20. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis: Results From the VIRTU-Fast Study.

    PubMed

    Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2017-08-01

    Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  1. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    PubMed

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  2. CoreFlow: a computational platform for integration, analysis and modeling of complex biological data.

    PubMed

    Pasculescu, Adrian; Schoof, Erwin M; Creixell, Pau; Zheng, Yong; Olhovsky, Marina; Tian, Ruijun; So, Jonathan; Vanderlaan, Rachel D; Pawson, Tony; Linding, Rune; Colwill, Karen

    2014-04-04

    A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts into project-specific pipelines, tracks interdependencies between related tasks, and enables the generation of summary reports as well as publication-quality images. As a result, the gap between experimental and computational components of a typical large-scale biology project is reduced, decreasing the time between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion, and modeling of multiple/selected reaction monitoring (MRM/SRM) results. CoreFlow was purposely designed as an environment for programmers to rapidly perform data analysis. These analyses are assembled into project-specific workflows that are readily shared with biologists to guide the next stages of experimentation. Its simple yet powerful interface provides a structure where scripts can be written and tested virtually simultaneously to shorten the life cycle of code development for a particular task. The scripts are exposed at every step so that a user can quickly see the relationships between the data, the assumptions that have been made, and the manipulations that have been performed. Since the scripts use commonly available programming languages, they can easily be

  3. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  4. A parallel offline CFD and closed-form approximation strategy for computationally efficient analysis of complex fluid flows

    NASA Astrophysics Data System (ADS)

    Allphin, Devin

    Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative

  5. Computation of transonic potential flow about 3 dimensional inlets, ducts, and bodies

    NASA Technical Reports Server (NTRS)

    Reyhner, T. A.

    1982-01-01

    An analysis was developed and a computer code, P465 Version A, written for the prediction of transonic potential flow about three dimensional objects including inlet, duct, and body geometries. Finite differences and line relaxation are used to solve the complete potential flow equation. The coordinate system used for the calculations is independent of body geometry. Cylindrical coordinates are used for the computer code. The analysis is programmed in extended FORTRAN 4 for the CYBER 203 vector computer. The programming of the analysis is oriented toward taking advantage of the vector processing capabilities of this computer. Comparisons of computed results with experimental measurements are presented to verify the analysis. Descriptions of program input and output formats are also presented.

  6. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 3; Titan, ASRM, and Subscale Motor Analyses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A computational fluid dynamics (CFD) analysis has been performed on the aft slot region of the Titan 4 Solid Rocket Motor Upgrade (SRMU). This analysis was performed in conjunction with MSFC structural modeling of the propellant grain to determine if the flow field induced stresses would adversely alter the propellant geometry to the extent of causing motor failure. The results of the coupled CFD/stress analysis have shown that there is a continual increase of flow field resistance at the aft slot due to the aft segment propellant grain being progressively moved radially toward the centerline of the motor port. This 'bootstrapping' effect between grain radial movement and internal flow resistance is conducive to causing a rapid motor failure.

  7. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  8. Computational Challenges of Viscous Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung

    2004-01-01

    Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.

  9. Extension of transonic flow computational concepts in the analysis of cavitated bearings

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Keith, T. G., Jr.; Brewe, D. E.

    1990-01-01

    An analogy between the mathematical modeling of transonic potential flow and the flow in a cavitating bearing is described. Based on the similarities, characteristics of the cavitated region and jump conditions across the film reformation and rupture fronts are developed using the method of weak solutions. The mathematical analogy is extended by utilizing a few computational concepts of transonic flow to numerically model the cavitating bearing. Methods of shock fitting and shock capturing are discussed. Various procedures used in transonic flow computations are adapted to bearing cavitation applications, for example, type differencing, grid transformation, an approximate factorization technique, and Newton's iteration method. These concepts have proved to be successful and have vastly improved the efficiency of numerical modeling of cavitated bearings.

  10. Computations of Chaotic Flows in Micromixers

    DTIC Science & Technology

    2006-04-07

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6410--06-8948 Computations of Chaotic Flows in Micromixers April 7, 2006 Approved for...PAGES 17. LIMITATION OF ABSTRACT Computations of Chaotic Flows in Micromixers Carolyn R. Kaplan, Junhui Liu, David R. Mott, and Elaine S. Oran NRL/MR...striations form in time 1 _______________ Manuscript approved December 8, 2005. COMPUTATIONS OF CHAOTIC FLOWS IN MICROMIXERS or distance. Sometimes it is

  11. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  12. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  13. Experimental and Computational Analysis of Unidirectional Flow Through Stirling Engine Heater Head

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Demko, Rikako

    2006-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.

  14. Computational analysis of a multistage axial compressor

    NASA Astrophysics Data System (ADS)

    Mamidoju, Chaithanya

    Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.

  15. Computations of Chaotic Flows in Micromixers

    DTIC Science & Technology

    2005-01-01

    2005 2. REPORT TYPE 3. DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Computations of Chaotic Flows in Micromixers 5a. CONTRACT...Std Z39-18 215simulation, computing, and modeling 2005 NRL Review Computations of Chaotic Flows In Micromixers FIGURE 6 Schematic of staggered

  16. Using Multiple Grids To Compute Flows

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    1991-01-01

    Paper discusses decomposition of global grids into multiple patched and/or overlaid local grids in computations of fluid flow. Such "domain decomposition" particularly useful in computation of flows about complicated bodies moving relative to each other; for example, flows associated with rotors and stators in turbomachinery and rotors and fuselages in helicopters.

  17. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  18. Computation of incompressible viscous flows through turbopump components

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Leon

    1993-01-01

    Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.

  19. Computational and experimental analysis of the flow in an annular centrifugal contactor

    NASA Astrophysics Data System (ADS)

    Wardle, Kent E.

    The annular centrifugal contactor has been developed for solvent extraction processes for recycling used nuclear fuel. The compact size and high efficiency of these contactors have made them the choice for advanced reprocessing schemes and a key equipment for a proposed future advanced fuel cycle facility. While a sufficient base of experience exists to facilitate successful operation of current contactor technology, a more complete understanding of the fluid flow within the contactor would enable further advancements in design and operation of future units and greater confidence for use of such contactors in a variety of other solvent extraction applications. This research effort has coupled computational fluid dynamics modeling with a variety of experimental measurements and observations to provide a valid detailed analysis of the flow within the centrifugal contactor. CFD modeling of the free surface flow in the annular mixing zone using the Volume of Fluid (VOF) volume tracking method combined with Large Eddy Simulation (LES) of turbulence was found to have very good agreement with the experimental measurements and observations. A detailed study of the flow and mixing for different housing vane geometries was performed and it was found that the four straight mixing vane geometry had greater mixing for the flow rate simulated and more predictable operation over a range of low to moderate flow rates. The separation zone was also modeled providing a useful description of the flow in this region and identifying critical design features. It is anticipated that this work will form a foundation for additional efforts at improving the design and operation of centrifugal contactors and provide a framework for progress towards simulation of solvent extraction processes.

  20. Computed Flow Through An Artificial Heart Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).

  1. Computation of multi-dimensional viscous supersonic flow

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.

    1986-01-01

    A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  2. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  3. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  4. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  5. Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott

    2017-11-01

    Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.

  6. Flow dynamics in pediatric rigid bronchoscopes using computer-aided design modeling software.

    PubMed

    Barneck, Mitchell D; Webb, J Taylor; Robinson, Ryan E; Grimmer, J Fredrik

    2016-08-01

    Observed complications during rigid bronchoscopy, including hypercarbia and hypoxemia, prompted us to assess how well rigid bronchoscopes serve as an airway device. We performed computer-aided design flow analysis of pediatric rigid bronchoscopes to gain insight into flow dynamics. We made accurate three-dimensional computer models of pediatric rigid bronchoscopes and endotracheal tubes. SOLIDWORKS (Dassault Systemes, Vélizy-Villacoublay, France) flow analysis software was used to analyze fluid dynamics during pressure-controlled and volume-controlled ventilation. Flow analysis was performed on rigid bronchoscopes and similar outer diameter endotracheal tubes comparing resistance, flow, and turbulence during two ventilation modalities and in common surgical scenarios. Increased turbulent flow was observed in bronchoscopes compared to more laminar flow in endotracheal tubes of similar outer diameter. Flow analysis displayed higher resistances in all pediatric bronchoscope sizes except one (3.0 bronchoscope) compared to similar-sized endotracheal tubes. Loss of adequate ventilation was observed if the bronchoscope was not assembled correctly or if increased peak inspiratory pressures were needed. Anesthesia flow to the patient was reduced by 63% during telescope insertion. Flow analysis illustrates increased turbulent flow and increased airflow resistance in all but one size of pediatric bronchoscopes compared to endotracheal tubes. This increased turbulence and resistance, along with the unanticipated gas distal exit pattern, may contribute to the documented hypercarbia and hypoxemia during procedures. These findings may explain why hypoxemia and hypercarbia are commonly observed during rigid bronchoscopy, especially when positive pressure ventilation is needed. NA Laryngoscope, 126:1940-1945, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Computational fluid dynamics analysis of SSME phase 2 and phase 2+ preburner injector element hydrogen flow paths

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1992-01-01

    Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.

  8. Computer simulation of electron flow in linear-beam microwave tubes

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit

    1990-12-01

    The computer simulation of electron flow in linear-beam microwave tubes, such as a travelling-wave tube (TWT) and klystron, is used for designing and optimising the electron gun and collector and for analysing the large-signal beam-wave interaction phenomenon. Major aspects of simulation of electron flow in static and rf fields present in such tubes are discussed. Some advancements made in this respect and results obtained from computer programs developed by the research group at CEERI for a gridded electron gun, depressed collector, and large-signal analysis of TWT and klystron are presented.

  9. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  10. Quasi-one-dimensional compressible flow across face seals and narrow slots. 2: Computer program

    NASA Technical Reports Server (NTRS)

    Zuk, J.; Smith, P. J.

    1972-01-01

    A computer program is presented for compressible fluid flow with friction across face seals and through narrow slots. The computer program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions for parallel surfaces. The program is written in FORTRAN IV. The input and output variables are in either the International System of Units (SI) or the U.S. customary system.

  11. Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Lockard, David P.; Brentner, Kenneth S.; Khorrami, Mehdi R.; Berkman, Mert E.; Choudhari, Meelan

    2000-01-01

    An acoustic analysis based on the Ffowcs Williams and Hawkings equation was performed for a high-lift system. As input, the acoustic analysis used un- steady flow data obtained from a highly resolved, time-dependent, Reynolds-averaged Navier-Stokes calculation. The analysis strongly suggests that vor- tex shedding from the trailing edge of the slat results in a high-amplitude, high-frequency acoustic signal, similar to that which was observed in a correspond- ing experimental study of the high-lift system.

  12. Multiscale Computational Analysis of Nitrogen and Oxygen Gas-Phase Thermochemistry in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Bender, Jason D.

    Understanding hypersonic aerodynamics is important for the design of next-generation aerospace vehicles for space exploration, national security, and other applications. Ground-level experimental studies of hypersonic flows are difficult and expensive; thus, computational science plays a crucial role in this field. Computational fluid dynamics (CFD) simulations of extremely high-speed flows require models of chemical and thermal nonequilibrium processes, such as dissociation of diatomic molecules and vibrational energy relaxation. Current models are outdated and inadequate for advanced applications. We describe a multiscale computational study of gas-phase thermochemical processes in hypersonic flows, starting at the atomic scale and building systematically up to the continuum scale. The project was part of a larger effort centered on collaborations between aerospace scientists and computational chemists. We discuss the construction of potential energy surfaces for the N4, N2O2, and O4 systems, focusing especially on the multi-dimensional fitting problem. A new local fitting method named L-IMLS-G2 is presented and compared with a global fitting method. Then, we describe the theory of the quasiclassical trajectory (QCT) approach for modeling molecular collisions. We explain how we implemented the approach in a new parallel code for high-performance computing platforms. Results from billions of QCT simulations of high-energy N2 + N2, N2 + N, and N2 + O2 collisions are reported and analyzed. Reaction rate constants are calculated and sets of reactive trajectories are characterized at both thermal equilibrium and nonequilibrium conditions. The data shed light on fundamental mechanisms of dissociation and exchange reactions -- and their coupling to internal energy transfer processes -- in thermal environments typical of hypersonic flows. We discuss how the outcomes of this investigation and other related studies lay a rigorous foundation for new macroscopic models for

  13. Computational Study of Separating Flow in a Planar Subsonic Diffuser

    NASA Technical Reports Server (NTRS)

    DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.

    2005-01-01

    A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.

  14. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  15. Computing the sensitivity of drag and lift in flow past a circular cylinder: Time-stepping versus self-consistent analysis

    NASA Astrophysics Data System (ADS)

    Meliga, Philippe

    2017-07-01

    We provide in-depth scrutiny of two methods making use of adjoint-based gradients to compute the sensitivity of drag in the two-dimensional, periodic flow past a circular cylinder (Re≲189 ): first, the time-stepping analysis used in Meliga et al. [Phys. Fluids 26, 104101 (2014), 10.1063/1.4896941] that relies on classical Navier-Stokes modeling and determines the sensitivity to any generic control force from time-dependent adjoint equations marched backwards in time; and, second, a self-consistent approach building on the model of Mantič-Lugo et al. [Phys. Rev. Lett. 113, 084501 (2014), 10.1103/PhysRevLett.113.084501] to compute semilinear approximations of the sensitivity to the mean and fluctuating components of the force. Both approaches are applied to open-loop control by a small secondary cylinder and allow identifying the sensitive regions without knowledge of the controlled states. The theoretical predictions obtained by time-stepping analysis reproduce well the results obtained by direct numerical simulation of the two-cylinder system. So do the predictions obtained by self-consistent analysis, which corroborates the relevance of the approach as a guideline for efficient and systematic control design in the attempt to reduce drag, even though the Reynolds number is not close to the instability threshold and the oscillation amplitude is not small. This is because, unlike simpler approaches relying on linear stability analysis to predict the main features of the flow unsteadiness, the semilinear framework encompasses rigorously the effect of the control on the mean flow, as well as on the finite-amplitude fluctuation that feeds back nonlinearly onto the mean flow via the formation of Reynolds stresses. Such results are especially promising as the self-consistent approach determines the sensitivity from time-independent equations that can be solved iteratively, which makes it generally less computationally demanding. We ultimately discuss the extent to

  16. The computation of three-dimensional flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.; Hassan, O.

    1991-01-01

    A general method is described for automatically discretizing, into unstructured assemblies of tetrahedra, the three-dimensional solution domains of complex shape which are of interest in practical computational aerodynamics. An algorithm for the solution of the compressible Euler equations which can be implemented on such general unstructured tetrahedral grids is described. This is an explicit cell-vertex scheme which follows a general Taylor-Galerkin philosophy. The approach is employed to compute a transonic inviscid flow over a standard wing and the results are shown to compare favorably with experimental observations. As a more practical demonstration, the method is then applied to the analysis of inviscid flow over a complete modern fighter configuration. The effect of using mesh adaptivity is illustrated when the method is applied to the solution of high speed flow in an engine inlet.

  17. Boundary Conditions for Jet Flow Computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Turkel, E.

    1994-01-01

    Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.

  18. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  19. Selected computations of transonic cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.

  20. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  1. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  2. The NCOREL computer program for 3D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1983-01-01

    An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.

  3. Channel flow analysis. [velocity distribution throughout blade flow field

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  4. Computation of multi-dimensional viscous supersonic jet flow

    NASA Technical Reports Server (NTRS)

    Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.

    1986-01-01

    A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  5. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    NASA Astrophysics Data System (ADS)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  6. Analysis of Software Systems for Specialized Computers,

    DTIC Science & Technology

    computer) with given computer hardware and software . The object of study is the software system of a computer, designed for solving a fixed complex of...purpose of the analysis is to find parameters that characterize the system and its elements during operation, i.e., when servicing the given requirement flow. (Author)

  7. Computer program for definition of transonic axial-flow compressor blade rows. [computer program for fabrication and aeroelastic analysis

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1974-01-01

    A method is presented for designing axial-flow compressor blading from blade elements defined on cones which pass through the blade-edge streamline locations. Each blade-element centerline is composed of two segments which are tangent to each other. The centerline and surfaces of each segment have constant change of angle with path distance. The stacking line for the blade elements can be leaned in both the axial and tangential directions. The output of the computer program gives coordinates for fabrication and properties for aeroelastic analysis for planar blade sections. These coordinates and properties are obtained by interpolation across conical blade elements. The program is structured to be coupled with an aerodynamic design program.

  8. An approach to quantum-computational hydrologic inverse analysis.

    PubMed

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.

  9. Sensitivity analysis of a ground-water-flow model

    USGS Publications Warehouse

    Torak, Lynn J.; ,

    1991-01-01

    A sensitivity analysis was performed on 18 hydrological factors affecting steady-state groundwater flow in the Upper Floridan aquifer near Albany, southwestern Georgia. Computations were based on a calibrated, two-dimensional, finite-element digital model of the stream-aquifer system and the corresponding data inputs. Flow-system sensitivity was analyzed by computing water-level residuals obtained from simulations involving individual changes to each hydrological factor. Hydrological factors to which computed water levels were most sensitive were those that produced the largest change in the sum-of-squares of residuals for the smallest change in factor value. Plots of the sum-of-squares of residuals against multiplier or additive values that effect change in the hydrological factors are used to evaluate the influence of each factor on the simulated flow system. The shapes of these 'sensitivity curves' indicate the importance of each hydrological factor to the flow system. Because the sensitivity analysis can be performed during the preliminary phase of a water-resource investigation, it can be used to identify the types of hydrological data required to accurately characterize the flow system prior to collecting additional data or making management decisions.

  10. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, Kuo-Huey

    1997-01-01

    The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.

  11. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  12. SRM Internal Flow Test and Computational Fluid Dynamic Analysis. Volume 1; Major Task Summaries

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.

    1995-01-01

    During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing.

  13. User's manual for a TEACH computer program for the analysis of turbulent, swirling reacting flow in a research combustor

    NASA Technical Reports Server (NTRS)

    Chiappetta, L. M.

    1983-01-01

    Described is a computer program for the analysis of the subsonic, swirling, reacting turbulent flow in an axisymmetric, bluff-body research combustor. The program features an improved finite-difference procedure designed to reduce the effects of numerical diffusion and a new algorithm for predicting the pressure distribution within the combustor. A research version of the computer program described in the report was supplied to United Technologies Research Center by Professor A. D. Gosman and his students, R. Benodeker and R. I. Issa, of Imperial College, London. The Imperial College staff also supplied much of the program documentation. Presented are a description of the mathematical model for flow within an axisymmetric bluff-body combustor, the development of the finite-difference procedure used to represent the system of equations, an outline of the algorithm for determining the static pressure distribution within the combustor, a description of the computer program including its input format, and the results for representative test cases.

  14. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  15. Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2001-01-01

    This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.

  16. Measurements and computational analysis of heat transfer and flow in a simulated turbine blade internal cooling passage

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Thurman, Douglas R.; Simonyi, Patricia S.; Hippensteele, Steven A.; Poinsatte, Philip E.

    1993-01-01

    Visual and quantitative information was obtained on heat transfer and flow in a branched-duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used to validate computer codes for internal cooling systems. Surface heat transfer coefficients and entrance flow conditions were measured at entrance Reynolds numbers of 45,000, 335,000, and 726,000. The heat transfer data were obtained using an Inconel heater sheet attached to the surface and coated with liquid crystals. Visual and quantitative flow field results using particle image velocimetry were also obtained for a plane at mid channel height for a Reynolds number of 45,000. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Computational results were determined for the same configurations and at matching Reynolds numbers; these surface heat transfer coefficients and flow velocities were computed with a commercially available code. The experimental and computational results were compared. Although some general trends did agree, there were inconsistencies in the temperature patterns as well as in the numerical results. These inconsistencies strongly suggest the need for further computational studies on complicated geometries such as the one studied.

  17. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  18. Lattice Boltzmann computation of creeping fluid flow in roll-coating applications

    NASA Astrophysics Data System (ADS)

    Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga

    2018-04-01

    Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.

  19. Computer program for preliminary design analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1972-01-01

    The program method is based on a mean-diameter flow analysis. Input design requirements include power or pressure ratio, flow, temperature, pressure, and speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse). Exit turning vanes can be included in the design. Program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, blading angles, and last-stage critical velocity ratios. The report presents the analysis method, a description of input and output with sample cases, and the program listing.

  20. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  1. LFSTAT - Low-Flow Analysis in R

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor

    2013-04-01

    The calculation of characteristic stream flow during dry conditions is a basic requirement for many problems in hydrology, ecohydrology and water resources management. As opposed to floods, a number of different indices are used to characterise low flows and streamflow droughts. Although these indices and methods of calculation have been well documented in the WMO Manual on Low-flow Estimation and Prediction [1], a comprehensive software was missing which enables a fast and standardized calculation of low flow statistics. We present the new software package lfstat to fill in this obvious gap. Our software package is based on the statistical open source software R, and expands it to analyse daily stream flow data records focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) provided for R which is based on tcl/tk. The functionality of lfstat includes estimation methods for low-flow indices, extreme value statistics, deficit characteristics, and additional graphical methods to control the computation of complex indices and to illustrate the data. Beside the basic low flow indices, the baseflow index and recession constants can be computed. For extreme value statistics, state-of-the-art methods for L-moment based local and regional frequency analysis (RFA) are available. The tools for deficit characteristics include various pooling and threshold selection methods to support the calculation of drought duration and deficit indices. The most common graphics for low flow analysis are available, and the plots can be modified according to the user preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, recession diagnostic, flow duration curves as well as double mass curves, and many more. From a technical point of view, the package uses a S3-class called lfobj (low-flow objects). This

  2. Energy measurement using flow computers and chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeson, J.

    1995-12-01

    Arkla Pipeline Group (APG), along with most transmission companies, went to electronic flow measurement (EFM) to: (1) Increase resolution and accuracy; (2) Real time correction of flow variables; (3) Increase speed in data retrieval; (4) Reduce capital expenditures; and (5) Reduce operation and maintenance expenditures Prior to EFM, mechanical seven day charts were used which yielded 800 pressure and differential pressure readings. EFM yields 1.2-million readings, a 1500 time improvement in resolution and additional flow representation. The total system accuracy of the EFM system is 0.25 % compared with 2 % for the chart system which gives APG improved accuracy.more » A typical APG electronic measurement system includes a microprocessor-based flow computer, a telemetry communications package, and a gas chromatograph. Live relative density (specific gravity), BTU, CO{sub 2}, and N{sub 2} are updated from the chromatograph to the flow computer every six minutes which provides accurate MMBTU computations. Because the gas contract length has changed from years to monthly and from a majority of direct sales to transports both Arkla and its customers wanted access to actual volumes on a much more timely basis than is allowed with charts. The new electronic system allows volumes and other system data to be retrieved continuously, if EFM is on Supervisory Control and Data Acquisition (SCADA) or daily if on dial up telephone. Previously because of chart integration, information was not available for four to six weeks. EFM costs much less than the combined costs of telemetry transmitters, pressure and differential pressure chart recorders, and temperature chart recorder which it replaces. APG will install this equipment on smaller volume stations at a customers expense. APG requires backup measurement on metering facilities this size. It could be another APG flow computer or chart recorder, or the other companies flow computer or chart recorder.« less

  3. High-End Computing for Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    The objective of the First MIT Conference on Computational Fluid and Solid Mechanics (June 12-14, 2001) is to bring together industry and academia (and government) to nurture the next generation in computational mechanics. The objective of the current talk, 'High-End Computing for Incompressible Flows', is to discuss some of the current issues in large scale computing for mission-oriented tasks.

  4. Potential applications of computational fluid dynamics to biofluid analysis

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.

    1988-01-01

    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.

  5. An approach to quantum-computational hydrologic inverse analysis

    DOE PAGES

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  6. An approach to quantum-computational hydrologic inverse analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Daniel

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  7. Computational Analysis of Gravitational Effects in Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2004-01-01

    This study deals with the computational analysis of buoyancy-induced instability in the nearfield of an isothermal helium jet injected into quiescent ambient air environment. Laminar, axisymmetric, unsteady flow conditions were considered for the analysis. The transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum were solved using a staggered grid finite volume method. The jet Richardson numbers of 1.5 and 0.018 were considered to encompass both buoyant and inertial jet flow regimes. Buoyancy effects were isolated by initiating computations in Earth gravity and subsequently, reducing gravity to simulate the microgravity conditions. Computed results concur with experimental observations that the periodic flow oscillations observed in Earth gravity subside in microgravity.

  8. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  9. Computational strategies for three-dimensional flow simulations on distributed computer systems. Ph.D. Thesis Semiannual Status Report, 15 Aug. 1993 - 15 Feb. 1994

    NASA Technical Reports Server (NTRS)

    Weed, Richard Allen; Sankar, L. N.

    1994-01-01

    An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.

  10. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  11. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    NASA Astrophysics Data System (ADS)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  12. Web-Based Analysis and Publication of Flow Cytometry Experiments

    PubMed Central

    Kotecha, Nikesh; Krutzik, Peter O.; Irish, Jonathan M.

    2014-01-01

    Cytobank is a web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permissions from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at www.cytobank.org PMID:20578106

  13. Web-based analysis and publication of flow cytometry experiments.

    PubMed

    Kotecha, Nikesh; Krutzik, Peter O; Irish, Jonathan M

    2010-07-01

    Cytobank is a Web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a Web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permission, from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at http://www.cytobank.org. (c) 2010 by John Wiley & Sons, Inc.

  14. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.

    1991-01-01

    A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.

  15. The experimental verification of a streamline curvature numerical analysis method applied to the flow through an axial flow fan

    NASA Technical Reports Server (NTRS)

    Pierzga, M. J.

    1981-01-01

    The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.

