Efficient computation of volume in flow predictions
NASA Technical Reports Server (NTRS)
Vinokur, M.; Kordulla, W.
1983-01-01
An efficient method for calculating cell volumes for time-dependent three-dimensional flow predictions by finite volume calculations is presented. Eight arbitrary corner points are considered and the shape face is divided into two planar triangles. The volume is then dependent on the orientation of the partitioning. In the case of a hexahedron, it is noted that any open surface with a boundary that is a closed curve possesses a surface vector independent of the surface shape. Expressions are defined for the surface vector, which is independent of the partitioning surface diagonal used to quantify the volume. Using a decomposition of the cell volume involving two corners, with each the vertex of three diagonals and six corners which are vertices of one diagonal, gives portions which are tetrahedra. The resultant mesh is can be used for time-dependent finite volume calculations one requires less computer time than previous methods.
Special session: computational predictability of natural convection flows in enclosures
Christon, M A; Gresho, P M; Sutton, S B
2000-08-14
Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.
NASA Technical Reports Server (NTRS)
Jumper, S. J.
1979-01-01
A method was developed for predicting the potential flow velocity field at the plane of a propeller operating under the influence of a wing-fuselage-cowl or nacelle combination. A computer program was written which predicts the three dimensional potential flow field. The contents of the program, its input data, and its output results are described.
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.
1982-01-01
A viscous-inviscid interaction method to calculate the subsonic and transonic flow over nozzle afterbodies with supersonic jet exhausts was developed. The method iteratively combines a relaxation solution of the full potential equation for the inviscid external flow, a shock capturing-shock fitting inviscid jet solution, an integral boundary layer solution, a control volume method for treating separated flows, and an overlaid mixing layer solution. A computer program called RAXJET which incorporates the method, illustrates the predictive capabilities of the method by comparison with experimental data is described, a user's guide to the computer program is provided. The method accurately predicts afterbody pressures, drag, and flow field properties for attached and separated flows for which no shock induced separation occurs.
NASA Technical Reports Server (NTRS)
Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.
1985-01-01
Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commercially available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.
NASA Technical Reports Server (NTRS)
Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.
1985-01-01
Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commerically available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.
Boundary-layer computational model for predicting the flow and heat transfer in sudden expansions
NASA Technical Reports Server (NTRS)
Lewis, J. P.; Pletcher, R. H.
1986-01-01
Fully developed turbulent and laminar flows through symmetric planar and axisymmetric expansions with heat transfer were modeled using a finite-difference discretization of the boundary-layer equations. By using the boundary-layer equations to model separated flow in place of the Navier-Stokes equations, computational effort was reduced permitting turbulence modelling studies to be economically carried out. For laminar flow, the reattachment length was well predicted for Reynolds numbers as low as 20 and the details of the trapped eddy were well predicted for Reynolds numbers above 200. For turbulent flows, the Boussinesq assumption was used to express the Reynolds stresses in terms of a turbulent viscosity. Near-wall algebraic turbulence models based on Prandtl's-mixing-length model and the maximum Reynolds shear stress were compared.
Reagan, Andrew J.; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M.
2016-01-01
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061
Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M
2016-01-01
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.
Cheng, Z; Juli, C; Wood, N B; Gibbs, R G J; Xu, X Y
2014-09-01
Aortic dissection is a life-threatening process in which the weakened wall develops a tear, causing separation of wall layers. The dissected layers separate the original true aortic lumen and a newly created false lumen. If untreated, the condition can be fatal. Flow rate in the false lumen is a key feature for false lumen patency, which has been regarded as one of the most important predictors of adverse early and later outcomes. Detailed flow analysis in the dissected aorta may assist vascular surgeons in making treatment decisions, but computational models to simulate flow in aortic dissections often involve several assumptions. The purpose of this study is to assess the computational models adopted in previous studies by comparison with in vivo velocity data obtained by means of phase-contrast magnetic resonance imaging (PC-MRI). Aortic dissection geometry was reconstructed from computed tomography (CT) images, while PC-MRI velocity data were used to define inflow conditions and to provide distal velocity components for comparison with the simulation results. The computational fluid dynamics (CFD) simulation incorporated a laminar-turbulent transition model, which is necessary for adequate flow simulation in aortic conditions. Velocity contours from PC-MRI and CFD in the two lumens at the distal plane were compared at four representative time points in the pulse cycle. The computational model successfully captured the complex regions of flow reversal and recirculation qualitatively, although quantitative differences exist. With a rigid wall assumption and exclusion of arch branches, the CFD model over-predicted the false lumen flow rate by 25% at peak systole. Nevertheless, an overall good agreement was achieved, confirming the physiological relevance and validity of the computational model for type B aortic dissection with a relatively stiff dissection flap.
Development of Computational Aeroacoustics Code for Jet Noise and Flow Prediction
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Hixon, Duane R.
2002-01-01
Accurate prediction of jet fan and exhaust plume flow and noise generation and propagation is very important in developing advanced aircraft engines that will pass current and future noise regulations. In jet fan flows as well as exhaust plumes, two major sources of noise are present: large-scale, coherent instabilities and small-scale turbulent eddies. In previous work for the NASA Glenn Research Center, three strategies have been explored in an effort to computationally predict the noise radiation from supersonic jet exhaust plumes. In order from the least expensive computationally to the most expensive computationally, these are: 1) Linearized Euler equations (LEE). 2) Very Large Eddy Simulations (VLES). 3) Large Eddy Simulations (LES). The first method solves the linearized Euler equations (LEE). These equations are obtained by linearizing about a given mean flow and the neglecting viscous effects. In this way, the noise from large-scale instabilities can be found for a given mean flow. The linearized Euler equations are computationally inexpensive, and have produced good noise results for supersonic jets where the large-scale instability noise dominates, as well as for the tone noise from a jet engine blade row. However, these linear equations do not predict the absolute magnitude of the noise; instead, only the relative magnitude is predicted. Also, the predicted disturbances do not modify the mean flow, removing a physical mechanism by which the amplitude of the disturbance may be controlled. Recent research for isolated airfoils' indicates that this may not affect the solution greatly at low frequencies. The second method addresses some of the concerns raised by the LEE method. In this approach, called Very Large Eddy Simulation (VLES), the unsteady Reynolds averaged Navier-Stokes equations are solved directly using a high-accuracy computational aeroacoustics numerical scheme. With the addition of a two-equation turbulence model and the use of a relatively
NASA Technical Reports Server (NTRS)
Hale, C. J.
1967-01-01
Program analyzes the consequences of a loss-of-flow accident in the primary cooling system of a heterogeneous light-water moderated and cooled nuclear reactor. It produces a temperature matrix 36 x 41 /x,y/ which includes fuel surface temperatures relative to the time the pump power was lost.
Computer programs for predicting supersonic and hypersonic interference flow fields and heating
NASA Technical Reports Server (NTRS)
Morris, D. J.; Keyes, J. W.
1973-01-01
This report describes computer codes which calculate two-dimensional shock interference patterns. These codes compute the six types of interference flows as defined by Edney (Aeronaut. Res. Inst. of Sweden FAA Rep. 115). Results include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point.
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Spreiter, J. R.
1983-01-01
A computational model for the determination of the detailed plasma and magnetic field properties of the global interaction of the solar wind with nonmagnetic terrestrial planetary obstacles is described. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super-Alfvenic solar wind flow past terrestrial ionospheres.
Computational prediction of manually gated rare cells in flow cytometry data1
Qiu, Peng
2015-01-01
Rare cell identification is an interesting and challenging question in flow cytometry data analysis. In the literature, manual gating is a popular approach to distill flow cytometry data and drill down to the rare cells of interest, based on prior knowledge of measured protein markers and visual inspection of the data. Several computational algorithms have been proposed for rare cell identification. To compare existing algorithms and promote new developments, FlowCAP-III put forward one computational challenge that focused on this question. The challenge provided flow cytometry data for 202 training samples and two manually gated rare cell types for each training sample, roughly 0.02% and 0.04% of the cells, respectively. In addition, flow cytometry data for 203 testing samples were provided, and participants were invited to computationally identify the rare cells in the testing samples. Accuracy of the identification results was evaluated by comparing to manual gating of the testing samples. We participated in the challenge, and developed a method that combined the Hellinger divergence, a downsampling trick and the ensemble SVM. Our method achieved the highest accuracy in the challenge. PMID:25755118
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Prabhu, Dinesh K.; Palmer, Grant
1991-01-01
Hypersonic wake flows behind the Aeroassist Flight Experiment (AFE) geometry are analyzed using two Navier-Stokes flow solvers. Many of the AFE wake features observed in ballistic-range shadowgraphs are simulated using a simple, two-dimensional semicylinder geometry at moderate angles of attack. At free-stream conditions corresponding to a Hypersonic Free Flight Facility (HFFF) AFE experiment, the three-dimensional base flow for the AFE geometry is computed using an ideal-gas, Navier-Stokes solver. The computed results agree reasonably well with the shadowgraphs taken at the HFFF. An ideal-gas and a nonequilibrium Navier-Stokes solver have been coupled and applied to the complete flow around the AFE vehicle at the free-stream conditions corresponding to a nomial trajectory point. Limitations of the coupled ideal-gas and nonequilibrium solution are discussed. The nonequilibrium base flow solution is analyzed for the wake radiation and the radiation profiles along various lines of sight are compared. Finally, the wake unsteadiness is predicted using experimental correlations and the numerical solutions. An adaptive grid code, SAGE, has been used in all the simulations to enhance the solution accuracy. The grid adaptation is found to be necessary in obtaining base flow solutions with accurate flow features.
NASA Technical Reports Server (NTRS)
Steinke, R. J.
1982-01-01
A FORTRAN computer code is presented for off-design performance prediction of axial-flow compressors. Stage and compressor performance is obtained by a stage-stacking method that uses representative velocity diagrams at rotor inlet and outlet meanline radii. The code has options for: (1) direct user input or calculation of nondimensional stage characteristics; (2) adjustment of stage characteristics for off-design speed and blade setting angle; (3) adjustment of rotor deviation angle for off-design conditions; and (4) SI or U.S. customary units. Correlations from experimental data are used to model real flow conditions. Calculations are compared with experimental data.
Prediction of the noise of flow over a cylinder by direct computation and acoustic analogy
NASA Astrophysics Data System (ADS)
Mani, Ali; Wang, Meng; Moin, Parviz
2007-11-01
The sound field of flow over a circular cylinder at ReD=3900 and Ma=0.4 is evaluated using Large-Eddy Simulation (LES). The acoustic results computed directly from LES are compared with those obtained using an integral solution of the Ffowcs Williams-Hawkings (FW-H) equation in conjunction with the LES source field data. The modified FW-H solution is derived using a free-space Green function which accounts for the uniform mean flow and spanwise periodicity in the flow simulation. In the implementation of the FW-H solution, the cylinder surface and three porous surfaces with different distances from the cylinder are used as integration surfaces. The effect of turbulent flow structures crossing the integration boundary on the generation of artificial noise is studied. The quadrupole terms in the FW-H equation are found to be important in canceling artificial noise regardless of their physical significance. Alternative formulations of acoustic analogy that can better handle the boundary terms will be discussed.
Computational Flow Predictions for the Lower Plenum of a High-Temperature, Gas-Cooled Reactor
Donna Post Guillen
2006-11-01
Advanced gas-cooled reactors offer the potential advantage of higher efficiency and enhanced safety over present day nuclear reactors. Accurate simulation models of these Generation IV reactors are necessary for design and licensing. One design under consideration by the Very High Temperature Reactor (VHTR) program is a modular, prismatic gas-cooled reactor. In this reactor, the lower plenum region may experience locally high temperatures that can adversely impact the plant’s structural integrity. Since existing system analysis codes cannot capture the complex flow effects occurring in the lower plenum, computational fluid dynamics (CFD) codes are being employed to model these flows [1]. The goal of the present study is to validate the CFD calculations using experimental data.
Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics.
Yang, Yin; Wu, Yingying; Yang, Xiao; Zhang, Kai; Yang, Jiakuan
2010-01-01
In order to optimize the flow field in a full-scale Carrousel oxidation ditch with many sets of disc aerators operating simultaneously, an experimentally validated numerical tool, based on computational fluid dynamics (CFD), was proposed. A full-scale, closed-loop bioreactor (Carrousel oxidation ditch) in Ping Dingshan Sewage Treatment Plant in Ping Dingshan City, a medium-sized city in Henan Province of China, was evaluated using CFD. Moving wall model was created to simulate many sets of disc aerators which created fluid motion in the ditch. The simulated results were acceptable compared with the experimental data and the following results were obtained: (1) a new method called moving wall model could simulate the flow field in Carrousel oxidation ditch with many sets of disc aerators operating simultaneously. The whole number of cells of grids decreased significantly, thus the calculation amount decreased, and (2) CFD modeling generally characterized the flow pattern in the full-scale tank. 3D simulation could be a good supplement for improving the hydrodynamic performance in oxidation ditch designs.
Stamatelos, Spyros K; Kim, Eugene; Pathak, Arvind P; Popel, Aleksander S
2014-01-01
Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-dimensional geometrical representation of the whole-tumor microvascular architecture. This enormous increase in complexity of image-based data necessitates the application of informatics methods for the analysis, mining and reconstruction of these spatial graph data structures. We present a novel methodology that combines ex-vivo high-resolution micro-computed tomography imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as an input of a computational model that estimates blood flow in each segment of the tumor microvascular network. This formulation involves a well-established biophysical model and an optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor microvascular network are computed. Morphological and hemodynamic indices from different regions are compared to infer their role in overall tumor perfusion.
A multigrid based computational procedure to predict internal flows with heat transfer
Kiris, I.; Parameswaran, S.; Carroll, G.
1995-12-31
In this study, a formally third-order, finite volume, unstaggered (co-located), modified SIMPLE algorithm-based 2D code was created utilizing multigrid for fast convergence. Stone`s Strongly Implicit Procedure (SIP) is employed as a relaxation (smoother, matrix eq. solver) method, due to its high performance. The quadratic formulations QUICK, mixed and UTOPIA were used to discretize the convective terms in momentum equations. Velocity and pressure coupling was addressed via modified SIMPLE algorithm. Due to the co-located nature of method, the cell fact velocities are obtained via the so called momentum balancing technique introduced before. The Multigrid idea is implemented to the solution of pressure correction equation. Various ways of implementing Multigrid algorithms are discussed. An ASME benchmark case (backward facing step with heat transfer) is chosen as the problem. The so called accommodative FAS-FMG was used. Predictions show that high order convective term discretization improves the predictions, while multigrid enables about an order of magnitude CPU time savings. Results point out that the promises of both high order discretization and multigrid can be harvested for recirculating flows.
Malone, Kevin F.; Xu, Bao H.; Fairweather, Michael
2007-07-01
Many of the highly active waste liquors that result from the reprocessing of spent nuclear fuel contain particulate solids of various materials. Operations for safe processing, handling and intermediate storage of these wastes often pose significant technical challenges due to the need for effective cooling systems to remove the heat generated by the radioactive solids. The multi-scale complexity of liquid-particle flow systems is such that investigation and prediction of their heat transfer characteristics based on experimental studies is a difficult task. Fortunately, the increasing availability of cheap computing power means that predictive simulation tools may be able to provide a means to investigate these systems without the need for expensive pilot studies. In this work we describe the development of a Combined Continuum and Discrete Model (CCDM) for predicting the heat transfer behaviour of systems of particles suspended in liquids. (authors)
NASA Astrophysics Data System (ADS)
Venkateswaran, S.; Hunt, L. Roane; Prabhu, Ramadas K.
1992-07-01
The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans.
NASA Technical Reports Server (NTRS)
Venkateswaran, S.; Hunt, L. Roane; Prabhu, Ramadas K.
1992-01-01
The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans.
Kelly; Humphrey
1998-03-01
Considerable debate has occurred over the use of hydrofoil impellers in large-scale fermentors to improve mixing and mass transfer in highly viscous non-Newtonian systems. Using a computational fluid dynamics software package (Fluent, version 4.30) extensive calculations were performed to study the effect of impeller speed (70-130 rpm), broth rheology (value of power law flow behavior index from 0.2 to 0.6), and distance between the cooling coil bank and the fermentor wall (6-18 in.) on flow near the perimeter of a large (75-m3) fermentor equipped with A315 impellers. A quadratic model utilizing the data was developed in an attempt to correlate the effect of A315 impeller speed, power law flow behavior index, and distance between the cooling coil bank and the fermentor wall on the average axial velocity in the coil bank-wall region. The results suggest that there is a potential for slow or stagnant flow in the coil bank-wall region which could result in poor oxygen and heat transfer for highly viscous fermentations. The results also indicate that there is the potential for slow or stagnant flow in the region between the top impeller and the gas headspace when flow through the coil bank-wall region is slow. Finally, a simple guideline was developed to allow fermentor design engineers to predict the degree of flow behind a bank of helical cooling coils in a large fermentor with hydrofoil flow impellers.
NASA Astrophysics Data System (ADS)
Kim, Sangwon
2005-11-01
High pressure (3.4 MPa) injection from a shroud valve can improve natural gas engine efficiency by enhancing fuel-air mixing. Since the fuel jet issuing from the shroud valve has a nearly annular jet flow configuration, it is necessary to analyze the annular jet flow to understand the fuel jet behavior in the mixing process and to improve the shroud design for better mixing. The method of characteristics (MOC) was used as the primary modeling algorithm in this work and Computational Fluid Dynamics (CFD) was used primarily to validate the MOC results. A consistent process for dealing with the coalescence of compression characteristic lines into a shock wave during the MOC computation was developed. By the application of shock polar in the pressure-flow angle plane to the incident shock wave for an axisymmetric underexpanded jet and the comparison with the triple point location found in experimental results, it was found that, in the static pressure ratios of 2--50, a triple point of the jet was located at the point where the flow angle after the incident shock became -5° relative to the axis and this point was situated between the von Neumann and detachment criteria on the incident shock. MOC computations of the jet flow with annular geometry were performed for pressure ratios of 10 and 20 with rannulus = 10--50 units, Deltar = 2 units. In this pressure ratio range, the MOC results did not predict a Mach disc in the core flow of the annular jet, but did indicate the formation of a Mach disc where the jet meets the axis of symmetry. The MOC results display the annular jet configurations clearly. Three types of nozzles for application to gas injectors (convergent-divergent nozzle, conical nozzle, and aerospike nozzle) were designed using the MOC and evaluated in on- and off-design conditions using CFD. The average axial momentum per unit mass was improved by 17 to 24% and the average kinetic energy per unit fuel mass was improved by 30 to 80% compared with a standard
NASA Technical Reports Server (NTRS)
Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.
1990-01-01
Methods developed for aerospace applied to mechanics of biofluids. Report argues use of advanced computational fluid dynamics to analyze flows of biofluids - especially blood. Ability to simulate numerically and visualize complicated, time-varying three-dimensional flows contributes to understanding of phenomena in heart and blood vessels, offering potential for development of treatments for abnormal flow conditions.
NASA Technical Reports Server (NTRS)
Jumper, S. J.
1982-01-01
A computer program was developed to calculate the three dimensional, steady, incompressible, inviscid, irrotational flow field at the propeller plane (propeller removed) located upstream of an arbitrary airframe geometry. The program uses a horseshoe vortex of known strength to model the wing. All other airframe surfaces are modeled by a network source panels of unknown strength which is exposed to a uniform free stream and the wing-induced velocity field. By satisfying boundary conditions on each panel (the Neumann problem), relaxed boundary conditions being used on certain panels to simulate inlet inflow, the source strengths are determined. From the known source and wing vortex strengths, the resulting velocity fields on the airframe surface and at the propeller plane are obtained. All program equations are derived in detail, and a brief description of the program structure is presented. A user's manual which fully documents the program is cited. Computer predictions of the flow on the surface of a sphere and at a propeller plane upstream of the sphere are compared with the exact mathematical solutions. Agreement is good, and correct program operation is verified.
Ou, Chubin; Huang, Wei; Yuen, Matthew Ming-Fai
2017-01-01
Flow diverters, the specially designed low porosity stents, have been used to redirect blood flow from entering aneurysm, which induces flow stasis in aneurysm and promote thrombosis for repairing aneurysm. However, it is not clear how thrombus develops following flow-diversion treatment. Our objective was to develop a computation model for the prediction of stasis-induced thrombosis following flow-diversion treatment in cerebral aneurysms. We proposed a hypothesis to initiate coagulation following flow-diversion treatment. An experimental model was used by ligating rat's right common carotid artery (RCCA) to create flow-stasis environment. Thrombus formed in RCCA as a result of flow stasis. The fibrin distributions in different sections along the axial length of RCCA were measured. The fibrin distribution predicted by our computational model displayed a trend of increase from the proximal neck to the distal tip, consistent with the experimental results on rats. The model was applied on a saccular aneurysm treated with flow diverter to investigate thrombus development following flow diversion. Thrombus was predicted to form inside the sac, and the aneurysm was occluded with only a small remnant neck remained. Our model can serve as a tool to evaluate flow-diversion treatment outcome and optimize the design of flow diverters.