  16. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  17. An Improved Treatment of External Boundary for Three-Dimensional Flow Computations

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon V.; Vatsa, Veer N.

    1997-01-01

    We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational boundaries when calculating three-dimensional compressible viscous flows over finite bodies. The approach is based on application of the difference potentials method by V. S. Ryaben'kii and extends our previous technique developed for the two-dimensional case. The new boundary conditions methodology has been successfully combined with the NASA-developed code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic flow regimes. As demonstrated by the computational experiments, the improved external boundary conditions allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable speedup of convergence of the multigrid iterations.

  18. Numerical computation of space shuttle orbiter flow field

    NASA Technical Reports Server (NTRS)

    Tannehill, John C.

    1988-01-01

    A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.

  19. NLS clutching bearing cavity flow analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Chan, Daniel C.; Darian, Armen

    1992-01-01

    A flow model of the NLS clutching bearing cavity was built for 2-D axisymmetric viscous analysis. From the computational fluid dynamics (CFD) approach, the tangential force exerted on the surfaces of the inner race was integrated to calculate the dividing torque which, in conjunction with the resistance torque, was used to predict the operating speed of the inner race. In order to further reduce the inner race rotation, the swirling flow at the cavity inlet was partially redirected to generate an opposing torque. Thirty six slanted slots were incorporated into the anti-vortex rib to achieve this goal. A 3-D flow analysis performed on this configuration indicates a drastic reduction of the driving torque and inner race RPM.

  20. Analysis and control of supersonic vortex breakdown flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  1. Master-slave mixed arrays for data-flow computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.L.; Fisher, P.D.

    1983-01-01

    Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less

  2. Computed Flow Through An Artificial Heart And Valve

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.

  3. Semiempirical methods for computing turbulent flows

    NASA Technical Reports Server (NTRS)

    Belov, I. A.; Ginzburg, I. P.

    1986-01-01

    Two semiempirical theories which provide a basis for determining the turbulent friction and heat exchange near a wall are presented: (1) the Prandtl-Karman theory, and (2) the theory utilizing an equation for the energy of turbulent pulsations. A comparison is made between exact numerical methods and approximate integral methods for computing the turbulent boundary layers in the presence of pressure, blowing, or suction gradients. Using the turbulent flow around a plate as an example, it is shown that, when computing turbulent flows with external turbulence, it is preferable to construct a turbulence model based on the equation for energy of turbulent pulsations.

  4. Computation of two-dimensional flows past ram-air parachutes

    NASA Astrophysics Data System (ADS)

    Mittal, S.; Saxena, P.; Singh, A.

    2001-03-01

    Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright

  5. Time-dependent jet flow and noise computations

    NASA Technical Reports Server (NTRS)

    Berman, C. H.; Ramos, J. I.; Karniadakis, G. E.; Orszag, S. A.

    1990-01-01

    Methods for computing jet turbulence noise based on the time-dependent solution of Lighthill's (1952) differential equation are demonstrated. A key element in this approach is a flow code for solving the time-dependent Navier-Stokes equations at relatively high Reynolds numbers. Jet flow results at Re = 10,000 are presented here. This code combines a computationally efficient spectral element technique and a new self-consistent turbulence subgrid model to supply values for Lighthill's turbulence noise source tensor.

  6. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  7. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  8. Personal Computer System for Automatic Coronary Venous Flow Measurement

    PubMed Central

    Dew, Robert B.

    1985-01-01

    We developed an automated system based on an IBM PC/XT Personal computer to measure coronary venous blood flow during cardiac catheterization. Flow is determined by a thermodilution technique in which a cold saline solution is infused through a catheter into the coronary venous system. Regional temperature fluctuations sensed by the catheter are used to determine great cardiac vein and coronary sinus blood flow. The computer system replaces manual methods of acquiring and analyzing temperature data related to flow measurement, thereby increasing the speed and accuracy with which repetitive flow determinations can be made.

  9. All-Particle Multiscale Computation of Hypersonic Rarefied Flow

    NASA Astrophysics Data System (ADS)

    Jun, E.; Burt, J. M.; Boyd, I. D.

    2011-05-01

    This study examines a new hybrid particle scheme used as an alternative means of multiscale flow simulation. The hybrid particle scheme employs the direct simulation Monte Carlo (DSMC) method in rarefied flow regions and the low diffusion (LD) particle method in continuum flow regions. The numerical procedures of the low diffusion particle method are implemented within an existing DSMC algorithm. The performance of the LD-DSMC approach is assessed by studying Mach 10 nitrogen flow over a sphere with a global Knudsen number of 0.002. The hybrid scheme results show good overall agreement with results from standard DSMC and CFD computation. Subcell procedures are utilized to improve computational efficiency and reduce sensitivity to DSMC cell size in the hybrid scheme. This makes it possible to perform the LD-DSMC simulation on a much coarser mesh that leads to a significant reduction in computation time.

  10. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  11. Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.

    1977-01-01

    The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.

  12. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-01-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  13. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Astrophysics Data System (ADS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-08-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  14. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  15. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  16. Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.; Chen, Jen-Ping

    2012-01-01

    This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.

  17. Courant number and unsteady flow computation

    USGS Publications Warehouse

    Lai, Chintu; ,

    1993-01-01

    The Courant number C, the key to unsteady flow computation, is a ratio of physical wave velocity, ??, to computational signal-transmission velocity, ??, i.e., C = ??/??. In this way, it uniquely relates a physical quantity to a mathematical quantity. Because most unsteady open-channel flows are describable by a set of n characteristic equations along n characteristic paths, each represented by velocity ??i, i = 1,2,....,n, there exist as many as n components for the numerator of C. To develop a numerical model, a numerical integration must be made on each characteristic curve from an earlier point to a later point on the curve. Different numerical methods are available in unsteady flow computation due to the different paths along which the numerical integration is actually performed. For the denominator of C, the ?? defined as ?? = ?? 0 = ??x/??t has been customarily used; thus, the Courant number has the familiar form of C?? = ??/??0. This form will be referred to as ???common Courant number??? in this paper. The commonly used numerical criteria C?? for stability, neutral stability and instability, are imprecise or not universal in the sense that r0 does not always reflect the true maximum computational data-transmission speed of the scheme at hand, i.e., Ctau is no indication for the Courant constraint. In view of this , a new Courant number, called the ???natural Courant number???, Cn, that truly reflects the Courant constraint, has been defined. However, considering the numerous advantages inherent in the traditional C??, a useful and meaningful composite Courant number, denoted by C??* has been formulated from C??. It is hoped that the new aspects of the Courant number discussed herein afford the hydraulician a broader perspective, consistent criteria, and unified guidelines, with which to model various unsteady flows.

  18. Computation of Flow Through Water-Control Structures Using Program DAMFLO.2

    USGS Publications Warehouse

    Sanders, Curtis L.; Feaster, Toby D.

    2004-01-01

    As part of its mission to collect, analyze, and store streamflow data, the U.S. Geological Survey computes flow through several dam structures throughout the country. Flows are computed using hydraulic equations that describe flow through sluice and Tainter gates, crest gates, lock gates, spillways, locks, pumps, and siphons, which are calibrated using flow measurements. The program DAMFLO.2 was written to compute, tabulate, and plot flow through dam structures using data that describe the physical properties of dams and various hydraulic parameters and ratings that use time-varying data, such as lake elevations or gate openings. The program uses electronic computer files of time-varying data, such as lake elevation or gate openings, retrieved from the U.S. Geological Survey Automated Data Processing System. Computed time-varying flow data from DAMFLO.2 are output in flat files, which can be entered into the Automated Data Processing System database. All computations are made in units of feet and seconds. DAMFLO.2 uses the procedures and language developed by the SAS Institute Inc.

  19. Computer programs for axial flow compressor design

    NASA Technical Reports Server (NTRS)

    Carmody, R. H.; Creveling, H. F.

    1969-01-01

    Four computer programs examine effects of design parameters and indicate areas for research of multistage axial flow compressors. The programs provide information on velocity diagrams and stage-by-stage performance calculation, radial equilibrium of flow, radial distribution of total pressure, and off-design performance calculation.

  20. The Dimensionality and Correlates of Flow in Human-Computer Interactions.

    ERIC Educational Resources Information Center

    Webster, Jane; And Others

    1993-01-01

    Defines playfulness in human-computer interactions in terms of flow theory and explores the dimensionality of the flow concept. Two studies are reported that investigated the factor structure and correlates of flow in human-computer interactions: one examined MBA students using Lotus 1-2-3 spreadsheet software, and one examined employees using…

  1. Finite element analysis of transonic flows in cascades: Importance of computational grids in improving accuracy and convergence

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Akay, H. U.

    1981-01-01

    The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.

  2. Numerical computation of viscous flow about unconventional airfoil shapes

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Tannehill, J. C.

    1990-01-01

    A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.

  3. Experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1992-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational analysis, and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the rotor as well as surface flow visualization along the impeller blade surfaces provide independent confirmation of the laser measurement technique.

  4. Project Rulison gas flow analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montan, D.N.

    1971-01-01

    An analysis of the well performance was attempted by fitting a simple model of the chimney, gas sands, and explosively created fracturing to the 2 experimentally measured variables, flow rate, and chimney pressure. The gas-flow calculations for various trial models were done by a finite difference solution to the nonlinear partial differential equation for radial Darcy flow. The TRUMP computer program was used to perform the numerical calculations. In principle, either the flow rate or the chimney pressure could be used as the independent variable in the calculations. In the present case, the flow rate was used as the independentmore » variable, since chimney pressure measurements were not made until after the second flow period in early Nov. 1970. Furthermore, the formation pressure was not accurately known and, hence, was considered a variable parameter in the modeling process. The chimney pressure was assumed equal to the formation pressure at the beginning of the flow testing. The model consisted of a central zone, representing the chimney, surrounded by a number of concentric zones, representing the formation. The effect of explosive fracturing was simulated by increasing the permeability in the zones near the central zone.« less

  5. High-performance computing-based exploration of flow control with micro devices.

    PubMed

    Fujii, Kozo

    2014-08-13

    The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Inlet flowfield investigation. Part 2: Computation of the flow about a supercruise forebody at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Paynter, G. C.; Salemann, V.; Strom, E. E. I.

    1984-01-01

    A numerical procedure which solves the parabolized Navier-Stokes (PNS) equations on a body fitted mesh was used to compute the flow about the forebody of an advanced tactical supercruise fighter configuration in an effort to explore the use of a PNS method for design of supersonic cruise forebody geometries. Forebody flow fields were computed at Mach numbers of 1.5, 2.0, and 2.5, and at angles-of-attack of 0 deg, 4 deg, and 8 deg. at each Mach number. Computed results are presented at several body stations and include contour plots of Mach number, total pressure, upwash angle, sidewash angle and cross-plane velocity. The computational analysis procedure was found reliable for evaluating forebody flow fields of advanced aircraft configurations for flight conditions where the vortex shed from the wing leading edge is not a dominant flow phenomenon. Static pressure distributions and boundary layer profiles on the forebody and wing were surveyed in a wind tunnel test, and the analytical results are compared to the data. The current status of the parabolized flow flow field code is described along with desirable improvements in the code.

  7. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty.

    PubMed

    Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin

    2017-01-01

    Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person-artifact-task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants ( n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.

  8. Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty

    PubMed Central

    Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin

    2017-01-01

    Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person–artifact–task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants (n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity. PMID:28725206

  9. Fractional flow reserve based on computed tomography: an overview.

    PubMed

    Secchi, Francesco; Alì, Marco; Faggiano, Elena; Cannaò, Paola Maria; Fedele, Marco; Tresoldi, Silvia; Di Leo, Giovanni; Auricchio, Ferdinando; Sardanelli, Francesco

    2016-04-28

    Computed tomography coronary angiography (CTCA) is a technique proved to provide high sensitivity and negative predictive value for the identification of anatomically significant coronary artery disease (CAD) when compared with invasive X-ray coronary angiography. While the CTCA limitation of a ionizing radiation dose delivered to patients is substantially overcome by recent technical innovations, a relevant limitation remains the only anatomical assessment of coronary stenoses in the absence of evaluation of their functional haemodynamic significance. This limitation is highly important for those stenosis graded as intermediate at the anatomical assessment. Recently, non-invasive methods based on computational fluid dynamics were developed to calculate vessel-specific fractional flow reserve (FFR) using data routinely acquired by CTCA [computed tomographic fractional flow reserve (CT-FFR)]. Here we summarize methods for CT-FFR and review the evidence available in the literature up to June 26, 2016, including 16 original articles and one meta-analysis. The perspective of CT-FFR may greatly impact on CAD diagnosis, prognostic evaluation, and treatment decision-making. The aim of this review is to describe technical characteristics and clinical applications of CT-FFR, also in comparison with catheter-based invasive FFR, in order to make a cost-benefit balance in terms of clinical management and patient's health.

  10. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  11. Multiscale analysis and computation for flows in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.« less

  12. Dual Solutions for Nonlinear Flow Using Lie Group Analysis

    PubMed Central

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996

  13. VNAP2: A Computer Program for Computation of Two-dimensional, Time-dependent, Compressible, Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Cline, M. C.

    1981-01-01

    A computer program, VNAP2, for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow is presented. It solves the two dimensional, time dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing length model, a one equation model, or the Jones-Launder two equation model. The geometry may be a single or a dual flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference plane characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet powered afterbodies, airfoils, and free jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  14. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation

  15. Variational optical flow computation in real time.

    PubMed

    Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph

    2005-05-01

    This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.

  16. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne E.

    2013-01-01

    We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.

  17. Automated inverse computer modeling of borehole flow data in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Sawdey, J. R.; Reeve, A. S.

    2012-09-01

    A computer model has been developed to simulate borehole flow in heterogeneous aquifers where the vertical distribution of permeability may vary significantly. In crystalline fractured aquifers, flow into or out of a borehole occurs at discrete locations of fracture intersection. Under these circumstances, flow simulations are defined by independent variables of transmissivity and far-field heads for each flow contributing fracture intersecting the borehole. The computer program, ADUCK (A Downhole Underwater Computational Kit), was developed to automatically calibrate model simulations to collected flowmeter data providing an inverse solution to fracture transmissivity and far-field head. ADUCK has been tested in variable borehole flow scenarios, and converges to reasonable solutions in each scenario. The computer program has been created using open-source software to make the ADUCK model widely available to anyone who could benefit from its utility.

  18. Computational Analysis of the Flow and Acoustic Effects of Jet-Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Thomas, Russell H.; Abdol-Hamid, K. S.; Pao, S. Paul; Elmiligui, Alaa A.; Massey, Steven J.

    2005-01-01

    Computational simulation and prediction tools were used to understand the jet-pylon interaction effect in a set of bypass-ratio five core/fan nozzles. Results suggest that the pylon acts as a large scale mixing vane that perturbs the jet flow and jump starts the jet mixing process. The enhanced mixing and associated secondary flows from the pylon result in a net increase of noise in the first 10 diameters of the jet s development, but there is a sustained reduction in noise from that point downstream. This is likely the reason the pylon nozzle is quieter overall than the baseline round nozzle in this case. The present work suggests that focused pylon design could lead to advanced pylon shapes and nozzle configurations that take advantage of propulsion-airframe integration to provide additional noise reduction capabilities.

  19. Quasi-three-dimensional flow solution by meridional plane analysis

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1974-01-01

    A computer program has been developed to obtain subsonic or shockfree transonic, nonviscous flow analysis on the hub-shroud mid-channel flow surface of a turbomachine. The analysis may be for any annular passage, with or without blades. The blades may be fixed or rotating and may be twisted and leaned. The flow may be axial, radial or mixed. Blade surface velocities over the entire blade are approximated based on the rate of change of angular momentum. This gives a 3-D flow picture based on a 2-D analysis. The paper discusses the method used for the program and shows examples of the type of passages and blade rows which can be analyzed. Also, some numerical examples are given to show how the program can be used for practical assistance in design of blading, annular passages, and annular diffusers.

  20. Computer program for quasi-one-dimensional compressible flow with area change and friction - Application to gas film seals

    NASA Technical Reports Server (NTRS)

    Zuk, J.; Smith, P. J.

    1974-01-01

    A computer program is presented for compressible fluid flow with friction and area change. The program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions. The program was written to be applied to gas film seals. The area-change analysis should prove useful for choked flow conditions with small mean thickness, as well as for face seals where radial area change is significant. The program is written in FORTRAN 4.

  1. Computational Analysis of Multi-Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  2. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  3. A calculation procedure for viscous flow in turbomachines, volume 3. [computer programs

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Sheoran, Y.; Tabakoff, W.

    1980-01-01

    A method for analyzing the nonadiabatic viscous flow through turbomachine blade passages was developed. The field analysis is based upon the numerical integration of the full incompressible Navier-Stokes equations, together with the energy equation on the blade-to-blade surface. A FORTRAN IV computer program was written based on this method. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The flow may be axial, radial or mixed and there may be a change in stream channel thickness in the through-flow direction. The inputs required for two FORTRAN IV programs are presented. The first program considers laminar flows and the second can handle turbulent flows. Numerical examples are included to illustrate the use of the program, and to show the results that are obtained.

  4. Effects of the computational domain on the secondary flow in turbulent plane Couette flow

    NASA Astrophysics Data System (ADS)

    Gai, Jie; Xia, Zhen-Hua; Cai, Qing-Dong

    2015-10-01

    A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000 (based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow (SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes. Project supported by the National Natural Science Foundation of China (Grant Nos. 11221061, 11272013, and 11302006).

  5. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  6. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  7. Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.

    PubMed

    Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D

    2017-06-01

    Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.

  8. CFD Analysis and Design Optimization Using Parallel Computers

    NASA Technical Reports Server (NTRS)

    Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James

    1997-01-01

    A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.

  9. Computational Modeling for the Flow Over a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun

    1999-01-01

    The flow over a multi-element airfoil is computed using two two-equation turbulence models. The computations are performed using the INS2D) Navier-Stokes code for two angles of attack. Overset grids are used for the three-element airfoil. The computed results are compared with experimental data for the surface pressure, skin friction coefficient, and velocity magnitude. The computed surface quantities generally agree well with the measurement. The computed results reveal the possible existence of a mixing-layer-like region of flow next to the suction surface of the slat for both angles of attack.

  10. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index

  11. LFSTAT - An R-Package for Low-Flow Analysis

    NASA Astrophysics Data System (ADS)

    Koffler, D.; Laaha, G.

    2012-04-01

    When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.

  12. Numerical computation of viscous flow around bodies and wings moving at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.

    1984-01-01

    Research in aerodynamics is discussed. The development of equilibrium air curve fits; computation of hypersonic rarefield leading edge flows; computation of 2-D and 3-D blunt body laminar flows with an impinging shock; development of a two-dimensional or axisymmetric real gas blunt body code; a study of an over-relaxation procedure forthe MacCormack finite-difference scheme; computation of 2-D blunt body turbulent flows with an impinging shock; computation of supersonic viscous flow over delta wings at high angles of attack; and computation of the Space Shuttle Orbiter flowfield are discussed.

  13. Nonequilibrium flow computations. 1: An analysis of numerical formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1988-01-01

    Modern numerical techniques employing properties of flux Jacobian matrices are extended to general, nonequilibrium flows. Generalizations of the Beam-Warming scheme, Steger-Warming and van Leer Flux-vector splittings, and Roe's approximate Riemann solver are presented for 3-D, time-varying grids. The analysis is based on a thermodynamic model that includes the most general thermal and chemical nonequilibrium flow of an arbitrary gas. Various special cases are also discussed.

  14. Measurements and Computations of Flow in an Urban Street System

    NASA Astrophysics Data System (ADS)

    Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.

    2017-02-01

    We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.

  15. Computational and Experimental Flow Field Analyses of Separate Flow Chevron Nozzles and Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Thomas, Russell H.; AbdolHamid, Khaled S.; Elmiligui, Alaa A.

    2003-01-01

    A computational and experimental flow field analyses of separate flow chevron nozzles is presented. The goal of this study is to identify important flow physics and modeling issues required to provide highly accurate flow field data which will later serve as input to the Jet3D acoustic prediction code. Four configurations are considered: a baseline round nozzle with and without a pylon, and a chevron core nozzle with and without a pylon. The flow is simulated by solving the asymptotically steady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, up-wind, flux-difference splitting finite volume scheme and standard two-equation kappa-epsilon turbulence model with a linear stress representation and the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. The current CFD results are seen to be in excellent agreement with Jet Noise Lab data and show great improvement over previous computations which did not compensate for enhanced mixing due to high temperature gradients.

  16. Unsteady jet flow computation towards noise prediction

    NASA Technical Reports Server (NTRS)

    Soh, Woo-Yung

    1994-01-01

    An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.

  17. Irrigant flow within a prepared root canal using various flow rates: a Computational Fluid Dynamics study.

    PubMed

    Boutsioukis, C; Lambrianidis, T; Kastrinakis, E

    2009-02-01

    To study using computer simulation the effect of irrigant flow rate on the flow pattern within a prepared root canal, during final irrigation with a syringe and needle. Geometrical characteristics of a side-vented endodontic needle and clinically realistic flow rate values were obtained from previous and preliminary studies. A Computational Fluid Dynamics (CFD) model was created using FLUENT 6.2 software. Calculations were carried out for five selected flow rates (0.02-0.79 mL sec(-1)) and velocity and turbulence quantities along the domain were evaluated. Irrigant replacement was limited to 1-1.5 mm apical to the needle tip for all flow rates tested. Low-Reynolds number turbulent flow was detected near the needle outlet. Irrigant flow rate affected significantly the flow pattern within the root canal. Irrigation needles should be placed to within 1 mm from working length to ensure fluid exchange. Turbulent flow of irrigant leads to more efficient irrigant replacement. CFD represents a powerful tool for the study of irrigation.

  18. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  19. Data flow machine for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor G.

    1995-01-01

    A data flow computer which of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  20. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  1. Steady and unsteady three-dimensional transonic flow computations by integral equation method

    NASA Technical Reports Server (NTRS)

    Hu, Hong

    1994-01-01

    This is the final technical report of the research performed under the grant: NAG1-1170, from the National Aeronautics and Space Administration. The report consists of three parts. The first part presents the work on unsteady flows around a zero-thickness wing. The second part presents the work on steady flows around non-zero thickness wings. The third part presents the massively parallel processing implementation and performance analysis of integral equation computations. At the end of the report, publications resulting from this grant are listed and attached.

  2. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  3. A computer-controlled scintiscanning system and associated computer graphic techniques for study of regional distribution of blood flow.

    NASA Technical Reports Server (NTRS)

    Coulam, C. M.; Dunnette, W. H.; Wood, E. H.

    1970-01-01

    Two methods whereby a digital computer may be used to regulate a scintiscanning process are discussed from the viewpoint of computer input-output software. The computer's function, in this case, is to govern the data acquisition and storage, and to display the results to the investigator in a meaningful manner, both during and subsequent to the scanning process. Several methods (such as three-dimensional maps, contour plots, and wall-reflection maps) have been developed by means of which the computer can graphically display the data on-line, for real-time monitoring purposes, during the scanning procedure and subsequently for detailed analysis of the data obtained. A computer-governed method for converting scintiscan data recorded over the dorsal or ventral surfaces of the thorax into fractions of pulmonary blood flow traversing the right and left lungs is presented.

  4. Analysis and control of asymmetric vortex flows and supersonic vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1991-01-01

    Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.

  5. Viscous compressible flow direct and inverse computation and illustrations

    NASA Technical Reports Server (NTRS)

    Yang, T. T.; Ntone, F.

    1986-01-01

    An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.

  6. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  7. Implicit method for the computation of unsteady flows on unstructured grids

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, D. J.

    1995-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.

  8. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  9. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  10. Computation of high Reynolds number internal/external flows

    NASA Technical Reports Server (NTRS)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, and internal/external flow calculations are presented.

  11. Computation of high Reynolds number internal/external flows

    NASA Technical Reports Server (NTRS)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  12. Computation of high Reynolds number internal/external flows

    NASA Technical Reports Server (NTRS)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAF2, developed to calculate high Reynolds number internal/external flows is described. The program solves the two dimensional, time dependent Navier-Stokes equations. Turbulence is modeled with either a mixing length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  13. Assessment of computational issues associated with analysis of high-lift systems

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.

    1992-01-01

    Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.

  14. An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Anerson, W. Kyle; Bonhaus, Daryl L.

    1994-01-01

    An implicit, Navier-Stokes solution algorithm is presented for the computation of turbulent flow on unstructured grids. The inviscid fluxes are computed using an upwind algorithm and the solution is advanced in time using a backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with a point-implicit relaxation scheme. This methodology provides a viable and robust algorithm for computing turbulent flows on unstructured meshes. Results are shown for subsonic flow over a NACA 0012 airfoil and for transonic flow over a RAE 2822 airfoil exhibiting a strong upper-surface shock. In addition, results are shown for 3 element and 4 element airfoil configurations. For the calculations, two one equation turbulence models are utilized. For the NACA 0012 airfoil, a pressure distribution and force data are compared with other computational results as well as with experiment. Comparisons of computed pressure distributions and velocity profiles with experimental data are shown for the RAE airfoil and for the 3 element configuration. For the 4 element case, comparisons of surface pressure distributions with experiment are made. In general, the agreement between the computations and the experiment is good.

  15. Three Dimensional Compressible Turbulent Flow Computations for a Diffusing S-Duct With/Without Vortex Generators

    NASA Technical Reports Server (NTRS)

    Cho, Soo-Yong; Greber, Isaac

    1994-01-01

    Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.

  16. Computer code for predicting coolant flow and heat transfer in turbomachinery

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    1990-01-01

    A computer code was developed to analyze any turbomachinery coolant flow path geometry that consist of a single flow passage with a unique inlet and exit. Flow can be bled off for tip-cap impingement cooling, and a flow bypass can be specified in which coolant flow is taken off at one point in the flow channel and reintroduced at a point farther downstream in the same channel. The user may either choose the coolant flow rate or let the program determine the flow rate from specified inlet and exit conditions. The computer code integrates the 1-D momentum and energy equations along a defined flow path and calculates the coolant's flow rate, temperature, pressure, and velocity and the heat transfer coefficients along the passage. The equations account for area change, mass addition or subtraction, pumping, friction, and heat transfer.

  17. Cascade flow analysis by Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Nozaki, Osamu

    1987-06-01

    As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.

  18. Data flow machine for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1988-07-22

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information from an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ''fire'' signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  19. Transition of a Three-Dimensional Unsteady Viscous Flow Analysis from a Research Environment to the Design Environment

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)

    2001-01-01

    The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.

  20. Computational analysis of forebody tangential slot blowing

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Agosta-Greenman, Roxana M.; Rizk, Yehia M.; Schiff, Lewis B.; Cummings, Russell M.

    1994-01-01

    An overview of the computational effort to analyze forebody tangential slot blowing is presented. Tangential slot blowing generates side force and yawing moment which may be used to control an aircraft flying at high-angle-of-attack. Two different geometries are used in the analysis: (1) The High Alpha Research Vehicle; and (2) a generic chined forebody. Computations using the isolated F/A-18 forebody are obtained at full-scale wind tunnel test conditions for direct comparison with available experimental data. The effects of over- and under-blowing on force and moment production are analyzed. Time-accurate solutions using the isolated forebody are obtained to study the force onset timelag of tangential slot blowing. Computations using the generic chined forebody are obtained at experimental wind tunnel conditions, and the results compared with available experimental data. This computational analysis compliments the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about simple and complex geometries.

  1. Quantitative Analysis of Intracellular Motility Based on Optical Flow Model

    PubMed Central

    Li, Heng

    2017-01-01

    Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions. PMID:29065574

  2. Artificial Boundary Conditions for Computation of Oscillating External Flows

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    1996-01-01

    In this paper, we propose a new technique for the numerical treatment of external flow problems with oscillatory behavior of the solution in time. Specifically, we consider the case of unbounded compressible viscous plane flow past a finite body (airfoil). Oscillations of the flow in time may be caused by the time-periodic injection of fluid into the boundary layer, which in accordance with experimental data, may essentially increase the performance of the airfoil. To conduct the actual computations, we have to somehow restrict the original unbounded domain, that is, to introduce an artificial (external) boundary and to further consider only a finite computational domain. Consequently, we will need to formulate some artificial boundary conditions (ABC's) at the introduced external boundary. The ABC's we are aiming to obtain must meet a fundamental requirement. One should be able to uniquely complement the solution calculated inside the finite computational domain to its infinite exterior so that the original problem is solved within the desired accuracy. Our construction of such ABC's for oscillating flows is based on an essential assumption: the Navier-Stokes equations can be linearized in the far field against the free-stream back- ground. To actually compute the ABC's, we represent the far-field solution as a Fourier series in time and then apply the Difference Potentials Method (DPM) of V. S. Ryaben'kii. This paper contains a general theoretical description of the algorithm for setting the DPM-based ABC's for time-periodic external flows. Based on our experience in implementing analogous ABC's for steady-state problems (a simpler case), we expect that these boundary conditions will become an effective tool for constructing robust numerical methods to calculate oscillatory flows.

  3. Flow chemistry vs. flow analysis.

    PubMed

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Channelized debris flow hazard mitigation through the use of flexible barriers: a simplified computational approach for a sensitivity analysis.

    NASA Astrophysics Data System (ADS)

    Segalini, Andrea; Ferrero, Anna Maria; Brighenti, Roberto

    2013-04-01

    experiences by using FEM modeling for these kind of structures, had shown that a large amount of time for both the geometrical setup of the model and its computation is necessary. The big effort required by FEM for this class of problems limits the actual possibility to investigate different geometrical configurations, load schemes etc. and it is suitable to represent a specific configuration but it does not allow for investigation of the influence of parameter changes. On the other hand parametrical analysis are common practice in geotechnical design for the quoted reasons. Consequently, the Authors felt the need to develop a simplified method (which is not yet available in our knowledge) that allow to perform several parametrical analysis in a limited time. It should be noted that, in this paper, no consideration regarding the mechanical and physical behavior of debris flows are carried out; the proposed model requires the input of parameters that must be acquired through a preliminary characterization of the design event. However, adopting the proposed tool, the designer will be able to perform sensitivity analysis that will help in quantify the influence of parameters variability as commonly occurs in geotechnical design.

  5. Issues and approach to develop validated analysis tools for hypersonic flows: One perspective

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1993-01-01

    Critical issues concerning the modeling of low density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools, and the activity in the NASA Ames Research Center's Aerothermodynamics Branch is described. Inherent in the process is a strong synergism between ground test and real gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flowfield simulation codes are discussed. These models were partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions is sparse and reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high enthalpy flow facilities, such as shock tubes and ballistic ranges.

  6. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  7. Computing the Feasible Spaces of Optimal Power Flow Problems

    DOE PAGES

    Molzahn, Daniel K.

    2017-03-15

    The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less

  8. Euler Flow Computations on Non-Matching Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Gumaste, Udayan

    1999-01-01

    Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.

  9. Bulk-Flow Analysis, part A

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1993-01-01

    The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.

  10. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2018-07-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  11. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  12. Computation of incompressible viscous flows through artificial heart devices with moving boundaries

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE

    1991-01-01

    The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.

  13. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  14. Issues and approach to develop validated analysis tools for hypersonic flows: One perspective

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1992-01-01

    Critical issues concerning the modeling of low-density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools. A description of the activity in the Ames Research Center's Aerothermodynamics Branch is also given. Inherent in the process is a strong synergism between ground test and real-gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flow-field simulation codes are discussed. These models have been partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions are sparse; reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground-based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high-enthalpy flow facilities, such as shock tubes and ballistic ranges.

  15. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  16. Computational Study of Axisymmetric Off-Design Nozzle Flows

    NASA Technical Reports Server (NTRS)

    DalBello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo

    2003-01-01

    Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles operating off-design at transonic Mach numbers have been completed. These computations span the very difficult transonic flight regime with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined, including the Explicit Algebraic Stress model. Computations have been completed at freestream Mach numbers of 0.9 and 1.2, and nozzle pressure ratios (NPR) of 4 and 6. Calculations completed with variable time-stepping (steady-state) did not converge to a true steady-state solution. Calculations obtained using constant timestepping (timeaccurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was the result of using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show reasonable agreement with experimental data. The SST turbulence model demonstrates the best overall agreement with experimental data.

  17. Design and experimental verification of a photoacoustic flow sensor using computational fluid dynamics.

    PubMed

    Lassen, Mikael; Balslev-Harder, David; Brusch, Anders; Pelevic, Nikola; Persijn, Stefan; Petersen, Jan C

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA sensor is a stand-alone system controlled by a field-programmable gate array. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. The aim of the CFD analysis was to investigate and minimize the influence of the gas distribution and flow noise on the PA signal. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C 6 H 14 ) and decane (C 10 H 22 ) molecules in clean air at 2950  cm -1 (3.38 μm) with a custom-made mid-infrared interband cascade laser. We observe a (1σ, standard deviation) sensitivity of 0.4±0.1  ppb (nmol/mol) for hexane in clean air at flow rates up to 1.7 L/min, corresponding to a normalized noise equivalent absorption coefficient of 2.5×10 -9   W cm -1   Hz -1/2 , demonstrating high sensitivity and fast real-time gas analysis. An Allan deviation analysis for decane shows that the detection limit at optimum integration time is 0.25 ppbV (nmol/mol).

  18. Implementation of Parallel Computing Technology to Vortex Flow

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer

    1999-01-01

    Mainframe supercomputers such as the Cray C90 was invaluable in obtaining large scale computations using several millions of grid points to resolve salient features of a tip vortex flow over a lifting wing. However, real flight configurations require tracking not only of the flow over several lifting wings but its growth and decay in the near- and intermediate- wake regions, not to mention the interaction of these vortices with each other. Resolving and tracking the evolution and interaction of these vortices shed from complex bodies is computationally intensive. Parallel computing technology is an attractive option in solving these flows. In planetary science vortical flows are also important in studying how planets and protoplanets form when cosmic dust and gases become gravitationally unstable and eventually form planets or protoplanets. The current paradigm for the formation of planetary systems maintains that the planets accreted from the nebula of gas and dust left over from the formation of the Sun. Traditional theory also indicate that such a preplanetary nebula took the form of flattened disk. The coagulation of dust led to the settling of aggregates toward the midplane of the disk, where they grew further into asteroid-like planetesimals. Some of the issues still remaining in this process are the onset of gravitational instability, the role of turbulence in the damping of particles and radial effects. In this study the focus will be with the role of turbulence and the radial effects.

  19. Blood flow analysis with considering nanofluid effects in vertical channel

    NASA Astrophysics Data System (ADS)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  20. Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection

    NASA Astrophysics Data System (ADS)

    Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok

    2011-11-01

    Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.

  1. Computing Incompressible Flows With Free Surfaces

    NASA Technical Reports Server (NTRS)

    Kothe, D.

    1994-01-01

    RIPPLE computer program models transient, two-dimensional flows of incompressible fluids with surface tension on free surfaces of general shape. Surface tension modeled as volume force derived from continuum-surface-force model, giving RIPPLE both robustness and accuracy in modeling surface-tension effects at free surface. Also models wall adhesion effects. Written in FORTRAN 77.

  2. Analysis of internal flows relative to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.

  3. Computation of steady nozzle flow by a time-dependent method

    NASA Technical Reports Server (NTRS)

    Cline, M. C.

    1974-01-01

    The equations of motion governing steady, inviscid flow are of a mixed type, that is, hyperbolic in the supersonic region and elliptic in the subsonic region. These mathematical difficulties may be removed by using the so-called time-dependent method, where the governing equations become hyperbolic everywhere. The steady-state solution may be obtained as the asymptotic solution for large time. The object of this research was to develop a production type computer program capable of solving converging, converging-diverging, and plug two-dimensional nozzle flows in computational times of 1 min or less on a CDC 6600 computer.

  4. Hypersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Ryan, James S.

    1987-01-01

    While the zonal grid system of Transonic Navier-Stokes (TNS) provides excellent modeling of complex geometries, improved shock capturing, and a higher Mach number range will be required if flows about hypersonic aircraft are to be modeled accurately. A computational fluid dynamics (CFD) code, the Compressible Navier-Stokes (CNS), is under development to combine the required high Mach number capability with the existing TNS geometry capability. One of several candidate flow solvers for inclusion in the CNS is that of F3D. This upwinding flow solver promises improved shock capturing, and more accurate hypersonic solutions overall, compared to the solver currently used in TNS.

  5. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    NASA Technical Reports Server (NTRS)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  6. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  7. Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen

    2016-01-01

    NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.

  8. Computational and experimental aftbody flow fields for hypersonic, airbreathing configurations with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1991-01-01

    Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.

  9. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  10. Numerical analysis of laminar and turbulent incompressible flows using the finite element Fluid Dynamics Analysis Package (FIDAP)

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.

    1988-01-01

    The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.

  11. Computational models for the analysis of three-dimensional internal and exhaust plume flowfields

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Delguidice, P. D.

    1977-01-01

    This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.

  12. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    NASA Astrophysics Data System (ADS)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  13. Challenges in reducing the computational time of QSTS simulations for distribution system analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deboever, Jeremiah; Zhang, Xiaochen; Reno, Matthew J.

    The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10more » to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.« less

  14. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.

    definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the

  15. Bypass flow computations on the LOFA transient in a VHTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Yu-Hsin; Johnson, Richard W.; Ferng, Yuh-Ming

    2014-01-01

    Bypass flow in the prismatic gas-cooled very high temperature reactor (VHTR) is not intentionally designed to occur, but is present in the gaps between graphite blocks. Previous studies of the bypass flow in the core indicated that the cooling provided by flow in the bypass gaps had a significant effect on temperature and flow distributions for normal operating conditions. However, the flow and heat transports in the core are changed significantly after a Loss of Flow Accident (LOFA). This study aims to study the effect and role of the bypass flow after a LOFA in terms of the temperature andmore » flow distributions and for the heat transport out of the core by natural convection of the coolant for a 1/12 symmetric section of the active core which is composed of images and mirror images of two sub-region models. The two sub-region models, 9 x 1/12 and 15 x 1/12 symmetric sectors of the active core, are employed as the CFD flow models using computational grid systems of 70.2 million and 117 million nodes, respectively. It is concluded that the effect of bypass flow is significant for the initial conditions and the beginning of LOFA, but the bypass flow has little effect after a long period of time in the transient computation of natural circulation.« less

  16. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    NASA Technical Reports Server (NTRS)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  17. Resolvent analysis of shear flows using One-Way Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim

    2017-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).

  18. Computational study of duct and pipe flows using the method of pseudocompressibility

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.

    1991-01-01

    A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.

  19. Flow analysis and design optimization methods for nozzle-afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, O.

    1992-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the 3D Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Ar. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. The Aerodynamic Design Optimization with Sensitivity analysis was then developed. Pre- and postoptimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  20. Transonic Flow Field Analysis for Wing-Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.

    1980-01-01

    A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.

  1. Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.

    PubMed

    Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor

    2012-10-01

    To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.

  2. Semidirect computation of three-dimensional viscous flows over suction holes in laminar flow control surfaces

    NASA Technical Reports Server (NTRS)

    Roache, P. J.

    1979-01-01

    A summary is given of the attempts made to apply semidirect methods to the calculation of three-dimensional viscous flows over suction holes in laminar flow control surfaces. The attempts were all unsuccessful, due to either (1) lack of resolution capability, (2) lack of computer efficiency, or (3) instability.

  3. A pressure flux-split technique for computation of inlet flow behavior

    NASA Technical Reports Server (NTRS)

    Pordal, H. S.; Khosla, P. K.; Rubin, S. G.

    1991-01-01

    A method for calculating the flow field in aircraft engine inlets is presented. The phenomena of inlet unstart and restart are investigated. Solutions of the reduced Navier-Stokes (RNS) equations are obtained with a time consistent direct sparse matrix solver that computes the transient flow field both internal and external to the inlet. Time varying shocks and time varying recirculation regions can be efficiently analyzed. The code is quite general and is suitable for the computation of flow for a wide variety of geometries and over a wide range of Mach and Reynolds numbers.

  4. Communication-Efficient Arbitration Models for Low-Resolution Data Flow Computing

    DTIC Science & Technology

    1988-12-01

    phase can be formally described as follows: Graph Partitioning Problem NP-complete: (Garey & Johnson) Given graph G = (V, E), weights w (v) for each v e V...Technical Report, MIT/LCS/TR-218, Cambridge, Mass. Agerwala, Tilak, February 1982, "Data Flow Systems", Computer, pp. 10-13. Babb, Robert G ., July 1984...34Parallel Processing with Large-Grain Data Flow Techniques," IEEE Computer 17, 7, pp. 55-61. Babb, Robert G ., II, Lise Storc, and William C. Ragsdale

  5. Deep Packet/Flow Analysis using GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Qian; Wu, Wenji; DeMar, Phil

    Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Sincemore » the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.« less

  6. Computation of Three-Dimensional Compressible Flow From a Rectangular Nozzle with Delta Tabs

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Steffen, C. J., Jr.; Zaman, K. B. M. Q.

    1999-01-01

    A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for a 3:1 rectangular nozzle with two delta tabs located at the nozz1e exit plane to enhance mixing. Two flow configurations, a subsonic jet case and a supersonic jet case using the same rate configuration, which were previously studied experimentally, are computed and compared with the experimental data. The experimental data include streamwise velocity and vorticity distributions for the subsonic case, and Mach number distributions for the supersonic case, at various axial locations downstream of the nozzle exit. The computational results show very good agreement with the experimental data. In addition, the effect of compressibility on vorticity dynamics is examined by comparing the vorticity contours of the subsonic jet case with those of the supersonic jet case which were not measured in the experiment.

  7. Flow-based model of computer hackers' motivation.

    PubMed

    Voiskounsky, Alexander E; Smyslova, Olga V

    2003-04-01

    Hackers' psychology, widely discussed in the media, is almost entirely unexplored by psychologists. In this study, hackers' motivation is investigated, using the flow paradigm. Flow is likely to motivate hackers, according to views expressed by researchers and by hackers themselves. Taken as granted that hackers experience flow, it was hypothesized that flow increases with the increase of hackers' competence in IT use. Self-selected subjects were recruited on specialized web sources; 457 hackers filled out a web questionnaire. Competence in IT use, specific flow experience, and demographic data were questioned. An on-line research was administered within the Russian-speaking community (though one third of Ss are non-residents of Russian Federation); since hacking seems to be international, the belief is expressed that the results are universal. The hypothesis is not confirmed: flow motivation characterizes the least and the most competent hackers, and the members of an intermediate group, that is, averagely competent Ss report the "flow crisis"-no (or less) flow experience. Two differing strategies of task choice were self-reported by Ss: a step-by-step increase of the difficulty of choices leads to a match of challenges and skills (and to preserving the flow experience); putting choices irrespective of the likelihood of solution leads to a "flow crisis." The findings give productive hints on processes of hackers' motivational development. The flow-based model of computer hackers' motivation was developed. It combines both empirically confirmed and theoretically possible ways of hackers' "professional" growth.

  8. Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of Lagrangian-coherent structures.

    PubMed

    Joly, Florian; Soulez, Gilles; Garcia, Damien; Lessard, Simon; Kauffmann, Claude

    2018-01-01

    Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. When equilibrium between blood pressure (loading) and wall mechanical resistance is lost, rupture ensues, and patient death follows, if not treated immediately. Experimental and numerical analyses of flow patterns in arteries show direct correlations between wall shear stress and wall mechano-adaptation with the development of zones prone to thrombus formation. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) in 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-year follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. Good correlation - 2-D cross-correlation coefficients of 0.65, 0.86 and 0.082 (min, max, SD) - was obtained between numerical simulations and 4-D MRI acquisitions in 6 specific cross-sections from 4 patients. In follow-up study, LCS divided AAA lumens into 3 dynamically-isolated zones: 2 stagnation volumes lying in dilated portions of the AAA, and circulating volume connecting the inlet to the outlet. The volume of each zone was tracked over time. Although circulating volume remained unchanged during 8-year follow-up, the AAA lumen and main stagnation zones grew significantly (8 cm 3 /year and 6 cm 3 /year, respectively). This study reveals that transient transport topology can be quantified in patient-specific AAA during disease progression

  9. Special purpose computer system with highly parallel pipelines for flow visualization using holography technology

    NASA Astrophysics Data System (ADS)

    Masuda, Nobuyuki; Sugie, Takashige; Ito, Tomoyoshi; Tanaka, Shinjiro; Hamada, Yu; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho

    2010-12-01

    We have designed a PC cluster system with special purpose computer boards for visualization of fluid flow using digital holographic particle tracking velocimetry (DHPTV). In this board, there is a Field Programmable Gate Array (FPGA) chip in which is installed a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform (FFT). This cluster system can create 1024 reconstructed images from a 1024×1024-grid hologram in 0.77 s. It is expected that this system will contribute to the analysis of fluid flow using DHPTV.

  10. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  11. Flowing Hot or Cold: User-Friendly Computational Models of Terrestrial and Planetary Lava Channels and Lakes

    NASA Astrophysics Data System (ADS)

    Sakimoto, S. E. H.

    2016-12-01

    Planetary volcanism has redefined what is considered volcanism. "Magma" now may be considered to be anything from the molten rock familiar at terrestrial volcanoes to cryovolcanic ammonia-water mixes erupted on an outer solar system moon. However, even with unfamiliar compositions and source mechanisms, we find familiar landforms such as volcanic channels, lakes, flows, and domes and thus a multitude of possibilities for modeling. As on Earth, these landforms lend themselves to analysis for estimating storage, eruption and/or flow rates. This has potential pitfalls, as extension of the simplified analytic models we often use for terrestrial features into unfamiliar parameter space might yield misleading results. Our most commonly used tools for estimating flow and cooling have tended to lag significantly behind state-of-the-art; the easiest methods to use are neither realistic or accurate, but the more realistic and accurate computational methods are not simple to use. Since the latter computational tools tend to be both expensive and require a significant learning curve, there is a need for a user-friendly approach that still takes advantage of their accuracy. One method is use of the computational package for generation of a server-based tool that allows less computationally inclined users to get accurate results over their range of input parameters for a given problem geometry. A second method is to use the computational package for the generation of a polynomial empirical solution for each class of flow geometry that can be fairly easily solved by anyone with a spreadsheet. In this study, we demonstrate both approaches for several channel flow and lava lake geometries with terrestrial and extraterrestrial examples and compare their results. Specifically, we model cooling rectangular channel flow with a yield strength material, with applications to Mauna Loa, Kilauea, Venus, and Mars. This approach also shows promise with model applications to lava lakes, magma

  12. Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Hansen, E. C.

    1980-01-01

    The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.

  13. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel J.

    Hydropower is the most proven renewable energy technology, supplying the world with 16% of its electricity. Conventional hydropower generates a vast majority of that percentage. Although a mature technology, hydroelectric generation shows great promise for expansion through new dams and plants in developing hydro countries. Moreover, in developed hydro countries, such as the United States, installing generating units in existing dams and the modern refurbishment of existing plants can greatly expand generating capabilities with little to no further impact on the environment. In addition, modern computational technology and fluid dynamics expertise has led to substantial improvements in modern turbine design and performance. Cavitation has always presented a problem in hydroturbines, causing performance breakdown, erosion, damage, vibration, and noise. While modern turbines are usually designed to be cavitation-free at their best efficiency point, due to the variable demand of the energy market it is fairly common to operate at off-design conditions. Here, cavitation and its deleterious effects are unavoidable, and hence, cavitation is a limiting factor on the design and operation of these turbines. Multiphase Computational Fluid Dynamics (CFD) has been used in recent years to model cavitating flow for a large range of problems, including turbomachinery. However, CFD of cavitating flow in hydroturbines is still in its infancy. This dissertation presents steady-periodic Reynolds-averaged Navier-Stokes simulations of a cavitating Francis-class hydroturbine at model and prototype scales. Computational results of the reduced-scale model and full-scale prototype, undergoing performance breakdown, are compared with empirical model data and prototype performance estimations based on standard industry scalings from the model data. Mesh convergence of the simulations is also displayed. Comparisons are made between the scales to display that cavitation performance breakdown

  14. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  15. Convergence acceleration of viscous flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1982-01-01

    A multiple-grid convergence acceleration technique introduced for application to the solution of the Euler equations by means of Lax-Wendroff algorithms is extended to treat compressible viscous flow. Computational results are presented for the solution of the thin-layer version of the Navier-Stokes equations using the explicit MacCormack algorithm, accelerated by a convective coarse-grid scheme. Extensions and generalizations are mentioned.

  16. Parametric distribution approach for flow availability in small hydro potential analysis

    NASA Astrophysics Data System (ADS)

    Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel

    2016-10-01

    Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.

  17. Computation of transonic flow about helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Arieli, R.; Tauber, M. E.; Saunders, D. A.; Caughey, D. A.

    1986-01-01

    An inviscid, nonconservative, three-dimensional full-potential flow code, ROT22, has been developed for computing the quasi-steady flow about a lifting rotor blade. The code is valid throughout the subsonic and transonic regime. Calculations from the code are compared with detailed laser velocimeter measurements made in the tip region of a nonlifting rotor at a tip Mach number of 0.95 and zero advance ratio. In addition, comparisons are made with chordwise surface pressure measurements obtained in a wind tunnel for a nonlifting rotor blade at transonic tip speeds at advance ratios from 0.40 to 0.50. The overall agreement between theoretical calculations and experiment is very good. A typical run on a CRAY X-MP computer requires about 30 CPU seconds for one rotor position at transonic tip speed.

  18. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  19. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs

  20. Computational simulation and aerodynamic sensitivity analysis of film-cooled turbines

    NASA Astrophysics Data System (ADS)

    Massa, Luca

    A computational tool is developed for the time accurate sensitivity analysis of the stage performance of hot gas, unsteady turbine components. An existing turbomachinery internal flow solver is adapted to the high temperature environment typical of the hot section of jet engines. A real gas model and film cooling capabilities are successfully incorporated in the software. The modifications to the existing algorithm are described; both the theoretical model and the numerical implementation are validated. The accuracy of the code in evaluating turbine stage performance is tested using a turbine geometry typical of the last stage of aeronautical jet engines. The results of the performance analysis show that the predictions differ from the experimental data by less than 3%. A reliable grid generator, applicable to the domain discretization of the internal flow field of axial flow turbine is developed. A sensitivity analysis capability is added to the flow solver, by rendering it able to accurately evaluate the derivatives of the time varying output functions. The complex Taylor's series expansion (CTSE) technique is reviewed. Two of them are used to demonstrate the accuracy and time dependency of the differentiation process. The results are compared with finite differences (FD) approximations. The CTSE is more accurate than the FD, but less efficient. A "black box" differentiation of the source code, resulting from the automated application of the CTSE, generates high fidelity sensitivity algorithms, but with low computational efficiency and high memory requirements. New formulations of the CTSE are proposed and applied. Selective differentiation of the method for solving the non-linear implicit residual equation leads to sensitivity algorithms with the same accuracy but improved run time. The time dependent sensitivity derivatives are computed in run times comparable to the ones required by the FD approach.

  1. Computational techniques for flows with finite-rate condensation

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.