Computation of Unsteady Flow in Flame Trench For Prediction of Ignition Overpressure Waves
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kris, Cetin
2010-01-01
Computational processes/issues for supporting mission tasks are discussed using an example from launch environment simulation. Entire CFD process has been discussed using an existing code; STS-124 conditions were revisited to support wall repair effort for STS-125 flight; when water bags were not included, computed results indicate that IOP waves with the peak values have been reflected from SRB s own exhaust hole; ARES-1X simulations show that there is a shock wave going through the unused exhaust hole, however, it plays a secondary role; all three ARES-1X cases and STS-1 simulations showed very similar IOP magnitudes and patters on the vehicle; with the addition of water bags and water injection, it will further diminish the IOP effects.
NASA Astrophysics Data System (ADS)
Sambrook Smith, G.; Hardy, R. J.; Best, J.; Blois, G.; Lead, J.
2010-12-01
Developing numerical models capable of simulating the hydrodynamics of open-channel flows over rough and within permeable beds is crucial for predicting the morphodynamic evolution of alluvial channels, as well as understanding the complex physical-chemical processes occurring within the subsurface (hyporheic zone) of river beds. However, most current numerical models assume that alluvial streams have an impermeable channel bed, which represents a considerable simplification since experimental observations have shown turbulence within gravel-beds can be significant. Thus, Darcian theory, suitable for low-conductivity porous media, should not be applied within cohesionless gravel-bed rivers. Although the Reynolds Averaged Navier Stokes (RANS) equations can be used to model flow through a porous media if the internal morphology is known, this has rarely been accomplished, and the complexity of the internal morphology of the bed has meant that the normal approach to this problem is to volume-average the NS equations and close them with the Hazen-Dupui-Darcy (HDD) model. However, if the internal morphology of the bed is known a Computational Fluid Dynamics (CFD) approach with a mass flux scaling algorithm (MFSA), which has been developed to include complex bed topography into a numerically stable discretization, can be applied. This allows both time averaged, and time dependent prediction of the flow. Even though these models represent the state-of-the-art, they have yet to be validated, and hence their reliability remains unknown. The lack of appropriate validation data is due to the fact that experimental techniques cannot currently meet the significant challenges required to fully characterize the complex instantaneous turbulent patterns produced within bed pore spaces. To meet this challenge, a novel high-resolution endoscopic particle image velocimetry (E-PIV) technique, capable of collecting data within the pore spaces of a submerged permeable bed, has been
Predicting Flows of Rarefied Gases
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Wilmoth, Richard G.
2005-01-01
DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.
Computational Challenges of Viscous Incompressible Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung
2004-01-01
Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.
Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Biedron, Robert T.
2001-01-01
A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
NASA Technical Reports Server (NTRS)
Harp, J. L., Jr.; Oatway, T. P.
1975-01-01
A research effort was conducted with the goal of reducing computer time of a Navier Stokes Computer Code for prediction of viscous flow fields about lifting bodies. A two-dimensional, time-dependent, laminar, transonic computer code (STOKES) was modified to incorporate a non-uniform timestep procedure. The non-uniform time-step requires updating of a zone only as often as required by its own stability criteria or that of its immediate neighbors. In the uniform timestep scheme each zone is updated as often as required by the least stable zone of the finite difference mesh. Because of less frequent update of program variables it was expected that the nonuniform timestep would result in a reduction of execution time by a factor of five to ten. Available funding was exhausted prior to successful demonstration of the benefits to be derived from the non-uniform time-step method.
Computational prediction of propellant reorientation
NASA Technical Reports Server (NTRS)
Hochstein, John I.
1987-01-01
Viewgraphs from a presentation on computational prediction of propellant reorientation are given. Information is given on code verification, test conditions, predictions for a one-quarter scale cryogenic tank, pulsed settling, and preliminary results.
Low thrust viscous nozzle flow fields prediction
NASA Technical Reports Server (NTRS)
Liaw, G. S.; Mo, J. D.
1991-01-01
A Navier-Stokes code was developed for low thrust viscous nozzle flow field prediction. An implicit finite volume in an arbitrary curvilinear coordinate system lower-upper (LU) scheme is used to solve the governing Navier-Stokes equations and species transportation equations. Sample calculations of carbon dioxide nozzle flow are presented to verify the validity and efficiency of this code. The computer results are in reasonable agreement with the experimental data.
Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Abujelala, M. T.
1984-01-01
Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.
Prediction of Geophysical Flow Mobility
NASA Astrophysics Data System (ADS)
Cagnoli, B.; Piersanti, A.
2014-12-01
The prediction of the mobility of geophysical flows to assess their hazards is one of the main research goals in the earth sciences. Our laboratory experiments and numerical simulations are carried out to understand the effects of grain size and flow volume on the mobility of the centre of mass of dry granular flows of angular rock fragments that have pyroclastic flows and rock avalanches as counterpart in nature. We focus on the centre of mass because it provides information about the intrinsic ability of a flow to dissipate more or less energy as a function of its own features. We show that the grain size and flow volume effects can be expressed by a linear relationship between scaling parameters where the finer the grain size or the smaller the flow volume, the more mobile the centre of mass of the granular flow. The grain size effect is the result of the decrease of particle agitation per unit of flow mass, and thus, the decrease of energy dissipation per unit of travel distance, as grain size decreases. In this sense, flows with different grain sizes are like cars with engines with different fuel efficiencies. The volume effect is the result of the fact that the deposit accretes backward during its formation on a slope change (either gradual or abrupt). We adopt for the numerical simulations a 3D discrete element modeling which confirms the grain size and flow volume effects shown by the laboratory experiments. This confirmation is obtained without prior fine tuning of the parameter values to get the desired output. The numerical simulations reveal also that the larger the initial compaction of the granular mass before release, the more mobile the flow. This behaviour must be taken into account to prevent misinterpretation of laboratory and field data. Discrete element modeling predicts the correct effects of grain size and flow volume because it takes into consideration particle interactions that are responsible for the energy dissipated by the flows.
Stovall, T.K.; Crabtree, A.; Felde, D.
1995-04-01
The Advanced Neutron Source (ANS) reactor is being designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design requires high speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris can disrupt the fluid flow to the plate surfaces and prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate. In theory, any flow disruption would recover within this unheated length, thus providing adequate heat removal from the downstream heated portions of the fuel plates.
Computation of viscous incompressible flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
1989-01-01
Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.
NASA Astrophysics Data System (ADS)
Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru
2016-04-01
An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.
Turbulent Flow Computations in Ejectors
NASA Astrophysics Data System (ADS)
Gogoi, A.; Siddesha, H.
2010-09-01
The paper presents computations in ejectors using in-house code NUMBERS. Computations are carried out in a 2D ejector and in a cylindrical ejector. Computations on the cylindrical ejector are done for various nozzle pressure ratios. The ejector flow is dominated by complex mixing of primary and secondary jets. The Spalart-Allmaras and Menter SST turbulence models are used. The results with the Menter SST model are superior to Spalart-Allmaras model at higher nozzle pressure ratios for the cylindrical ejector.
Semidirect computations for transonic flow
NASA Technical Reports Server (NTRS)
Swisshelm, J. M.; Adamczyk, J. J.
1983-01-01
A semidirect method, driven by a Poisson solver, was developed for inviscid transonic flow computations. It is an extension of a recently introduced algorithm for solving subsonic rotational flows. Shocks are captured by implementing a form of artificial compressibility. Nonisentropic cases are computed using a shock tracking procedure coupled with the Rankine-Hugoniot relationships. Results are presented for both subsonic and transonic flows. For the test geometry, an unstaggered cascade of 20 percent thick circular arc airfoils at zero angle of attack, shocks are crisply resolved in supercritical situations and the algorithm converges rapidly. In addition, the convergence rate appears to be nearly independent of the entropy and vorticity production at the shock.
Computer loss experience and predictions
NASA Astrophysics Data System (ADS)
Parker, Donn B.
1996-03-01
The types of losses organizations must anticipate have become more difficult to predict because of the eclectic nature of computers and the data communications and the decrease in news media reporting of computer-related losses as they become commonplace. Total business crime is conjectured to be decreasing in frequency and increasing in loss per case as a result of increasing computer use. Computer crimes are probably increasing, however, as their share of the decreasing business crime rate grows. Ultimately all business crime will involve computers in some way, and we could see a decline of both together. The important information security measures in high-loss business crime generally concern controls over authorized people engaged in unauthorized activities. Such controls include authentication of users, analysis of detailed audit records, unannounced audits, segregation of development and production systems and duties, shielding the viewing of screens, and security awareness and motivation controls in high-value transaction areas. Computer crimes that involve highly publicized intriguing computer misuse methods, such as privacy violations, radio frequency emanations eavesdropping, and computer viruses, have been reported in waves that periodically have saturated the news media during the past 20 years. We must be able to anticipate such highly publicized crimes and reduce the impact and embarrassment they cause. On the basis of our most recent experience, I propose nine new types of computer crime to be aware of: computer larceny (theft and burglary of small computers), automated hacking (use of computer programs to intrude), electronic data interchange fraud (business transaction fraud), Trojan bomb extortion and sabotage (code security inserted into others' systems that can be triggered to cause damage), LANarchy (unknown equipment in use), desktop forgery (computerized forgery and counterfeiting of documents), information anarchy (indiscriminate use of
Computation of wave drag for transonic flow
NASA Technical Reports Server (NTRS)
Garabedian, P. R.
1976-01-01
The paper develops a method for calculating wave drag for two-dimensional transonic flow, with particular application to the prediction of the drag rise Mach number of a supercritical wing section. The method is based on a transonic similarity model which is defined by a normalized small perturbation equation and represents shock waves by the addition of an artificial viscosity term in the region of supersonic flow to the partial differential equation. The drag formula obtained allows the computer simulation of transonic wind tunnel data taking account of boundary layer and wall effects.
Yeoh, G.H.; Tu, J.Y.
2002-02-15
This paper demonstrates that the empirical models developed for subcooled flow boiling in RELAP5/MOD2 at high pressures are not valid for applications at low pressures. Modifications carried out in RELAP5/MOD2 to include better correlations of the interphase heat transfer and mean bubble diameter, and the wall heat flux partition model are shown to yield substantial improvements in the predictions of the axial void fraction distribution. When compared against experimental data covering a wide range of heat fluxes and flow rates, predicted axial void fraction profiles follow closely the measured data. Predictions made by the default subcooled boiling model show, however, an unacceptable margin of error with the experimental data.
NASA Technical Reports Server (NTRS)
Manhardt, P. D.
1982-01-01
The CMC fluid mechanics program system was developed to transmit the theoretical solution of finite element numerical solution methodology, applied to nonlinear field problems into a versatile computer code for comprehensive flow field analysis. Data procedures for the CMC 3 dimensional Parabolic Navier-Stokes (PNS) algorithm are presented. General data procedures a juncture corner flow standard test case data deck is described. A listing of the data deck and an explanation of grid generation methodology are presented. Tabulations of all commands and variables available to the user are described. These are in alphabetical order with cross reference numbers which refer to storage addresses.
Prediction of High-Lift Flows using Turbulent Closure Models
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild
1997-01-01
The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.
Computation of high-speed reacting flows
NASA Astrophysics Data System (ADS)
Clutter, James Keith
A computational study has been conducted for high-speed reacting flows relevant to munition problems, including shock-induced combustion and gun muzzle blast. The theoretical model considers inviscid and viscous flows, multi-species, finite rate chemical reaction schemes, and turbulence. Both the physical and numerical aspects are investigated to determine their impact on simulation accuracy. A range of hydrogen and oxygen reaction mechanisms are evaluated for the shock-induced combustion flow scenario. Characteristics of the mechanisms such as the induction time, heat release rate, and second explosion limit are found to impact the accuracy of the computation. On the numerical side, reaction source term treatments, including logarithmic weighting and scaling modifications, are investigated to determine their effectiveness in addressing numerical errors caused by disparate length scales between chemical reactions and fluid dynamics. It is demonstrated that these techniques can enhance solution accuracy. Computations of shock-induced combustion have also been performed using a κ-ɛ model to account for the turbulent transport of species and heat. An algebraic model of the temperature fluctuations has been used to estimate the impact of the turbulent effect on the chemical reaction source terms. The turbulence effects when represented with the current models are found to be minimal in the shock-induced combustion flow investigated in the present work. For the gun system simulations, computations for both a large caliber howitzer and small caliber firearms are carried out. A reduced kinetic scheme and an algebraic turbulence model are employed. The present approach, which accounts for the chemical reaction aspects of the gun muzzle blast problem, is found to improve the prediction of peak overpressures and can capture the effects produced by small caliber firearm sound suppressors. The present study has established the numerical and physical requirements for
NASA Technical Reports Server (NTRS)
Orzechowski, J. A.
1982-01-01
The CMC fluid mechanics program system was developed to transmit the theoretical evolution of finite element numerical solution methodology, applied to nonlinear field problems into a versatile computer code for comprehensive flow field analysis. A detailed view of the code from the standpoint of a computer programmer's use is presented. A system macroflow chart and detailed flow charts of several routines necessary to interact with a theoretican/user to modify the operation of this program are presented. All subroutines and details of usage, primarily for input and output routines are described. Integer and real scalars and a cross reference list denoting subroutine usage for these scalars are outlined. Entry points in dynamic storage vector IZ; the lengths of each vector accompanying the scalar definitions are described. A listing of the routines peculiar to the standard test case and a listing of the input deck and printout for this case are included.
Finlayson, Elizabeth U.; Gadgil, Ashok J.; Thatcher, Tracy L.; Sextro, Richard G.
2002-10-01
This paper reports on an investigation of the adequacy of Computational fluid dynamics (CFD), using a standard Reynolds Averaged Navier Stokes (RANS) model, for predicting dispersion of neutrally buoyant gas in a large indoor space. We used CFD to predict pollutant (dye) concentration profiles in a water filled scale model of an atrium with a continuous pollutant source. Predictions from the RANS formulation are comparable to an ensemble average of independent identical experiments. Model results were compared to pollutant concentration data in a horizontal plane from experiments in a scale model atrium. Predictions were made for steady-state (fully developed) and transient (developing) pollutant concentrations. Agreement between CFD predictions and ensemble averaged experimental measurements is quantified using the ratios of CFD-predicted and experimentally measured dye concentration at a large number of points in the measurement plane. Agreement is considered good if these ratios fall between 0.5 and 2.0 at all points in the plane. The standard k-epsilon two equation turbulence model obtains this level of agreement and predicts pollutant arrival time to the measurement plane within a few seconds. These results suggest that this modeling approach is adequate for predicting isothermal pollutant transport in a large room with simple geometry.
Microgravity Geyser and Flow Field Prediction
NASA Technical Reports Server (NTRS)
Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.
2006-01-01
Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.
Whitacre, G.R.; Grinberg, I.M.
1980-01-01
CONBEC is a computer programmed model which determines the steady-state heat flow through multicomponent refractory-lined gasifier vessel walls. The model accounts for the effects of lining thickness, porosity, gaps, cracks, refractory composition, physical form, anchor spacing and configuration, gas pressure and composition, and other parameters on heat flow. CONBEC is based on a combination of the CONnected Block and Effective Conductivity techniques. The refractory wall is described as a series of blocks, each with its own effective thermal conductivity. The connected blocks are used to handle nonlinear temperature effects, material difference, and location effects. Parallel heat flow paths through the wall are used to provide for distinct material changes, gaps, conductivity changes, and hot-spot determination. The typical configuration has two parallel heat flow paths. Anchors can be treated as a separate heat flow path or can be left out. The blocks are cross-linked to account for lateral heat flow between the parallel paths. The model is extremely simple to use yet it provides considerable information regarding the importance of material, design, and operational parameters on heat flow in refractory vessel walls and on hot spots. It was developed to be used in the design of material systems for coal gasification vessels and has broad applicability to other refractory linings for furnaces or process vessels.The output results of CONBEC are in good agreement with experimental data obtained for several refractory material systems over a range of wall temperatures, gas compositions, wall thicknesses, crack and gap characteristics, and gas pressures.
Universal Formulation For Symmetries In Computed Flows
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1995-01-01
Universal formulation for high-order symmetries in boundary conditions on flows devised. Eliminates need for special procedures to incorporate symmetries and corresponding boundary conditions into computer codes solving Navier-Stokes and Euler equations of flow.
Computed Flow Through An Artificial Heart Valve
NASA Technical Reports Server (NTRS)
Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).
Computer Program Predicts Turbine-Stage Performance
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Haas, Jeffrey E.; Katsanis, Theodore
1988-01-01
MTSBL updated version of flow-analysis programs MERIDL and TSONIC coupled to boundary-layer program BLAYER. Method uses quasi-three-dimensional, inviscid, stream-function flow analysis iteratively coupled to calculated losses so changes in losses result in changes in flow distribution. Manner effects both configuration on flow distribution and flow distribution on losses taken into account in prediction of performance of stage. Written in FORTRAN IV.
Computational Unsteady Flow Dynamics: Oscillating Flow About a Circular Cylinder
1991-12-01
that the calculations can be carried out only for short times (less than two cycles of flow oscillation) with a non-super computer. Murashige , Hinatsu...Flow Round a Circu- lar Cylinder," Computers &Fluids, Vol. 12, No. 4, pp. 255-280. 6. Murashige , S., Hinatsu, M., and Kinoshita, T, 1989, "Direct
Program computes orifice-meter flow rate
Martin, J.R.
1981-10-12
Useful for designing new metering stations or figuring flow rates through existing ones, the program developed for the Tl-59 programmable calculator computes the gas flow rate through an orifice-meter run. The user inputs are the orifice diameter, meter run ID, flowing gas temperature, density, flowing gas pressure, and differential pressure. The program's results are more accurate than those of flow charts or slide-rule-type calculators.
Numerical computations of Orbiter flow fields and heating rates
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Li, C. P.; Houston, C. K.; Chiu, P.; Olmedo, L.
1976-01-01
Numerical computations of flow fields around an analytical description of the Space Shuttle Orbiter windward surface, including the root of the wing leading edge, are presented to illustrate the sensitivity of these calculations to several flow field modeling assumptions. Results of parametric flow field and boundary layer computations using the axisymmetric analogue concept to obtain three-dimensional heating rates, in conjunction with exact three-dimensional inviscid floe field solutions and two-dimensional boundary layer analysis - show the sensitivity of boundary layer edge conditions and heating rates to considerations of the inviscid flow field entropy layer, equilibrium air versus chemically and vibrationally frozen flow, and nonsimilar terms in the boundary layer computations. A cursory comparison between flow field predictions obtained from these methods and current Orbiter design methods has established a benchmark for selecting and adjusting these and future design methodologies.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1982-01-01
An order-of-magnitude analysis of the subsonic three dimensional steady time averaged Navier-Stokes equations, for semibounded aerodynamic juncture geometries, yields the parabolic Navier-Stokes simplification. The numerical solution of the resultant pressure Poisson equation is cast into complementary and particular parts, yielding an iterative interaction algorithm with an exterior three dimensional potential flow solution. A parabolic transverse momentum equation set is constructed, wherein robust enforcement of first order continuity effects is accomplished using a penalty differential constraint concept within a finite element solution algorithm. A Reynolds stress constitutive equation, with low turbulence Reynolds number wall functions, is employed for closure, using parabolic forms of the two-equation turbulent kinetic energy-dissipation equation system. Numerical results document accuracy, convergence, and utility of the developed finite element algorithm, and the CMC:3DPNS computer code applied to an idealized wing-body juncture region. Additional results document accuracy aspects of the algorithm turbulence closure model.
Numerical computations of swirling recirculating flow
NASA Technical Reports Server (NTRS)
Srinivasan, R.; Mongia, H. C.
1980-01-01
Swirling, recirculating, nonreacting flows were computed using a 2D elliptic program consisting of three tasks. The computations in Task 1 and 2 were made using an independent analysis for the two coaxial swirling flows. The Task 2 computations were made using the measured profiles of the mixing region. In Task 3, a modified 2D elliptic program was employed to include the effects of interaction between the inner and outer streams.
Predictive Models and Computational Toxicology
Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The ToxCast computational toxicology research program was l...
Predictive models for moving contact line flows
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Stephen
2003-01-01
Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Predictive Dynamic Security Assessment through Advanced Computing
Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu
2014-11-30
Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.