    1993-01-01

    A computational method to simulate the inviscid two-dimensional flow of a two-phase fluid was developed. This computational technique treats the gas phase and each of a prescribed number of particle sizes as separate fluids which are allowed to interact with one another. Thus, each particle-size class is allowed to move through the fluid at its own velocity at each point in the flow field. Mass, momentum, and energy are exchanged between each particle class and the gas phase. It is assumed that the particles do not collide with one another, so that there is no inter-particle exchange of momentum and energy. However, the particles are allowed to grow, and therefore, they may change from one size class to another. Appropriate rates of mass, momentum, and energy exchange between the gas and particle phases and between the different particle classes were developed. A numerical method was developed for use with this equation set. Several test cases were computed and show qualitative agreement with previous calculations.

  2. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-01-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  3. Computational methods for internal flows with emphasis on turbomachinery

    NASA Technical Reports Server (NTRS)

    Mcnally, W. D.; Sockol, P. M.

    1981-01-01

    Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed.

  4. Multiple-grid convergence acceleration of viscous and inviscid flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1983-01-01

    A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.

  5. Low-flow analysis and selected flow statistics representative of 1930-2002 for streamflow-gaging stations in or near West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2006-01-01

    Five time periods between 1930 and 2002 are identified as having distinct patterns of annual minimum daily mean flows (minimum flows). Average minimum flows increased around 1970 at many streamflow-gaging stations in West Virginia. Before 1930, however, there might have been a period of minimum flows greater than any period identified between 1930 and 2002. The effects of climate variability are probably the principal causes of the differences among the five time periods. Comparisons of selected streamflow statistics are made between values computed for the five identified time periods and values computed for the 1930-2002 interval for 15 streamflow-gaging stations. The average difference between statistics computed for the five time periods and the 1930-2002 interval decreases with increasing magnitude of the low-flow statistic. The greatest individual-station absolute difference was 582.5 percent greater for the 7-day 10-year low flow computed for 1970-1979 compared to the value computed for 1930-2002. The hydrologically based low flows indicate approximately equal or smaller absolute differences than biologically based low flows. The average 1-day 3-year biologically based low flow (1B3) and 4-day 3-year biologically based low flow (4B3) are less than the average 1-day 10-year hydrologically based low flow (1Q10) and 7-day 10-year hydrologic-based low flow (7Q10) respectively, and range between 28.5 percent less and 13.6 percent greater. Seasonally, the average difference between low-flow statistics computed for the five time periods and 1930-2002 is not consistent between magnitudes of low-flow statistics, and the greatest difference is for the summer (July 1-September 30) and fall (October 1-December 31) for the same time period as the greatest difference determined in the annual analysis. The greatest average difference between 1B3 and 4B3 compared to 1Q10 and 7Q10, respectively, is in the spring (April 1-June 30), ranging between 11.6 and 102.3 percent

  6. Computations of the Magnus effect for slender bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Sturek, W. B.; Schiff, L. B.

    1980-01-01

    A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.

  7. Communication-Efficient Arbitration Models for Low-Resolution Data Flow Computing

    DTIC Science & Technology

    1988-12-01

    Given graph G = (V, E), weights w (v) for each v e V and L (e) for each e c E, and positive integers B and J, find a partition of V into disjoint...MIT/LCS/TR-218, Cambridge, Mass. Agerwala, Tilak, February 1982, "Data Flow Systems", Computer, pp. 10-13. Babb, Robert G ., July 1984, "Parallel...Processing with Large-Grain Data Flow Techniques," IEEE Computer 17, 7, pp. 55-61. Babb, Robert G ., II, Lise Storc, and William C. Ragsdale, 1986, "A Large

  8. Computed Tomography-Derived Fractional Flow Reserve in the Detection of Lesion-Specific Ischemia: An Integrated Analysis of 3 Pivotal Trials.

    PubMed

    Xu, Rende; Li, Chenguang; Qian, Juying; Ge, Junbo

    2015-11-01

    Invasive fractional flow reserve (FFR) is the gold standard for the determination of physiologic stenosis severity and the need for revascularization. FFR computed from standard acquired coronary computed tomographic angiography datasets (FFRCT) is an emerging technology which allows calculation of FFR using resting image data from coronary computed tomographic angiography (CCTA). However, the diagnostic accuracy of FFRCT in the evaluation of lesion-specific myocardial ischemia remains to be confirmed, especially in patients with intermediate coronary stenosis. We performed an integrated analysis of data from 3 prospective, international, and multicenter trials, which assessed the diagnostic performance of FFRCT using invasive FFR as a reference standard. Three studies evaluating 609 patients and 1050 vessels were included. The total calculated sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of FFRCT were 82.8%, 77.7%, 60.8%, 91.6%, and 79.2%, respectively, for the per-vessel analysis, and 89.4%, 70.5%, 69.7%, 89.7%, and 78.7%, respectively, for the per-patient analysis. Compared with CCTA alone, FFRCT demonstrated significantly improved accuracy (P < 0.001) in detecting lesion-specific ischemia. In patients with intermediate coronary stenosis, FFRCT remained both highly sensitive and specific with respect to the diagnosis of ischemia. In conclusion, FFRCT appears to be a reliable noninvasive alternative to invasive FFR, as it demonstrates high accuracy in the determination of anatomy and lesion-specific ischemia, which justifies the performance of additional randomized controlled trials to evaluate both the clinical benefits and the cost-effectiveness of FFRCT-guided coronary revascularization.

  9. NASA Ames potential flow analysis (POTFAN) geometry program (POTGEM), version 1

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Bullock, R. B.

    1976-01-01

    A computer program known as POTGEM is reported which has been developed as an independent segment of a three-dimensional linearized, potential flow analysis system and which is used to generate a panel point description of arbitrary, three-dimensional bodies from convenient engineering descriptions consisting of equations and/or tables. Due to the independent, modular nature of the program, it may be used to generate corner points for other computer programs.

  10. Computational and experimental investigation of two-dimensional scramjet inlets and hypersonic flow over a sharp flat plate

    NASA Astrophysics Data System (ADS)

    Messitt, Donald G.

    1999-11-01

    The WIND code was employed to compute the hypersonic flow in the shock wave boundary layer merged region near the leading edge of a sharp flat plate. Solutions were obtained at Mach numbers from 9.86 to 15.0 and free stream Reynolds numbers of 3,467 to 346,700 in-1 (1.365 · 105 to 1.365 · 107 m-1) for perfect gas conditions. The numerical results indicated a merged shock wave and viscous layer near the leading edge. The merged region grew in size with increasing free stream Mach number, proportional to Minfinity 2/Reinfinity. Profiles of the static pressure in the merged region indicated a strong normal pressure gradient (∂p/∂y). The normal pressure gradient has been neglected in previous analyses which used the boundary layer equations. The shock wave near the leading edge was thick, as has been experimentally observed. Computed shock wave locations and surface pressures agreed well within experimental error for values of the rarefaction parameter, chi/M infinity2 < 0.3. A preliminary analysis using kinetic theory indicated that rarefied flow effects became important above this value. In particular, the WIND solution agreed well in the transition region between the merged flow, which was predicted well by the theory of Li and Nagamatsu, and the downstream region where the strong interaction theory applied. Additional computations with the NPARC code, WIND's predecessor, demonstrated the ability of the code to compute hypersonic inlet flows at free stream Mach numbers up to 20. Good qualitative agreement with measured pressure data indicated that the code captured the important physical features of the shock wave - boundary layer interactions. The computed surface and pitot pressures fell within the combined experimental and numerical error bounds for most points. The calculations demonstrated the need for extremely fine grids when computing hypersonic interaction flows.

  11. Extension of a three-dimensional viscous wing flow analysis

    NASA Technical Reports Server (NTRS)

    Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.

    1990-01-01

    Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.

  12. Flow analysis and design optimization methods for nozzle afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1991-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the three dimensional Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Argon. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. In the second phase of this project, the Aerodynamic Design Optimization with Sensitivity analysis (ADOS) was developed. Pre and post optimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  13. Multi-component fluid flow through porous media by interacting lattice gas computer simulation

    NASA Astrophysics Data System (ADS)

    Cueva-Parra, Luis Alberto

    In this work we study structural and transport properties such as power-law behavior of trajectory of each constituent and their center of mass, density profile, mass flux, permeability, velocity profile, phase separation, segregation, and mixing of miscible and immiscible multicomponent fluid flow through rigid and non-consolidated porous media. The considered parameters are the mass ratio of the components, temperature, external pressure, and porosity. Due to its solid theoretical foundation and computational simplicity, the selected approaches are the Interacting Lattice Gas with Monte Carlo Method (Metropolis Algorithm) and direct sampling, combined with particular collision rules. The percolation mechanism is used for modeling initial random porous media. The introduced collision rules allow to model non-consolidated porous media, because part of the kinetic energy of the fluid particles is transfered to barrier particles, which are the components of the porous medium. Having gained kinetic energy, the barrier particles can move. A number of interesting results are observed. Some findings include, (i) phase separation in immiscible fluid flow through a medium with no barrier particles (porosity p P = 1). (ii) For the flow of miscible fluids through rigid porous medium with porosity close to percolation threshold (p C), the flux density (measure of permeability) shows a power law increase ∝ (pC - p) mu with mu = 2.0, and the density profile is found to decay with height ∝ exp(-mA/Bh), consistent with the barometric height law. (iii) Sedimentation and driving of barrier particles in fluid flow through non-consolidated porous medium. This study involves developing computer simulation models with efficient serial and parallel codes, extensive data analysis via graphical utilities, and computer visualization techniques.

  14. Computer program for design analysis of radial-inflow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1976-01-01

    A computer program written in FORTRAN that may be used for the design analysis of radial-inflow turbines was documented. The following information is included: loss model (estimation of losses), the analysis equations, a description of the input and output data, the FORTRAN program listing and list of variables, and sample cases. The input design requirements include the power, mass flow rate, inlet temperature and pressure, and rotational speed. The program output data includes various diameters, efficiencies, temperatures, pressures, velocities, and flow angles for the appropriate calculation stations. The design variables include the stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. The losses are determined by an internal loss model.

  15. Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2002-01-01

    We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.

  16. Adaptive computations of multispecies mixing between scramjet nozzle flows and hypersonic freestream

    NASA Technical Reports Server (NTRS)

    Baysa, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.; Pittman, James L.

    1989-01-01

    The objective of this paper is to compute the expansion of a supersonic flow through an internal-external nozzle and its viscous mixing with the hypersonic flow of air. The supersonic jet may be that of a multispecies gas other than air. Calculations are performed for one case where both flows are those of air, and another case where a mixture of freon-12 and argon is discharged supersonically to mix with the hypersonic airflow. Comparisons are made between these two cases with respect to gas compositions, and fixed versus flow-adaptive grids. All the computational results are compared successfully with the wind-tunnel tests results.

  17. Analysis of pressure-flow data in terms of computer-derived urethral resistance parameters.

    PubMed

    van Mastrigt, R; Kranse, M

    1995-01-01

    The simultaneous measurement of detrusor pressure and flow rate during voiding is at present the only way to measure or grade infravesical obstruction objectively. Numerous methods have been introduced to analyze the resulting data. These methods differ in aim (measurement of urethral resistance and/or diagnosis of obstruction), method (manual versus computerized data processing), theory or model used, and resolution (continuously variable parameters or a limited number of classes, the so-called monogram). In this paper, some aspects of these fundamental differences are discussed and illustrated. Subsequently, the properties and clinical performance of two computer-based methods for deriving continuous urethral resistance parameters are treated.

  18. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of

  19. Advances in Computational Capabilities for Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Gnoffo, Peter A.; Moss, James N.; Drummond, J. Philip

    1997-01-01

    The paper reviews the growth and advances in computational capabilities for hypersonic applications over the period from the mid-1980's to the present day. The current status of the code development issues such as surface and field grid generation, algorithms, physical and chemical modeling, and validation is provided. A brief description of some of the major codes being used at NASA Langley Research Center for hypersonic continuum and rarefied flows is provided, along with their capabilities and deficiencies. A number of application examples are presented, and future areas of research to enhance accuracy, reliability, efficiency, and robustness of computational codes are discussed.

  20. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  1. Data-Flow Based Model Analysis

    NASA Technical Reports Server (NTRS)

    Saad, Christian; Bauer, Bernhard

    2010-01-01

    The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application domain with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become an integral part of many areas in computer science. While the definition of modeling languages through the use of meta models, e.g. in Unified Modeling Language (UML), is a well-understood process, their validation and the extraction of behavioral information is still a challenge. In this paper we present a novel approach for dynamic model analysis along with several fields of application. Examining the propagation of information along the edges and nodes of the model graph allows to extend and simplify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an "abstract interpretation"-like analysis method for the modeling domain.

  2. Computer programs for predicting supersonic and hypersonic interference flow fields and heating

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Keyes, J. W.

    1973-01-01

    This report describes computer codes which calculate two-dimensional shock interference patterns. These codes compute the six types of interference flows as defined by Edney (Aeronaut. Res. Inst. of Sweden FAA Rep. 115). Results include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point.

  3. An improved version of NCOREL: A computer program for 3-D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1988-01-01

    A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.

  4. Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel

    NASA Astrophysics Data System (ADS)

    Dewangan, Satish Kumar

    2018-05-01

    Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.

  5. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  6. The computational modeling of supercritical carbon dioxide flow in solid wood material

    NASA Astrophysics Data System (ADS)

    Gething, Brad Allen

    The use of supercritical carbon dioxide (SC CO2) as a solvent to deliver chemicals to porous media has shown promise in various industries. Recently, efforts by the wood treating industry have been made to use SC CO 2 as a replacement to more traditional methods of chemical preservative delivery. Previous studies have shown that the SC CO2 pressure treatment process is capable of impregnating solid wood materials with chemical preservatives, but concentration gradients of preservative often develop during treatment. Widespread application of the treatment process is unlikely unless the treatment inconsistencies can be improved for greater overall treating homogeneity. The development of a computational flow model to accurately predict the internal pressure of CO2 during treatment is integral to a more consistent treatment process. While similar models that attempt to describe the flow process have been proposed by Ward (1989) and Sahle-Demessie (1994), neither have been evaluated for accuracy. The present study was an evaluation of those models. More specifically, the present study evaluated the performance of a computational flow model, which was based on the viscous flow of compressible CO2 as a single phase through a porous medium at the macroscopic scale. Flow model performance was evaluated through comparisons between predicted pressures that corresponded to internal pressure development measured with inserted sensor probes during treatment of specimens. Pressure measurements were applied through a technique developed by Schneider (2000), which utilizes epoxy-sealed stainless steel tubes that are inserted into the wood as pressure probes. Two different wood species were investigated as treating specimens, Douglas-fir and shortleaf pine. Evaluations of the computational flow model revealed that it is sensitive to input parameters that relate to both processing conditions and material properties, particularly treating temperature and wood permeability

  7. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies.

    PubMed

    Ene-Iordache, Bogdan; Remuzzi, Andrea

    2017-09-01

    Although our understanding of the failure mechanism of vascular access for hemodialysis has increased substantially, this knowledge has not translated into successful therapies. Despite advances in technology, it is recognized that vascular access is difficult to maintain, due to complications such as intimal hyperplasia. Computational studies have been used to estimate hemodynamic changes induced by vascular access creation. Due to the heterogeneity of patient-specific geometries, and difficulties with obtaining reliable models of access vessels, idealized models were often employed. In this review we analyze the knowledge gained with the use of computational such simplified models. A review of the literature was conducted, considering studies employing a computational fluid dynamics approach to gain insights into the flow field phenotype that develops in idealized models of vascular access. Several important discoveries have originated from idealized model studies, including the detrimental role of disturbed flow and turbulent flow, and the beneficial role of spiral flow in intimal hyperplasia. The general flow phenotype was consistent among studies, but findings were not treated homogeneously since they paralleled achievements in cardiovascular biomechanics which spanned over the last two decades. Computational studies in idealized models are important for studying local blood flow features and evaluating new concepts that may improve the patency of vascular access for hemodialysis. For future studies we strongly recommend numerical modelling targeted at accurately characterizing turbulent flows and multidirectional wall shear disturbances.

  8. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    NASA Astrophysics Data System (ADS)

    Dobranich, Dean

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  9. Assessment of nonequilibrium radiation computation methods for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra

    1993-01-01

    The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.

  10. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases

    PubMed Central

    Pina-Vaz, Cidália; Silva, Ana P.; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F.; Sousa, Sérgio F.; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G.

    2016-01-01

    The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844

  11. Numerical simulation of biofilm growth in flow channels using a cellular automaton approach coupled with a macro flow computation.

    PubMed

    Yamamoto, Takehiro; Ueda, Shuya

    2013-01-01

    Biofilm is a slime-like complex aggregate of microorganisms and their products, extracellular polymer substances, that grows on a solid surface. The growth phenomenon of biofilm is relevant to the corrosion and clogging of water pipes, the chemical processes in a bioreactor, and bioremediation. In these phenomena, the behavior of the biofilm under flow has an important role. Therefore, controlling the biofilm behavior in each process is important. To provide a computational tool for analyzing biofilm growth, the present study proposes a computational model for the simulation of biofilm growth in flows. This model accounts for the growth, decay, detachment and adhesion of biofilms. The proposed model couples the computation of the surrounding fluid flow, using the finite volume method, with the simulation of biofilm growth, using the cellular automaton approach, a relatively low-computational-cost method. Furthermore, a stochastic approach for considering the adhesion process is proposed. Numerical simulations for the biofilm growth on a planar wall and that in an L-shaped rectangular channel were carried out. A variety of biofilm structures were observed depending on the strength of the flow. Moreover, the importance of the detachment and adhesion processes was confirmed.

  12. Computational Study of Intracranial Aneurysms with Flow Diverting Stent: Correlation with Surgical Outcome

    NASA Astrophysics Data System (ADS)

    Tang, Yik Sau; Chiu, Tin Lok; Tsang, Anderson Chun On; Leung, Gilberto Ka Kit; Chow, Kwok Wing

    2016-11-01

    Intracranial aneurysm, abnormal swelling of the cerebral artery, can cause massive internal bleeding in the subarachnoid space upon aneurysm rupture, leading to a high mortality rate. Deployment of a flow diverting stent through endovascular technique can obstruct the blood flow into the aneurysm, thus reducing the risk of rupture. Patient-specific models with both bifurcation and sidewall aneurysms have been investigated. Computational fluid dynamics analysis with physiological boundary conditions has been performed. Several hemodynamic parameters including volume flow rate into the aneurysm and the energy (sum of the fluid kinetic and potential energy) loss between the inlet and outlets were analyzed and compared with the surgical outcome. Based on the simulation results, we conjecture that a clinically successful case might imply less blood flow into the aneurysm after stenting, and thus a smaller amount of energy loss in driving the fluid flow in that portion of artery. This study might provide physicians with quantitative information for surgical decision making. (Partial financial support by the Innovation and Technology Support Program (ITS/011/13 & ITS/150/15) of the Hong Kong Special Administrative Region Government)

  13. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  14. Computing Programs for Determining Traffic Flows from Roundabouts

    NASA Astrophysics Data System (ADS)

    Boroiu, A. A.; Tabacu, I.; Ene, A.; Neagu, E.; Boroiu, A.

    2017-10-01

    For modelling road traffic at the level of a road network it is necessary to specify the flows of all traffic currents at each intersection. These data can be obtained by direct measurements at the traffic light intersections, but in the case of a roundabout this is not possible directly and the literature as well as the traffic modelling software doesn’t offer ways to solve this issue. Two sets of formulas are proposed by which all traffic flows from the roundabouts with 3 or 4 arms are calculated based on the streams that can be measured. The objective of this paper is to develop computational programs to operate with these formulas. For each of the two sets of analytical relations, a computational program was developed in the Java operating language. The obtained results fully confirm the applicability of the calculation programs. The final stage for capitalizing these programs will be to make them web pages in HTML format, so that they can be accessed and used on the Internet. The achievements presented in this paper are an important step to provide a necessary tool for traffic modelling because these computational programs can be easily integrated into specialized software.

  15. Computation of Sound Generated by Viscous Flow Over a Circular Cylinder

    NASA Technical Reports Server (NTRS)

    Cox, Jared S.; Rumsey, Christopher L.; Brentner, Kenneth S.; Younis, Bassam A.

    1997-01-01

    The Lighthill acoustic analogy approach combined with Reynolds-averaged Navier Stokes is used to predict the sound generated by unsteady viscous flow past a circular cylinder assuming a correlation length of 10 cylinder diameters. The two-dimensional unsteady flow field is computed using two Navier-Stokes codes at a low Mach number over a range of Reynolds numbers from 100 to 5 million. Both laminar flow as well as turbulent flow with a variety of eddy viscosity turbulence models are employed. Mean drag and Strouhal number are examined, and trends similar to experiments are observed. Computing the noise within the Reynolds number regime where transition to turbulence occurs near the separation point is problematic: laminar flow exhibits chaotic behavior and turbulent flow exhibits strong dependence on the turbulence model employed. Comparisons of far-field noise with experiment at a Reynolds number of 90,000, therefore, vary significantly, depending on the turbulence model. At a high Reynolds number outside this regime, three different turbulence models yield self-consistent results.

  16. Characterization of Unsteady Flow Structures Near Landing-Edge Slat. Part 2; 2D Computations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi; Choudhari, Meelan M.; Jenkins, Luther N.

    2004-01-01

    In our previous computational studies of a generic high-lift configuration, quasi-laminar (as opposed to fully turbulent) treatment of the slat cove region proved to be an effective approach for capturing the unsteady dynamics of the cove flow field. Combined with acoustic propagation via Ffowes Williams and Hawkings formulation, the quasi-laminar simulations captured some important features of the slat cove noise measured with microphone array techniques. However. a direct assessment of the computed cove flow field was not feasible due to the unavailability of off-surface flow measurements. To remedy this shortcoming, we have undertaken a combined experiment and computational study aimed at characterizing the flow structures and fluid mechanical processes within the slat cove region. Part I of this paper outlines the experimental aspects of this investigation focused on the 30P30N high-lift configuration; the present paper describes the accompanying computational results including a comparison between computation and experiment at various angles of attack. Even through predictions of the time-averaged flow field agree well with the measured data, the study indicates the need for further refinement of the zonal turbulence approach in order to capture the full dynamics of the cove's fluctuating flow field.

  17. Navier-Stokes, flight, and wind tunnel flow analysis for the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1994-01-01

    Computational analysis of flow over the F/A-18 aircraft is presented along with complementary data from both flight and wind tunnel experiments. The computational results are based on the three-dimensional thin-layer Navier-Stokes formulation and are obtained from an accurate surface representation of the fuselage, leading-edge extension (LEX), and the wing geometry. However, the constraints imposed by either the flow solver and/or the complexity associated with the flow-field grid generation required certain geometrical approximations to be implemented in the present numerical model. In particular, such constraints inspired the removal of the empennage and the blocking (fairing) of the inlet face. The results are computed for three different free-stream flow conditions and compared with flight test data of surface pressure coefficients, surface tuft flow, and off-surface vortical flow characteristics that included breakdown phenomena. Excellent surface pressure coefficient correlations, both in terms of magnitude and overall trend, are obtained on the forebody throughout the range of flow conditions. Reasonable pressure agreement was obtained over the LEX; the general correlation tends to improve at higher angles of attack. The surface tuft flow and the off-surface vortex flow structures compared qualitatively well with the flight test results. To evaluate the computational results, a wind tunnel investigation was conducted to determine the effects of existing configurational differences between the flight vehicle and the numerical model on aerodynamic characteristics. In most cases, the geometrical approximations made to the numerical model had very little effect on overall aerodynamic characteristics.

  18. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  19. Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis

    PubMed Central

    Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor

    2012-01-01

    Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209

  20. Identifying the Presence of Prostate Cancer in Individuals with PSA Levels <20 ng ml-1 Using Computational Data Extraction Analysis of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data.

    PubMed

    Cosma, Georgina; McArdle, Stéphanie E; Reeder, Stephen; Foulds, Gemma A; Hood, Simon; Khan, Masood; Pockley, A Graham

    2017-01-01

    Determining whether an asymptomatic individual with Prostate-Specific Antigen (PSA) levels below 20 ng ml -1 has prostate cancer in the absence of definitive, biopsy-based evidence continues to present a significant challenge to clinicians who must decide whether such individuals with low PSA values have prostate cancer. Herein, we present an advanced computational data extraction approach which can identify the presence of prostate cancer in men with PSA levels <20 ng ml -1 on the basis of peripheral blood immune cell profiles that have been generated using multi-parameter flow cytometry. Statistical analysis of immune phenotyping datasets relating to the presence and prevalence of key leukocyte populations in the peripheral blood, as generated from individuals undergoing routine tests for prostate cancer (including tissue biopsy) using multi-parametric flow cytometric analysis, was unable to identify significant relationships between leukocyte population profiles and the presence of benign disease (no prostate cancer) or prostate cancer. By contrast, a Genetic Algorithm computational approach identified a subset of five flow cytometry features ( CD 8 + CD 45 RA - CD 27 - CD 28 - ( CD 8 + Effector Memory cells); CD 4 + CD 45 RA - CD 27 - CD 28 - ( CD 4 + Terminally Differentiated Effector Memory Cells re-expressing CD45RA); CD 3 - CD 19 + (B cells); CD 3 + CD 56 + CD 8 + CD 4 + (NKT cells)) from a set of twenty features, which could potentially discriminate between benign disease and prostate cancer. These features were used to construct a prostate cancer prediction model using the k-Nearest-Neighbor classification algorithm. The proposed model, which takes as input the set of flow cytometry features, outperformed the predictive model which takes PSA values as input. Specifically, the flow cytometry-based model achieved Accuracy = 83.33%, AUC = 83.40%, and optimal ROC points of FPR = 16.13%, TPR = 82.93%, whereas the PSA-based model achieved

  1. Computational approaches to computational aero-acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1996-01-01

    The various techniques by which the goal of computational aeroacoustics (the calculation and noise prediction of a fluctuating fluid flow) may be achieved are reviewed. The governing equations for compressible fluid flow are presented. The direct numerical simulation approach is shown to be computationally intensive for high Reynolds number viscous flows. Therefore, other approaches, such as the acoustic analogy, vortex models and various perturbation techniques that aim to break the analysis into a viscous part and an acoustic part are presented. The choice of the approach is shown to be problem dependent.

  2. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-10-07

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  3. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M A; Henshaw, W D; Wang, S L

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flowmore » in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of

  4. Using artificial intelligence to control fluid flow computations

    NASA Technical Reports Server (NTRS)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  5. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  6. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, K.-H.

    2001-01-01

    The objective of this research is to develop an efficient numerical algorithm with unstructured grids for the computation of three-dimensional chemical reacting flows that are known to occur in combustion components of propulsion systems. During the grant period (1996 to 1999), two companion codes have been developed and various numerical and physical models were implemented into the two codes.

  7. Computational Fluid Dynamics Modeling of Submerged Objects Under Unidirectional and Oscillatory Flows.

    NASA Astrophysics Data System (ADS)

    Fytanidis, D. K.; Wu, H.; Landry, B. J.; Garcia, M. H.

    2017-12-01

    Abandoned Unexploded Ordnances (UXOs) from wartime events, accidents, training or other military activities can be found in coastal environments. While the interest for these hazardous submerged objects is increased, there are still existing knowledge gaps regarding the mechanisms of incipient motion and flow behavior around UXOs lying on the seafloor. Numerical modeling of flow around near bed placed UXOs is conducted for unidirectional and oscillatory flow conditions using Computational Fluid Dynamics techniques. The Reynolds-Averaged Navier-Stokes (RANS) approach is used to simulate the complex turbulent flow field around UXOs. The numerical results are compared with two-dimensional Particle Image Velocimetry measurements from experiments conducted in unidirectional and oscillatory flow facilities within the Ven Te Chow Hydrosystems Laboratory to evaluate the accuracy of the applied RANS-based solver. Realistic boundary conditions are imposed in the numerical models to mimic the experimental conditions in the laboratory facilities. The comparison between the numerical results and the experimental data agrees well. In addition, the effect of the angle of attack on the forces that UXOs experience is examined. Numerical results suggest that the orientation of UXOs with respect to the mean flow is an important parameter for incipient motion under critical flow conditions which is in agreement with prior laboratory experimental results regarding the identification of critical flow conditions for the initiation of motion of UXOs. Finally, an extensive parametric analysis is conducted to evaluate the effect of the maximum current velocity and wave characteristics (maximum velocity and period) on the flow forces and the mean flow pattern around the objects.

  8. Computation of subsonic flow around airfoil systems with multiple separation

    NASA Technical Reports Server (NTRS)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  9. A hybridized method for computing high-Reynolds-number hypersonic flow about blunt bodies

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Hamilton, H. H., II

    1979-01-01

    A hybridized method for computing the flow about blunt bodies is presented. In this method the flow field is split into its viscid and inviscid parts. The forebody flow field about a parabolic body is computed. For the viscous solution, the Navier-Stokes equations are solved on orthogonal parabolic coordinates using explicit finite differencing. The inviscid flow is determined by using a Moretti type scheme in which the Euler equations are solved, using explicit finite differences, on a nonorthogonal coordinate system which uses the bow shock as an outer boundary. The two solutions are coupled along a common data line and are marched together in time until a converged solution is obtained. Computed results, when compared with experimental and analytical results, indicate the method works well over a wide range of Reynolds numbers and Mach numbers.

  10. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.

    PubMed

    Canstein, C; Cachot, P; Faust, A; Stalder, A F; Bock, J; Frydrychowicz, A; Küffer, J; Hennig, J; Markl, M

    2008-03-01

    The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used to transform aortic geometries as measured by contrast-enhanced MR angiography into realistic vascular models with large anatomical coverage. Integration into a flow circuit with patient-specific pulsatile in-flow conditions and application of flow-sensitive 4D MRI permitted detailed analysis of local and global 3D flow dynamics in a realistic vascular geometry. Visualization of characteristic 3D flow patterns and quantitative comparisons of the in vitro experiments with in vivo data and CFD simulations in identical vascular geometries were performed to evaluate the accuracy of vascular model systems. The results indicate the potential of such patient-specific model systems for detailed experimental simulation of realistic vascular hemodynamics. Further studies are warranted to examine the influence of refined boundary conditions of the human circulatory system such as fluid-wall interaction and their effect on normal and pathological blood flow characteristics associated with vascular geometry. (c) 2008 Wiley-Liss, Inc.

  11. A multigrid nonoscillatory method for computing high speed flows

    NASA Technical Reports Server (NTRS)

    Li, C. P.; Shieh, T. H.

    1993-01-01

    A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.

  12. An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.

    2007-01-01

    The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.

  13. Computer program for supersonic Kernel-function flutter analysis of thin lifting surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.

    1974-01-01

    This report describes a computer program (program D2180) that has been prepared to implement the analysis described in (N71-10866) for calculating the aerodynamic forces on a class of harmonically oscillating planar lifting surfaces in supersonic potential flow. The planforms treated are the delta and modified-delta (arrowhead) planforms with subsonic leading and supersonic trailing edges, and (essentially) pointed tips. The resulting aerodynamic forces are applied in a Galerkin modal flutter analysis. The required input data are the flow and planform parameters including deflection-mode data, modal frequencies, and generalized masses.

  14. Viscous flow computations using a second-order upwind differencing scheme

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1988-01-01

    In the present computations of a wide range of fluid flow problems by means of the primitive variables-incorporating Navier-Stokes equations, a mixed second-order upwinding scheme approximates the convective terms of the transport equations and the scheme's accuracy is verified for convection-dominated high Re number flow problems. An adaptive dissipation scheme is used as a monotonic supersonic shock flow capture mechanism. Many benchmark fluid flow problems, including the compressible and incompressible, laminar and turbulent, over a wide range of M and Re numbers, are presently studied to verify the accuracy and robustness of this numerical method.

  15. The very local Hubble flow: Computer simulations of dynamical history

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Makarov, D. I.

    2004-02-01

    The phenomenon of the very local (≤3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the ``initial conditions'' of the flow are drastically different from the linear velocity-distance relation. The simulations enable one also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by the cosmic vacuum.

  16. User's manual for the generalized computer program system. Open-channel flow and sedimentation, TABS-2. Main text

    NASA Astrophysics Data System (ADS)

    Thomas, W. A.; McAnally, W. H., Jr.

    1985-07-01

    TABS-2 is a generalized numerical modeling system for open-channel flows, sedimentation, and constituent transport. It consists of more than 40 computer programs to perform modeling and related tasks. The major modeling components--RMA-2V, STUDH, and RMA-4--calculate two-dimensional, depth-averaged flows, sedimentation, and dispersive transport, respectively. The other programs in the system perform digitizing, mesh generation, data management, graphical display, output analysis, and model interfacing tasks. Utilities include file management and automatic generation of computer job control instructions. TABS-2 has been applied to a variety of waterways, including rivers, estuaries, bays, and marshes. It is designed for use by engineers and scientists who may not have a rigorous computer background. Use of the various components is described in Appendices A-O. The bound version of the report does not include the appendices. A looseleaf form with Appendices A-O is distributed to system users.

  17. Personal Computer Transport Analysis Program

    NASA Technical Reports Server (NTRS)

    DiStefano, Frank, III; Wobick, Craig; Chapman, Kirt; McCloud, Peter

    2012-01-01

    The Personal Computer Transport Analysis Program (PCTAP) is C++ software used for analysis of thermal fluid systems. The program predicts thermal fluid system and component transients. The output consists of temperatures, flow rates, pressures, delta pressures, tank quantities, and gas quantities in the air, along with air scrubbing component performance. PCTAP s solution process assumes that the tubes in the system are well insulated so that only the heat transfer between fluid and tube wall and between adjacent tubes is modeled. The system described in the model file is broken down into its individual components; i.e., tubes, cold plates, heat exchangers, etc. A solution vector is built from the components and a flow is then simulated with fluid being transferred from one component to the next. The solution vector of components in the model file is built at the initiation of the run. This solution vector is simply a list of components in the order of their inlet dependency on other components. The component parameters are updated in the order in which they appear in the list at every time step. Once the solution vectors have been determined, PCTAP cycles through the components in the solution vector, executing their outlet function for each time-step increment.

  18. Development of a three-dimensional supersonic inlet flow analysis

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Mcdonald, H.; Levy, R.; Kreskovsky, J. P.

    1980-01-01

    A method for computing three dimensional flow in supersonic inlets is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The governing equations are written in general orthogonal coordinates. These equations are modified in the subsonic region of the flow to prevent the phenomenon of branching. Results are presented for the two sample cases: a Mach number equals 2.5 flow in a square duct, and a Mach number equals 3.0 flow in a research jet engine inlet. In the latter case the computed results are compared with the experimental data. A users' manual is included.

  19. Computational analysis of an aortic valve jet

    NASA Astrophysics Data System (ADS)

    Shadden, Shawn C.; Astorino, Matteo; Gerbeau, Jean-Frédéric

    2009-11-01

    In this work we employ a coupled FSI scheme using an immersed boundary method to simulate flow through a realistic deformable, 3D aortic valve model. This data was used to compute Lagrangian coherent structures, which revealed flow separation from the valve leaflets during systole, and correspondingly, the boundary between the jet of ejected fluid and the regions of separated, recirculating flow. Advantages of computing LCS in multi-dimensional FSI models of the aortic valve are twofold. For one, the quality and effectiveness of existing clinical indices used to measure aortic jet size can be tested by taking advantage of the accurate measure of the jet area derived from LCS. Secondly, as an ultimate goal, a reliable computational framework for the assessment of the aortic valve stenosis could be developed.

  20. Analysis of Dynamic Geometric Configuration of the Aortic Channel from the Perspective of Tornado-Like Flow Organization of Blood Flow.

    PubMed

    Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A

    2018-03-01

    Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.

  1. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    NASA Technical Reports Server (NTRS)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  2. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  3. TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.

    1994-01-01

    The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters

  4. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 1: Computational technique

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Salas, M.; Yaeger, L.

    1976-01-01

    A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  5. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  6. Upgrades of Two Computer Codes for Analysis of Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Liou, Meng-Sing

    2005-01-01

    Major upgrades have been made in two of the programs reported in "ive Computer Codes for Analysis of Turbomachinery". The affected programs are: Swift -- a code for three-dimensional (3D) multiblock analysis; and TCGRID, which generates a 3D grid used with Swift. Originally utilizing only a central-differencing scheme for numerical solution, Swift was augmented by addition of two upwind schemes that give greater accuracy but take more computing time. Other improvements in Swift include addition of a shear-stress-transport turbulence model for better prediction of adverse pressure gradients, addition of an H-grid capability for flexibility in modeling flows in pumps and ducts, and modification to enable simultaneous modeling of hub and tip clearances. Improvements in TCGRID include modifications to enable generation of grids for more complicated flow paths and addition of an option to generate grids compatible with the ADPAC code used at NASA and in industry. For both codes, new test cases were developed and documentation was updated. Both codes were converted to Fortran 90, with dynamic memory allocation. Both codes were also modified for ease of use in both UNIX and Windows operating systems.

  7. Computations of Flow over a Hump Model Using Higher Order Method with Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2005-01-01

    Turbulent separated flow over a two-dimensional hump is computed by solving the RANS equations with k - omega (SST) turbulence model for the baseline, steady suction and oscillatory blowing/suction flow control cases. The flow equations and the turbulent model equations are solved using a fifth-order accurate weighted essentially. nonoscillatory (WENO) scheme for space discretization and a third order, total variation diminishing (TVD) Runge-Kutta scheme for time integration. Qualitatively the computed pressure distributions exhibit the same behavior as those observed in the experiments. The computed separation regions are much longer than those observed experimentally. However, the percentage reduction in the separation region in the steady suction case is closer to what was measured in the experiment. The computations did not predict the expected reduction in the separation length in the oscillatory case. The predicted turbulent quantities are two to three times smaller than the measured values pointing towards the deficiencies in the existing turbulent models when they are applied to strong steady/unsteady separated flows.

  8. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  9. A novel method for automated grid generation of ice shapes for local-flow analysis

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  10. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  11. Analysis of the Harrier forebody/inlet design using computational techniques

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen

    1993-01-01

    Under the support of this Cooperative Agreement, computations of transonic flow past the complex forebody/inlet configuration of the AV-8B Harrier II have been performed. The actual aircraft configuration was measured and its surface and surrounding domain were defined using computational structured grids. The thin-layer Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-grid technique. A fully conservative, alternating direction implicit (ADI), approximately-factored, partially flux-split algorithm was employed to perform the computation. An existing code was altered to conform with the needs of the study, and some special engine face boundary conditions were developed. The algorithm incorporated the Chimera technique and an algebraic turbulence model in order to deal with the embedded multi-grids and viscous governing equations. Comparison with experimental data has yielded good agreement for the simplifications incorporated into the analysis. The aim of the present research was to provide a methodology for the numerical solution of complex, combined external/internal flows. This is the first time-dependent Navier-Stokes solution for a geometry in which the fuselage and inlet share a wall. The results indicate the methodology used here is a viable tool for transonic aircraft modeling.

  12. A computational analysis subject to thermophysical aspects of Sisko fluid flow over a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Awais, M.; Khalil-Ur-Rehman; Malik, M. Y.; Hussain, Arif; Salahuddin, T.

    2017-09-01

    The present analysis is devoted to probing the salient features of the mixed convection and non-linear thermal radiation effects on non-Newtonian Sisko fluid flow over a linearly stretching cylindrical surface. Properties of heat transfer are outlined via variable thermal conductivity and convective boundary conditions. The boundary layer approach is implemented to construct the mathematical model in the form of partial differential equations. Then, the requisite PDEs are transmuted into a complex ordinary differential system by invoking appropriate dimensionless variables. Solution of subsequent ODEs is obtained by utilizing the Runge-Kutta algorithm (fifth order) along with the shooting scheme. The graphical illustrations are presented to interpret the features of the involved pertinent flow parameters on concerning profiles. For a better description of the fluid flow, numerical variations in local skin friction coefficient and local Nusselt number are scrutinized in tables. From thorough analysis, it is inferred that the mixed convection parameter and the curvature parameter increase the velocity while temperature shows a different behavior. Additionally, both momentum and thermal distribution of fluid flow decrease with increasing values of the non-linearity index. Furthermore, variable thermal parameter and heat generation/absorption parameter amplify the temperature significantly. The skin friction is an increasing function of all momentum controlling parameters. The local Nusselt number also shows a similar behavior against heat radiation parameter and variable thermal conductivity parameter while it shows a dual nature for the heat generation/absorption parameter. Finally, the obtained results are validated by comparison with the existing literature and hence the correctness of the analysis is proved.

  13. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  14. Boundary condition computational procedures for inviscid, supersonic steady flow field calculations

    NASA Technical Reports Server (NTRS)

    Abbett, M. J.

    1971-01-01

    Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.

  15. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.

    PubMed

    Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin

    2016-07-01

    Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor. Copyright © 2016 the American Physiological Society.

  16. Progress Toward Efficient Laminar Flow Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Campbell, Matthew L.; Streit, Thomas

    2011-01-01

    A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system.

  17. Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1991-01-01

    Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

  18. Computation of supersonic laminar viscous flow past a pointed cone at angle of attack in spinning and coning motion

    NASA Technical Reports Server (NTRS)

    Agarwal, R.; Rakich, J. V.

    1978-01-01

    Computational results obtained with a parabolic Navier-Stokes marching code are presented for supersonic viscous flow past a pointed cone at angle of attack undergoing a combined spinning and coning motion. The code takes into account the asymmetries in the flow field resulting from the motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation and vortex structure. The side force and moment are also computed. Reasonably good agreement is obtained with the side force measurements of Schiff and Tobak. Comparison is also made with the only available numerical inviscid analysis. It is found that the asymmetric pressure loads due to coning motion are much larger than all other viscous forces due to spin and coning, making viscous forces negligible in the combined motion.

  19. Aerothermal Analysis of the Project Fire II Afterbody Flow

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Loomis, Mark; Papadopoulos, Periklis; Arnold, James O. (Technical Monitor)

    2001-01-01

    Computational fluid dynamics (CFD) is used to simulate the wake flow and afterbody heating of the Project Fire II ballistic reentry to Earth at 11.4 km/sec. Laminar results are obtained over a portion of the trajectory between the initial heat pulse and peak afterbody heating. Although non-catalytic forebody convective heating results are in excellent agreement with previous computations, initial predictions of afterbody heating were about a factor of two below the experimental values. Further analysis suggests that significant catalysis may be occurring on the afterbody heat shield. Computations including finite-rate catalysis on the afterbody surface are in good agreement with the data over the early portion of the trajectory, but are conservative near the peak afterbody heating point, especially on the rear portion of the conical frustum. Further analysis of the flight data from Fire II shows that peak afterbody heating occurs before peak forebody heating, a result that contradicts computations and flight data from other entry vehicles. This result suggests that another mechanism, possibly pyrolysis, may be occurring during the later portion of the trajectory, resulting in less total heat transfer than the current predictions.

  20. A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Rhode, D. L.

    1982-01-01

    A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.

  1. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 4; Cold Flow Analyses and CFD Analysis Capability Development

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.

  2. Computer program determines gas flow rates in piping systems

    NASA Technical Reports Server (NTRS)

    Franke, R.

    1966-01-01

    Computer program calculates the steady state flow characteristics of an ideal compressible gas in a complex piping system. The program calculates the stagnation and total temperature, static and total pressure, loss factor, and forces on each element in the piping system.

  3. Computation of flow through the oesophagogastric junction.

    PubMed

    McMahon, Barry P; Odie, Karl D; Moloney, Kenneth W; Gregersen, Hans

    2007-03-07

    Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing, they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor can they indicate the flow rate through the oesophago-gastric junction (OGJ). Since OGJ dysfunction affects flow it seems most appropriate to describe the geometry of the OGJ and its effect on the flow. A device known as the functional lumen imaging probe (FLIP) has been shown to reliably measure the geometry of and pressure changes in the OGJ. FLIP cannot directly measure flow but the data gathered from the probe can be used to model flow through the junction by using computational flow dynamics (CFD). CFD uses a set of equations known as the Navier-Stokes equations to predict flow patterns and is a technique widely used in engineering. These equations are complex and require appropriate assumptions to provide simplifications before useful data can be obtained. With the assumption that the cross-sectional areas obtained via FLIP are circular, the radii of these circles can be obtained. A cubic interpolation scheme can then be applied to give a high-resolution geometry for the OGJ. In the case of modelling a reflux scenario, it can be seen that at the narrowest section a jet of fluid squirts into the oesophagus at a higher velocity than the fluid surrounding it. This jet has a maximum velocity of almost 2 ms(-1) that occurs where the OGJ is at its narrowest. This simple prediction of acid 'squirting' into the oesophagus illustrates how the use of numerical methods can be used to develop a better understanding of the OGJ. This initial work using CFD shows some considerable promise for the future.

  4. A computer program for the calculation of laminar and turbulent boundary layer flows

    NASA Technical Reports Server (NTRS)

    Dwyer, H. A.; Doss, E. D.; Goldman, A. L.

    1972-01-01

    The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes.

  5. Investigation of the external flow analysis for density measurements at high altitude

    NASA Technical Reports Server (NTRS)

    Bienkowski, G. K.

    1984-01-01

    The results of analysis performed on the external flow around the shuttle orbiter nose regions at the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) inlet orifice are presented. The purpose of the analysis is to quantitatively characterize the flow conditions to facilitate SUMS flight data reduction and subsequent determination of orbiter aerodynamic force coefficients in the hypersonic rarefied flow regime. Experimental determination of aerodynamic force coefficients requires accurate simultaneous measurement of forces (or acceleration) and dynamic pressure along with independent knowledge of density and velocity. The SUMS provides independent measurement of dynamic pressure; however, it does so indirectly and requires knowledge of the relationship between measured orifice conditions and the dynamic pressure which can only be determined on the basis of molecule or theory for a winged configuration. Monte Carlo direct simulation computer codes were developed for both the flow field solution at the orifice and for the internal orifice flow. These codes were used to study issues associated with geometric modeling of the orbiter nose geometry and the modeling of intermolecular collisions including rotational energy exchange and a preliminary analysis of vibrational excitation and dissociation effects. Data obtained from preliminary simulation runs are presented.

  6. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  7. A model of transverse fuel injection applied to the computation of supersonic combustor flow

    NASA Technical Reports Server (NTRS)

    Rogers, R. C.

    1979-01-01

    A two-dimensional, nonreacting flow model of the aerodynamic interaction of a transverse hydrogen jet within a supersonic mainstream has been developed. The model assumes profile shapes of mass flux, pressure, flow angle, and hydrogen concentration and produces downstream profiles of the other flow parameters under the constraints of the integrated conservation equations. These profiles are used as starting conditions for an existing finite difference parabolic computer code for the turbulent supersonic combustion of hydrogen. Integrated mixing and flow profile results obtained from the computer code compare favorably with existing data for the supersonic combustion of hydrogen.

  8. Computations of unsteady multistage compressor flows in a workstation environment

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen L.

    1992-01-01

    High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.

  9. Computational and Experimental Study of Supersonic Nozzle Flow and Shock Interactions

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Elmiligui, Alaa A.; Nayani, Sudheer N.; Castner, Ray; Bruce, Walter E., IV; Inskeep, Jacob

    2015-01-01

    This study focused on the capability of NASA Tetrahedral Unstructured Software System's CFD code USM3D capability to predict the interaction between a shock and supersonic plume flow. Previous studies, published in 2004, 2009 and 2013, investigated USM3D's supersonic plume flow results versus historical experimental data. This current study builds on that research by utilizing the best practices from the early papers for properly capturing the plume flow and then adding a wedge acting as a shock generator. This computational study is in conjunction with experimental tests conducted at the Glenn Research Center 1'x1' Supersonic Wind Tunnel. The comparison of the computational and experimental data shows good agreement for location and strength of the shocks although there are vertical shifts between the data sets that may be do to the measurement technique.

  10. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  11. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-03-01

    Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.

  12. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    PubMed Central

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-01-01

    Abstract. Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20  cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models. PMID:25822954

  13. Vibrational Power Flow Analysis of Rods and Beams

    NASA Technical Reports Server (NTRS)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  14. Computational Study of Inlet Active Flow Control

    DTIC Science & Technology

    2007-05-01

    AFRL-VA-WP-TR-2007-3077 COMPUTATIONAL STUDY OF INLET ACTIVE FLOW CONTROL Delivery Order 0005 Dr. Sonya T. Smith Howard University Department...NUMBER A0A2 5e. TASK NUMBER 6. AUTHOR(S) Dr. Sonya T. Smith ( Howard University ) Dr. Angela Scribben and Matthew Goettke (AFRL/VAAI) 5f...WORK UNIT NUMBER 0B 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Howard University Department of Mechanical

  15. Computational Modeling of Supercritical and Transcritical Flows

    DTIC Science & Technology

    2017-01-09

    Acentric factor I. Introduction Liquid rocket and gas turbine engines operate at high pressures. For gas turbines, the combustor pressurecan be 60 − 100...an approach the liquid gas interface is tracked.4 We note that an overwhelming majority of the computational studies have similarly focused on purely...A standard approach for supercritical flows is to treat the multicomponent mixture of species as a dense fluid using a real gas equation of state such

  16. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity where more and more complex flow problems can be tackled with this approach. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by a contra-rotating open rotor. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the methodologies of how to apply the immersed boundary method to this moving boundary problem, we will provide a detailed validation of the aeroacoustic analysis approach employing the Launch Ascent and Vehicle Aerodynamics (LAVA) solver. Two free-stream Mach numbers with M=0.2 and M=0.78 are considered in this analysis that are based on the nominally take-off and cruise flow conditions. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. Spectral analysis is used to determine the dominant wave propagation pattern in the acoustic near-field.

  17. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  18. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  19. Evaluation of the three-dimensional parabolic flow computer program SHIP

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.

  20. Analysis of coherent dynamical processes through computer vision

    NASA Astrophysics Data System (ADS)

    Hack, M. J. Philipp

    2016-11-01

    Visualizations of turbulent boundary layers show an abundance of characteristic arc-shaped structures whose apparent similarity suggests a common origin in a coherent dynamical process. While the structures have been likened to the hairpin vortices observed in the late stages of transitional flow, a consistent description of the underlying mechanism has remained elusive. Detailed studies are complicated by the chaotic nature of turbulence which modulates each manifestation of the process and which renders the isolation of individual structures a challenging task. The present study applies methods from the field of computer vision to capture the time evolution of turbulent flow features and explore the associated physical mechanisms. The algorithm uses morphological operations to condense the structure of the turbulent flow field into a graph described by nodes and links. The low-dimensional geometric information is stored in a database and allows the identification and analysis of equivalent dynamical processes across multiple scales. The framework is not limited to turbulent boundary layers and can also be applied to different types of flows as well as problems from other fields of science.

  1. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.

    2006-01-01

    A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic

  2. Computational Aeroelastic Analysis of Ares Crew Launch Vehicle Bi-Modal Loading

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Chwalowski, Pawel

    2010-01-01

    A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.

  3. Computational analysis in support of the SSTO flowpath test

    NASA Astrophysics Data System (ADS)

    Duncan, Beverly S.; Trefny, Charles J.

    1994-10-01

    A synergistic approach of combining computational methods and experimental measurements is used in the analysis of a hypersonic inlet. There are four major focal points within this study which examine the boundary layer growth on a compression ramp upstream of the cowl lip of a scramjet inlet. Initially, the boundary layer growth on the NASP Concept Demonstrator Engine (CDE) is examined. The follow-up study determines the optimum diverter height required by the SSTO Flowpath test to best duplicate the CDE results. These flow field computations are then compared to the experimental measurements and the mass average Mach number is determined for this inlet.