Software Aids Visualization of Computed Unsteady Flow
NASA Technical Reports Server (NTRS)
Kao, David; Kenwright, David
2003-01-01
Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.
Computations Of Flows In Flapper Valves
NASA Technical Reports Server (NTRS)
Kandula, Mastanaiah; Pearce, Dan
1993-01-01
Three reports describe computational studies of flows of liquid oxygen and liquid hydrogen in flapper valves located at quick-disconnect interface between main propellant feedlines of Space Shuttle orbiter and Space Shuttle external tank.
Predicting Information Flows in Network Traffic.
ERIC Educational Resources Information Center
Hinich, Melvin J.; Molyneux, Robert E.
2003-01-01
Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)
Graphics and Flow Visualization of Computer Generated Flow Fields
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.
1987-01-01
Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For an instability mode in the plurality of instability modes, a covariance vector is determined. A predicted local instability growth rate at the point is determined using the covariance vector and the vector of regressor weights. Based on the predicted local instability growth rate, an n-factor envelope at the point is determined.
Mean Flow Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.
2003-01-01
In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.
Flow simulation and high performance computing
NASA Astrophysics Data System (ADS)
Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Kalro, V.; Litke, M.
1996-10-01
Flow simulation is a computational tool for exploring science and technology involving flow applications. It can provide cost-effective alternatives or complements to laboratory experiments, field tests and prototyping. Flow simulation relies heavily on high performance computing (HPC). We view HPC as having two major components. One is advanced algorithms capable of accurately simulating complex, real-world problems. The other is advanced computer hardware and networking with sufficient power, memory and bandwidth to execute those simulations. While HPC enables flow simulation, flow simulation motivates development of novel HPC techniques. This paper focuses on demonstrating that flow simulation has come a long way and is being applied to many complex, real-world problems in different fields of engineering and applied sciences, particularly in aerospace engineering and applied fluid mechanics. Flow simulation has come a long way because HPC has come a long way. This paper also provides a brief review of some of the recently-developed HPC methods and tools that has played a major role in bringing flow simulation where it is today. A number of 3D flow simulations are presented in this paper as examples of the level of computational capability reached with recent HPC methods and hardware. These examples are, flow around a fighter aircraft, flow around two trains passing in a tunnel, large ram-air parachutes, flow over hydraulic structures, contaminant dispersion in a model subway station, airflow past an automobile, multiple spheres falling in a liquid-filled tube, and dynamics of a paratrooper jumping from a cargo aircraft.
Understanding and Predicting Attitudes towards Computers.
ERIC Educational Resources Information Center
Pancer, S. Mark; And Others
1992-01-01
The ability of the theory of reasoned action to predict computer-related attitudes and behavior was demonstrated through two studies: a questionnaire on computer behaviors and attitudes; and word processing training involving various levels of persuasive communication based on belief statements identified in the first study. (22 references) (MES)
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)
2013-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of boundary-layer properties at the point are obtained from a steady-state solution of a fluid flow in a region adjacent to the point. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For each instability mode in the plurality of instability modes, a covariance vector is determined, which is the covariance of a predicted local growth rate with the known instability growth rates. Each covariance vector is used with the vector of regressor weights to determine a predicted local growth rate at the point. Based on the predicted local growth rates, an n-factor envelope at the point is determined.
Framework for computationally-predicted AOPs
Framework for computationally-predicted AOPs Given that there are a vast number of existing and new chemicals in the commercial pipeline, emphasis is placed on developing high throughput screening (HTS) methods for hazard prediction. Adverse Outcome Pathways (AOPs) represent a...
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, Kuo-Huey
1997-01-01
The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.
Low thrust viscous nozzle flow fields prediction
NASA Technical Reports Server (NTRS)
Liaw, Goang-Shin
1987-01-01
An existing Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated by the interactive grid generator codes TBGG and GENIE. All computations were made on the NASA/MSFC CRAY X-MP computer. Comparisons were made between the computations and MSFC in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreements exist between the computations and measurements for different stagnation pressures of 29.4, 14.7, and 7.4 psia, at stagnation temperature of 1060 R. However, agreements did not match precisely near the nozzle exit. Several reasons for the lack of agreement are possible. The computational code assumes a constant gas gamma, whereas the gamma i.e. the specific heat ratio for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. The computations also assumes adiabatic and no-slip walls. Both assumptions may not be correct. Finally, it is possible that condensation occurs during the nozzle expansion at the low stagnation pressure. The next phase of the work will incorporate variable gamma and slip wall boundary conditions in the computational code and develop a more accurate computer code.
Images constructed from computed flow fields
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1992-01-01
A method for constructing interferograms, schlieren, and shadowgraphs from ideal- and real-gas, two- and three-dimensional computed flow fields is described. The computational grids can be structured or unstructured, and multiple grids are an option. The constructed images are compared to experimental images for several types of flow, including a ramp, a blunt-body, a nozzle, and a reacting flow. The constructed images simulate the features observed in the experimental images. They are sensitive to errors in the flow-field solutions and can be used to identify solution errors. In addition, techniques for obtaining phase shifts from experimental finite-fringe interferograms and for removing experimentally induced phase-shift errors are discussed. Both the constructed images and calculated phase shifts can be used for validation of computational fluid dynamics (CFD) codes.
Computation of three-dimensional turbulent shear flows in corners
NASA Astrophysics Data System (ADS)
Gorski, J. J.; Govindan, T. R.; Lakshminarayana, B.
1983-07-01
A numerical technique developed for the solution of the steady Navier-Stokes equations using a 'space marching' algorithm has been used to predict a complex, three-dimensional, turbulent flow. The scheme has been designed to calculate flows with a dominant flow direction, in three-dimensional geometries, and has been used successfully to predict laminar flows. This paper is concerned with the extension of this technique to calculate turbulent flows in the corner region of a wing-body junction using both algebraic eddy viscosity and K-epsilon turbulence models. Effects of different boundary conditions for the streamwise velocity, at a solid boundary, used in many turbulent flow computations are also considered. In the flow cases computed using a 'slip' boundary condition at solid boundaries, the K-epsilon model showed on distinct advantages over the simpler algebraic eddy viscosity model. However, the K-epsilon model provided much better results for the cases computed with the more realistic 'no slip' conditions.
Predicting Peak Flows following Forest Fires
NASA Astrophysics Data System (ADS)
Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana
2016-04-01
Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Dennon, S. R.
1986-01-01
A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.
Computation of flow around maneuvering submerged bodies
NASA Astrophysics Data System (ADS)
Govindan, T. R.; Briley, W. R.; Levy, R.
1988-10-01
Generalized primary/secondary flow equations and a spatial-marching solution algorithm have been used to develop a procedure to compute the three-dimensional viscous flow around a submerged body in maneuver. The primary/secondary flow equations are an approximation to the Navier-Stokes equations for flows in which a primary flow direction can be identified. Important elements of the approximation are a locally specified primary flow direction and a decomposition of the secondary velocity field to identify a small velocity vector for approximations. No approximations are introduced for pressure in this approach. The primary/secondary flow equations are a well-posed initial-value problem in a spatial coordinate nominally aligned with the primary flow direction and are solved by a sequentially decoupled implicit algorithm. The procedure provides an order to two orders-of-magnitude run time advantage over solution of the Navier-Stokes equations. Results are presented for the flow past an unappended submarine hull in drift at a Reynolds number of 16 million and incidence of 20 degrees. These results are consistent with experimental observations and provide a means to compute the complex three-dimensional viscous flow field economically.
Computational modeling of flow-altering surgeries in basilar aneurysms.
Rayz, V L; Abla, A; Boussel, L; Leach, J R; Acevedo-Bolton, G; Saloner, D; Lawton, M T
2015-05-01
In cases where surgeons consider different interventional options for flow alterations in the setting of pathological basilar artery hemodynamics, a virtual model demonstrating the flow fields resulting from each of these options can assist in making clinical decisions. In this study, image-based computational fluid dynamics (CFD) models were used to simulate the flow in four basilar artery aneurysms in order to evaluate postoperative hemodynamics that would result from flow-altering interventions. Patient-specific geometries were constructed using MR angiography and velocimetry data. CFD simulations carried out for the preoperative flow conditions were compared to in vivo phase-contrast MRI measurements (4D Flow MRI) acquired prior to the interventions. The models were then modified according to the procedures considered for each patient. Numerical simulations of the flow and virtual contrast transport were carried out in each case in order to assess postoperative flow fields and estimate the likelihood of intra-aneurysmal thrombus deposition following the procedures. Postoperative imaging data, when available, were used to validate computational predictions. In two cases, where the aneurysms involved vital pontine perforator arteries branching from the basilar artery, idealized geometries of these vessels were incorporated into the CFD models. The effect of interventions on the flow through the perforators was evaluated by simulating the transport of contrast in these vessels. The computational results were in close agreement with the MR imaging data. In some cases, CFD simulations could help determine which of the surgical options was likely to reduce the flow into the aneurysm while preserving the flow through the basilar trunk. The study demonstrated that image-based computational modeling can provide guidance to clinicians by indicating possible outcome complications and indicating expected success potential for ameliorating pathological aneurysmal flow
Hypersonic Flow Computations on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Bibb, K. L.; Riley, C. J.; Peraire, J.
1997-01-01
A method for computing inviscid hypersonic flow over complex configurations using unstructured meshes is presented. The unstructured grid solver uses an edge{based finite{volume formulation. Fluxes are computed using a flux vector splitting scheme that is capable of representing constant enthalpy solutions. Second{order accuracy in smooth flow regions is obtained by linearly reconstructing the solution, and stability near discontinuities is maintained by locally forcing the scheme to reduce to first-order accuracy. The implementation of the algorithm to parallel computers is described. Computations using the proposed method are presented for a sphere-cone configuration at Mach numbers of 5.25 and 10.6, and a complex hypersonic re-entry vehicle at Mach numbers of 4.5 and 9.8. Results are compared to experimental data and computations made with established structured grid methods. The use of the solver as a screening tool for rapid aerodynamic assessment of proposed vehicles is described.
Effects of the computational time step on numerical solutions for turbulent flow
NASA Technical Reports Server (NTRS)
Choi, Haecheon; Moin, Parviz
1994-01-01
Effects of large computational time steps on the computed turbulence were investigated using a fully implicit method. In turbulent channel flow computations the largest computational time step in wall units which led to accurate prediction of turbulence statistics was determined. Turbulence fluctuations could not be sustained if the computational time step was near or larger than the Kolmogorov time scale.
Prediction of leakage flow in a shrouded centrifugal blood pump.
Teo, Ji-Bin; Chan, Weng-Kong; Wong, Yew-Wah
2010-09-01
This article proposes a phenomenological model to predict the leakage flow in the clearance gap of shrouded centrifugal blood pumps. A good washout in the gap clearance between the rotating impeller surfaces and volute casing is essential to avoid thrombosis. However, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Computational fluid dynamics (CFD) analysis was performed to investigate the leakage flow in a miniaturized shrouded centrifugal blood pump operating at a speed of 2000 rpm. Based on an analytical model derived earlier, a phenomenological model is proposed to predict the leakage flow. The leakage flow rate is found to be proportional to h(α) , where h is the gap size and the exponent α ranges from 2.955 to 3.15 for corresponding gap sizes of 0.2-0.5 mm. In addition, it is observed that α is a linear function of the gap size h. The exponent α compensates for the variation of pressure difference along the circumferential direction as well as inertia effects that are dominant for larger gap clearances. The proposed model displays good agreement with computational results. The CFD analysis also showed that for larger gap sizes, the total leakage flow rate is of the same order of magnitude as the operating flow rate, thus suggesting low volumetric efficiency.
Computation of two-fluid, flowing equilibria
NASA Astrophysics Data System (ADS)
Steinhauer, Loren; Kanki, Takashi; Ishida, Akio
2006-10-01
Equilibria of flowing two-fluid plasmas are computed for realistic compact-toroid and spherical-tokamak parameters. In these examples the two-fluid parameter ɛ (ratio of ion inertial length to overall plasma size) is small, ɛ ˜ 0.03 -- 0.2, but hardly negligible. The algorithm is based on the nearby-fluids model [1] which avoids a singularity that otherwise occurs for small ɛ. These representative equilibria exhibit significant flows, both toroidal and poloidal. Further, the flow patterns display notable flow shear. The importance of two-fluid effects is demonstrated by comparing with analogous equilibria (e.g. fixed toroidal and poloidal current) for a static plasma (Grad-Shafranov solution) and a flowing single-fluid plasma. Differences between the two-fluid, single-fluid, and static equilibria are highlighted: in particular with respect to safety factor profile, flow patterns, and electrical potential. These equilibria are computed using an iterative algorithm: it employs a successive-over-relaxation procedure for updating the magnetic flux function and a Newton-Raphson procedure for updating the density. The algorithm is coded in Visual Basic in an Excel platform on a personal computer. The computational time is essentially instantaneous (seconds). [1] L.C. Steinhauer and A. Ishida, Phys. Plasmas 13, 052513 (2006).
Assessment of nonequilibrium radiation computation methods for hypersonic flows
NASA Technical Reports Server (NTRS)
Sharma, Surendra
1993-01-01
The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.
A predictive, nonlocal rheology for granular flows
NASA Astrophysics Data System (ADS)
Kamrin, Ken; Henann, David
2013-11-01
We propose a continuum model for flowing granular matter and demonstrate that it quantitatively predicts flow and stress fields in many different geometries. The model is constructed in a step-by-step fashion. First we compose a relation based on existing granular rheological approaches (notably the ``inertial'' granular flow rheology) and point out where the resulting model succeeds and where it does not. The clearest missing ingredient is shown to be the lack of an intrinsic length-scale. To tie flow features more carefully to the characteristic grain size, we compose a nonlocal model that includes a new size-dependent term (with only one new material parameter). This new nonlocal model resolves some outstanding questions in the granular flow literature--of note, it is the first model to predict all features of flows in split-bottom cell geometries, a decade-long open question in the field. In total, we will show that this new model, using three material parameters, quantitatively matches the flow and stress data from over 160 experiments in several different geometries.
Computational and experimental investigation of subsonic internal reversing flows
NASA Technical Reports Server (NTRS)
Rhodes, James A.; Esker, Barbara S.; Smith, C. F.
1992-01-01
The flow inside a model exhaust configuration was studied using both experimental and computational techniques. The hardware was tested at the NASA Lewis Research Center's Powered Lift Facility at tailpipe total pressure to ambient static pressure ratios ranging from 1.0 to 5.0. The flow simulations were obtained using the two 3-D Navier-Stokes CFD codes run on the Lewis Cray Y-MP computer. Both codes produced oscillatory solutions due to the inflow boundary condition reflecting acoustic waves. The CFD solutions correctly predicted the flow separation along the inside elbow of the takeoff and also along the walls of the ventral duct. Mass flow rates were overpredicted due to underprediction of the turbulent energy dissipation and subsequent total pressure loss.
A computational study of tip desensitization in axial flow turbines
NASA Astrophysics Data System (ADS)
Tallman, James A.
This study investigates the use of modified blade tip geometries as a means of reducing the leakage flow and vortex in axial flow turbine rotors. Computational Fluid Dynamics (CFD) was used as a tool to compute the flowfield of a low-speed, single stage, experimental turbine. The results from three separate baseline turbine rotor computations all showed good agreement with experimental measurements, validating the numerical procedure's ability to predict complex turbine rotor flowfields. This agreement was, in part, due to an advanced, multi-block method of discretizing the turbine rotor into a computational mesh, which was developed as part of the study. After validating the numerical procedure, three different classifications of tip geometry modification were investigated through CFD simulation: chamfering of the suction side of the blade tip, rounding of the blade tip edge, and squealer-type cavities. Chamfering of the blade tip was shown to cause the leakage flow inside the gap to turn toward the camber direction of the blade. This turning led to reduced mass flow through the gap and a smaller leakage vortex. Rounding of the suction side edge of the blade tip resulted in a considerable reduction in the size and strength of the leakage vortex, while rounding of the pressure side edge of the blade tip greatly increased the mass flow rate through the gap. Rounded squealer cavities acted to reduce the mass flow through the gap and proved advantageous over traditional, square squealer cavities. Final, detailed computations using a very refined mesh reconfirmed the findings of more rapid, preliminary computations. Detailed, three-dimensional analysis of the computed flowfields revealed the physics behind the modified tip geometries' reduction of the leakage flow and vortex.
Soft Computing Methods for Disulfide Connectivity Prediction
Márquez-Chamorro, Alfonso E.; Aguilar-Ruiz, Jesús S.
2015-01-01
The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods. PMID:26523116
NASA Technical Reports Server (NTRS)
Medan, R. T. (Editor); Magnus, A. E.; Sidwell, K. W.; Epton, M. A.
1981-01-01
Numerous applications of the PAN AIR computer program system are presented. PAN AIR is user-oriented tool for analyzing and/or designing aerodynamic configurations in subsonic or supersonic flow using a technique generally referred to as a higher order panel method. Problems solved include simple wings in subsonic and supersonic flow, a wing-body in supersonic flow, wing with deflected flap in subsonic flow, design of two-dimensional and three-dimensional wings, axisymmetric nacelle in supersonic flow, and wing-canard-tail-nacelle-fuselage combination in supersonic flow.
Slug flow: Occurrence, consequences, and prediction
Hill, T.J.; Wood, D.G.
1994-12-31
BP Exploration currently has an interest in hundreds of kilometers of operating multiphase flowlines. Most of the company`s proposed field developments also involve multiphase flowlines. A large number of these do or will experience slug flow, either as the normal flow regime, or as a result of transient behavior. Data on flow regime and slug flow characteristics have been collected from many lines over the past 8 years. Information on slug characteristics from a number of different systems is presented in this paper, including velocity, length and holdup. Some unfavorable consequences of slug flow on both process performance and system integrity are highlighted, including plant shutdowns and mechanical damage. The need to be able to predict slug flow for the design of future systems, and to advise the operators of existing systems, remains a high priority for R and D activities, as ever longer and more complex multiphase systems are proposed. BP`s latest slug frequency method is described, followed by guidelines for pipework layout, and comments on current R and D on corrosion in multiphase flow.
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, K.-H.
2001-01-01
The objective of this research is to develop an efficient numerical algorithm with unstructured grids for the computation of three-dimensional chemical reacting flows that are known to occur in combustion components of propulsion systems. During the grant period (1996 to 1999), two companion codes have been developed and various numerical and physical models were implemented into the two codes.
DPIV prediction of flow induced platelet activation-comparison to numerical predictions.
Raz, Sagi; Einav, Shmuel; Alemu, Yared; Bluestein, Danny
2007-04-01
Flow induced platelet activation (PA) can lead to platelet aggregation, deposition onto the blood vessel wall, and thrombus formation. PA was thoroughly studied under unidirectional flow conditions. However, in regions of complex flow, where the platelet is exposed to varying levels of shear stress for varying durations, the relationship between flow and PA is not well understood. Numerical models were developed for studying flow induced PA resulting from stress histories along Lagrangian trajectories in the flow field. However, experimental validation techniques such as Digital Particle Image Velocimetry (DPIV) were not extended to include such models. In this study, a general experimental tool for PA analysis by means of continuous DPIV was utilized and compared to numerical simulation in a model of coronary stenosis. A scaled up (5:1) 84% eccentric and axisymetric coronary stenosis model was used for analysis of shear stress and exposure time along particle trajectories. Flow induced PA was measured using the PA State (PAS) assay. An algorithm for computing the PA level in pertinent trajectories was developed as a tool for extracting information from DPIV measurements for predicting the flow induced thrombogenic potential. CFD, DPIV and PAS assay results agreed well in predicting the level of PA. In addition, the same trend predicted by the DPIV was measured in vitro using the Platelet Activity State (PAS) assay, namely, that the symmetric stenosis activated the platelets more as compared to the eccentric stenosis.
Turbulent Flow Past Projectiles: A Computational Investigation
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Carlucci, Donald; Buckley, Liam; Carlucci, Pasquale; Thangam, Siva
2010-11-01
Projectiles with free spinning bases are often used for smart munitions to provide effective control, stability and terminal guidance. Computational investigations are performed for flow past cylinders aligned along their axis where a base freely spins while attached to and separated at various distances from a non-spinning fore-body. The energy spectrum is modified to incorporate the effects of swirl and rotation using a parametric characterization of the model coefficients. An efficient finite-volume algorithm is used to solve the time-averaged equations of motion and energy along with the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation. Computations are performed for both rigid cylinders as well as cylinders with free-spinning bases. Experimental data for a range of spin rates and free stream flow conditions obtained from subsonic wind tunnel with sting-mounted spinning cylinders is used for validating the computational findings.
Data flow machine for data driven computing
Davidson, George S.; Grafe, Victor G.