  4. Computational Analysis in Support of the SSTO Flowpath Test

    NASA Technical Reports Server (NTRS)

    Duncan, Beverly S.; Trefny, Charles J.

    1994-01-01

    A synergistic approach of combining computational methods and experimental measurements is used in the analysis of a hypersonic inlet. There are four major focal points within this study which examine the boundary layer growth on a compression ramp upstream of the cowl lip of a scramjet inlet. Initially, the boundary layer growth on the NASP Concept Demonstrator Engine (CDE) is examined. The follow-up study determines the optimum diverter height required by the SSTO Flowpath test to best duplicate the CDE results. These flow field computations are then compared to the experimental measurements and the mass average Mach number is determined for this inlet.

  5. Automated flow cytometric analysis across large numbers of samples and cell types.

    PubMed

    Chen, Xiaoyi; Hasan, Milena; Libri, Valentina; Urrutia, Alejandra; Beitz, Benoît; Rouilly, Vincent; Duffy, Darragh; Patin, Étienne; Chalmond, Bernard; Rogge, Lars; Quintana-Murci, Lluis; Albert, Matthew L; Schwikowski, Benno

    2015-04-01

    Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies. Copyright © 2015. Published by Elsevier Inc.

  6. Swirling Flow Computation at the Trailing Edge of Radial-Axial Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo; Muntean, Sebastian; Popescu, Constantin

    2016-11-01

    Modern hydraulic turbines require optimized runners within a range of operating points with respect to minimum weighted average draft tube losses and/or flow instabilities. Tractable optimization methodologies must include realistic estimations of the swirling flow exiting the runner and further ingested by the draft tube, prior to runner design. The paper presents a new mathematical model and the associated numerical algorithm for computing the swirling flow at the trailing edge of Francis turbine runner, operated at arbitrary discharge. The general turbomachinery throughflow theory is particularized for an arbitrary hub-to-shroud line in the meridian half-plane and the resulting boundary value problem is solved with the finite element method. The results obtained with the present model are validated against full 3D runner flow computations within a range of discharge value. The mathematical model incorporates the full information for the relative flow direction, as well as the curvatures of the hub-to-shroud line and meridian streamlines, respectively. It is shown that the flow direction can be frozen within a range of operating points in the neighborhood of the best efficiency regime.

  7. Computation of oscillating airfoil flows with one- and two-equation turbulence models

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, J. A.; Menter, F. R.

    1994-01-01

    The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds-averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. One- and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading-edge and where natural transition was allowed to occur naturally are considered. The more recently developed turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are observed. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading-edge transitional flow region to capture the correct physical mechanism that leads to dynamic stall.

  8. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  9. FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.

  10. Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques

    NASA Astrophysics Data System (ADS)

    Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan

    2018-03-01

    Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.

  11. A computational/experimental study of the flow around a body of revolution at angle of attack

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.

    1986-01-01

    The incompressible Navier-Stokes equations are numerically solved for steady flow around an ogive-cylinder (fineness ration 4.5) at angle of attack. The three-dimensional vortical flow is investigated with emphasis on the tip and the near wake region. The implicit, finite-difference computation is performed on the CRAY X-MP computer using the method of pseudo-compressibility. Comparisons of computational results with results of a companion towing tank experiment are presented for two symmetric leeside flow cases of moderate angles of attack. The topology of the flow is discussed and conclusions are drawn concerning the growth and stability of the primary vortices.

  12. Computer programs for calculating two-dimensional potential flow through deflected nozzles

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Stockman, N. O.

    1979-01-01

    Computer programs to calculate the incompressible potential flow, corrected for compressibility, in two-dimensional nozzles at arbitrary operating conditions are presented. A statement of the problem to be solved, a description of each of the computer programs, and sufficient documentation, including a test case, to enable a user to run the program are included.

  13. Global Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon; Abarbanel, Saul; Nordstrom, Jan; Ryabenkii, Viktor; Vatsa, Veer

    1998-01-01

    We propose new global artificial boundary conditions (ABC's) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability range of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our numerical methodology, and discuss the corresponding computational results. The particular configuration that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows around airfoils and wings, current results for the jet flow case corroborate the superiority of the DPM-based ABC's over standard local methodologies from the standpoints of accuracy, overall numerical performance, and robustness.

  14. Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Vastano, John A.; Moser, Robert D.

    1991-01-01

    The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.

  15. Human Factors Operability Timeline Analysis to Improve the Processing Flow of the Orion Spacecraft

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Schlierf, Roland; Miller, Darcy; Posada, Juan; Haddock, Mike; Haddad, Mike; Tran, Donald; Henderon, Gena; Barth, Tim

    2011-01-01

    This slide presentation reviews the use of Human factors and timeline analysis to have a more efficient and effective processing flow. The solution involved developing a written timeline of events that included each activity within each functional flow block. Each activity had computer animation videos and pictures of the people involved and the hardware. The Human Factors Engineering Analysis Tool (HFEAT) was improved by modifying it to include the timeline of events. The HFEAT was used to define the human factors requirements and design solutions were developed for these requirements. An example of a functional flow block diagram is shown, and a view from one of the animations (i.e., short stack pallet) is shown and explained.

  16. Patient flow within UK emergency departments: a systematic review of the use of computer simulation modelling methods

    PubMed Central

    Mohiuddin, Syed; Busby, John; Savović, Jelena; Richards, Alison; Northstone, Kate; Hollingworth, William; Donovan, Jenny L; Vasilakis, Christos

    2017-01-01

    Objectives Overcrowding in the emergency department (ED) is common in the UK as in other countries worldwide. Computer simulation is one approach used for understanding the causes of ED overcrowding and assessing the likely impact of changes to the delivery of emergency care. However, little is known about the usefulness of computer simulation for analysis of ED patient flow. We undertook a systematic review to investigate the different computer simulation methods and their contribution for analysis of patient flow within EDs in the UK. Methods We searched eight bibliographic databases (MEDLINE, EMBASE, COCHRANE, WEB OF SCIENCE, CINAHL, INSPEC, MATHSCINET and ACM DIGITAL LIBRARY) from date of inception until 31 March 2016. Studies were included if they used a computer simulation method to capture patient progression within the ED of an established UK National Health Service hospital. Studies were summarised in terms of simulation method, key assumptions, input and output data, conclusions drawn and implementation of results. Results Twenty-one studies met the inclusion criteria. Of these, 19 used discrete event simulation and 2 used system dynamics models. The purpose of many of these studies (n=16; 76%) centred on service redesign. Seven studies (33%) provided no details about the ED being investigated. Most studies (n=18; 86%) used specific hospital models of ED patient flow. Overall, the reporting of underlying modelling assumptions was poor. Nineteen studies (90%) considered patient waiting or throughput times as the key outcome measure. Twelve studies (57%) reported some involvement of stakeholders in the simulation study. However, only three studies (14%) reported on the implementation of changes supported by the simulation. Conclusions We found that computer simulation can provide a means to pretest changes to ED care delivery before implementation in a safe and efficient manner. However, the evidence base is small and poorly developed. There are some

  17. A comparison of turbulence models in computing multi-element airfoil flows

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Menter, Florian; Durbin, Paul A.; Mansour, Nagi N.

    1994-01-01

    Four different turbulence models are used to compute the flow over a three-element airfoil configuration. These models are the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, a two-equation k-omega model, and a new one-equation Durbin-Mansour model. The flow is computed using the INS2D two-dimensional incompressible Navier-Stokes solver. An overset Chimera grid approach is utilized. Grid resolution tests are presented, and manual solution-adaptation of the grid was performed. The performance of each of the models is evaluated for test cases involving different angles-of-attack, Reynolds numbers, and flap riggings. The resulting surface pressure coefficients, skin friction, velocity profiles, and lift, drag, and moment coefficients are compared with experimental data. The models produce very similar results in most cases. Excellent agreement between computational and experimental surface pressures was observed, but only moderately good agreement was seen in the velocity profile data. In general, the difference between the predictions of the different models was less than the difference between the computational and experimental data.

  18. A Computational Fluid Dynamics Study of Swirling Flow Reduction by using Anti-vortex Baffle

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John W.; West, Jeff S..

    2013-01-01

    An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6- DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.

  19. A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John W.; West, Jeff S.

    2017-01-01

    An anti-vortex baffle is a liquid propellant management device placed adjacent to an outlet of the propellant tank. Its purpose is to substantially reduce or eliminate the formation of free surface dip and vortex, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the flight. To design an effective anti-vortex baffle, Computational Fluid Dynamic (CFD) simulations were undertaken for the NASA Ares I vehicle LOX tank subjected to the simulated flight loads with and without the anti-vortex baffle. The Six Degree-Of-Freedom (6-DOF) dynamics experienced by the Crew Launch Vehicle (CLV) during ascent were modeled by modifying the momentum equations in a CFD code to accommodate the extra body forces from the maneuvering in a non-inertial frame. The present analysis found that due to large moments, the CLV maneuvering has a significant impact on the vortical flow generation inside the tank. Roll maneuvering and side loading due to pitch and yaw are shown to induce swirling flow. The vortical flow due to roll is symmetrical with respect to the tank centerline, while those induced by pitch and yaw maneuverings showed two vortices side by side. The study found that without the anti-vortex baffle, the swirling flow caused surface dip during the late stage of drainage and hence early vapor ingestion. The flow can also be non-uniform in the drainage pipe as the secondary swirling flow velocity component can be as high as 10% of the draining velocity. An analysis of the vortex dynamics shows that the swirling flow in the drainage pipe during the Upper Stage burn is mainly the result of residual vortices inside the tank due to the conservation of angular momentum. The study demonstrated that the swirling flow in the drainage pipe can be effectively suppressed by employing the anti-vortex baffle.

  20. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    PubMed

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  1. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.

    PubMed

    Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto

    2004-10-01

    The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.

  2. Euler equation computations for the flow over a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas Wesley

    1988-01-01

    A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.

  3. Microscopic analysis of Hopper flow with ellipsoidal particles

    NASA Astrophysics Data System (ADS)

    Liu, Sida; Zhou, Zongyan; Zou, Ruiping; Pinson, David; Yu, Aibing

    2013-06-01

    Hoppers are widely used in process industries. With such widespread application, difficulties in achieving desired operational behaviors have led to extensive experimental and mathematical studies in the past decades. Particularly, the discrete element method has become one of the most important simulation tools for design and analysis. So far, most studies are on spherical particles for computational convenience. In this work, ellipsoidal particles are used as they can represent a large variation of particle shapes. Hopper flow with ellipsoidal particles is presented highlighting the effect of particle shape on the microscopic properties.

  4. Development of Computational Aeroacoustics Code for Jet Noise and Flow Prediction

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Hixon, Duane R.

    2002-07-01

    Accurate prediction of jet fan and exhaust plume flow and noise generation and propagation is very important in developing advanced aircraft engines that will pass current and future noise regulations. In jet fan flows as well as exhaust plumes, two major sources of noise are present: large-scale, coherent instabilities and small-scale turbulent eddies. In previous work for the NASA Glenn Research Center, three strategies have been explored in an effort to computationally predict the noise radiation from supersonic jet exhaust plumes. In order from the least expensive computationally to the most expensive computationally, these are: 1) Linearized Euler equations (LEE). 2) Very Large Eddy Simulations (VLES). 3) Large Eddy Simulations (LES). The first method solves the linearized Euler equations (LEE). These equations are obtained by linearizing about a given mean flow and the neglecting viscous effects. In this way, the noise from large-scale instabilities can be found for a given mean flow. The linearized Euler equations are computationally inexpensive, and have produced good noise results for supersonic jets where the large-scale instability noise dominates, as well as for the tone noise from a jet engine blade row. However, these linear equations do not predict the absolute magnitude of the noise; instead, only the relative magnitude is predicted. Also, the predicted disturbances do not modify the mean flow, removing a physical mechanism by which the amplitude of the disturbance may be controlled. Recent research for isolated airfoils' indicates that this may not affect the solution greatly at low frequencies. The second method addresses some of the concerns raised by the LEE method. In this approach, called Very Large Eddy Simulation (VLES), the unsteady Reynolds averaged Navier-Stokes equations are solved directly using a high-accuracy computational aeroacoustics numerical scheme. With the addition of a two-equation turbulence model and the use of a relatively

  5. GRUMFOIL: A computer code for the viscous transonic flow over airfoils

    NASA Technical Reports Server (NTRS)

    Mead, H. R.; Melnik, R. E.

    1985-01-01

    A user's manual which describes the operation of the computer program, GRUMFOIL is presented. The program computes the viscous transonic flow over two dimensional airfoils using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by a multigrid method for the full potential equation. The boundary layer solution is based on integral entrainment methods.

  6. Computation of Discrete Slanted Hole Film Cooling Flow Using the Navier-Stokes Equations.

    DTIC Science & Technology

    1982-07-01

    7 -121 796 COMPUTATION OF DISCRETE SLANTED HOLE FILM COOLING FLOW i/ i USING THE NAVIER- ..(U) CIENTIFIC RESEARCH ASSOCIATES INC GLASTONBURY CT H...V U U6-IMSA P/ & .OS,-TR. 82-1004 Report R82-910002-4 / COMPUTATION OF DISCRETE SLAMED HOLE FILM COOLING FLOW ( USING THE XAVIER-STOKES EQUATIONS H...CL SIT %GE (f.en Dae Entere)04 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO] S. RECIPIENT’S CATALOG NUMBERAO

  7. Computational analysis of hypersonic flows past elliptic-cone waveriders

    NASA Technical Reports Server (NTRS)

    Yoon, Bok-Hyun; Rasmussen, Maurice L.

    1991-01-01

    A comprehensive study for the inviscid numerical calculation of the hypersonic flow past a class of elliptic-cone derived waveriders is presented. The theoretical background associated with hypersonic small-disturbance theory (HSDT) is reviewed. Several approximation formulas for the waverider compression surface are established. A CFD algorithm is used to calculate flow fields for the on-design case and a variety of off-design cases. The results are compared with HSDT, experiment, and other available CFD results. For the waverider shape used in previous investigations, the bow shock for the on-design condition stands off from the leading-edge tip of the waverider. It was found that this occurs because the tip was too thick according to the approximating shape formula that was used to describe the compression surface. When this was corrected, the bow shock became closer to attached as it should be. At Mach numbers greater than the design condition, a lambda-shock configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel hypersonic configurations such as waveriders.

  8. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  9. Progress in incompressible Navier-Stokes computations for propulsion flows and its dual-use applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1995-01-01

    Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.

  10. System analysis for the Huntsville Operation Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1986-01-01

    A simulation model of the NASA Huntsville Operational Support Center (HOSC) was developed. This simulation model emulates the HYPERchannel Local Area Network (LAN) that ties together the various computers of HOSC. The HOSC system is a large installation of mainframe computers such as the Perkin Elmer 3200 series and the Dec VAX series. A series of six simulation exercises of the HOSC model is described using data sets provided by NASA. The analytical analysis of the ETHERNET LAN and the video terminals (VTs) distribution system are presented. An interface analysis of the smart terminal network model which allows the data flow requirements due to VTs on the ETHERNET LAN to be estimated, is presented.

  11. Status and prospects of computational fluid dynamics for unsteady transonic viscous flows

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.; Kutler, P.; Bridgeman, J. O.

    1984-01-01

    Applications of computational aerodynamics to aeronautical research, design, and analysis have increased rapidly over the past decade, and these applications offer significant benefits to aeroelasticians. The past developments are traced by means of a number of specific examples, and the trends are projected over the next several years. The crucial factors that limit the present capabilities for unsteady analyses are identified; they include computer speed and memory, algorithm and solution methods, grid generation, turbulence modeling, vortex modeling, data processing, and coupling of the aerodynamic and structural dynamic analyses. The prospects for overcoming these limitations are presented, and many improvements appear to be readily attainable. If so, a complete and reliable numerical simulation of the unsteady, transonic viscous flow around a realistic fighter aircraft configuration could become possible within the next decade. The possibilities of using artificial intelligence concepts to hasten the achievement of this goal are also discussed.

  12. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  13. GPU computing of compressible flow problems by a meshless method with space-filling curves

    NASA Astrophysics Data System (ADS)

    Ma, Z. H.; Wang, H.; Pu, S. H.

    2014-04-01

    A graphic processing unit (GPU) implementation of a meshless method for solving compressible flow problems is presented in this paper. Least-square fit is used to discretize the spatial derivatives of Euler equations and an upwind scheme is applied to estimate the flux terms. The compute unified device architecture (CUDA) C programming model is employed to efficiently and flexibly port the meshless solver from CPU to GPU. Considering the data locality of randomly distributed points, space-filling curves are adopted to re-number the points in order to improve the memory performance. Detailed evaluations are firstly carried out to assess the accuracy and conservation property of the underlying numerical method. Then the GPU accelerated flow solver is used to solve external steady flows over aerodynamic configurations. Representative results are validated through extensive comparisons with the experimental, finite volume or other available reference solutions. Performance analysis reveals that the running time cost of simulations is significantly reduced while impressive (more than an order of magnitude) speedups are achieved.

  14. Implicit preconditioned WENO scheme for steady viscous flow computation

    NASA Astrophysics Data System (ADS)

    Huang, Juan-Chen; Lin, Herng; Yang, Jaw-Yen

    2009-02-01

    A class of lower-upper symmetric Gauss-Seidel implicit weighted essentially nonoscillatory (WENO) schemes is developed for solving the preconditioned Navier-Stokes equations of primitive variables with Spalart-Allmaras one-equation turbulence model. The numerical flux of the present preconditioned WENO schemes consists of a first-order part and high-order part. For first-order part, we adopt the preconditioned Roe scheme and for the high-order part, we employ preconditioned WENO methods. For comparison purpose, a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning algorithm is devised and a discriminant is devised for adjusting the preconditioning parameters at low Mach numbers and turning off the preconditioning at intermediate or high Mach numbers. The computations are performed for the two-dimensional lid driven cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed viscous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic flow over HB-2 model. The solutions of the present algorithms are in good agreement with the experimental data. The application of the preconditioned WENO schemes to viscous flows at all speeds not only enhances the accuracy and robustness of resolving shock and discontinuities for supersonic flows, but also improves the accuracy of low Mach number flow with complicated smooth solution structures.

  15. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  16. Gravity flow of powder in a lunar environment. Part 2: Analysis of flow initiation

    NASA Technical Reports Server (NTRS)

    Pariseau, W. G.

    1971-01-01

    A small displacement-small strain finite element technique utilizing the constant strain triangle and incremental constitutive equations for elasticplastic (media nonhardening and obeying a Coulomb yield condition) was applied to the analysis of gravity flow initiation. This was done in a V-shaped hopper containing a powder under lunar environmental conditions. Three methods of loading were examined. Of the three, the method of computing the initial state of stress in a filled hopper prior to drawdown, by adding material to the hopper layer by layer, was the best. Results of the analysis of a typical hopper problem show that the initial state of stress, the elastic moduli, and the strength parameters have an important influence on material response subsequent to the opening of the hopper outlet.

  17. Computational Biorheology of Human Blood Flow in Health and Disease

    PubMed Central

    Fedosov, Dmitry A.; Dao, Ming; Karniadakis, George Em; Suresh, Subra

    2014-01-01

    Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia. PMID:24419829

  18. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    NASA Astrophysics Data System (ADS)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi

    2017-11-01

    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  19. Procedures for the computation of unsteady transonic flows including viscous effects

    NASA Technical Reports Server (NTRS)

    Rizzetta, D. P.

    1982-01-01

    Modifications of the code LTRAN2, developed by Ballhaus and Goorjian, which account for viscous effects in the computation of planar unsteady transonic flows are presented. Two models are considered and their theoretical development and numerical implementation is discussed. Computational examples employing both models are compared with inviscid solutions and with experimental data. Use of the modified code is described.

  20. Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Mantri, Atul; Demarie, Tommaso F.; Menicucci, Nicolas C.; Fitzsimons, Joseph F.

    2017-07-01

    Blind quantum computation protocols allow a user to delegate a computation to a remote quantum computer in such a way that the privacy of their computation is preserved, even from the device implementing the computation. To date, such protocols are only known for settings involving at least two quantum devices: either a user with some quantum capabilities and a remote quantum server or two or more entangled but noncommunicating servers. In this work, we take the first step towards the construction of a blind quantum computing protocol with a completely classical client and single quantum server. Specifically, we show how a classical client can exploit the ambiguity in the flow of information in measurement-based quantum computing to construct a protocol for hiding critical aspects of a computation delegated to a remote quantum computer. This ambiguity arises due to the fact that, for a fixed graph, there exist multiple choices of the input and output vertex sets that result in deterministic measurement patterns consistent with the same fixed total ordering of vertices. This allows a classical user, computing only measurement angles, to drive a measurement-based computation performed on a remote device while hiding critical aspects of the computation.

  1. [Computers in biomedical research: I. Analysis of bioelectrical signals].

    PubMed

    Vivaldi, E A; Maldonado, P

    2001-08-01

    A personal computer equipped with an analog-to-digital conversion card is able to input, store and display signals of biomedical interest. These signals can additionally be submitted to ad-hoc software for analysis and diagnosis. Data acquisition is based on the sampling of a signal at a given rate and amplitude resolution. The automation of signal processing conveys syntactic aspects (data transduction, conditioning and reduction); and semantic aspects (feature extraction to describe and characterize the signal and diagnostic classification). The analytical approach that is at the basis of computer programming allows for the successful resolution of apparently complex tasks. Two basic principles involved are the definition of simple fundamental functions that are then iterated and the modular subdivision of tasks. These two principles are illustrated, respectively, by presenting the algorithm that detects relevant elements for the analysis of a polysomnogram, and the task flow in systems that automate electrocardiographic reports.

  2. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  3. Several examples where turbulence models fail in inlet flow field analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1993-01-01

    Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.

  4. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1992-01-01

    Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.

  5. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity so that they are being frequently employed for specific real world applications within NASA. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by highly complex geometries. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the peculiarities of applying the immersed boundary method to this moving boundary problem, we will provide a detailed aeroacoustic analysis of the noise generation mechanisms encountered in the open rotor flow. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. The noise generation mechanisms are analyzed employing spectral analysis, proper orthogonal decomposition and the causality method.

  6. A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Li, Jiequan

    2018-04-01

    This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

  7. Stability analysis for capillary channel flow: 1d and 3d computations

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1

  8. Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

    2001-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

  9. A novel anisotropic fast marching method and its application to blood flow computation in phase-contrast MRI.

    PubMed

    Schwenke, M; Hennemuth, A; Fischer, B; Friman, O

    2012-01-01

    Phase-contrast MRI (PC MRI) can be used to assess blood flow dynamics noninvasively inside the human body. The acquired images can be reconstructed into flow vector fields. Traditionally, streamlines can be computed based on the vector fields to visualize flow patterns and particle trajectories. The traditional methods may give a false impression of precision, as they do not consider the measurement uncertainty in the PC MRI images. In our prior work, we incorporated the uncertainty of the measurement into the computation of particle trajectories. As a major part of the contribution, a novel numerical scheme for solving the anisotropic Fast Marching problem is presented. A computing time comparison to state-of-the-art methods is conducted on artificial tensor fields. A visual comparison of healthy to pathological blood flow patterns is given. The comparison shows that the novel anisotropic Fast Marching solver outperforms previous schemes in terms of computing time. The visual comparison of flow patterns directly visualizes large deviations of pathological flow from healthy flow. The novel anisotropic Fast Marching solver efficiently resolves even strongly anisotropic path costs. The visualization method enables the user to assess the uncertainty of particle trajectories derived from PC MRI images.

  10. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  11. Aeroacoustic directivity via wave-packet analysis of mean or base flows

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Cattafesta, Louis

    2017-11-01

    Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.

  12. A priori and a posteriori analysis of the flow around a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Cimarelli, A.; Leonforte, A.; Franciolini, M.; De Angelis, E.; Angeli, D.; Crivellini, A.

    2017-11-01

    The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather elusive problem as shown by the large scatter of LES results present in the literature. In the present work, we aim at assessing this issue by performing an a priori analysis of Direct Numerical Simulation (DNS) data of the flow. This approach allows us to measure the ability of the LES field on reproducing the main flow features as a function of the resolution employed. Based on these results, we define a mesh resolution which maximize the opposite needs of reducing the computational costs and of adequately resolving the flow dynamics. The effectiveness of the resolution method proposed is then verified by means of an a posteriori analysis of actual LES data obtained by means of the implicit LES approach given by the numerical properties of the Discontinuous Galerkin spatial discretization technique. The present work represents a first step towards a best practice for LES of separating and reattaching flows.

  13. An experimental and computational investigation of the flow field about a transonic airfoil in supercritical flow with turbulent boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.

    1976-01-01

    A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.

  14. Improving flow distribution in influent channels using computational fluid dynamics.

    PubMed

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  15. Regulation of flow computers for the measurement of biofuels

    NASA Astrophysics Data System (ADS)

    Almeida, R. O.; Aguiar Júnior, E. A.; Costa-Felix, R. P. B.

    2018-03-01

    This article aims to discuss the need to develop a standard or regulation applicable to flow computers in the measurement of biofuels. International standards and recommendations are presented which are possibly adequate to fill this gap and at the end of the article a way is proposed to obtain a single document on the subject.

  16. Computation of turbulent flows-state-of-the-art, 1970

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C.

    1972-01-01

    The state-of-the-art of turbulent flow computation is surveyed. The formulations were generalized to increase the range of their applicability, and the excitement of current debate on equation models was brought into the review. Some new ideas on the modeling of the pressure-strain term in the Reynolds stress equations are also suggested.

  17. Two inviscid computational simulations of separated flow about airfoils

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1976-01-01

    Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.

  18. Programmer's guide for the GNAT computer program (numerical analysis of stratification in supercritical oxygen)

    NASA Technical Reports Server (NTRS)

    Heinmiller, J. P.