1995-01-01
A data flow computer which of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.
Data flow machine for data driven computing
Davidson, G.S.; Grafe, V.G.
1988-07-22
A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information from an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ''fire'' signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.
NASA Technical Reports Server (NTRS)
Redman, M. C.; Rowe, W. S.
1975-01-01
A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated.
Numerical prediction of flow in slender vortices
NASA Technical Reports Server (NTRS)
Reyna, Luis G.; Menne, Stefan
1988-01-01
The slender vortex approximation was investigated using the Navier-Stokes equations written in cylindrical coordinates. It is shown that, for free vortices without external pressure gradient, the breakdown length is proportional to the Reynolds number. For free vortices with adverse pressure gradients, the breakdown length is inversely proportional to the value of its gradient. For low Reynolds numbers, the predictions of the simplified system agreed well with the ones obtained from solutions of the full Navier-Stokes equations, whereas for high Reynolds numbers, the flow became quite sensitive to pressure fluctuations; it was found that the failure of the slender vortex equations corresponded to the critical condition as identified by Benjamin (1962) for inviscid flows. The predictions obtained from the approximating system were compared with available experimental results. For low swirl, a good agreement was obtained; for high swirl, on the other hand, upstream effects on the pressure gradient produced by the breakdown bubble caused poor agreement.
Prediction of an axisymmetric combusting flow
NASA Technical Reports Server (NTRS)
Correa, S. M.
1983-01-01
A numerical model for turbulent, recirculating combusting flow is developed and applied to a research combustor. The model is based on the time-averaged Navier-Stokes equations with k-epsilon turbulence closure and the compositional fluctuations at each point are given probabilistically in terms of the mixture fraction. The probability density function is derived from transport equations for its first two moments along with an assumption regarding its shape. The resulting equations are solved using a standard line relaxation algorithm. It is found that the predictions of the model are in good agreement with data from an axisymmetric, bluff-body stabilized research combustor, while the major discrepancies are similar to those found in isothermal flow comparisons. The peculiar features of this flow which contribute to the errors are examined. The agreement between the theory and data deteriorates as the central jet velocity is increased which indicates an enhanced role for unsteady effects.
NASA Technical Reports Server (NTRS)
Srokowski, A. J.
1978-01-01
The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.
Multivariate optical computation for predictive spectroscopy.
Nelson, M P; Aust, J F; Dobrowolski, J A; Verly, P G; Myrick, M L
1998-01-01
A novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated using a data set from earlier work. In our approach, a regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal that is directly proportional to the chemical/physical property for which the regression vector was designed. This simple optical computational method for predictive spectroscopy is evaluated in several ways, using the example data for numeric simulation. First, we evaluate the sensitivity of the method to various types of spectroscopic errors commonly encountered and find the method to have the same susceptibilities toward error as standard methods. Second, we use propagation of errors to determine the effects of detector noise on the predictive power of the method, finding the optical computation approach to have a large multiplex advantage over conventional methods. Third, we use two different design approaches to the construction of the paired filter set for the example measurement to evaluate manufacturability, finding that adequate methods exist to design appropriate optical devices. Fourth, we numerically simulate the predictive errors introduced by design errors in the paired filters, finding that predictive errors are not increased over conventional methods. Fifth, we consider how the performance of the method is affected by light intensities that are not linearly related to chemical composition (as in transmission spectroscopy) and find that the method is only marginally affected. In summary, we conclude that many types of predictive measurements based on use of regression (or other) vectors and linear mathematics can be performed more rapidly, more effectly, and at considerably lower cost by the proposed optical computation method than by traditional dispersive or interferometric
Unsteady flow simulation on a parallel computer
NASA Astrophysics Data System (ADS)
Faden, M.; Pokorny, S.; Engel, K.
For the simulation of the flow through compressor stages, an interactive flow simulation system is set up on an MIMD-type parallel computer. An explicit scheme is used in order to resolve the time-dependent interaction between the blades. The 2D Navier-Stokes equations are transformed into their general moving coordinates. The parallelization of the solver is based on the idea of domain decomposition. Results are presented for a problem of fixed size (4096 grid nodes for the Hakkinen case).
Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.
1977-01-01
The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
NASA Technical Reports Server (NTRS)
Owen, Albert K.
1992-01-01
Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. These Laser Anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A detailed comparison in the rotor relative reference frame between a Navier-Stokes solver and the measured experimental results showed good agreement between the predicted and measured flows. A primary flow is defined in the rotor and deviations and the computed predictions is made to assess the development of a passage vortex due to the distortion of the inlet flow. Computer predictions indicate that a distorted inlet profile has a minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.
Prediction of cavitating flow noise by direct numerical simulation
NASA Astrophysics Data System (ADS)
Seo, Jung H.; Moon, Young J.; Shin, Byeong Rog
2008-06-01
In this study, a direct numerical simulation procedure for the cavitating flow noise is presented. The compressible Navier-Stokes equations are written for the two-phase fluid, employing a density-based homogeneous equilibrium model with a linearly-combined equation of state. To resolve the linear and non-linear waves in the cavitating flow, a sixth-order compact central scheme is utilized with the selective spatial filtering technique. The present cavitation model and numerical methods are validated for two benchmark problems: linear wave convection and acoustic saturation in a bubbly flow. The cavitating flow noise is then computed for a 2D circular cylinder flow at Reynolds number based on a cylinder diameter, 200 and cavitation numbers, σ=0.7-2. It is observed that, at cavitation numbers σ=1 and 0.7, the cavitating flow and noise characteristics are significantly changed by the shock waves due to the coherent collapse of the cloud cavitation in the wake. To verify the present direct simulation and further analyze the sources of cavitation noise, an acoustic analogy based on a classical theory of Fitzpatrik and Strasberg is derived. The far-field noise predicted by direct simulation is well compared with that of acoustic analogy, and it also confirms the f-2 decaying rate in the spectrum, as predicted by the model of Fitzpatrik and Strasberg with the Rayleigh-Plesset equation.
Spatial statistics for predicting flow through a rock fracture
Coakley, K.J.
1989-03-01
Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.
Advances in Computational Capabilities for Hypersonic Flows
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Gnoffo, Peter A.; Moss, James N.; Drummond, J. Philip
1997-01-01
The paper reviews the growth and advances in computational capabilities for hypersonic applications over the period from the mid-1980's to the present day. The current status of the code development issues such as surface and field grid generation, algorithms, physical and chemical modeling, and validation is provided. A brief description of some of the major codes being used at NASA Langley Research Center for hypersonic continuum and rarefied flows is provided, along with their capabilities and deficiencies. A number of application examples are presented, and future areas of research to enhance accuracy, reliability, efficiency, and robustness of computational codes are discussed.
Flow imaging and computing: large artery hemodynamics.
Steinman, David A; Taylor, Charles A
2005-12-01
The objective of our session at the International Bio-Fluid Mechanics Symposium and Workshop was at the International Bio-Fluid Mechanics Symposium and Workshop to review the state-of-the-art in, and identify future directions for, imaging and computational modeling of blood flow in the large arteries and the microcirculation. Naturally, talks in other sessions of the workshop overlapped this broad topic, and so here we summarize progress within the last decade in terms of the technical development and application of flow imaging and computing, rather than the knowledge derived from specific studies. We then briefly discuss ways in these tools may be extended, and their application broadened, in the next decade. Furthermore, owing to the conceptual division between the hemodynamics of large arteries, and those within the microcirculation, we review these regimes separately: The former here by Steinman and Taylor; and the latter in a separate paper by Cristini.
Experimental and Computational Investigations of Flow past Spinning Cylinders
NASA Astrophysics Data System (ADS)
Carlucci, Pasquale; Mehmedagic, Igbal; Buckley, Liam; Carlucci, Donald; Thangam, Siva
2011-11-01
Experiments are performed in a low speed subsonic wind tunnel to analyze flow past spinning cylinders. The sting-mounted cylinders are oriented such that their axis of rotation is aligned with the mean flow. Data from spinning cylinders with both rear-mounted and fore-mounted stings are presented for a Reynolds numbers of up to 260000 and rotation numbers of up to 1.2 (based on cylinder diameter). Computations are performed using a two-equation turbulence model that is capable of capturing the effects of swirl and curvature. The model performance was validated with benchmark experimental flows and implemented for analyzing the flow configuration used in the experimental study. The results are analyzed and the predictive capability of the model is discussed. Funded in part by U. S. Army, ARDEC.
Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
2004-01-01
A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation
Computational inference of neural information flow networks.
Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich D
2006-11-24
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
NASA Technical Reports Server (NTRS)
Pan, Y. S.; Drummond, J. P.; Mcclinton, C. R.
1978-01-01
Two parabolic flow computer programs, SHIP (a finite-difference program) and COMOC (a finite-element program), are used for predicting three-dimensional turbulent reacting flow fields in supersonic combustors. The theoretical foundation of the two computer programs are described, and then the programs are applied to a three-dimensional turbulent mixing experiment. The cold (nonreacting) flow experiment was performed to study the mixing of helium jets with a supersonic airstream in a rectangular duct. Surveys of the flow field at an upstream were used as the initial data by programs; surveys at a downstream station provided comparison to assess program accuracy. Both computer programs predicted the experimental results and data trends reasonably well. However, the comparison between the computations from the two programs indicated that SHIP was more accurate in computation and more efficient in both computer storage and computing time than COMOC.
Is ""predictability"" in computational sciences a myth?
Hemez, Francois M
2011-01-31
Within the last two decades, Modeling and Simulation (M&S) has become the tool of choice to investigate the behavior of complex phenomena. Successes encountered in 'hard' sciences are prompting interest to apply a similar approach to Computational Social Sciences in support, for example, of national security applications faced by the Intelligence Community (IC). This manuscript attempts to contribute to the debate on the relevance of M&S to IC problems by offering an overview of what it takes to reach 'predictability' in computational sciences. Even though models developed in 'soft' and 'hard' sciences are different, useful analogies can be drawn. The starting point is to view numerical simulations as 'filters' capable to represent information only within specific length, time or energy bandwidths. This simplified view leads to the discussion of resolving versus modeling which motivates the need for sub-scale modeling. The role that modeling assumptions play in 'hiding' our lack-of-knowledge about sub-scale phenomena is explained which leads to discussing uncertainty in simulations. It is argued that the uncertainty caused by resolution and modeling assumptions should be dealt with differently than uncertainty due to randomness or variability. The corollary is that a predictive capability cannot be defined solely as accuracy, or ability of predictions to match the available physical observations. We propose that 'predictability' is the demonstration that predictions from a class of 'equivalent' models are as consistent as possible. Equivalency stems from defining models that share a minimum requirement of accuracy, while being equally robust to the sources of lack-of-knowledge in the problem. Examples in computational physics and engineering are given to illustrate the discussion.
Courant number and unsteady flow computation
Lai, Chintu; ,
1993-01-01
The Courant number C, the key to unsteady flow computation, is a ratio of physical wave velocity, ??, to computational signal-transmission velocity, ??, i.e., C = ??/??. In this way, it uniquely relates a physical quantity to a mathematical quantity. Because most unsteady open-channel flows are describable by a set of n characteristic equations along n characteristic paths, each represented by velocity ??i, i = 1,2,....,n, there exist as many as n components for the numerator of C. To develop a numerical model, a numerical integration must be made on each characteristic curve from an earlier point to a later point on the curve. Different numerical methods are available in unsteady flow computation due to the different paths along which the numerical integration is actually performed. For the denominator of C, the ?? defined as ?? = ?? 0 = ??x/??t has been customarily used; thus, the Courant number has the familiar form of C?? = ??/??0. This form will be referred to as ???common Courant number??? in this paper. The commonly used numerical criteria C?? for stability, neutral stability and instability, are imprecise or not universal in the sense that r0 does not always reflect the true maximum computational data-transmission speed of the scheme at hand, i.e., Ctau is no indication for the Courant constraint. In view of this , a new Courant number, called the ???natural Courant number???, Cn, that truly reflects the Courant constraint, has been defined. However, considering the numerous advantages inherent in the traditional C??, a useful and meaningful composite Courant number, denoted by C??* has been formulated from C??. It is hoped that the new aspects of the Courant number discussed herein afford the hydraulician a broader perspective, consistent criteria, and unified guidelines, with which to model various unsteady flows.
Variational optical flow computation in real time.
Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph
2005-05-01
This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.
Flood and Debris Flow Hazard Predictions in Steep, Burned Landscapes
NASA Astrophysics Data System (ADS)
Rengers, Francis; McGuire, Luke; Kean, Jason; Staley, Dennis
2016-04-01
scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, consistent with wildfire-induced water-repellency being retained throughout that time. Both models captured the timing of flow peaks, although neither model correctly simulated the flow depth. This study suggests that a kinematic wave model, which is simpler and more computationally efficient, is a justifiable approach for predicting flood and debris flow timing in steep, burned watersheds. By demonstrating the applicability of these models, this study takes an important step towards the development of process-based methods to assess post-wildfire flood and debris flow hazards.
Computational Study of Separating Flow in a Planar Subsonic Diffuser
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.
2005-01-01
A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.
Modeling groundwater flow on massively parallel computers
Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.
1994-12-31
The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.
Computational Approaches for Predicting Biomedical Research Collaborations
Zhang, Qing; Yu, Hong
2014-01-01
Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets. PMID:25375164
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
Modeling Tools Predict Flow in Fluid Dynamics
NASA Technical Reports Server (NTRS)
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Turbulent flow in a 180 deg bend: Modeling and computations
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
1989-01-01
A low Reynolds number k-epsilon turbulence model was presented which yields accurate predictions of the kinetic energy near the wall. The model is validated with the experimental channel flow data of Kreplin and Eckelmann. The predictions are also compared with earlier results from direct simulation of turbulent channel flow. The model is especially useful for internal flows where the inflow boundary condition of epsilon is not easily prescribed. The model partly derives from some observations based on earlier direct simulation results of near-wall turbulence. The low Reynolds number turbulence model together with an existing curvature correction appropriate to spinning cylinder flows was used to simulate the flow in a U-bend with the same radius of curvature as the Space Shuttle Main Engine (SSME) Turn-Around Duct (TAD). The present computations indicate a space varying curvature correction parameter as opposed to a constant parameter as used in the spinning cylinder flows. Comparison with limited available experimental data is made. The comparison is favorable, but detailed experimental data is needed to further improve the curvature model.
Turbofan forced mixer-nozzle internal flowfield. Volume 2: Computational fluid dynamic predictions
NASA Technical Reports Server (NTRS)
Werle, M. J.; Vasta, V. N.
1982-01-01
A general program was conducted to develop and assess a computational method for predicting the flow properties in a turbofan forced mixed duct. The detail assessment of the resulting computer code is presented. It was found that the code provided excellent predictions of the kinematics of the mixing process throughout the entire length of the mixer nozzle. The thermal mixing process between the hot core and cold fan flows was found to be well represented in the low speed portion of the flowfield.
Computational Aeroheating Predictions for X-34
NASA Technical Reports Server (NTRS)
Kleb,William H.; Wood, William A.; Gnoffo, Peter A.
1998-01-01
Radiative equilibrium surface temperatures, heating rates, streamlines, surface pressures, and flow-field features as predicted by the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) are presented for the X-34 Technology Demonstrator. Results for two trajectory points corresponding to entry peak heating and two control surface deflections are discussed. This data is also discussed in the context of Thermal Protection System (TPS) design issues. The work presented in this report is part of a larger effort to define the X-34 aerothermal environment, including the application of engineering codes and wind-tunnel studies.
Computational Aeroheating Predictions for X-34
NASA Technical Reports Server (NTRS)
Kelb, William L.; Wood, William A.; Gnoffo, Peter A.; Alter, Stephen J.
1998-01-01
Radiative equilibrium surface temperatures, heating rates, streamlines, surface pressures, and flow-field features as predicted by the Langley Aerothermodynamic Upwind Relaxation Algorithm (Laura) are presented for the X-34 Technology Demonstrator. Results for two trajectory points corresponding to entry peak heating and two control surface deflections are discussed. This data is also discussed in context of Thermal Protection System (TPS) design issues. The work presented in this report is part of a larger effort to define the X-34 aerothermal environment, including the application of engineering codes and wind-tunnel studies.
Assessment and prediction of debris-flow hazards
Wieczorek, Gerald F.; ,
1993-01-01
Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.
Euler Flow Computations on Non-Matching Unstructured Meshes
NASA Technical Reports Server (NTRS)
Gumaste, Udayan
1999-01-01
Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.
Chemical nonequilibrium and viscous flow computation for conic aerobrake bodies
NASA Technical Reports Server (NTRS)
Li, C. P.
1988-01-01
Three-dimensional analyses are presented for the viscous, reactive flow over a complete entry-body configuration with a wide-angle conic surface. The predictive method uses a split approach that solves iteratively the Navier-Stokes and the continuity equations of chemical species. The finite-difference formulation and the computational grid are adapted to the bow shock and the conformally mapped body such that the velocity components are in the computational spherical-polar space. Combinations of several conic forebody and afterbody configurations have been studied using wind-tunnel, Space Shuttle, and aerobraking orbital transfer vehicle (AOTV) entry conditions. The effects of the borebody bluntness and of finite-rate chemical reactions on the shock layer, the wall catalycity on the boundary layer, the shear-layer impingement on the afterbody, and the base-flow environment are discussed.
Computationally Efficient Prediction of Ionic Liquid Properties.
Chaban, Vitaly V; Prezhdo, Oleg V
2014-06-05
Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit the ability of RTILs to stay liquid at several hundred degrees Celsius and introduce a straightforward and computationally efficient method for predicting RTIL properties at ambient temperature. RTILs do not alter phase behavior at 600-800 K. Therefore, their properties can be smoothly extrapolated down to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude.
Computational Flow Modeling of Human Upper Airway Breathing
NASA Astrophysics Data System (ADS)
Mylavarapu, Goutham
Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady
Computation of Hypersonic Flow about Maneuvering Vehicles with Changing Shapes
Ferencz, R M; Felker, F F; Castillo, V M
2004-02-23
Vehicles moving at hypersonic speeds have great importance to the National Security. Ballistic missile re-entry vehicles (RV's) travel at hypersonic speeds, as do missile defense intercept vehicles. Despite the importance of the problem, no computational analysis method is available to predict the aerodynamic environment of maneuvering hypersonic vehicles, and no analysis is available to predict the transient effects of their shape changes. The present state-of-the-art for hypersonic flow calculations typically still considers steady flow about fixed shapes. Additionally, with present computational methods, it is not possible to compute the entire transient structural and thermal loads for a re-entry vehicle. The objective of this research is to provide the required theoretical development and a computational analysis tool for calculating the hypersonic flow about maneuvering, deforming RV's. This key enabling technology will allow the development of a complete multi-mechanics simulation of the entire RV flight sequence, including important transient effects such as complex flight dynamics. This will allow the computation of the as-delivered state of the payload in both normal and unusual operational environments. This new analysis capability could also provide the ability to predict the nonlinear, transient behavior of endo-atmospheric missile interceptor vehicles to the input of advanced control systems. Due to the computational intensity of fluid dynamics for hypersonics, the usual approach for calculating the flow about a vehicle that is changing shape is to complete a series of steady calculations, each with a fixed shape. However, this quasi-steady approach is not adequate to resolve the frequencies characteristic of a vehicle's structural dynamics. Our approach is to include the effects of the unsteady body shape changes in the finite-volume method by allowing for arbitrary translation and deformation of the control volumes. Furthermore, because the Eulerian
Prediction of overall and blade-element performance for axial-flow pump configurations
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.
1973-01-01
A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.
Computational prediction of human drug metabolism.
Ekins, Sean; Andreyev, Sergey; Ryabov, Andy; Kirillov, Eugene; Rakhmatulin, Eugene A; Bugrim, Andrej; Nikolskaya, Tatiana
2005-08-01
There is an urgent requirement within the pharmaceutical and biotechnology industries, regulatory authorities and academia to improve the success of molecules that are selected for clinical trials. Although absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) properties are some of the many components that contribute to successful drug discovery and development, they represent factors for which we currently have in vitro and in vivo data that can be modelled computationally. Understanding the possible toxicity and the metabolic fate of xenobiotics in the human body is particularly important in early drug discovery. There is, therefore, a need for computational methodologies for uncovering the relationships between the structure and the biological activity of novel molecules. The convergence of numerous technologies, including high-throughput techniques, databases, ADME/Tox modelling and systems biology modelling, is leading to the foundation of systems-ADME/Tox. Results from experiments can be integrated with predictions to globally simulate and understand the likely complete effects of a molecule in humans. The development and early application of major components of MetaDrug (GeneGo, Inc.) software will be described, which includes rule-based metabolite prediction, quantitative structure-activity relationship models for major drug metabolising enzymes, and an extensive database of human protein-xenobiotic interactions. This represents a combined approach to predicting drug metabolism. MetaDrug can be readily used for visualising Phase I and II metabolic pathways, as well as interpreting high-throughput data derived from microarrays as networks of interacting objects. This will ultimately aid in hypothesis generation and the early triaging of molecules likely to have undesirable predicted properties or measured effects on key proteins and cellular functions.
Selected computations of transonic cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1993-01-01
An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.
NASA Technical Reports Server (NTRS)
Magnus, A. E.; Epton, M. A.
1981-01-01
Panel aerodynamics (PAN AIR) is a system of computer programs designed to analyze subsonic and supersonic inviscid flows about arbitrary configurations. A panel method is a program which solves a linear partial differential equation by approximating the configuration surface by a set of panels. An overview of the theory of potential flow in general and PAN AIR in particular is given along with detailed mathematical formulations. Fluid dynamics, the Navier-Stokes equation, and the theory of panel methods were also discussed.
Computational analysis of heat flow in computer casing
NASA Astrophysics Data System (ADS)
Nor Azwadi, C. S.; Goh, C. K.; Afiq Witri, M. Y.
2012-06-01
Reliability of a computer system is directly related to thermal management system. This is due to the fact that poor thermal management led to high temperature distribution throughout hardware components and resulting poor performance and reducing fatigue life of the package. Therefore, good cooling solutions (heat sink, fan) and proper form factor design (expandability, interchangeable of parts) is necessary to provide good thermal management in computer system. The performance of Advanced Technology Extended (ATX) and its purposed successor, Balanced Technology Extended (BTX) were compared to investigate the aforementioned factors. Simulations were conducted by using ANSYS software. Results obtained from simulations were compared with values in the datasheet obtained from manufacturers for validation purposes and it was discovered that there are more chaos region in the flow profile for ATX form factor. In contrast, BTX form factor yields a straighter flow profile. Based on the result, we can conclude that BTX form factor has better cooling capability compared to its predecessor, ATX due to the improvement of layout made in the BTX form factor. With this change, it enabled BTX form factor to be used with more advanced components which dissipate more amount of heat and also improves the acoustic performance of BTX by reducing the number of fan needed to just one unit for BTX.
Hamilton, David A.; Sorrell, Richard C.; Holtschlag, David J.
2008-01-01
regression model developed in this report can be used to produce unbiased estimates of index water yield and flow statewide. In addition, a technique is presented for computing prediction intervals about the index flow estimates.
Prediction of vortex shedding from circular and noncircular bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Perkins, S. C., Jr.
1984-01-01
An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.
Aeroacoustic prediction of turbulent free shear flows
NASA Astrophysics Data System (ADS)
Bodony, Daniel Joseph
2005-12-01
For many people living in the immediate vicinity of an active airport the noise of jet aircraft flying overhead can be a nuisance, if not worse. Airports, which are held accountable for the noise they produce, and upcoming international noise limits are pressuring the major airframe and jet engine manufacturers to bring quieter aircraft into service. However, component designers need a predictive tool that can estimate the sound generated by a new configuration. Current noise prediction techniques are almost entirely based on previously collected experimental data and are applicable only to evolutionary, not revolutionary, changes in the basic design. Physical models of final candidate designs must still be built and tested before a single design is selected. By focusing on the noise produced in the jet engine exhaust at take-off conditions, the prediction of sound generated by turbulent flows is addressed. The technique of large-eddy simulation is used to calculate directly the radiated sound produced by jets at different operating conditions. Predicted noise spectra agree with measurements for frequencies up to, and slightly beyond, the peak frequency. Higher frequencies are missed, however, due to the limited resolution of the simulations. Two methods of estimating the 'missing' noise are discussed. In the first a subgrid scale noise model, analogous to a subgrid scale closure model, is proposed. In the second method the governing equations are expressed in a wavelet basis from which simplified time-dependent equations for the subgrid scale fluctuations can be derived. These equations are inexpensively integrated to yield estimates of the subgrid scale fluctuations with proper space-time dynamics.
Computational algorithms to predict Gene Ontology annotations
2015-01-01
Background Gene function annotations, which are associations between a gene and a term of a controlled vocabulary describing gene functional features, are of paramount importance in modern biology. Datasets of these annotations, such as the ones provided by the Gene Ontology Consortium, are used to design novel biological experiments and interpret their results. Despite their importance, these sources of information have some known issues. They are incomplete, since biological knowledge is far from being definitive and it rapidly evolves, and some erroneous annotations may be present. Since the curation process of novel annotations is a costly procedure, both in economical and time terms, computational tools that can reliably predict likely annotations, and thus quicken the discovery of new gene annotations, are very useful. Methods We used a set of computational algorithms and weighting schemes to infer novel gene annotations from a set of known ones. We used the latent semantic analysis approach, implementing two popular algorithms (Latent Semantic Indexing and Probabilistic Latent Semantic Analysis) and propose a novel method, the Semantic IMproved Latent Semantic Analysis, which adds a clustering step on the set of considered genes. Furthermore, we propose the improvement of these algorithms by weighting the annotations in the input set. Results We tested our methods and their weighted variants on the Gene Ontology annotation sets of three model organism genes (Bos taurus, Danio rerio and Drosophila melanogaster ). The methods showed their ability in predicting novel gene annotations and the weighting procedures demonstrated to lead to a valuable improvement, although the obtained results vary according to the dimension of the input annotation set and the considered algorithm. Conclusions Out of the three considered methods, the Semantic IMproved Latent Semantic Analysis is the one that provides better results. In particular, when coupled with a proper
On predicting debris flows in arid mountain belts
NASA Astrophysics Data System (ADS)
Stolle, Amelie; Langer, Maria; Blöthe, Jan Henrik; Korup, Oliver
2015-03-01
The use of topographic metrics for estimating the susceptibility to, and reconstructing the characteristics of, debris flows has a long research tradition, although largely devoted to humid mountainous terrain. The exceptional 2010 monsoonal rainstorms in the high-altitude mountain desert of Ladakh and Zanskar, NW India, were a painful reminder of how susceptible arid regions are to rainfall-triggered flash floods, landslides, and debris flows. The rainstorms of August 4-6 triggered numerous debris flows, killing 182 people, devastating 607 houses, and more than 10 bridges around Ladakh's capital of Leh. The lessons from this disaster motivated us to revisit methods of predicting (a) flow parameters such as peak discharge and maximum velocity from field and remote sensing data, and (b) the susceptibility to debris flows from catchment morphometry. We focus on quantifying uncertainties tied to these approaches. Comparison of high-resolution satellite images pre- and post-dating the 2010 rainstorm reveals the extent of damage and catastrophic channel widening. Computations based on these geomorphic markers indicate maximum flow velocities of 1.6-6.7 m s- 1 with runout of up to ~ 10 km on several alluvial fans that sustain most of the region's settlements. We estimate median peak discharges of 310-610 m3 s- 1, which are largely consistent with previous estimates. Monte Carlo-based error propagation for a single given flow-reconstruction method returns a variance in discharge similar to one derived from juxtaposing several different flow reconstruction methods. We further compare discriminant analysis, classification tree modelling, and Bayesian logistic regression to predict debris-flow susceptibility from morphometric variables of 171 catchments in the Ladakh Range. These methods distinguish between fluvial and debris flow-prone catchments at similar success rates, but Bayesian logistic regression allows quantifying uncertainties and relationships between potential
Computational AeroAcoustics for Fan Noise Prediction
NASA Technical Reports Server (NTRS)
Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)
2002-01-01
An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.
NASA Technical Reports Server (NTRS)
Simonich, J. C.; Caplin, B.
1989-01-01
A users manual for a computer program for predicting atmospheric turbulence and mean flow and turbulence contraction as part of a noise prediction scheme for nonisotropic turbulence ingestion noise in helicopters is described. Included are descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.
NASA Technical Reports Server (NTRS)
Magnus, Alfred E.; Epton, Michael A.
1981-01-01
An outline of the derivation of the differential equation governing linear subsonic and supersonic potential flow is given. The use of Green's Theorem to obtain an integral equation over the boundary surface is discussed. The engineering techniques incorporated in the PAN AIR (Panel Aerodynamics) program (a discretization method which solves the integral equation for arbitrary first order boundary conditions) are then discussed in detail. Items discussed include the construction of the compressibility transformations, splining techniques, imposition of the boundary conditions, influence coefficient computation (including the concept of the finite part of an integral), computation of pressure coefficients, and computation of forces and moments.
NASA Technical Reports Server (NTRS)
Morgan, Philip E.
2004-01-01
This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.
FLASH: A finite element computer code for variably saturated flow
Baca, R.G.; Magnuson, S.O.
1992-05-01
A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A.
Geostatistical prediction of flow-duration curves in an index-flow framework
NASA Astrophysics Data System (ADS)
Pugliese, A.; Castellarin, A.; Brath, A.
2014-09-01
An empirical period-of-record flow-duration curve (FDC) describes the percentage of time (duration) in which a given streamflow was equaled or exceeded over an historical period of time. In many practical applications one has to construct FDCs in basins that are ungauged or where very few observations are available. We present an application strategy of top-kriging, which makes the geostatistical procedure capable of predicting FDCs in ungauged catchments. Previous applications of top-kriging mainly focused on the prediction of point streamflow indices (e.g. flood quantiles, low-flow indices, etc.); here the procedure is used to predict the entire curve in ungauged sites as a weighted average of standardised empirical FDCs through the traditional linear-weighting scheme of kriging methods. In particular, we propose to standardise empirical FDCs by a reference index-flow value (i.e. mean annual flow, or mean annual precipitation × the drainage area) and to compute the overall negative deviation of the curves from this reference value. We then propose to use these values, which we term total negative deviation (TND), for expressing the hydrological similarity between catchments and for deriving the geostatistical weights. We focus on the prediction of FDCs for 18 unregulated catchments located in central Italy, and we quantify the accuracy of the proposed technique under various operational conditions through an extensive cross-validation and sensitivity analysis. The cross-validation points out that top-kriging is a reliable approach for predicting FDCs with Nash-Sutcliffe efficiency measures ranging from 0.85 to 0.96 (depending on the model settings) very low biases over the entire duration range, and an enhanced representation of the low-flow regime relative to other regionalisation models that were recently developed for the same study region.
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C
2013-07-01
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
Flow field predictions for a slab delta wing at incidence
NASA Technical Reports Server (NTRS)
Conti, R. J.; Thomas, P. D.; Chou, Y. S.
1972-01-01
Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.
Power flow prediction in vibrating systems via model reduction
NASA Astrophysics Data System (ADS)
Li, Xianhui
This dissertation focuses on power flow prediction in vibrating systems. Reduced order models (ROMs) are built based on rational Krylov model reduction which preserve power flow information in the original systems over a specified frequency band. Stiffness and mass matrices of the ROMs are obtained by projecting the original system matrices onto the subspaces spanned by forced responses. A matrix-free algorithm is designed to construct ROMs directly from the power quantities at selected interpolation frequencies. Strategies for parallel implementation of the algorithm via message passing interface are proposed. The quality of ROMs is iteratively refined according to the error estimate based on residual norms. Band capacity is proposed to provide a priori estimate of the sizes of good quality ROMs. Frequency averaging is recast as ensemble averaging and Cauchy distribution is used to simplify the computation. Besides model reduction for deterministic systems, details of constructing ROMs for parametric and nonparametric random systems are also presented. Case studies have been conducted on testbeds from Harwell-Boeing collections. Input and coupling power flow are computed for the original systems and the ROMs. Good agreement is observed in all cases.
Computation of Thermally Perfect Compressible Flow Properties
NASA Technical Reports Server (NTRS)
Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake
1996-01-01
A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.
Computing Flows Using Chimera and Unstructured Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2006-01-01
DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.
NASA Astrophysics Data System (ADS)
Vafaeenezhad, H.; Seyedein, S. H.; Aboutalebi, M. R.; Eivani, A. R.
2017-01-01
The high-temperature flow behavior of Sn-5Sb lead-free solder alloy has been investigated using isothermal hot compression experiments at 298 K to 400 K and strain rate between 0.0005 s-1 and 0.01 s-1. The flow stress under these test conditions was modeled using constitutive equations based on the Johnson-Cook (J-C) model and an artificial neural network (ANN). Three input factors, i.e., temperature, strain rate, and true strain, were incorporated into the network, and the flow stress was considered as the system output. One hidden layer was adopted in the simulations. Furthermore, a comparative study was carried out on the potential of the two proposed models to characterize the high-temperature flow behavior of this alloy. The capability of the models was assessed by comparing the simulation predictions using a correlation coefficient ( R 2). The stresses predicted by both models presented good agreement with experimental results. In addition, it was found that the ANN model could predict the high-temperature deformation more precisely over the whole temperature and strain rate ranges. However, this is strongly dependent on the availability of extensive, high-quality data and characteristic variables.
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
Itu, Lucian; Rapaka, Saikiran; Passerini, Tiziano; Georgescu, Bogdan; Schwemmer, Chris; Schoebinger, Max; Flohr, Thomas; Sharma, Puneet; Comaniciu, Dorin
2016-07-01
Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor.
Computational predictive methods for fracture and fatigue
NASA Technical Reports Server (NTRS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-01-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Computational predictive methods for fracture and fatigue
NASA Astrophysics Data System (ADS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Computational Biorheology of Human Blood Flow in Health and Disease
Fedosov, Dmitry A.; Dao, Ming; Karniadakis, George Em; Suresh, Subra
2014-01-01
Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia. PMID:24419829
Numerical prediction of a draft tube flow taking into account uncertain inlet conditions
NASA Astrophysics Data System (ADS)
Brugiere, O.; Balarac, G.; Corre, C.; Metais, O.; Flores, E.; Pleroy
2012-11-01
The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.
1997-01-01
This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.
Computer program for compressible flow network analysis
NASA Technical Reports Server (NTRS)
Wilton, M. E.; Murtaugh, J. P.
1973-01-01
Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.
Joshua J. Cogliati; Abderrafi M. Ougouag
2006-10-01
A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.
OSHIDA, Sotaro; OGASAWARA, Kuniaki; SAURA, Hiroaki; YOSHIDA, Koji; FUJIWARA, Shunro; KOJIMA, Daigo; KOBAYASHI, Masakazu; YOSHIDA, Kenji; KUBO, Yoshitaka; OGAWA, Akira
2015-01-01
The purpose of the present study was to determine whether preoperative measurement of cerebral blood flow (CBF) with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy (CEA). CBF at the resting state and cerebrovascular reactivity (CVR) to acetazolamide were quantitatively assessed using N-isopropyl-p-[123I]-iodoamphetamine (IMP)-autoradiography method with single-photon emission computed tomography (SPECT) before CEA in 500 patients with ipsilateral internal carotid artery stenosis (≥ 70%). CBF measurement using 123I-IMP SPECT was also performed immediately and 3 days after CEA. A region of interest (ROI) was automatically placed in the middle cerebral artery territory in the affected cerebral hemisphere using a three-dimensional stereotactic ROI template. Preoperative decreases in CBF at the resting state [95% confidence intervals (CIs), 0.855 to 0.967; P = 0.0023] and preoperative decreases in CVR to acetazolamide (95% CIs, 0.844 to 0.912; P < 0.0001) were significant independent predictors of post-CEA hyperperfusion. The area under the receiver operating characteristic curve for prediction of the development of post-CEA hyperperfusion was significantly greater for CVR to acetazolamide than for CBF at the resting state (difference between areas, 0.173; P < 0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the prediction of the development of post-CEA hyperperfusion were significantly greater for CVR to acetazolamide than for CBF at the resting state (P < 0.05, respectively). The present study demonstrated that preoperative measurement of CBF with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of the development of post-CEA hyperperfusion. PMID:25746308
Oshida, Sotaro; Ogasawara, Kuniaki; Saura, Hiroaki; Yoshida, Koji; Fujiwara, Shunro; Kojima, Daigo; Kobayashi, Masakazu; Yoshida, Kenji; Kubo, Yoshitaka; Ogawa, Akira
2015-01-01
The purpose of the present study was to determine whether preoperative measurement of cerebral blood flow (CBF) with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy (CEA). CBF at the resting state and cerebrovascular reactivity (CVR) to acetazolamide were quantitatively assessed using N-isopropyl-p-[(123)I]-iodoamphetamine (IMP)-autoradiography method with single-photon emission computed tomography (SPECT) before CEA in 500 patients with ipsilateral internal carotid artery stenosis (≥ 70%). CBF measurement using (123)I-IMP SPECT was also performed immediately and 3 days after CEA. A region of interest (ROI) was automatically placed in the middle cerebral artery territory in the affected cerebral hemisphere using a three-dimensional stereotactic ROI template. Preoperative decreases in CBF at the resting state [95% confidence intervals (CIs), 0.855 to 0.967; P = 0.0023] and preoperative decreases in CVR to acetazolamide (95% CIs, 0.844 to 0.912; P < 0.0001) were significant independent predictors of post-CEA hyperperfusion. The area under the receiver operating characteristic curve for prediction of the development of post-CEA hyperperfusion was significantly greater for CVR to acetazolamide than for CBF at the resting state (difference between areas, 0.173; P < 0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the prediction of the development of post-CEA hyperperfusion were significantly greater for CVR to acetazolamide than for CBF at the resting state (P < 0.05, respectively). The present study demonstrated that preoperative measurement of CBF with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of the development of post-CEA hyperperfusion.
DeMuth, S.F.; Watson, J.S.
1985-01-01
A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab.
Flow and transport simulation models for prediction of chlorine contact tank flow-through curves.
Wang, Hong; Shao, Xuejun; Falconer, Roger A
2003-01-01
Turbulent flow, solute transport, and chemical and biological decay are some of the basic processes encountered in water treatment plants. This paper presents recent developments in the numerical simulation of turbulent flow and disinfection processes in disinfection contact tanks. Simulation runs have been conducted for various tank design alternatives and in different grid resolutions. The accuracy of simulated contact tank flow and the disinfection process depends largely on calculations of the hydrodynamic and solute transport characteristics in the tanks. A key factor of this is the accuracy of advection and shear stress term computations, which can be affected by the use of different hydrodynamic submodels and numerical schemes. The performance of a simulation model relies to a great extent on the right combination of such submodels and numerical schemes. In this study, a number of simulation models were tested against realistic tank configurations and measurements to evaluate the various combinations of turbulence models and difference schemes by analyzing predicted flow and solute transport patterns, as well as the corresponding flow-through curves. Models for disinfection tank simulations are recommended based on comparisons of simulation results with measurements. These models may also be applied to other water treatment processes such as wastewater treatment.
Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows
NASA Astrophysics Data System (ADS)
Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng
Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.
Measurement and multidimensional prediction of flow in a axisymmetric port/valve assembly
Gosman, A.D.; Ahmed, A.M.Y.
1987-01-01
The results are reported of a combined experimental and computational study of steady flow through an axisymmetric valve/port assembly, the main objective of which was to assess the accuracy of the multidimensional model predictions of this flow. Measurements of the discharge coefficient, mean velocity and the turbulent Reynolds stress fields were obtained by hot-wire anemometry at various valve lifts. These were supplemented by flow visualisation studies. Predictions were made using a finite-volume method employing a body-fitted computational mesh and the k-epsilon turbulence model. Good agreement was found at low lifts, but at higher values this deteriorated due to the inability of the turbulence model to provoke the flow separations which occurred in the experiments. The conclusion is that for both idealised and practical ports multidimensional predictions will be of limited accuracy until better turbulence models become available.
Flow resistance and its prediction methods in compound channels
NASA Astrophysics Data System (ADS)
Yang, Kejun; Cao, Shuyou; Liu, Xingnian
2007-02-01
A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows. The effective Manning, Darcy-Weisbach, Chezy coefficients and the relative Nikuradse roughness height were analyzed. Many different representative methods for predicting the composite roughness were systematically summarized. Besides the measured data, a vast number of laboratory data and field data for compound channels were collected and used to check the validity of these methods for different subsection divisions including the vertical, horizontal, diagonal and bisectional divisions. The computation showed that these methods resulted in big errors in assessing the composite roughness in compound channels, and the reasons were analyzed in detail. The error magnitude is related to the subsection divisions.
Two-phase flow regime map predictions under microgravity
Karri, S.B.R.; Mathur, V.K.