    1971-01-01

    This document is the programmer's guide for the GNAT computer program developed under MSC/TRW Task 705-2, Apollo cryogenic storage system analysis, subtask 2, is reported. Detailed logic flow charts and compiled program listings are provided for all program elements.

  19. A knowledge-based approach to automated flow-field zoning for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1989-01-01

    An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.

  20. ASRM multi-port igniter flow field analysis

    NASA Astrophysics Data System (ADS)

    Kania, Lee; Dumas, Catherine; Doran, Denise

    1993-07-01

    The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.

  1. ASRM Multi-Port Igniter Flow Field Analysis

    NASA Technical Reports Server (NTRS)

    Kania, Lee; Dumas, Catherine; Doran, Denise

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.

  2. Turbulent flow in a 180 deg bend: Modeling and computations

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    1989-01-01

    A low Reynolds number k-epsilon turbulence model was presented which yields accurate predictions of the kinetic energy near the wall. The model is validated with the experimental channel flow data of Kreplin and Eckelmann. The predictions are also compared with earlier results from direct simulation of turbulent channel flow. The model is especially useful for internal flows where the inflow boundary condition of epsilon is not easily prescribed. The model partly derives from some observations based on earlier direct simulation results of near-wall turbulence. The low Reynolds number turbulence model together with an existing curvature correction appropriate to spinning cylinder flows was used to simulate the flow in a U-bend with the same radius of curvature as the Space Shuttle Main Engine (SSME) Turn-Around Duct (TAD). The present computations indicate a space varying curvature correction parameter as opposed to a constant parameter as used in the spinning cylinder flows. Comparison with limited available experimental data is made. The comparison is favorable, but detailed experimental data is needed to further improve the curvature model.

  3. STARS: An integrated general-purpose finite element structural, aeroelastic, and aeroservoelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Gupta, Kajal K.

    1991-01-01

    The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.

  4. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  5. An experimental and computational investigation of flow in a radial inlet of an industrial pipeline centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathers, M.B.; Bache, G.E.; Rainsberger, R.

    1996-04-01

    The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. Themore » experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.« less

  6. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    PubMed Central

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  7. Computational analysis of fluid dynamics in pharmaceutical freeze-drying.

    PubMed

    Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L

    2009-09-01

    Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.

  8. Computations of Torque-Balanced Coaxial Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.

    2017-01-01

    Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.

  9. Computer analysis of flow perturbations generated by placement of choke bumps in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1981-01-01

    An inviscid analytical study was conducted to determine the upstream flow perturbations caused by placing choke bumps in a wind tunnel. A computer program based on the stream-tube curvature method was used to calculate the resulting flow fields for a nominal free-stream Mach number range of 0.6 to 0.9. The choke bump geometry was also varied to investigate the effect of bump shape on the disturbance produced. Results from the study indicate that a region of significant variation from the free-stream conditions exists upstream of the throat of the tunnel. The extent of the disturbance region was, as a rule, dependent on Mach number and the geometry of the choke bump. In general, the upstream disturbance distance decreased for increasing nominal free-stream Mach number and for decreasing length-to-height ratio of the bump. A polynomial-curve choke bump usually produced less of a disturbance than did a circular-arc bump and going to an axisymmetric configuration (modeling choke bumps on all the tunnel walls) generally resulted in a lower disturbance than with the corresponding two dimensional case.

  10. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  11. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-06-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  12. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  13. Vectorization on the star computer of several numerical methods for a fluid flow problem

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.; Howser, L. M.

    1974-01-01

    A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.

  14. Computer aided approximation of flow rate through systemic-pulmonary arterial shunts (SPAS).

    PubMed

    Vennemann, Peter; Montag, Michael; Peters, Franz; Merzkirch, Wolfgang

    2012-02-22

    The discrimination of flow rates through bronchial arteries that are affected by pathological SPAS today still happens solely qualitatively. A reproducible quantification of flow rates, however, would enable the comprehension of phenomena like the intensified shunt perfusion seen in cases of chronic inflammations or the characterization of SPAS that may cause cardiovascular problems. A computational program is developed, that allows the modeling of individual bronchial arteries on the basis of the information provided by angiography. Angiographic images are available from the standard clinical assessment of SPAS. The flow through continuous and geometrically measurable vessel segments and SPAS is given by the law of Hagen-Poiseuille. The discharge through healthy branches is calculated by means of allometric scaling laws. The simulation results are verified by flow experiments in artificial vessel networks made of glass and PE tubing. The experimental set-up mimics realistic, pulsating pressure and flow conditions. When applied to the artificial vessel networks, the model described herein provides results for the volumetric flow rate that differ from values measured in laboratory experiments by <6%. The computer model is also applied to real angiographic images. Due to inaccuracies during the deduction of the geometry and due to necessary simplifications of the model, we expect significant deviations between calculated and real flow rates in bronchial systems. Nevertheless, the presented method enables the physician to objectively estimate the order of magnitude of volumetric flow through individual SPAS fairly independently from his experience and without the need of measurements additional to the mandatory angiography.

  15. New computer program solves wide variety of heat flow problems

    NASA Technical Reports Server (NTRS)

    Almond, J. C.

    1966-01-01

    Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.

  16. Computing Flows Using Chimera and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2006-01-01

    DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.

  17. A computational model for three-dimensional incompressible wall jets with large cross flow

    NASA Technical Reports Server (NTRS)

    Murphy, W. D.; Shankar, V.; Malmuth, N. D.

    1979-01-01

    A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed.

  18. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation.

    PubMed

    Kheyfets, Vitaly O; Rios, Lourdes; Smith, Triston; Schroeder, Theodore; Mueller, Jeffrey; Murali, Srinivas; Lasorda, David; Zikos, Anthony; Spotti, Jennifer; Reilly, John J; Finol, Ender A

    2015-07-01

    Computational fluid dynamics (CFD) modeling of the pulmonary vasculature has the potential to reveal continuum metrics associated with the hemodynamic stress acting on the vascular endothelium. It is widely accepted that the endothelium responds to flow-induced stress by releasing vasoactive substances that can dilate and constrict blood vessels locally. The objectives of this study are to examine the extent of patient specificity required to obtain a significant association of CFD output metrics and clinical measures in models of the pulmonary arterial circulation, and to evaluate the potential correlation of wall shear stress (WSS) with established metrics indicative of right ventricular (RV) afterload in pulmonary hypertension (PH). Right Heart Catheterization (RHC) hemodynamic data and contrast-enhanced computed tomography (CT) imaging were retrospectively acquired for 10 PH patients and processed to simulate blood flow in the pulmonary arteries. While conducting CFD modeling of the reconstructed patient-specific vasculatures, we experimented with three different outflow boundary conditions to investigate the potential for using computationally derived spatially averaged wall shear stress (SAWSS) as a metric of RV afterload. SAWSS was correlated with both pulmonary vascular resistance (PVR) (R(2)=0.77, P<0.05) and arterial compliance (C) (R(2)=0.63, P<0.05), but the extent of the correlation was affected by the degree of patient specificity incorporated in the fluid flow boundary conditions. We found that decreasing the distal PVR alters the flow distribution and changes the local velocity profile in the distal vessels, thereby increasing the local WSS. Nevertheless, implementing generic outflow boundary conditions still resulted in statistically significant SAWSS correlations with respect to both metrics of RV afterload, suggesting that the CFD model could be executed without the need for complex outflow boundary conditions that require invasively obtained

  19. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; CFD RSRM Full-Scale Analyses

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This document presents the full-scale analyses of the CFD RSRM. The RSRM model was developed with a 20 second burn time. The following are presented as part of the full-scale analyses: (1) RSRM embedded inclusion analysis; (2) RSRM igniter nozzle design analysis; (3) Nozzle Joint 4 erosion anomaly; (4) RSRM full motor port slag accumulation analysis; (5) RSRM motor analysis of two-phase flow in the aft segment/submerged nozzle region; (6) Completion of 3-D Analysis of the hot air nozzle manifold; (7) Bates Motor distributed combustion test case; and (8) Three Dimensional Polysulfide Bump Analysis.

  20. An analysis of regional cerebral blood flow in impulsive murderers using single photon emission computed tomography.

    PubMed

    Amen, Daniel G; Hanks, Chris; Prunella, Jill R; Green, Aisa

    2007-01-01

    The authors explored differences in regional cerebral blood flow in 11 impulsive murderers and 11 healthy comparison subjects using single photon emission computed tomography. The authors assessed subjects at rest and during a computerized go/no-go concentration task. Using statistical parametric mapping software, the authors performed voxel-by-voxel t tests to assess significant differences, making family-wide error corrections for multiple comparisons. Murderers were found to have significantly lower relative rCBF during concentration, particularly in areas associated with concentration and impulse control. These results indicate that nonemotionally laden stimuli may result in frontotemporal dysregulation in people predisposed to impulsive violence.

  1. A method for computation of inviscid three-dimensional flow over blunt bodies having large embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Hamilton, H. H., II

    1981-01-01

    A computational technique for computing the three-dimensional inviscid flow over blunt bodies having large regions of embedded subsonic flow is detailed. Results, which were obtained using the CDC Cyber 203 vector processing computer, are presented for several analytic shapes with some comparison to experimental data. Finally, windward surface pressure computations over the first third of the Space Shuttle vehicle are compared with experimental data for angles of attack between 25 and 45 degrees.

  2. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.

    PubMed

    Benard, Nicolas; Perrault, Robert; Coisne, Damien

    2006-08-01

    In this study various blood rheological assumptions are numerically investigated for the hemodynamic properties of intra-stent flow. Non-newtonian blood properties have never been implemented in blood coronary stented flow investigation, although its effects appear essential for a correct estimation and distribution of wall shear stress (WSS) exerted by the fluid on the internal vessel surface. Our numerical model is based on a full 3D stent mesh. Rigid wall and stationary inflow conditions are applied. Newtonian behavior, non-newtonian model based on Carreau-Yasuda relation and a characteristic newtonian value defined with flow representative parameters are introduced in this research. Non-newtonian flow generates an alteration of near wall viscosity norms compared to newtonian. Maximal WSS values are located in the center part of stent pattern structure and minimal values are focused on the proximal stent wire surface. A flow rate increase emphasizes fluid perturbations, and generates a WSS rise except for interstrut area. Nevertheless, a local quantitative analysis discloses an underestimation of WSS for modelisation using a newtonian blood flow, with clinical consequence of overestimate restenosis risk area. Characteristic viscosity introduction appears to present a useful option compared to rheological modelisation based on experimental data, with computer time gain and relevant results for quantitative and qualitative WSS determination.

  3. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    NASA Astrophysics Data System (ADS)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  4. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate: Computer program description and users manual

    NASA Technical Reports Server (NTRS)

    Jumper, S. J.

    1979-01-01

    A method was developed for predicting the potential flow velocity field at the plane of a propeller operating under the influence of a wing-fuselage-cowl or nacelle combination. A computer program was written which predicts the three dimensional potential flow field. The contents of the program, its input data, and its output results are described.

  5. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.

    PubMed

    Makhijani, V B; Yang, H Q; Singhal, A K; Hwang, N H

    1994-04-01

    A combined experimental-computational study was performed to investigate the flow mechanics which could cause cavitation during the squeezing and rebounding phases of valve closure in the 29 mm mitral bileaflet Edwards-Duromedics (ED) mechanical heart valve (MHV). Leaflet closing motion was measured in vitro, and input into a computational fluid mechanics software package, CFD-ACE, to compute flow velocities and pressures in the small gap space between the occluder tip and valve housing. The possibility of cavitation inception was predicted when fluid pressures dropped below the saturated vapor pressure for blood plasma. The computational analysis indicated that cavitation is more likely to be induced during valve rebound rather than the squeezing phase of valve closure in the 29 mm ED-MHV. Also, there is a higher probability of cavitation at lower values of the gap width at the point of impact between the leaflet tip and housing. These predictions of cavitation inception are not likely to be significantly influenced by the water-hammer pressure gradient that develops during valve closure.

  6. Considerations in video playback design: using optic flow analysis to examine motion characteristics of live and computer-generated animation sequences.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume

    2008-07-01

    The increasing use of the video playback technique in behavioural ecology reveals a growing need to ensure better control of the visual stimuli that focal animals experience. Technological advances now allow researchers to develop computer-generated animations instead of using video sequences of live-acting demonstrators. However, care must be taken to match the motion characteristics (speed and velocity) of the animation to the original video source. Here, we presented a tool based on the use of an optic flow analysis program to measure the resemblance of motion characteristics of computer-generated animations compared to videos of live-acting animals. We examined three distinct displays (tail-flick (TF), push-up body rock (PUBR), and slow arm wave (SAW)) exhibited by animations of Jacky dragons (Amphibolurus muricatus) that were compared to the original video sequences of live lizards. We found no significant differences between the motion characteristics of videos and animations across all three displays. Our results showed that our animations are similar the speed and velocity features of each display. Researchers need to ensure that similar motion characteristics in animation and video stimuli are represented, and this feature is a critical component in the future success of the video playback technique.

  7. Parallel methods for the computation of unsteady separated flows around complex geometries

    NASA Astrophysics Data System (ADS)

    Souliez, Frederic Jean

    A numerical investigation of separated flows is made using unstructured meshes around complex geometries. The flow data in the wake of a 60-degree vertex angle cone are analyzed for various versions of our finite volume solver, including a generic version without turbulence model, and a Large Eddy Simulation model with different sub-grid scale constant values. While the primary emphasis is on the comparison of the results against experimental data, the solution is also used as a benchmark tool for an aeroacoustic post-processing utility combined with the Ffowcs Williams-Hawkings (FW-H) equation. A concurrent study is performed of the flow around two 4-wheel landing gear models, with the difference residing in the addition of two additional support struts. These unsteady calculations are used to provide aerodynamic and aeroacoustic data. The impact of the two configurations on the forces as well as on the acoustic near- and far-field is evaluated with the help of the above-mentioned aeroacoustic program. For both the cone and landing gear runs, parallel versions of the flow solver and of the FW-H utility are used via the implementation of the Message Passing Interface (MPI) library, resulting in very good scaling performance. The speed-up results for these cases are described for different platforms including inexpensive Beowulf-class clusters, which are the computing workhorse for the present numerical investigation. Furthermore, the analysis of the flow around a Bell 214 Super Transport (ST) fuselage is presented. A mesh sensitivity analysis is compared against experimental and numerical results collected by the helicopter manufacturer. Parameters such as surface pressure coefficient, lift and drag are evaluated resulting from both steady-state and time-accurate simulations. Various flight conditions are tested, with a slightly negative angle of attack, a large positive angle of attack and a positive yaw angle, all of which resulting in massive flow separation

  8. Computer programs for calculating potential flow in propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.; Button, S. L.

    1973-01-01

    In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.

  9. Thermal and flow analysis subroutines for the SINDA-version 9 computer routine

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Williams, D. R.

    1973-01-01

    Fluid flow analysis, special thermal analysis and input/output capabilities of the MOTAR routine were incorporated into the SINDA routine. All the capabilities were added in the form of user subroutines so that they may be added to different versions of SINDA with a minimum of programmer effort. Two modifications were made to the existing subroutines of SINDA/8 to incorporate the above subroutines. These were: (1) A modification to the preprocessor to permit actual values of array numbers, conductor numbers, node numbers or constant numbers supplied as array data to be converted to relative numbers. (2) Modifications to execution subroutine CNFAST to make it compatible with the radiant interchange user subroutine, RADIR. This modified version of SINDA has been designated SINDA/version 9. A detailed discussion of the methods used for the capabilities added is presented. The modifications for the SINDA subroutines are described, as well as user subroutines. All subroutines added or modified are listed.

  10. Computer analysis of Holter electrocardiogram.

    PubMed

    Yanaga, T; Adachi, M; Sato, Y; Ichimaru, Y; Otsuka, K

    1994-10-01

    Computer analysis is indispensable for the interpretation of Holter ECG, because it includes a large quantity of data. Computer analysis of Holter ECG is similar to that of conventional ECG, however, in computer analysis of Holter ECG, there are some difficulties such as many noise, limited analyzing time and voluminous data. The main topics in computer analysis of Holter ECG will be arrhythmias, ST-T changes, heart rate variability, QT interval, late potential and construction of database. Although many papers have been published on the computer analysis of Holter ECG, some of the papers was reviewed briefly in the present paper. We have studied on computer analysis of VPCs, ST-T changes, heart rate variability, QT interval and Cheyne-Stokes respiration during 24-hour ambulatory ECG monitoring. Further, we have studied on ambulatory palmar sweating for the evaluation of mental stress during a day. In future, the development of "the integrated Holter system", which enables the evaluation of ventricular vulnerability and modulating factor such as psychoneural hypersensitivity may be important.

  11. An analysis method for two-dimensional transonic viscous flow

    NASA Technical Reports Server (NTRS)

    Bavitz, P. C.

    1975-01-01

    A method for the approximate calculation of transonic flow over airfoils, including shock waves and viscous effects, is described. Numerical solutions are obtained by use of a computer program which is discussed in the appendix. The importance of including the boundary layer in the analysis is clearly demonstrated, as well as the need to improve on existing procedures near the trailing edge. Comparisons between calculations and experimental data are presented for both conventional and supercritical airfoils, emphasis being on the surface pressure distribution, and good agreement is indicated.

  12. Computational Study of a McDonnell Douglas Single-Stage-to-Orbit Vehicle Concept for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1996-01-01

    This paper presents the results of a computational flow analysis of the McDonnell Douglas single-stage-to-orbit vehicle concept designated as the 24U. This study was made to determine the aerodynamic characteristics of the vehicle with and without body flaps over an angle of attack range of 20-40 deg. Computations were made at a flight Mach number of 20 at 200,000 ft. altitude with equilibrium air, and a Mach number of 6 with CF4 gas. The software package FELISA (Finite Element Langley imperial College Sawansea Ames) was used for all the computations. The FELISA software consists of unstructured surface and volume grid generators, and inviscid flow solvers with (1) perfect gas option for subsonic, transonic, and low supersonic speeds, and (2) perfect gas, equilibrium air, and CF4 options for hypersonic speeds. The hypersonic flow solvers with equilibrium air and CF4 options were used in the present studies. Results are compared with other computational results and hypersonic CF4 tunnel test data.

  13. Finite element flow analysis; Proceedings of the Fourth International Symposium on Finite Element Methods in Flow Problems, Chuo University, Tokyo, Japan, July 26-29, 1982

    NASA Astrophysics Data System (ADS)

    Kawai, T.

    Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896

  14. TopoDrive and ParticleFlow--Two Computer Models for Simulation and Visualization of Ground-Water Flow and Transport of Fluid Particles in Two Dimensions

    USGS Publications Warehouse

    Hsieh, Paul A.

    2001-01-01

    This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.

  15. Computation of viscous flows over airfoils, including separation, with a coupling approach

    NASA Technical Reports Server (NTRS)

    Leballeur, J. C.

    1983-01-01

    Viscous incompressible flows over single or multiple airfoils, with or without separation, were computed using an inviscid flow calculation, with modified boundary conditions, and by a method providing calculation and coupling for boundary layers and wakes, within conditions of strong viscous interaction. The inviscid flow is calculated with a method of singularities, the numerics of which were improved by using both source and vortex distributions over profiles, associated with regularity conditions for the fictitious flows inside of the airfoils. The viscous calculation estimates the difference between viscous flow and inviscid interacting flow, with a direct or inverse integral method, laminar or turbulent, with or without reverse flow. The numerical method for coupling determines iteratively the boundary conditions for the inviscid flow. For attached viscous layers regions, an underrelaxation is locally calculated to insure stability. For separated or separating regions, a special semi-inverse algorithm is used. Comparisons with experiments are presented.

  16. Computation of the bluff-body sound generation by a self-consistent mean flow formulation

    NASA Astrophysics Data System (ADS)

    Fani, A.; Citro, V.; Giannetti, F.; Auteri, F.

    2018-03-01

    The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-element method. In particular, we study the acoustic emissions generated by the flow past the bluff body at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible linearized Navier-Stokes equations. The resulting direct global mode provides detailed information related to the underlying hydrodynamic instability and data on the acoustic field generated. In order to recover the intensity of the produced sound, we apply the self-consistent model for non-linear saturation proposed by Mantič-Lugo, Arratia, and Gallaire ["Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake," Phys. Rev. Lett. 113, 084501 (2014)]. The application of this model allows us to compute the amplitude of the resulting linear mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent agreement with those obtained by a full compressible simulation direct numerical simulation and those derived by the application of classical acoustic analogy formulations.

  17. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  18. Computational fluid dynamics analysis of space shuttle main propulsion feed line 17-inch disconnect valves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Pearce, Daniel

    1989-01-01

    A steady incompressible three-dimensional (3-D) viscous flow analysis was conducted for the Space Shuttle Main Propulsion External Tank (ET)/Orbiter (ORB) propellant feed line quick separable 17-inch disconnect flapper valves for liquid oxygen (LO2) and liquid hydrogen (LH2). The main objectives of the analysis were to predict and correlate the hydrodynamic stability of the flappers and pressure drop with available water test data. Computational Fluid Dynamics (CFD) computer codes were procured at no cost from the public domain, and were modified and extended to carry out the disconnect flow analysis. The grid generator codes SVTGD3D and INGRID were obtained. NASA Ames Research Center supplied the flow solution code INS3D, and the color graphics code PLOT3D. A driver routine was developed to automate the grid generation process. Components such as pipes, elbows, and flappers can be generated with simple commands, and flapper angles can be varied easily. The flow solver INS3D code was modified to treat interior flappers, and other interfacing routines were developed, which include a turbulence model, a force/moment routine, a time-step routine, and initial and boundary conditions. In particular, an under-relaxation scheme was implemented to enhance the solution stability. Major physical assumptions and simplifications made in the analysis include the neglect of linkages, slightly reduced flapper diameter, and smooth solid surfaces. A grid size of 54 x 21 x 25 was employed for both the LO2 and LH2 units. Mixing length theory applied to turbulent shear flow in pipes formed the basis for the simple turbulence model. Results of the analysis are presented for LO2 and LH2 disconnects.

  19. Automated serum chloride analysis using the Apple computer

    PubMed Central

    Taylor, Paul J.; Bouska, Rosalie A.

    1988-01-01

    Chloride analysis employing a coulometric technique is a wellestablished method. However, the equipment needed is specialized and somewhat expensive. The purpose of this paper is to report the development of the hardware and software to perform this analysis using an Apple computer to control the coulometric titration, as well as to automate it and to print out the results. The Apple computer is used to control the flow of current in a circuit, which includes silver and platinum electrodes where the following reactions take place: A g → A g + + l e −    ( at silver anode ) 2 H 2 O + 2 e − → 2 O H − + H 2    ( at platinum cathode ) The generated silver ions then react with the chloride ion in the sample to form AgCl. A g + + C l − → A g C l ( s ) When all of the chloride ion has been titrated, the concentration of silver ions in solution increases rapidly, which causes an increase in the current between two silver microelectrodes. This current is converted to a voltage and amplified by a simple circuit. This voltage is read by the analogue-to-digital converter. The computer stops the titration and calculates the chloride ion content of the sample. Thus, the computer controls the apparatus, records the data, and reacts to the data to terminate the analyses and prints out the results and messages to the analyst. Analysis of standards and reference sera indicate the method is rapid, accurate and precise. Application of this apparatus as a teaching aidfor electronics to chemistry and medical students is also described. PMID:18925182

  20. Application of computational fluid dynamics to the study of vortex flow control for the management of inlet distortion

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Gibb, James

    1992-01-01

    A study is presented to demonstrate that the Reduced Navier-Stokes code RNS3D can be employed effectively to develop a vortex generator installation that minimizes engine face circumferential distortion by controlling the development of secondary flow. The necessary computing times are small enough to show that similar studies are feasible within an analysis-design environment with all its constraints of costs and time. This study establishes the nature of the performance enhancements that can be realized with vortex flow control, and indicates a set of aerodynamic properties that can be utilized to arrive at a successful vortex generator installation design.

  1. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  2. Calculating Flow Through A Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Kunz, Donald L.; Hodges, Dewey H.

    1991-01-01

    New method for calculating flow of air through and around helicopter rotor incorporated into General Rotorcraft Aeromechanical Stability Program (GRASP) (computer program for aeroelastic analysis). Flow about helicopter rotor represented by axisymmetric flow field in cylindrical region with actuator disk as source of flow.

  3. Trident: scalable compute archives: workflows, visualization, and analysis

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Kotulla, Ralf; Henschel, Robert; Harbeck, Daniel

    2016-08-01

    The Astronomy scientific community has embraced Big Data processing challenges, e.g. associated with time-domain astronomy, and come up with a variety of novel and efficient data processing solutions. However, data processing is only a small part of the Big Data challenge. Efficient knowledge discovery and scientific advancement in the Big Data era requires new and equally efficient tools: modern user interfaces for searching, identifying and viewing data online without direct access to the data; tracking of data provenance; searching, plotting and analyzing metadata; interactive visual analysis, especially of (time-dependent) image data; and the ability to execute pipelines on supercomputing and cloud resources with minimal user overhead or expertise even to novice computing users. The Trident project at Indiana University offers a comprehensive web and cloud-based microservice software suite that enables the straight forward deployment of highly customized Scalable Compute Archive (SCA) systems; including extensive visualization and analysis capabilities, with minimal amount of additional coding. Trident seamlessly scales up or down in terms of data volumes and computational needs, and allows feature sets within a web user interface to be quickly adapted to meet individual project requirements. Domain experts only have to provide code or business logic about handling/visualizing their domain's data products and about executing their pipelines and application work flows. Trident's microservices architecture is made up of light-weight services connected by a REST API and/or a message bus; a web interface elements are built using NodeJS, AngularJS, and HighCharts JavaScript libraries among others while backend services are written in NodeJS, PHP/Zend, and Python. The software suite currently consists of (1) a simple work flow execution framework to integrate, deploy, and execute pipelines and applications (2) a progress service to monitor work flows and sub

  4. Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1994-01-01

    An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.