1988-01-01
In this paper, the widely used models of Taitel-Dukler and Weisman et al. are extrapolated to microgravity levels to compare predicted flow pattern boundaries for horizontal and vertical flows. Efforts have been made to analyze how the two-phase flow models available in the literature predict flow regime transitions in microgravity. The models of Taitel-Dukler and Weisman et al. have been found to be more suitable for extrapolation to a wide range of system parameters than the other two-phase flow regime maps available in the literature. The original criteria for all cases are used to predict the transition lines, except for the transition to dispersed flow regime in case of the Weisman model for horizontal flow. The constant 0.97 on the righthand side of this correlation should be two times that value, i.e., 1.94, in order to match this transition line in their original paper.
Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise
NASA Technical Reports Server (NTRS)
Nallasamy, N.
1999-01-01
The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
Computational Analysis of Flow Through a Transonic Compressor Rotor
2005-09-01
a commercial Computer Aided Design (CAD) software company, has developed a new code that allows modeling of two phase flow. ICEM -CFD and CFX-5, both...commercial Computer Aided Design (CAD) software company, has developed a new code that allows modeling of two phase flow. ICEM -CFD and CFX-5, both Anys...6 III. PROCEDURES............................................................................................................9 A. ICEM -CFD
Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2001-01-01
The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.
Gastric flow and mixing studied using computer simulation.
Pal, Anupam; Indireshkumar, Keshavamurthy; Schwizer, Werner; Abrahamsson, Bertil; Fried, Michael; Brasseur, James G.
2004-01-01
The fed human stomach displays regular peristaltic contraction waves that originate in the proximal antrum and propagate to the pylorus. High-resolution concurrent manometry and magnetic resonance imaging (MRI) studies of the stomach suggest a primary function of antral contraction wave (ACW) activity unrelated to gastric emptying. Detailed evaluation is difficult, however, in vivo. Here we analyse the role of ACW activity on intragastric fluid motions, pressure, and mixing with computer simulation. A two-dimensional computer model of the stomach was developed with the 'lattice-Boltzmann' numerical method from the laws of physics, and stomach geometry modelled from MRI. Time changes in gastric volume were specified to match global physiological rates of nutrient liquid emptying. The simulations predicted two basic fluid motions: retrograde 'jets' through ACWs, and circulatory flow between ACWs, both of which contribute to mixing. A well-defined 'zone of mixing', confined to the antrum, was created by the ACWs, with mixing motions enhanced by multiple and narrower ACWs. The simulations also predicted contraction-induced peristaltic pressure waves in the distal antrum consistent with manometric measurements, but with a much lower pressure amplitude than manometric data, indicating that manometric pressure amplitudes reflect direct contact of the catheter with the gastric wall. We conclude that the ACWs are central to gastric mixing, and may also play an indirect role in gastric emptying through local alterations in common cavity pressure. PMID:15615685
Computational Fluid Dynamic simulations of pipe elbow flow.
Homicz, Gregory Francis
2004-08-01
One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and mesh were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation
Turbulent flow computations in complex geometries
NASA Astrophysics Data System (ADS)
Burns, A. D.; Clarke, D. S.; Jones, I. P.; Simcox, S.; Wilkes, N. S.
The nonstaggered-grid Navier-Stokes algorithm of Rhie and Chow (1983) and its implementation in the FLOW3D code (Burns et al., 1987) are described, with a focus on their application to problems involving complex geometries. Results for the flow in a tile-lined burner and for the flow over an automobile model are presented in extensive graphs and discussed in detail, and the advantages of supercomputer vectorization of the code are considered.
Computation of recirculating compressible flow in axisymmetric geometries
Isaac, K.M.; Nejad, A.S.
1985-01-01
A computational study of compressible, turbulent, recirculating flow in axisymmetric geometries is reported in this paper. The SIMPLE algorithm was used in the differencing scheme and the k-epsilon model for turbulence was used for turbulence closure. Special attention was given to the specification of the boundary conditions. The study revealed the significant influence of the boundary conditions on the solution. The eddy length scale at the inlet to the solution domain was the most uncertain parameter in the specification of the boundary conditions. The predictions were compared with the recent data based on laser velocimetry. The two are seen to be in good agreement. The present study underscores the need to have a more reliable means of specifying the inlet boundary conditions for the k-epsilon turbulence model.
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Tulsa Fluid Flow
2008-08-31
The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and
The flow of a thin liquid film on a stationary and rotating disk. II - Theoretical prediction
NASA Technical Reports Server (NTRS)
Rahman, M. M.; Faghri, A.; Hankey, W. L.
1990-01-01
The existing theoretical models are improved and a systematic procedure to compute the free surface flow of a thin liquid film is suggested. The solutions for axisymmetric radial flow on a stationary horizontal disk and for the disk rotating around its axis are presented. The theoretical predictions are compared with the experimental data presented in Part I of this report. The analysis shows results for both supercritical and subcritical flows and the flow structure in the vicinity of a hydraulic jump which isolates these two flow types. The detailed flow structure in a hydraulic jump was computed and shown to contain regions of separation including a 'surface roller'. The effects of surface tension are found to be important near the outer edge of the disk where the fluid experiences a free fall. At other locations, the surface tension is negligible. For a rotating disk, the frictional resistance in the angular direction is found to be as important as that in the radial direction.
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Cem Sarica; Holden Zhang
2006-05-31
The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The
Predictive Anomaly Management for Resilient Virtualized Computing Infrastructures
2015-05-27
SECURITY CLASSIFICATION OF: Large-scale distributed virtualized computing infrastructures have become important platforms for many critical real-world... virtualized computing infrastructures are inevitably prone to various system anomalies caused by software bugs, hardware failures, and resource contentions...2014 Approved for Public Release; Distribution Unlimited Final Report: Predictive Anomaly Management for Resilient Virtualized Computing
Status of flow separation prediction in liquid propellant rocket nozzles
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1974-01-01
Flow separation which plays an important role in the design of a rocket engine nozzle is discussed. For a given ambient pressure, the condition of no flow separation limits the area ratio and, therefore, the vacuum performance. Avoidance of performance loss due to area ratio limitation requires a correct prediction of the flow separation conditions. To provide a better understanding of the flow separation process, the principal behavior of flow separation in a supersonic overexpanded rocket nozzle is described. The hot firing separation tests from various sources are summarized, and the applicability and accuracy of the measurements are described. A comparison of the different data points allows an evaluation of the parameters that affect flow separation. The pertinent flow separation predicting methods, which are divided into theoretical and empirical correlations, are summarized and the numerical results are compared with the experimental points.
NASA Technical Reports Server (NTRS)
Cappelli, Daniele; Mansour, Nagi N.
2012-01-01
Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.
NASA Technical Reports Server (NTRS)
Epton, Michael A.; Magnus, Alfred E.
1990-01-01
An outline of the derivation of the differential equation governing linear subsonic and supersonic potential flow is given. The use of Green's Theorem to obtain an integral equation over the boundary surface is discussed. The engineering techniques incorporated in the Panel Aerodynamics (PAN AIR) program (a discretization method which solves the integral equation for arbitrary first order boundary conditions) are then discussed in detail. Items discussed include the construction of the compressibility transformation, splining techniques, imposition of the boundary conditions, influence coefficient computation (including the concept of the finite part of an integral), computation of pressure coefficients, and computation of forces and moments. Principal revisions to version 3.0 are the following: (1) appendices H and K more fully describe the Aerodynamic Influence Coefficient (AIC) construction; (2) appendix L now provides a complete description of the AIC solution process; (3) appendix P is new and discusses the theory for the new FDP module (which calculates streamlines and offbody points); and (4) numerous small corrections and revisions reflecting the MAG module rewrite.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
A comparative analysis of soft computing techniques for gene prediction.
Goel, Neelam; Singh, Shailendra; Aseri, Trilok Chand
2013-07-01
The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing these sequences, especially predicting genes in them, very important and is currently the focus of many research efforts. Beside its scientific interest in the molecular biology and genomics community, gene prediction is of considerable importance in human health and medicine. A variety of gene prediction techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes the application of certain soft computing techniques in gene prediction. First, the problem of gene prediction and its challenges are described. These are followed by different soft computing techniques along with their application to gene prediction. In addition, a comparative analysis of different soft computing techniques for gene prediction is given. Finally some limitations of the current research activities and future research directions are provided.
Peak power prediction of a vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Yu, V. K.; Chen, D.
2014-12-01
The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Prediction of Hydrodynamics for Unidirectional Flow
2009-01-01
representation of the flow field can be obtained. These methods have also recently been used to correct initial estimates of model parameters (e.g. Losa et...estimation for stochastic systems. Non-linear Processes in Geophysics, 10, 253. Losa , S., Kivman, G., Ryabchenko, V., 2001, Weak constraint parameter
A cavitation model for computations of unsteady cavitating flows
NASA Astrophysics Data System (ADS)
Zhao, Yu; Wang, Guoyu; Huang, Biao
2016-04-01
A local vortical cavitation (LVC) model for the computation of unsteady cavitation is proposed. The model is derived from the Rayleigh-Plesset equations, and takes into account the relations between the cavitation bubble radius and local vortical effects. Calculations of unsteady cloud cavitating flows around a Clark-Y hydrofoil are performed to assess the predictive capability of the LVC model using well-documented experimental data. Compared with the conventional Zwart's model, better agreement is observed between the predictions of the LVC model and experimental data, including measurements of time-averaged flow structures, instantaneous cavity shapes and the frequency of the cloud cavity shedding process. Based on the predictions of the LVC model, it is demonstrated that the evaporation process largely concentrates in the core region of the leading edge vorticity in accordance with the growth in the attached cavity, and the condensation process concentrates in the core region of the trailing edge vorticity, which corresponds to the spread of the rear component of the attached cavity. When the attached cavity breaks up and moves downstream, the condensation area fully transports to the wake region, which is in accordance with the dissipation of the detached cavity. Furthermore, using vorticity transport equations, we also find that the periodic formation, breakup, and shedding of the sheet/cloud cavities, along with the associated baroclinic torque, are important mechanisms for vorticity production and modification. When the attached cavity grows, the liquid-vapour interface that moves towards the trailing edge enhances the vorticity in the attached cavity closure region. As the re-entrant jet moves upstream, the wavy/bubbly cavity interface enhances the vorticity near the trailing edge. At the end of the cycle, the break-up of the stable attached cavity is the main reason for the vorticity enhancement near the suction surface.
Flow Field and Acoustic Predictions for Three-Stream Jets
NASA Technical Reports Server (NTRS)
Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas
2014-01-01
Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.
Computation of Viscous Flow about Advanced Projectiles.
1983-09-09
Domain". Journal of Comp. Physics, Vol. 8, 1971, pp. 392-408. 10. Thompson , J . F ., Thames, F. C., and Mastin, C. M., "Automatic Numerical Generation of...computations, USSR Comput. Math. Math. Phys., 12, 2 (1972), 182-195. I~~ll A - - 18. Thompson , J . F ., F. C. Thames, and C. M. Mastin, Automatic
Computations of the Magnus effect for slender bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Sturek, W. B.; Schiff, L. B.
1980-01-01
A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.
NASA Technical Reports Server (NTRS)
Purdon, David J.; Baruah, Pranab K.; Bussoletti, John E.; Epton, Michael A.; Massena, William A.; Nelson, Franklin D.; Tsurusaki, Kiyoharu
1990-01-01
The Maintenance Document Version 3.0 is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the overall system and each program module of the system. Sufficient detail is given for program maintenance, updating, and modification. It is assumed that the reader is familiar with programming and CRAY computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few CAL language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are COS 1.11, COS 1.12, COS 1.13, and COS 1.14 on the CRAY 1S, 1M, and X-MP computing systems. The system is comprised of a data base management system, a program library, an execution control module, and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a set of CRAY procedures (PAPROCS) was created to automatically supply most of the JCL cards. Most of this document has not changed for Version 3.0. It now, however, strictly applies only to PAN AIR version 3.0. The major changes are: (1) additional sections covering the new FDP module (which calculates streamlines and offbody points); (2) a complete rewrite of the section on the MAG module; and (3) strict applicability to CRAY computing systems.
Three-dimensional external flow computations using prismatic grid
NASA Astrophysics Data System (ADS)
Nakahashi, Kazuhiro
1992-12-01
A new approach to compute external viscous flows around three dimensional configurations is proposed. A prismatic grid is used where the three dimensional surface is covered by triangles similar to the unstructured grid. The direction away from the body surface is structured so as to achieve efficient and accurate computations for high Reynolds number viscous flows. The prismatic grid is generated by a newly developed marching-type procedure in which grid spacings are controlled by a variational method. The capability of the method is demonstrated by applying it to a viscous flow computation around a complete aircraft configuration.
Computational Prediction of RNA Tertiary Structure
NASA Astrophysics Data System (ADS)
Zhao, Yunjie; Gong, Zhou; Chen, Changjun; Xiao, Yi
2012-02-01
RNAs have been found to be involved in the biological processes. The large RNA usually consists of two basic elements: RNA hairpins and duplex. Due to the experimental determination difficulties, the few RNA tertiary structures limit our understanding of the specific regulation mechanisms and functions. Therefore, RNA tertiary structure prediction is very important for understanding RNA biological functions. Since RNA often folds hierarchically, one of the possible RNA structure prediction approaches is through the hierarchical steps. Here, we focus on the prediction method of RNA tertiary hairpin and duplex structures in which assembles the small tertiary structure fragments from well-defined RNA structural motifs. In a benchmark test with known experiment structures, more than half of the cases agree with the experimental structure better than 3 å RMSD over all the heavy atoms. The prediction results also reproduce the native like complementary base pairs of the secondary structures. Most importantly, the method performs the atomic accuracy of tertiary structures by about several minutes. We expect that the method will be a useful resource for RNA tertiary structure prediction and helpful to the biological research community.
NASA Technical Reports Server (NTRS)
Mclean, J. D.; Randall, J. L.
1979-01-01
A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction.
A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.
1989-01-01
A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.
A generalized one dimensional computer code for turbomachinery cooling passage flow calculations
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.
1989-01-01
A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.
Theoretical and computational dynamics of a compressible flow
NASA Technical Reports Server (NTRS)
Pai, Shih-I; Luo, Shijun
1991-01-01
An introduction to the theoretical and computational fluid dynamics of a compressible fluid is presented. The general topics addressed include: thermodynamics and physical properties of compressible fluids; 1D flow of an inviscid compressible fluid; shock waves; fundamental equations of the dynamics of a compressible inviscid non-heat-conducting and radiating fluid, method of small perturbations, linearized theory; 2D subsonic steady potential flow; hodograph and rheograph methods, exact solutions of 2D insentropic steady flow equations, 2D steady transonic and hypersonic flows, method of characteristics, linearized theory of 3D potential flow, nonlinear theory of 3D compressibe flow, anisentropic (rotational) flow of inviscid compressible fluid, electromagnetogasdynamics, multiphase flows, flows of a compressible fluid with transport phenomena.
Efficient Methods to Compute Genomic Predictions
Technology Transfer Automated Retrieval System (TEKTRAN)
Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and simultaneously estimate thousands of marker effects. Algorithms were derived and computer programs tested on simulated data for 50,000 markers and 2,967 bulls. Accurate estimates of ...
Performance Of Bathymetric Lidar On Flow Properties Predicted With A 2-Dimensional Hydraulic Model
NASA Astrophysics Data System (ADS)
Tonina, D.; McKean, J. A.; Wright, C. W.
2014-12-01
Increased computer processing speeds and new computational fluid dynamics codes have significantly improved numerical modeling of flow and sediment transport over large domains of streams, up to several kilometers in length. Recent developments in remote sensing technologies have also greatly improved our ability to map the morphology of streams over similar spatial extents. However, limited information is available on whether the remote sensing methods can map channel topography with sufficient accuracy to define the flow boundary necessary for a fluid dynamics model. We assessed the ability of a second generation airborne bathymetric sensor, the Experimental Advanced Airborne Research Lidar (EAARL-B), to support a two dimensional fluid dynamics model of a small morphologically-complex mountain stream. We compared flow model predictions using the lidar bathymetry with those made using a total station field survey of the channel. In this riverscape, results suggest EAARL bathymetric lidar can map channel topography with sufficient accuracy to support a two dimensional computational flow model.
Computing organic stereoselectivity - from concepts to quantitative calculations and predictions.
Peng, Qian; Duarte, Fernanda; Paton, Robert S
2016-11-07
Advances in theory and processing power have established computation as a valuable interpretative and predictive tool in the discovery of new asymmetric catalysts. This tutorial review outlines the theory and practice of modeling stereoselective reactions. Recent examples illustrate how an understanding of the fundamental principles and the application of state-of-the-art computational methods may be used to gain mechanistic insight into organic and organometallic reactions. We highlight the emerging potential of this computational tool-box in providing meaningful predictions for the rational design of asymmetric catalysts. We present an accessible account of the field to encourage future synergy between computation and experiment.
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1993-01-01
Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.
Computational Flow Modeling of a Simplified Integrated Tractor-Trailer Geometry
Salari, K; McWherter-Payne, M
2003-09-15
For several years, Sandia National Laboratories and Lawrence Livermore National Laboratory have been part of a consortium funded by the Department of Energy to improve fuel efficiency of heavy vehicles such as Class 8 trucks through aerodynamic drag reduction. The objective of this work is to demonstrate the feasibility of using the steady Reynolds-Averaged Navier-Stokes (RANS) approach to predict the flow field around heavy vehicles, with special emphasis on the base region of the trailer, and to compute the aerodynamic forces. In particular, Sandia's computational fluid dynamics code, SACCARA, was used to simulate the flow on a simplified model of a tractor-trailer vehicle. The results are presented and compared with NASA Ames experimental data to assess the predictive capability of RANS to model the flow field and predict the aerodynamic forces.
Computational flow modeling of a simplified integrated tractor-trailer geometry.
McWherter-Payne, Mary Anna; Salari, Kambiz
2003-09-01
For several years, Sandia National Laboratories and Lawrence Livermore National Laboratory have been part of a consortium funded by the Department of Energy to improve fuel efficiency of heavy vehicles such as Class 8 trucks through aerodynamic drag reduction. The objective of this work is to demonstrate the feasibility of using the steady Reynolds-Averaged Navier-Stokes (RANS) approach to predict the flow field around heavy vehicles, with special emphasis on the base region of the trailer, and to compute the aerodynamic forces. In particular, Sandia's computational fluid dynamics code, SACCARA, was used to simulate the flow on a simplified model of a tractor-trailer vehicle. The results are presented and compared with NASA Ames experimental data to assess the predictive capability of RANS to model the flow field and predict the aerodynamic forces.
NASA Technical Reports Server (NTRS)
Baruah, P. K.; Bussoletti, J. E.; Chiang, D. T.; Massena, W. A.; Nelson, F. D.; Furdon, D. J.; Tsurusaki, K.
1981-01-01
The Maintenance Document is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the over-all system and each program module of the system. Sufficient detail is given for program maintenance, updating and modification. It is assumed that the reader is familiar with programming and CDC (Control Data Corporation) computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few COMPASS language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are NOS 1.2, NOS/BE and SCOPE 2.1.3 on the CDC 6600, 7600 and Cyber 175 computing systems. The system is comprised of a data management system, a program library, an execution control module and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a separate module called MEC (Module Execution Control) was created to automatically supply most of the JCL cards. In addition to the MEC generated JCL, there is an additional set of user supplied JCL cards to initiate the JCL sequence stored on the system.
Prediction of laminar and turbulent primary and secondary flows in strongly curved ducts
NASA Technical Reports Server (NTRS)
Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.
1981-01-01
The analysis is based on a primary secondary velocity decomposition in a given coordinate system, and leads to approximate governing equations which correct an a priori inviscid solution for viscous effects, secondary flows, total pressure distortion, heat transfer, and internal flow blockage and losses. Solution of the correction equations is accomplished as an initial value problem in space using an implicit forward marching technique. The overall solution procedure requires significantly less computational effort than Navier-Stokes algorithms. The solution procedure is effective even with the extreme local mesh resolution which is necessary to solve near wall sublayer regions in turbulent flow calculations. Computed solutions for both laminar and turbulent flow compared very favorably with available analytical and experimental results. The overall method appears very promising as an economical procedure for making detailed predictions of viscous primary and secondary flows in highly curved passages.
Predicting the temporal variation of flow contributing areas using SWAT
NASA Astrophysics Data System (ADS)
Golmohammadi, Golmar; Rudra, Ramesh; Dickinson, Trevor; Goel, Pradeep; Veliz, Mari
2017-04-01
This study assessed the capability of soil and water assessment tool (SWAT) to identify areas contributing to flow in the Gully Creek Watershed in Ontario. The SWAT model predicted the streamflow at the outlet of the watershed, with monthly and daily Nash-Sutcliffe efficiencies of 0.75 and 0.60 during the validation period. In addition to the daily streamflow data, the flow was also observed at 16 monitoring stations during 6 different events. The validated model was then used to simulate flow at the monitoring stations. The effect of watershed delineation on streamflow and events at 16 monitoring station were then examined by SWAT. The delineation of 99 subbasins, with highest efficiency was selected for the purpose of predicting the potential flow contributing areas with the model. Overall, the flow events were overestimated by SWAT. Temporal variations in the potential flow contributing areas during each event were then analyzed. Flow contributing areas during each event was predicted by the model first and the results showed a good agreement with available information. A current precipitation index was used to simulate the continuous change of soil water content during each rainstorm, and the modeling results of the individual events were used to explore the capability of the model to predict the temporal variation of flow contributing areas during each event. The results revealed that the SWAT model over-predicted the areas contributing flow for events with lower rainfall; while for the events with higher rainfall amount the model closely simulated the time-varying contributing area. The results of this study provide some insight into the possible capability of SWAT model to predict the temporal variations in potential contributing area, and therefore provide an important contribution to the modeling of runoff generation in watersheds, a vital aspect in the evaluation and planning of best management practices.
Debris flow hazards mitigation--Mechanics, prediction, and assessment
Chen, C.-L.; Major, J.J.
2007-01-01
These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.
Computer program to predict aircraft noise levels
NASA Technical Reports Server (NTRS)
Clark, B. J.
1981-01-01
Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.
Panel-Method Computer Code For Potential Flow
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Dudley, Michael R.; Iguchi, Steven K.
1992-01-01
Low-order panel method used to reduce computation time. Panel code PMARC (Panel Method Ames Research Center) numerically simulates flow field around or through complex three-dimensional bodies such as complete aircraft models or wind tunnel. Based on potential-flow theory. Facilitates addition of new features to code and tailoring of code to specific problems and computer-hardware constraints. Written in standard FORTRAN 77.
Numerical treatment of shocks in unsteady potential flow computation
NASA Astrophysics Data System (ADS)
Schippers, H.
1985-04-01
For moving shocks in unsteady transonic potential flow, an implicit fully-conservative finite-difference algorithm is presented. It is based on time-linearization and mass-flux splitting. For the one-dimensional problem of a traveling shock-wave, this algorithm is compared with the method of Goorjian and Shankar. The algorithm was implemented in the computer program TULIPS for the computation of transonic unsteady flow about airfoils. Numerical results for a pitching ONERA M6 airfoil are presented.
Simulating Subsurface Reactive Flows on Ultrascale Computers with PFLOTRAN
NASA Astrophysics Data System (ADS)
Mills, R. T.; Hammond, G. E.; Lichtner, P. C.; Lu, C.; Smith, B. F.; Philip, B.
2009-12-01
To provide true predictive utility, subsurface simulations often must accurately resolve--in three dimensions--complicated, multi-phase flow fields in highly heterogeneous geology with numerous chemical species and complex chemistry. This task is especially daunting because of the wide range of spatial scales involved--from the pore scale to the field scale--ranging over six orders of magnitude, and the wide range of time scales ranging from seconds or less to millions of years. This represents a true "Grand Challenge" computational problem, requiring not only the largest-scale ("ultrascale") supercomputers, but accompanying advances in algorithms for the efficient numerical solution of systems of PDEs using these machines, and in mathematical modeling techniques that can adequately capture the truly multi-scale nature of these problems. We describe some of the specific challenges involved and present the software and algorithmic approaches that are being using in the computer code PFLOTRAN to provide scalable performance for such simulations on tens of thousands of processors. We focus particularly on scalable techniques for solving the large (up to billions of total degrees of freedom), sparse algebraic systems that arise. We also describe ongoing work to address disparate time and spatial scales by both the development of adaptive mesh refinement methods and the use of multiple continuum formulations. Finally, we present some examples from recent simulations conducted on Jaguar, the 150152 processor core Cray XT5 system at Oak Ridge National Laboratory that is currently one of the most powerful supercomputers in the world.
MODFLOW 2. 0: A program for predicting moderator flow patterns
Peterson, P.F. . Dept. of Nuclear Engineering); Paik, I.K. )
1991-07-01
Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.
Use of computer graphics for visualization of flow fields
NASA Technical Reports Server (NTRS)
Watson, Val; Buning, Pieter; Choi, Diana; Bancroft, Gordon; Merritt, Fergus; Rogers, Stuart
1987-01-01
A high-performance graphics workstation has been combined with software developed for flow-field visualization to yield a highly effective tool for analysis of fluid-flow dynamics. After the flow fields are obtained from experimental measurements or computer simulations, the workstation permits one to interactively view the dynamics of the flow fields; e.g., the viewer can zoom into a region or rotate his viewing position about the region to study it in more detail. Several techniques for visualization of flow fields with this workstation are described in this paper and illustrated with a videotape available from the authors. The computer hardware and software required to create effective flow visualization displays are discussed. Additional software and hardware required to create videotapes or 16mm movies are also described. Limitations imposed by current workstation performance is addressed and future workstation performance is forecast.
Asymmetric energy flow in liquid alkylbenzenes: A computational study
Leitner, David M.; Pandey, Hari Datt
2015-10-14
Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes.
Predicting Rediated Noise With Power Flow Finite Element Analysis
2007-02-01
Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated
A procedure for computation of fully stalled flows in two-dimensional passages
NASA Technical Reports Server (NTRS)
Woolley, R. L.; Kline, S. J.
1978-01-01
A procedure is described for computation of incompressible, steady, two-dimensional flows in fully stalled diffusers with plenum exit. The procedure is successful in predicting pressure distributions and patterns to the accuracy of the data. The procedure employs a zonal model; this maintains close connections between the modeling and the physics thereby providing insight into critical aspects of modeling separated flows. The procedure presented is also convenient for computing unstalled flows in passages with turbulent boundary layers for either direct or indirect design problems. Computing times are well within engineering feasibility. The concepts developed can be extended to other classes of separated flows; some of these extensions have already been completed and are referenced.
Three dimensional flow computations in a turbine scroll
NASA Technical Reports Server (NTRS)
Hamed, A.; Ghantous, C. A.
1982-01-01
The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.
Computational methods for internal flows with emphasis on turbomachinery
NASA Technical Reports Server (NTRS)
Mcnally, W. D.; Sockol, P. M.
1981-01-01
Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed.
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Rhode, D. L.
1982-01-01
A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.
Computational Analysis of Multi-Rotor Flows
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.
2016-01-01
Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.
Application of CFD to sonic boom near and mid flow-field prediction
NASA Technical Reports Server (NTRS)
Cheung, Samson H.; Edwards, Thomas A.; Lawrence, Scott L.
1990-01-01
A 3-D parabolized Navier-Stokes (PNS) code was used to calculate the supersonic overpressures from three different geometries at near- and mid-flow fields. Wind tunnel data is used for code validation. Comparison of the computed results with different grid refinements is shown. It is observed that a large number of grid points is needed to resolve the tail shock/expansion fan interaction. Therefore, an adaptive grid approach is employed to calculate the flow field. The agreement between the numerical results and the wind tunnel data confirms that computational fluid dynamics can be applied to the problem of sonic boom prediction.
Prediction of and Differences in Computer Use When Universally Available.
ERIC Educational Resources Information Center
Corwin, Terry; Marcinkiewicz, Henryk
This paper reports results of a longitudinal study of faculty (n=85) at three undergraduate institutions in North Dakota that adopted notebook computers for their faculty and students--Valley City State University, Mayville State University, and Jamestown College. Questions examined included the variables that might predict computer use by faculty…
Computation of subsonic base flow on a vector processor
NASA Technical Reports Server (NTRS)
Rudy, D. H.
1987-01-01
Two-dimensional subsonic laminar compressible base flow has been studied using numerical solutions of the time-dependent Navier-Stokes equations. These solutions were obtained using an explicit finite-difference scheme which is highly efficient on a vector processor. The organization of the code for a CDC CYBER-205 computer is described. Solutions were obtained for Mach 0.4 and 0.6 flows past a slender blunt-based model at moderately high Reynolds numbers. The flow in the wake is unsteady with periodic shedding of vortices from the trailing edge. The computed shedding frequency was found to increase with increasing Reynolds number.
Predictive Computational Modeling of Chromatin Folding
NASA Astrophysics Data System (ADS)
di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.
In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.
Prediction of forces and moments on finned bodies at high angle of attack in transonic flow
Oberkampf, W. L.
1981-04-01
This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.
Computational Study of Nonequilibrium Chemistry in High Temperature Flows
NASA Astrophysics Data System (ADS)
Doraiswamy, Sriram
Recent experimental measurements in the reflected shock tunnel CUBRC LENS-I facility raise questions about our ability to correctly model the recombination processes in high enthalpy flows. In the carbon dioxide flow, the computed shock standoff distance over the Mars Science Laboratory (MSL) shape was less than half of the experimental result. For the oxygen flows, both pressure and heat transfer data on the double cone geometry were not correctly predicted. The objective of this work is to investigate possible reasons for these discrepancies. This process involves systematically addressing different factors that could possibly explain the differences. These factors include vibrational modeling, role of electronic states and chemistry-vibrational coupling in high enthalpy flows. A state-specific vibrational model for CO2, CO, O2 and O system is devised by taking into account the first few vibrational states of each species. All vibrational states with energies at or below 1 eV are included in the present work. Of the three modes of vibration in CO2 , the antisymmetric mode is considered separately from the symmetric stretching mode and the doubly degenerate bending modes. The symmetric and the bending modes are grouped together since the energy transfer rates between the two modes are very large due to Fermi resonance. The symmetric and bending modes are assumed to be in equilibrium with the translational and rotational modes. The kinetic rates for the vibrational-translation energy exchange reactions, and the intermolecular and intramolecular vibrational-vibrational energy exchange reactions are based on experimental data to the maximum extent possible. Extrapolation methods are employed when necessary. This vibrational model is then coupled with an axisymmetric computational fluid dynamics code to study the expansion of CO2 in a nozzle. The potential role of low lying electronic states is also investigated. Carbon dioxide has a single excited state just below
A comparative study of computational solutions to flow over a backward-facing step
NASA Technical Reports Server (NTRS)
Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.
1993-01-01
A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.
Computational and Experimental Investigations of Turbulent Flow Past Projectiles
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Carlucci, Pasquale; Carlucci, Donald; Thangam, Siva
2008-11-01
Experimental and computational investigations of turbulent flow past projectiles is modeled as axial flow past a cylinder with a free-spinning base. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. In addition, a free-jet facility is used for benchmarking the experimental set up. Experiments are performed for a range of spin rates and free stream flow conditions. An anisotropic two-equation Reynolds-stress model that incorporates the effect of rotation-modified energy spectrum and swirl is used to perform computations for the flow past axially rotating cylinders. Both rigid cylinders as well as that of cylinders with free-spinning base are considered from a computational point of view. Applications involving the design of projectiles are discussed.
Computation of multi-dimensional viscous supersonic jet flow
NASA Technical Reports Server (NTRS)
Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.
1986-01-01
A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Computation of three-dimensional flows using two stream functions
NASA Technical Reports Server (NTRS)
Greywall, Mahesh S.
1991-01-01
An approach to compute 3-D flows using two stream functions is presented. The method generates a boundary fitted grid as part of its solution. Commonly used two steps for computing the flow fields are combined into a single step in the present approach: (1) boundary fitted grid generation; and (2) solution of Navier-Stokes equations on the generated grid. The presented method can be used to directly compute 3-D viscous flows, or the potential flow approximation of this method can be used to generate grids for other algorithms to compute 3-D viscous flows. The independent variables used are chi, a spatial coordinate, and xi and eta, values of stream functions along two sets of suitably chosen intersecting stream surfaces. The dependent variables used are the streamwise velocity, and two functions that describe the stream surfaces. Since for a 3-D flow there is no unique way to define two sets of intersecting stream surfaces to cover the given flow, different types of two sets of intersecting stream surfaces are considered. First, the metric of the (chi, xi, eta) curvilinear coordinate system associated with each type is presented. Next, equations for the steady state transport of mass, momentum, and energy are presented in terms of the metric of the (chi, xi, eta) coordinate system. Also included are the inviscid and the parabolized approximations to the general transport equations.
Numerical computation of space shuttle orbiter flow field
NASA Technical Reports Server (NTRS)
Tannehill, John C.
1988-01-01
A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one
MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS
Joseph Katz and Omar Knio
2007-01-10
The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions
NASA Astrophysics Data System (ADS)
Lee, J. J.
1990-01-01
A computational procedure is employed to predict the axisymmetric reactive turbulent recirculating flow-field within a cylindrical MHD combustor. The procedure used in the analysis is an extended version of the three-dimensional Combustor Performance Program developed at the Garrett Turbine Engine Company. The separated flow created by four liquid fuel nozzles and 148 oxidizer holes passing through an injector plate is examined. Numerical results for flow, heat/mass transfer and combustion are presented to describe these complex three-dimensional interactions. The detailed analysis achieved by the numerical model is useful for evaluating combustor performance and in the interpretation of laboratory test data.
Computation of transonic potential flow about 3 dimensional inlets, ducts, and bodies
NASA Technical Reports Server (NTRS)
Reyhner, T. A.
1982-01-01
An analysis was developed and a computer code, P465 Version A, written for the prediction of transonic potential flow about three dimensional objects including inlet, duct, and body geometries. Finite differences and line relaxation are used to solve the complete potential flow equation. The coordinate system used for the calculations is independent of body geometry. Cylindrical coordinates are used for the computer code. The analysis is programmed in extended FORTRAN 4 for the CYBER 203 vector computer. The programming of the analysis is oriented toward taking advantage of the vector processing capabilities of this computer. Comparisons of computed results with experimental measurements are presented to verify the analysis. Descriptions of program input and output formats are also presented.
Cluster Computation of Flight Reynolds Number Flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.; Smith, Merritt H.; Kutler, Paul (Technical Monitor)
1994-01-01
The performance of a workstation cluster used for the solution of the Reynolds-averaged Navier-Stokes equations is compared with a conventional vector supercomputer architecture. The application simulation of the steady flowfield about a transonic transport was computed using an implicit diagonal scheme in an overset mesh framework. Static load balancing was used, while coarse grain decomposition was achieved by solution of a grid zone per processor. Price/performance ratios are estimated for several scenarios in which such clusters may be utilized.
The very local Hubble flow: Computer simulations of dynamical history
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Makarov, D. I.
2004-02-01
The phenomenon of the very local (≤3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the ``initial conditions'' of the flow are drastically different from the linear velocity-distance relation. The simulations enable one also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by the cosmic vacuum.
Computational Approaches to Predict Indices of ...
As nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g., oligotrophic) to higher trophic states (e.g., eutrophic). These broad trophic state classifications are good predictors of ecosystem health and the potential for ecosystem services (e.g., recreation, aesthetics, and fisheries). Additionally, some ecosystem disservices, such as cyanobacteria blooms, are also associated with increased nutrient inputs. Thus, trophic state can be used as a proxy for cyanobacteria bloom risk. To explore this idea, we construct two random forest models of trophic state (as determined by chlorophyll a concentration). First we define an “All Variable” model that estimates trophic state with both in situ and universally available data, and then we reduce this to a “GIS Only” model that uses only the universally available data. The “All Variables” model had a root mean square error (RMSE) of 0.09 and R2 of 0.8; whereas, the “GIS Only” model was 0.22 and 0.48 for RMSE and R2, respectively. Examining the “GIS Only” model (i.e., the model that has broadest applicability) we see that in spite of lower overall accuracy, it still has better than even odds (i.e., prediction probability is > 50%) of being correct in more than 1091 of the 1138 lakes included in this model. The “GIS Only” model has tremendous potential for exploring spatial trends at the national level since the datasets required to parameterize the
Prediction of flow profiles in arteries from local measurements.
NASA Technical Reports Server (NTRS)
Ling, S. C.; Atabek, H. B.
1971-01-01
This paper develops an approximate numerical method for calculating flow profiles in arteries. The theory takes into account the nonlinear terms of the Navier-Stokes equations as well as the large deformations of the arterial wall. The method, assuming axially symmetric flow, determines velocity distribution and wall shear at a given location from the locally measured values of the pressure, pressure gradient, and pressure-radius relation. The computed results agree well with the corresponding experimental data.
NASA Technical Reports Server (NTRS)
Putnam, L. E.
1979-01-01
A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.
Characterization of Unsteady Flow Structures Near Landing-Edge Slat. Part 2; 2D Computations
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi; Choudhari, Meelan M.; Jenkins, Luther N.
2004-01-01
In our previous computational studies of a generic high-lift configuration, quasi-laminar (as opposed to fully turbulent) treatment of the slat cove region proved to be an effective approach for capturing the unsteady dynamics of the cove flow field. Combined with acoustic propagation via Ffowes Williams and Hawkings formulation, the quasi-laminar simulations captured some important features of the slat cove noise measured with microphone array techniques. However. a direct assessment of the computed cove flow field was not feasible due to the unavailability of off-surface flow measurements. To remedy this shortcoming, we have undertaken a combined experiment and computational study aimed at characterizing the flow structures and fluid mechanical processes within the slat cove region. Part I of this paper outlines the experimental aspects of this investigation focused on the 30P30N high-lift configuration; the present paper describes the accompanying computational results including a comparison between computation and experiment at various angles of attack. Even through predictions of the time-averaged flow field agree well with the measured data, the study indicates the need for further refinement of the zonal turbulence approach in order to capture the full dynamics of the cove's fluctuating flow field.
Transonic Flow Computations Using Nonlinear Potential Methods
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
2000-01-01
This presentation describes the state of transonic flow simulation using nonlinear potential methods for external aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations, including steady, unsteady, space marching, and design methods, are described. Both spatial discretization and iteration scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommendations for future work. Overall. nonlinear potential solvers are efficient, highly developed and routinely used in the aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
NASA Technical Reports Server (NTRS)
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1990-01-01
Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.
Prediction of pressure fluctuations in turbulent flows using the immersed boundary method
NASA Astrophysics Data System (ADS)
Kang, Seongwon; Iaccarino, Gianluca; Ham, Frank; Moin, Parviz
2009-11-01
The immersed boundary (IB) method has been widely used to model flow problems in complex geometries. We investigate the capability of the IB method to predict wall pressure fluctuations in turbulent flows. We introduce a new numerical treatment of the cells crossed by the IB that ensures mass consrvation and provides accurate evaluation of the wall pressure. The present approach has been successfully validated through computations of the space-time correlations of the wall-pressure fluctuations. Compared to the original IB method (Fadlun et al., 2000), the present approach shows better agreement with the standard DNS results. When applied to turbulent flow around an airfoil, the computed flow statistics - the mean/RMS and power spectra of the wall pressure - are in good agreement with the LES performed on body- fitted mesh and experiment (Roger and Moreau, 2004).
Computation of turbulent incompressible wing-body junction flow
NASA Technical Reports Server (NTRS)
Burke, R. W.
1989-01-01
A three-dimensional incompressible Reynolds-averaged Navier-Stokes solver is presently used in conjunction with a mixing-length turbulence model to characterize the flow around a wing that is mounted on a flat plate, in a wind tunnel, as well as the flow around a support strut within a turnaround duct. Good agreement is found between predicted and observed values of flat-plate static pressure, horseshoe vortex system size, and mean flow velocities in the case of the wing; the case of the strut in a duct is noted to exhibit many of the same overall flow features as the wing/plate.
Prediction of Flow-Induced Noise Over a Realistic Automotive Vehicle
NASA Astrophysics Data System (ADS)
Jeong, Jaeyong; Park, Junshin; You, Donghyun
2016-11-01
Turbulent flow interacting with the front parts of an automotive vehicle, such as the cowl-top, A-pillars, and side mirrors are known to be significant sources of acoustic noise. In the present study, sources and propagation of acoustic noise generated over the front parts of a realistic automotive vehicle, known as the DrivAer model are predicted using a novel hydrodynamics-acoustics splitting method. Large eddy simulations are conducted to predict the turbulent flow field which is employed to compute noise sources, while of which accuracy is validated against experimental data. Acoustic fields are predicted using immersed-boundary linearized perturbed compressible equations. Discussion on turbulent flow fields, acoustic sources, and acoustic wave propagation are presented. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning Grant NRF-2014R1A2A1A11049599.
Prediction of vortex shedding from circular and noncircular bodies in subsonic flow
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J.
1987-01-01
An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.
Computational approach for probing the flow through artificial heart devices.