  5. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around

  6. Computation of Separated and Unsteady Flows with One- and Two-Equation Turbulence Models

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, John A.; Menter, Florian R.

    1994-01-01

    The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. The two-equation turbulence models are discretized in space with an upwind-biased, second order accurate total variation diminishing scheme. One and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading edge and where natural transition was allowed to occur naturally are considered. The more recently developed field-equation turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are obtained. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading edge transitional flow region in order to capture the correct physical mechanism that leads to dynamic stall.

  7. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  8. Computation of viscous transonic flow about a lifting airfoil

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Liu, C. Y.

    1976-01-01

    The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.

  9. Computer studies of baroclinic flow. [Atmospheric General Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Gall, R.

    1985-01-01

    Programs necessary for computing the transition curve on the regime diagram for the atmospheric general circulation experiment (AGOE) were completed and used to determine the regime diagram for the rotating annulus and some axisymmetric flows for one possible AGOE configuration. The effect of geometrical constraints on the size of eddies developing from a basic state is being examined. In AGOE, the geometric constraint should be the width of the shear zone or the baroclinic zone. Linear and nonlinear models are to be used to examine both barotropic and baroclinic flows. The results should help explain the scale selection mechanism of baroclinic eddies in the atmosphere experimental models such as AGOE, and the multiple vortex phenomenon in tornadoes.

  10. Flow separation in a computational oscillating vocal fold model

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Scherer, Ronald C.

    2004-09-01

    A finite-volume computational model that solves the time-dependent glottal airflow within a forced-oscillation model of the glottis was employed to study glottal flow separation. Tracheal input velocity was independently controlled with a sinusoidally varying parabolic velocity profile. Control parameters included flow rate (Reynolds number), oscillation frequency and amplitude of the vocal folds, and the phase difference between the superior and inferior glottal margins. Results for static divergent glottal shapes suggest that velocity increase caused glottal separation to move downstream, but reduction in velocity increase and velocity decrease moved the separation upstream. At the fixed frequency, an increase of amplitude of the glottal walls moved the separation further downstream during glottal closing. Increase of Reynolds number caused the flow separation to move upstream in the glottis. The flow separation cross-sectional ratio ranged from approximately 1.1 to 1.9 (average of 1.47) for the divergent shapes. Results suggest that there may be a strong interaction of rate of change of airflow, inertia, and wall movement. Flow separation appeared to be ``delayed'' during the vibratory cycle, leading to movement of the separation point upstream of the glottal end only after a significant divergent angle was reached, and to persist upstream into the convergent phase of the cycle.

  11. Finite element analysis of helical flows in human aortic arch: A novel index

    PubMed Central

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed in the ascending aorta. Angle α between the zero reference point and the aortic ostium (correlation coefficient (r) = −0.851, P = 0.001), the dispersion index of the cross section of the ascending (r = 0.683, P = 0.021) and descending aorta (r = 0.732, P = 0.010), all correlated closely with the presence of helical flow (P < 0.05). Stepwise multiple linear regression analysis confirmed angel α to be independently associated with the helical flow pattern in therein (standardized coefficients = −0.721, P = 0.023). The presence of helical fluid motion based on the atherosclerotic risks of patients, including those associated with diabetes, hypertension, hyperlipidemia, or renal insufficiency, was also evaluated. Numerical simulation of the flow patterns in aortas incorporating the atherosclerotic risks may better explain the mechanism of formation of helical flows and provide insight into causative factors that underlie them. PMID:24803960

  12. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  13. Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.

    2001-01-01

    The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.

  14. Computational methods for vortex dominated compressible flows

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.

    1987-01-01

    The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.

  15. Flow and Turbulence Modeling and Computation of Shock Buffet Onset for Conventional and Supercritical Airfoils

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    1998-01-01

    Flow and turbulence models applied to the problem of shock buffet onset are studied. The accuracy of the interactive boundary layer and the thin-layer Navier-Stokes equations solved with recent upwind techniques using similar transport field equation turbulence models is assessed for standard steady test cases, including conditions having significant shock separation. The two methods are found to compare well in the shock buffet onset region of a supercritical airfoil that involves strong trailing-edge separation. A computational analysis using the interactive-boundary layer has revealed a Reynolds scaling effect in the shock buffet onset of the supercritical airfoil, which compares well with experiment. The methods are next applied to a conventional airfoil. Steady shock-separated computations of the conventional airfoil with the two methods compare well with experiment. Although the interactive boundary layer computations in the shock buffet region compare well with experiment for the conventional airfoil, the thin-layer Navier-Stokes computations do not. These findings are discussed in connection with possible mechanisms important in the onset of shock buffet and the constraints imposed by current numerical modeling techniques.

  16. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  17. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  18. Development and numerical analysis of low specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  19. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1993-01-01

    The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.

  20. COMPUTER MODELS/EPANET

    EPA Science Inventory

    Pipe network flow analysis was among the first civil engineering applications programmed for solution on the early commercial mainframe computers in the 1960s. Since that time, advancements in analytical techniques and computing power have enabled us to solve systems with tens o...

  1. Energy Cascade Analysis: from Subscale Eddies to Mean Flow

    NASA Astrophysics Data System (ADS)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James

    2017-11-01

    Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  2. Experimental and Computational Studies of the Flow Over a Sting Mounted Planetary Probe Configuration

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Harvey, John K.; Boyd, Iain D.; George, Jyothish; Horvath, Thomas J.

    1997-01-01

    This paper summarizes the results of a series of experimental studies in the LENS shock tunnel and computations with DSMC and Navier Stokes codes which have been made to examine the aerothermal and flowfield characteristics of the flow over a sting-supported planetary probe configuration in hypervelocity air and nitrogen flows. The experimental program was conducted in the LENS hypervelocity shock tunnel at total enthalpies of 5and 10 MJkg for a range of reservoir pressure conditions from 70 to 500 bars. Heat transfer and pressure measurements were made on the front and rear face of the probe and along the supporting sting. High-speed and single shot schlieren photography were also employed to examine the flow over the model and the time to establish the flow in the base recirculation region. Predictions of the flowfield characteristics and the distributions of heat transfer and pressure were made with DSMC codes for rarefied flow conditions and with the Navier-Stokes solvers for the higher pressure conditions where the flows were assumed to be laminar. Analysis of the time history records from the heat transfer and pressure instrumentation on the face of the probe and in the base region indicated that the base flow was fully established in under 4 milliseconds from flow initiation or between 35 and 50 flow lengths based on base height. The measurements made in three different tunnel entries with two models of identical geometries but with different instrumentation packages, one prepared by NASA Langley and the second prepared by CUBRC, demonstrated good agreement between heat transfer measurements made with two different types of thin film and coaxial gage instrumentation. The measurements of heat transfer and pressure to the front face of the probe were in good agreement with theoretical predictions from both the DSMC and Navier Stokes codes. For the measurements made in low density flows, computations with the DSMC code were found to compare well with the

  3. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  4. Navier-Stokes analysis of cold scramjet-afterbody flows

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.

    1989-01-01

    The progress of two efforts in coding solutions of Navier-Stokes equations is summarized. The first effort concerns a 3-D space marching parabolized Navier-Stokes (PNS) code being modified to compute the supersonic mixing flow through an internal/external expansion nozzle with multicomponent gases. The 3-D PNS equations, coupled with a set of species continuity equations, are solved using an implicit finite difference scheme. The completed work is summarized and includes code modifications for four chemical species, computing the flow upstream of the upper cowl for a theoretical air mixture, developing an initial plane solution for the inner nozzle region, and computing the flow inside the nozzle for both a N2/O2 mixture and a Freon-12/Ar mixture, and plotting density-pressure contours for the inner nozzle region. The second effort concerns a full Navier-Stokes code. The species continuity equations account for the diffusion of multiple gases. This 3-D explicit afterbody code has the ability to use high order numerical integration schemes such as the 4th order MacCormack, and the Gottlieb-MacCormack schemes. Changes to the work are listed and include, but are not limited to: (1) internal/external flow capability; (2) new treatments of the cowl wall boundary conditions and relaxed computations around the cowl region and cowl tip; (3) the entering of the thermodynamic and transport properties of Freon-12, Ar, O, and N; (4) modification to the Baldwin-Lomax turbulence model to account for turbulent eddies generated by cowl walls inside and external to the nozzle; and (5) adopting a relaxation formula to account for the turbulence in the mixing shear layer.

  5. Combined diagnostic performance of coronary computed tomography angiography and computed tomography derived fractional flow reserve for the evaluation of myocardial ischemia: A meta-analysis.

    PubMed

    Tan, Xiao Wei; Zheng, Qishi; Shi, Luming; Gao, Fei; Allen, John Carson; Coenen, Adriaan; Baumann, Stefan; Schoepf, U Joseph; Kassab, Ghassan S; Lim, Soo Teik; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Chin, Chee Tang; Ho, Kay Woon; Tan, Swee Yaw; Chua, Terrance Siang Jin; Chan, Edwin Shih Yen; Tan, Ru San; Zhong, Liang

    2017-06-01

    To evaluate the combined diagnostic accuracy of coronary computed tomography angiography (CCTA) and computed tomography derived fractional flow reserve (FFRct) in patients with suspected or known coronary artery disease (CAD). PubMed, The Cochrane library, Embase and OpenGray were searched to identify studies comparing diagnostic accuracy of CCTA and FFRct. Diagnostic test measurements of FFRct were either extracted directly from the published papers or calculated from provided information. Bivariate models were conducted to synthesize the diagnostic performance of combined CCTA and FFRct at both "per-vessel" and "per-patient" levels. 7 articles were included for analysis. The combined diagnostic outcomes from "both positive" strategy, i.e. a subject was considered as "positive" only when both CCTA and FFRct were "positive", demonstrated relative high specificity (per-vessel: 0.91; per-patient: 0.81), high positive likelihood ratio (LR+, per-vessel: 7.93; per-patient: 4.26), high negative likelihood ratio (LR-, per-vessel: 0.30; per patient: 0.24) and high accuracy (per-vessel: 0.91; per-patient: 0.81) while "either positive" strategy, i.e. a subject was considered as "positive" when either CCTA or FFRct was "positive", demonstrated relative high sensitivity (per-vessel: 0.97; per-patient: 0.98), low LR+ (per-vessel: 1.50; per-patient: 1.17), low LR- (per-vessel: 0.07; per-patient: 0.09) and low accuracy (per-vessel: 0.57; per-patient: 0.54). "Both positive" strategy showed better diagnostic performance to rule in patients with non-significant stenosis compared to "either positive" strategy, as it efficiently reduces the proportion of testing false positive subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Computational analysis of semi-span model test techniques

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Chokani, Ndaona

    1996-01-01

    A computational investigation was conducted to support the development of a semi-span model test capability in the NASA LaRC's National Transonic Facility. This capability is required for the testing of high-lift systems at flight Reynolds numbers. A three-dimensional Navier-Stokes solver was used to compute the low-speed flow over both a full-span configuration and a semi-span configuration. The computational results were found to be in good agreement with the experimental data. The computational results indicate that the stand-off height has a strong influence on the flow over a semi-span model. The semi-span model adequately replicates the aerodynamic characteristics of the full-span configuration when a small stand-off height, approximately twice the tunnel empty sidewall boundary layer displacement thickness, is used. Several active sidewall boundary layer control techniques were examined including: upstream blowing, local jet blowing, and sidewall suction. Both upstream tangential blowing, and sidewall suction were found to minimize the separation of the sidewall boundary layer ahead of the semi-span model. The required mass flow rates are found to be practicable for testing in the NTF. For the configuration examined, the active sidewall boundary layer control techniques were found to be necessary only near the maximum lift conditions.

  7. Flow analysis techniques for phosphorus: an overview.

    PubMed

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  8. Computational Methods Development at Ames

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Smith, Charles A. (Technical Monitor)

    1998-01-01

    This viewgraph presentation outlines the development at Ames Research Center of advanced computational methods to provide appropriate fidelity computational analysis/design capabilities. Current thrusts of the Ames research include: 1) methods to enhance/accelerate viscous flow simulation procedures, and the development of hybrid/polyhedral-grid procedures for viscous flow; 2) the development of real time transonic flow simulation procedures for a production wind tunnel, and intelligent data management technology; and 3) the validation of methods and the flow physics study gives historical precedents to above research, and speculates on its future course.

  9. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow.

    PubMed

    Shintani, Yoshiko; Iino, Kenji; Yamamoto, Yoshitaka; Kato, Hiroki; Takemura, Hirofumi; Kiwata, Takahiro

    2017-12-25

    Intimal hyperplasia (IH) is a major cause of graft failure. Hemodynamic factors such as stagnation and disturbed blood flow are involved in IH formation. The aim of this study is to perform a comparative analysis of distal-end side-to-side (deSTS) and end-to-side (ETS) anastomoses using computational fluid dynamics (CFD) after validating the results via particle image velocimetry (PIV).Methods and Results:We investigated the characteristics of our target flow fields using CFD under steady and pulsatile flows. CFD via PIV under steady flow in a 10-times-actual-size model was validated. The CFD analysis revealed a recirculation zone in the heel region in the deSTS and ETS anastomoses and at the distal end of the graft, and just distal to the toe of the host artery in the deSTS anastomoses. The recirculation zone sizes changed with the phase shift. We found regions of low wall shear stress and high oscillating shear index in the same areas. The PIV and CFD results were similar. It was demonstrated that the hemodynamic characteristics of CFD and PIV is the difference between the deSTS and ETS anastomoses; that is, the deSTS flow peripheral to the distal end of the graft, at the distal end and just distal to the toe of the host artery is involved in the IH formation.

  10. CFD Analysis in Advance of the NASA Juncture Flow Experiment

    NASA Technical Reports Server (NTRS)

    Lee, H. C.; Pulliam, T. H.; Neuhart, D. H.; Kegerise, M. A.

    2017-01-01

    NASA through its Transformational Tools and Technologies Project (TTT) under the Advanced Air Vehicle Program, is supporting a substantial effort to investigate the formation and origin of separation bubbles found on wing-body juncture zones. The flow behavior in these regions is highly complex, difficult to measure experimentally, and challenging to model numerically. Multiple wing configurations were designed and evaluated using Computational Fluid Dynamics (CFD), and a series of wind tunnel risk reduction tests were performed to further down-select the candidates for the final experiment. This paper documents the CFD analysis done in conjunction with the 6 percent scale risk reduction experiment performed in NASA Langley's 14- by 22-Foot Subsonic Tunnel. The combined CFD and wind tunnel results ultimately helped the Juncture Flow committee select the wing configurations for the final experiment.

  11. Three-dimensional steady flow computations in manifold-type junctions and a comparison with experiment

    NASA Astrophysics Data System (ADS)

    Kuo, Tang-Wei; Chang, Shengming

    Results of three-dimensional steady flow calculations are compared with existing pressure and velocity measurements of two manifold-type junctions. The junctions consist of a main duct and a side branch, both with the same rectangular cross section, with the side branch joining the main duct at an angle of either 90 or 45 degrees. Both combining and dividing flow configurations are considered for different total mass flow rates and different side-branch-to-main-duct mass flow ratios. One objective of this investigation was to assess the effects of numerical differencing scheme and mesh refinement on solution accuracy, and both parameters showed strong influences on the computed results. It is shown that calculations should be made with the highest possible level of numerical accuracy and grid resolution in regions of flow recirculation. Comparisons of computed and measured velocities, static pressures, and flow loss coefficients are presented in this paper. For most cases considered, the model predictions are in good agreement with the measurements. Results can be used as input loss coefficients to an engine-simulation code, in addition to being used to evaluate a specific junction design.

  12. Multimodal Pressure-Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation

    NASA Astrophysics Data System (ADS)

    Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera

    2008-12-01

    Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique called multimodal pressure flow (MMPF) method that utilizes Hilbert-Huang transformation to quantify interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP) for the assessment of dynamic cerebral autoregulation (CA). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The MMPF analysis decomposes BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and spontaneous BP/BFV fluctuations during resting conditions.

  13. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  14. Computer Program for Steady Transonic Flow over Thin Airfoils by Finite Elements

    DTIC Science & Technology

    1975-10-01

    COMPUTER PROGRAM FOR STEADY JJ TRANSONIC FLOW OVER THIN AIRFOILS BY g FINITE ELEMENTS • *q^^ r ̂ c HUNTSVILLE RESEARCH & ENGINEERING CENTER...jglMMi B Jun’ INC ORGANIMTION NAME ANO ADDRESS Lö^kfteed Missiles & Space Company, Inc. Huntsville Research & Engineering Center,^ Huntsville, Alab...This report was prepared by personnel in the Computational Mechamcs Section of the Lockheed Missiles fc Space Company, Inc.. Huntsville Research

  15. Computation of hypersonic flows with finite rate condensation and evaporation of water

    NASA Technical Reports Server (NTRS)

    Perrell, Eric R.; Candler, Graham V.; Erickson, Wayne D.; Wieting, Alan R.

    1993-01-01

    A computer program for modelling 2D hypersonic flows of gases containing water vapor and liquid water droplets is presented. The effects of interphase mass, momentum and energy transfer are studied. Computations are compared with existing quasi-1D calculations on the nozzle of the NASA Langley Eight Foot High Temperature Tunnel, a hypersonic wind tunnel driven by combustion of natural gas in oxygen enriched air.

  16. Robust-mode analysis of hydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  17. Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles

    NASA Astrophysics Data System (ADS)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-03-01

    Turboexpander constitutes one of the vital components of Claude cycle based helium refrigerators and liquefiers that are gaining increasing technological importance. These turboexpanders which are of radial inflow in configuration are generally high-speed micro turbines, due to the low molecular weight and density of helium. Any improvement in efficiency of these machines requires a detailed understanding of the flow field. Computational Fluid Dynamics analysis (CFD) has emerged as a necessary tool for the determination of the flow fields in cryogenic turboexpanders, which is often not possible through experiments. In the present work three-dimensional transient flow analysis of a cryogenic turboexpander for helium refrigeration and liquefaction cycles were performed using Ansys CFX®, to understand the flow field of a high-speed helium turboexpander, which in turn will help in taking appropriate decisions regarding modifications of established design methodology for improved efficiency of these machines. The turboexpander is designed based on Balje's nsds diagram and the inverse design blade profile generation formalism prescribed by Hasselgruber and Balje. The analyses include the study of several losses, their origins, the increase in entropy due to these losses, quantification of losses and the effects of various geometrical parameters on these losses. Through the flow field analysis it was observed that in the nozzle, flow separation at the nozzle blade suction side and trailing edge vortices resulted in loss generation, which calls for better nozzle blade profile. The turbine wheel flow field analysis revealed that the significant geometrical parameters of the turbine wheel blade like blade inlet angle, blade profile, tip clearance height and trailing edge thickness need to be optimised for improved performance of the turboexpander. The detailed flow field analysis in this paper can be used to improve the mean line design methodology for turboexpanders used

  18. Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models

    PubMed Central

    2015-01-01

    Purpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents. PMID:25754367

  19. Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction

    PubMed Central

    González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M.; Gerardo-Giorda, Luca

    2016-01-01

    Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638

  20. Fractional Flow Reserve and Coronary Computed Tomographic Angiography: A Review and Critical Analysis.

    PubMed

    Hecht, Harvey S; Narula, Jagat; Fearon, William F

    2016-07-08

    Invasive fractional flow reserve (FFR) is now the gold standard for intervention. Noninvasive functional imaging analyses derived from coronary computed tomographic angiography (CTA) offer alternatives for evaluating lesion-specific ischemia. CT-FFR, CT myocardial perfusion imaging, and transluminal attenuation gradient/corrected contrast opacification have been studied using invasive FFR as the gold standard. CT-FFR has demonstrated significant improvement in specificity and positive predictive value compared with CTA alone for predicting FFR of ≤0.80, as well as decreasing the frequency of nonobstructive invasive coronary angiography. High-risk plaque characteristics have also been strongly implicated in abnormal FFR. Myocardial computed tomographic perfusion is an alternative method with promising results; it involves more radiation and contrast. Transluminal attenuation gradient/corrected contrast opacification is more controversial and may be more related to vessel diameter than stenosis. Important considerations remain: (1) improvement of CTA quality to decrease unevaluable studies, (2) is the diagnostic accuracy of CT-FFR sufficient? (3) can CT-FFR guide intervention without invasive FFR confirmation? (4) what are the long-term outcomes of CT-FFR-guided treatment and how do they compare with other functional imaging-guided paradigms? (5) what degree of stenosis on CTA warrants CT-FFR? (6) how should high-risk plaque be incorporated into treatment decisions? (7) how will CT-FFR influence other functional imaging test utilization, and what will be the effect on the practice of cardiology? (8) will a workstation-based CT-FFR be mandatory? Rapid progress to date suggests that CTA-based lesion-specific ischemia will be the gatekeeper to the cardiac catheterization laboratory and will transform the world of intervention. © 2016 American Heart Association, Inc.

  1. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-08-12

    A data flow computer and method of computing are disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  2. Turbulent flow computation in a circular U-Bend

    NASA Astrophysics Data System (ADS)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  3. Hydrodynamic Stability Analysis on Sheared Stratified Flow in a Convective Flow Environment

    NASA Astrophysics Data System (ADS)

    Xiao, Yuan; Lin, Wenxian; Armfiled, Steven; Kirkpatrick, Michael; He, Yinghe; Fluid Dynamics Research Group, James Cook University Team; Fluid Dynamics Research Group, University of Sydney Team

    2014-11-01

    A hydrodynamic stability analysis on the convective sheared boundary layer (SCBL) flow, where a sheared stratified flow and a thermally convective flow coexist, is carried out in this study. The linear unstable stratifications representing the convective flow are included in the TaylorGoldstein equations as an unstable factor Jb. A new unstable region corresponding to the convective instability, which is not present in pure sheared stratified flows, is found with the analysis. It is also found that the boundaries of the convective instability regions expand with increasing Jb and interact with the sheared stratified instability region. More results will be presented at the conference

  4. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  5. A 3-D turbulent flow analysis using finite elements with k-ɛ model

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Yagawa, G.; Eguchi, Y.

    1989-03-01

    This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.

  6. Boolean logic analysis for flow regime recognition of gas-liquid horizontal flow

    NASA Astrophysics Data System (ADS)

    Ramskill, Nicholas P.; Wang, Mi

    2011-10-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air-water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime.

  7. Interpretation of impeller flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuzson, J.

    1993-09-01

    Most available computer programs are analysis and not design programs. Therefore the intervention of the designer is indispensable. Guidelines are needed to evaluate the degree of fluid mechanic perfection of a design which is compromised for practical reasons. A new way of plotting the computer output is proposed here which illustrates the energy distribution throughout the flow. The consequence of deviating from optimal flow pattern is discussed and specific cases are reviewed. A criterion is derived for the existence of a jet/wake flow pattern and for the minimum wake mixing loss.

  8. Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open Source Search Algorithms

    PubMed Central

    Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.

    2009-01-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578

  9. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    PubMed

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  10. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    NASA Astrophysics Data System (ADS)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  11. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  12. Numerical Analysis of Dusty-Gas Flows

    NASA Astrophysics Data System (ADS)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  13. Computational modeling of magnetic particle margination within blood flow through LAMMPS

    NASA Astrophysics Data System (ADS)

    Ye, Huilin; Shen, Zhiqiang; Li, Ying

    2017-11-01

    We develop a multiscale and multiphysics computational method to investigate the transport of magnetic particles as drug carriers in blood flow under influence of hydrodynamic interaction and external magnetic field. A hybrid coupling method is proposed to handle red blood cell (RBC)-fluid interface (CFI) and magnetic particle-fluid interface (PFI), respectively. Immersed boundary method (IBM)-based velocity coupling is used to account for CFI, which is validated by tank-treading and tumbling behaviors of a single RBC in simple shear flow. While PFI is captured by IBM-based force coupling, which is verified through movement of a single magnetic particle under non-uniform external magnetic field and breakup of a magnetic chain in rotating magnetic field. These two components are seamlessly integrated within the LAMMPS framework, which is a highly parallelized molecular dynamics solver. In addition, we also implement a parallelized lattice Boltzmann simulator within LAMMPS to handle the fluid flow simulation. Based on the proposed method, we explore the margination behaviors of magnetic particles and magnetic chains within blood flow. We find that the external magnetic field can be used to guide the motion of these magnetic materials and promote their margination to the vascular wall region. Moreover, the scaling performance and speedup test further confirm the high efficiency and robustness of proposed computational method. Therefore, it provides an efficient way to simulate the transport of nanoparticle-based drug carriers within blood flow in a large scale. The simulation results can be applied in the design of efficient drug delivery vehicles that optimally accumulate within diseased tissue, thus providing better imaging sensitivity, therapeutic efficacy and lower toxicity.

  14. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  15. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  16. Computations of non-reacting and reacting viscous blunt body flows, volume 2

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1973-01-01

    Computer programs for calculating the flow distribution in the nose region of a blunt body at arbitrary speed and altitude are discussed. The programs differ from each other in their ability to consider either thin shock or thick shock conditions and in the use of either ideal, equilibrium air, or nonequilibrium air chemistry. The application of the programs to analyzing the flow distribution around the nose of the shuttle orbiter during reentry is reported.

  17. Analysis of energy flow during playground surface impacts.

    PubMed

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  18. A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Meyyappan, Meyya

    1993-01-01

    Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

  19. Computation of turbulent boundary layer flows with an algebraic stress turbulence model

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Chen, Yen-Sen

    1986-01-01

    An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.

  20. Computer program for calculating supersonic flow on the windward side conical delta wings by the method of lines

    NASA Technical Reports Server (NTRS)

    Klunker, E. B.; South, J. C., Jr.; Davis, R. M.

    1972-01-01

    A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.