Kiris, C; Kwak, D; Rogers, S; Chang, I D
1997-11-01
Computational fluid dynamics (CFD) has become an indispensable part of aerospace research and design. The solution procedure for incompressible Navier-Stokes equations can be used for biofluid mechanics research. The computational approach provides detailed knowledge of the flowfield complementary to that obtained by experimental measurements. This paper illustrates the extension of CFD techniques to artificial heart flow simulation. Unsteady incompressible Navier-Stokes equations written in three-dimensional generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudocompressibility approach. It uses an implicit upwind-differencing scheme together with the Gauss-Seidel line-relaxation method. The efficiency and robustness of the time-accurate formulation of the numerical algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated by experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapped grid embedding scheme are employed, respectively. Steady-state solutions for the flow through a tilting-disk heart valve are compared with experimental measurements. Good agreement is obtained. Aided by experimental data, the flow through an entire Penn State artificial heart model is computed.
Applications of a curvature correction turbulent model for computations of unsteady cavitating flows
NASA Astrophysics Data System (ADS)
Zhao, Y.; Wang, G. Y.; Huang, B.; Hu, C. L.
2015-01-01
A Curvature Correction model (CCM) based on the original k-epsilon model is proposed to simulate unsteady cavitating flows. The objective of this study is to validate the CCM model and further investigate the unsteady vortex behaviors of cavitating flows around a Clark-Y hydrofoil. Compared with the original k-epsilon model, predicted results are improved in terms of the cavity detachment and hydrofoil fluctuations. Results show that streamline curvature correction of CCM model overcomes the over-predictions of turbulence kinetic energy and eddy viscosity in cavitating vertical region with the original k-epsilon model, which leads to better simulation abilities for the unsteady cavitating flow computations. Based on computations, it is proved that the vortex structure is significantly modified by the transient cavitation, especially with respect to the cavity shedding behaviors. Complex vortex interactions and corresponding cavity shedding process near hydrofoil trailing edge lead to various load frequencies.
Prediction of flow duration curves for ungauged basins
NASA Astrophysics Data System (ADS)
Atieh, Maya; Taylor, Graham; Sattar, Ahmed M. A.; Gharabaghi, Bahram
2017-02-01
This study presents novel models for prediction of flow Duration Curves (FDCs) at ungauged basins using artificial neural networks (ANN) and Gene Expression Programming (GEP) trained and tested using historical flow records from 171 unregulated and 89 regulated basins across North America. For the 89 regulated basins, FDCs were generated for both before and after flow regulation. Topographic, climatic, and land use characteristics are used to develop relationships between these basin characteristics and FDC statistical distribution parameters: mean (m) and variance (ν). The two main hypotheses that flow regulation has negligible effect on the mean (m) while it the variance (ν) were confirmed. The novel GEP model that predicts the mean (GEP-m) performed very well with high R2 (0.9) and D (0.95) values and low RAE value of 0.25. The simple regression model that predicts the variance (REG-v) was developed as a function of the mean (m) and a flow regulation index (R). The measured performance and uncertainty analysis indicated that the ANN-m was the best performing model with R2 (0.97), RAE (0.21), D (0.93) and the lowest 95% confidence prediction error interval (+0.22 to +3.49). Both GEP and ANN models were most sensitive to drainage area followed by mean annual precipitation, apportionment entropy disorder index, and shape factor.
Flow-based model of computer hackers' motivation.
Voiskounsky, Alexander E; Smyslova, Olga V
2003-04-01
Hackers' psychology, widely discussed in the media, is almost entirely unexplored by psychologists. In this study, hackers' motivation is investigated, using the flow paradigm. Flow is likely to motivate hackers, according to views expressed by researchers and by hackers themselves. Taken as granted that hackers experience flow, it was hypothesized that flow increases with the increase of hackers' competence in IT use. Self-selected subjects were recruited on specialized web sources; 457 hackers filled out a web questionnaire. Competence in IT use, specific flow experience, and demographic data were questioned. An on-line research was administered within the Russian-speaking community (though one third of Ss are non-residents of Russian Federation); since hacking seems to be international, the belief is expressed that the results are universal. The hypothesis is not confirmed: flow motivation characterizes the least and the most competent hackers, and the members of an intermediate group, that is, averagely competent Ss report the "flow crisis"-no (or less) flow experience. Two differing strategies of task choice were self-reported by Ss: a step-by-step increase of the difficulty of choices leads to a match of challenges and skills (and to preserving the flow experience); putting choices irrespective of the likelihood of solution leads to a "flow crisis." The findings give productive hints on processes of hackers' motivational development. The flow-based model of computer hackers' motivation was developed. It combines both empirically confirmed and theoretically possible ways of hackers' "professional" growth.
Computation of steady axisymmetric flow using a one-dimensional time-dependent method
NASA Technical Reports Server (NTRS)
Walitt, L.
1974-01-01
An iterative numerical method for computing steady, three dimensional, viscous, compressible flow fields, about aerodynamic bodies was studied. In order to develop the iterative method economically, the primary emphasis was directed towards supersonic, axisymmetric flow. However, the technique readily extends to three spatial dimensions. The viscous flow field about a cone-cylinder-flare body was calculated and compared to existing experimental data. Numerical predictions of the cone boundary layer and the flow field shock wave structure agreed with corresponding measurements. A separation was calculated at the cylinder-flare junction in six iterations; however, the size of the vortex did not correspond to the measured size. It was estimated that fifty iterations would be required to properly define the vortex. It was concluded that the iteration technique is of limited value for plane two dimensional and axisymmetrix flows, but of great value for three-dimensional flows.
Computer-controlled positive displacement pump for physiological flow simulation.
Holdsworth, D W; Rickey, D W; Drangova, M; Miller, D J; Fenster, A
1991-11-01
A computer-controlled pump for use both in the study of vascular haemodynamics and in the calibration of clinical devices which measure blood flow is designed. The novel design of this pump incorporates two rack-mounted pistons, driven into opposing cylinders by a micro-stepping motor. This approach allows the production of nearly uninterrupted steady flow, as well as a variety of pulsatile waveforms, including waveforms with reverse flow. The capabilities of this pump to produce steady flow from 0.1 to 60 ml s-1, as well as sinusoidal flow and physiological flow, such as that found in the common femoral and common carotid arteries are demonstrated. Cycle-to-cycle reproducibility is very good, with an average variation of 0.1 ml s-1 over thousands of cycles.
Validation of a flow-structure-interaction computation model of phonation
Bhattacharya, Pinaki; Siegmund, Thomas
2014-01-01
Computational models of vocal fold (VF) vibration are becoming increasingly sophisticated, their utility currently transiting from exploratory research to predictive research. However, validation of such models has remained largely qualitative, raising questions over their applicability to interpret clinical situations. In this paper, a computational model with a segregated implementation is detailed. The model is used to predict the fluid–structure interaction (FSI) observed in a physical replica of the VFs when it is excited by airflow. Detailed quantitative comparisons are provided between the computational model and the corresponding experiment. First, the flow model is separately validated in the absence of VF motion. Then, in the presence of flow-induced VF motion, comparisons are made of the flow pressure on the VF walls and of the resulting VF displacements. Self-similarity of spatial distributions of flow pressure and VF displacements is highlighted. The self-similarity leads to normalized pressure and displacement profiles. It is shown that by using linear superposition of average and fluctuation components of normalized computed displacements, it is possible to determine displacements in the physical VF replica over a range of VF vibration conditions. Mechanical stresses in the VF interior are related to the VF displacements, thereby the computational model can also determine VF stresses over a range of phonation conditions. PMID:25125796
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.
2013-01-01
Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.
Scaling predictive modeling in drug development with cloud computing.
Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola
2015-01-26
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.
Predictive Control of Networked Multiagent Systems via Cloud Computing.
Liu, Guo-Ping
2017-01-18
This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.
The computation of thermo-chemical nonequilibrium hypersonic flows
NASA Technical Reports Server (NTRS)
Candler, Graham
1989-01-01
Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds have been developed recently. For the proposed flight conditions the air in the shock layer that envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational excitation, and ionization. However, these processes occur at finite rates which, when coupled with large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design. A numerical method to solve the equations that describe these types of flows in 2-D was developed. The state of the gas is represented with seven chemical species, a separate vibrational temperature for each diatomic species, an electron translational temperature, and a mass-average translational-rotational temperature for the heavy particles. The equations for this gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and flux-dependent differencing is employed to maintain stability. The numerical method was tested against several experiments. The calculated bow shock wave detachment on a sphere and two cones was compared to those measured in ground testing facilities. The computed peak electron number density on a sphere-cone was compared to that measured in a flight test. In each case the results from the numerical method were in excellent agreement with experiment. The technique was used to predict the aerothermal loads on an Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the current physical model of high temperature air is appropriate and that the numerical algorithm is capable of treating this class of flows.
Applications of URANS on predicting unsteady turbulent separated flows
NASA Astrophysics Data System (ADS)
Xu, Jinglei; Ma, Huiyang
2009-06-01
Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practical challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.
NASA Astrophysics Data System (ADS)
Prakash, Ram; Gai, Sudhir L.; O'Byrne, Sean; Brown, Melrose
2016-11-01
The flow over a `tick' shaped configuration is performed using two Direct Simulation Monte Carlo codes: the DS2V code of Bird and the code from Sandia National Laboratory, called SPARTA. The configuration creates a flow field, where the flow is expanded initially but then is affected by the adverse pressure gradient induced by a compression surface. The flow field is challenging in the sense that the full flow domain is comprised of localized areas spanning continuum and transitional regimes. The present work focuses on the capability of SPARTA to model such flow conditions and also towards a comparative evaluation with results from DS2V. An extensive grid adaptation study is performed using both the codes on a model with a sharp leading edge and the converged results are then compared. The computational predictions are evaluated in terms of surface parameters such as heat flux, shear stress, pressure and velocity slip. SPARTA consistently predicts higher values for these surface properties. The skin friction predictions of both the codes don't give any indication of separation but the velocity slip plots indicate an incipient separation behavior at the corner. The differences in the results are attributed towards the flow resolution at the leading edge that dictates the downstream flow characteristics.
Computation of supersonic turbulent flow past a spinning cone
NASA Technical Reports Server (NTRS)
Agarwal, R. K.
1982-01-01
Computational results are presented for supersonic laminar and turbulent flow past a pointed cone at angle of attack obtained with a parabolic Navier-Stokes marching code. The code takes into account the asymmetries in the flowfield resulting from spinning motion and computes the asymmetric shock shape, crossflow and streamwise shear, heat transfer, crossflow separation, and vortex structure. The Magnus force and moments are also computed. Comparisons are made with other analyses based on boundary-layer equations. For certain laminar flow conditions, an anomaly is discovered in the displacement thickness contribution to the Magnus force when compared with boundary-layer results. For turbulent flow, at small angles of attack, good agreement is obtained with the experimental data and other theoretical results.
Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2001-01-01
This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.
Computer and water-model simulation of flow through poppet valves
NASA Astrophysics Data System (ADS)
Qin, H. Q.
1984-10-01
A computer code embodying a two equation turbulence model simulated two-dimensional steady flows through axisymmetric pipe expansions, with and without partial obstruction by a poppet valve. Steady and unsteady laminar flows through the valves were considered. The effect of valve geometry on the discharge coefficient was investigated. Satisfactory agreement is obtained between the predicted values of the discharge coefficient and experimental data. A water-model rig of a valve port and cylinder was used to visualize the flow pattern near the plane of enlargement. The computer simulation of such flows is validated by photographs of vortices. The experiments reveal that the mixing process in the circumferential direction, especially within the cores of toroidal vortices, takes place with unexpected rapidity. This diffusion cannot be reliably accounted for with the information available.
Systematic study of Reynolds stress closure models in the computations of plane channel flows
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Sarkar, S.
1992-01-01
The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models.
Interactive method for computation of viscous flow with recirculation
NASA Technical Reports Server (NTRS)
Brandeis, J.; Rom, J.
1981-01-01
An interactive method is proposed for the solution of two-dimensional, laminar flow fields with identifiable regions of recirculation, such as the shear-layer-driven cavity flow. The method treats the flow field as composed of two regions, with an appropriate mathematical model adopted for each region. The shear layer is computed by the compressible boundary layer equations, and the slowly recirculating flow by the incompressible Navier-Stokes equations. The flow field is solved iteratively by matching the local solutions in the two regions. For this purpose a new matching method utilizing an overlap between the two computational regions is developed, and shown to be most satisfactory. Matching of the two velocity components, as well as the change in velocity with respect to depth is amply accomplished using the present approach, and the stagnation points corresponding to separation and reattachment of the dividing streamline are computed as part of the interactive solution. The interactive method is applied to the test problem of a shear layer driven cavity. The computational results are used to show the validity and applicability of the present approach.
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
Computational technology of multiscale modeling the gas flows in microchannels
NASA Astrophysics Data System (ADS)
Podryga, V. O.
2016-11-01
The work is devoted to modeling the gas mixture flows in engineering microchannels under conditions of many scales of computational domain. The computational technology of using the multiscale approach combining macro - and microscopic models is presented. At macrolevel the nature of the flow and the external influence on it are considered. As a model the system of quasigasdynamic equations is selected. At microlevel the correction of gasdynamic parameters and the determination of boundary conditions are made. As a numerical model the Newton's equations and the molecular dynamics method are selected. Different algorithm types used for implementation of multiscale modeling are considered. The results of the model problems for separate stages are given.
Computation of high Reynolds number internal/external flows
NASA Technical Reports Server (NTRS)
Cline, M. C.; Wilmoth, R. G.
1981-01-01
A general, user oriented computer program, called VNAF2, developed to calculate high Reynolds number internal/external flows is described. The program solves the two dimensional, time dependent Navier-Stokes equations. Turbulence is modeled with either a mixing length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
Elliptic flow computation by low Reynolds number two-equation turbulence models
NASA Technical Reports Server (NTRS)
Michelassi, V.; Shih, T.-H.
1991-01-01
A detailed comparison of ten low-Reynolds-number k-epsilon models is carried out. The flow solver, based on an implicit approximate factorization method, is designed for incompressible, steady two-dimensional flows. The conservation of mass is enforced by the artificial compressibility approach and the computational domain is discretized using centered finite differences. The turbulence model predictions of the flow past a hill are compared with experiments at Re = 10 exp 6. The effects of the grid spacing together with the numerical efficiency of the various formulations are investigated. The results show that the models provide a satisfactory prediction of the flow field in the presence of a favorable pressure gradient, while the accuracy rapidly deteriorates when a strong adverse pressure gradient is encountered. A newly proposed model form that does not explicitly depend on the wall distance seems promising for application to complex geometries.
Three-dimensional protein structure prediction: Methods and computational strategies.
Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C
2014-10-12
A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction.
Numerical computation of viscous flow about unconventional airfoil shapes
NASA Technical Reports Server (NTRS)
Ahmed, S.; Tannehill, J. C.
1990-01-01
A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.
NASA Technical Reports Server (NTRS)
Clayton, J. Louie; Colbert, R. F.; Ghaffarian, B.; Majumdar, Alok
1991-01-01
A computational technique for prediction of the flow and thermal environment in the SRM field joint cavities is described. The SRM field joint hardware was tested with a defect in the insulation, and due to this defect, the O-ring gland cavities are pressurized during the early part of the ignition. A computer model is developed to predict the thermal environment and flow through the simulated flaw, during the pressurization of the field joint. The transient mass, momentum, and energy conservation equations in the flow passage together with the thermodynamic equation of state are solved by a fully implicit iterative numerical procedure.
Computational Methods for Feedback Controllers for Aerodynamics Flow Applications
2007-08-15
include the massively separated flow around an F-1i5E at 650 angle of attack reported by Forsythe et a/. (2004) (the first eddy-resolving simulation...to one step prediction, of MIMO (multi-input, multi- output) systems. A schematic representation of the feed-forward ANN-ARX network topology is...present, and can also accommodate multiple actuator interaction allowing for MIMO control. We did not intend it to be used for random turbulent flows, but
Ensemble stream flow predictions using the ECMWF forecasts
NASA Astrophysics Data System (ADS)
Kiczko, Adam; Romanowicz, Renata; Osuch, Marzena; Pappenberger, Florian; Karamuz, Emilia
2015-04-01
Floods and low flows in rivers are seasonal phenomena that can cause several problems to society. To anticipate high and low flow events, flow forecasts are crucial. They are of particular importance in mountainous catchments, where the lead time of forecasts is usually short. In order to prolong the forecast lead-time, numerical weather predictions (NWPs) are used as a hydrological model driving force. The forecasted flow is commonly given as one value, even though it is uncertain. There is an increasing interest in accounting for the uncertainty in flood early warning and decision support systems. When NWP are given in the form of ensembles, such as the ECMWF forecasts, the uncertainty of these forecasts can be accounted for. Apart from the forecast uncertainty the uncertainty related to the hydrological model used also plays an important role in the uncertainty of the final flow prediction. The aim of this study is the development of a stream flow prediction system for the Biała Tarnowska, a mountainous catchment in the south of Poland. We apply two different hydrological models. One is a conceptual HBV model for rainfall-flow predictions, applied within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, the second is a data-based DBM model, adjusted for Polish conditions by adding the Soil Moisture Accounting (SMA) and snow-melt modules. Both models provide the uncertainty of the predictions, but the DBM approach is much more numerically efficient, therefore more suitable for the real-time forecasting.. The ECMWF forecasts require bias reduction in order to correspond to observations. Therefore we applied Quantile Mapping with and without seasonal adjustment for bias correction. Up to seven-days ahead forecast skills are compared using the Relative Operation Characteristic (ROC) graphs, for the flood warning and flood alarm flow value thresholds. The ECMWF forecasts are obtained from the project TIGGE (http
Computational Methods for Failure Analysis and Life Prediction
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)
1993-01-01
This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.
Numerical prediction of turbulent oscillating flow and associated heat transfer
NASA Technical Reports Server (NTRS)
Koehler, W. J.; Patankar, S. V.; Ibele, W. E.
1991-01-01
A crucial point for further development of engines is the optimization of its heat exchangers which operate under oscillatory flow conditions. It has been found that the most important thermodynamic uncertainties in the Stirling engine designs for space power are in the heat transfer between gas and metal in all engine components and in the pressure drop across the heat exchanger components. So far, performance codes cannot predict the power output of a Stirling engine reasonably enough if used for a wide variety of engines. Thus, there is a strong need for better performance codes. However, a performance code is not concerned with the details of the flow. This information must be provided externally. While analytical relationships exist for laminar oscillating flow, there has been hardly any information about transitional and turbulent oscillating flow, which could be introduced into the performance codes. In 1986, a survey by Seume and Simon revealed that most Stirling engine heat exchangers operate in the transitional and turbulent regime. Consequently, research has since focused on the unresolved issue of transitional and turbulent oscillating flow and heat transfer. Since 1988, the University of Minnesota oscillating flow facility has obtained experimental data about transitional and turbulent oscillating flow. However, since the experiments in this field are extremely difficult, lengthy, and expensive, it is advantageous to numerically simulate the flow and heat transfer accurately from first principles. Work done at the University of Minnesota on the development of such a numerical simulation is summarized.
Potential flow predictions for a flapping flat plate wing
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen; Green, Melissa
2016-11-01
It is well established that the leading edge vortex is one of the major contributors to the generation of lift on a flapping insect wing. However, the contributions of the trailing edge vortices and the shear layer to unsteady force production mechanisms needs more investigation. The individual contribution of different flow structures is especially important if reliable theoretical predictions of lift and drag are to be made, that eventually assist in the design of micro air vehicles. The current work aims to distinguish different flow features of an unsteady flow field generated by a flapping wing in hover and to quantify the role played by them in the generation of aerodynamic forces. This is achieved by employing a semi-empirical potential flow model that allows for the calculation of lift by theoretically recreating the potential flow field based on the vortex strengths and locations obtained from phase-averaged particle image velocimetry (PIV) data. Individual flow structures are detected in the PIV data based on the vorticity contours. The theoretically predicted lift is compared with direct force measurements to demonstrate the utility and limitations of the model.
Model-Based Predictive Control of Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Kellogg, Steven M.; Collis, S. Scott
1999-11-01
In recent simulations of optimal turbulence control, the time horizon over which the control is determined matches the time horizon over which the flow is advanced. A popular workhorse of the controls community, Model-Based Predictive Control (MBPC), suggests using longer predictive horizons than advancement windows. Including additional time information in the optimization may generate improved controls. When the advancement horizon is smaller than the predictive horizon, part of the optimization and resulting control are discarded. Although this inherent inefficiency may be justified by improved control predictions, it has hampered prior investigations of MBPC for turbulent flow due to the expense associated with optimal control based on Direct Numerical Simulation. The current approach overcomes this by using our optimal control formulation based on Large Eddy Simulation. This presentation summarizes the results of optimal control simulations for turbulent channel flow using various ratios of advancement and predictive horizons. These results provide clues as to the roles of foresight, control history, cost functional, and turbulence structures for optimal control of wall-bounded turbulence.
Viscous compressible flow direct and inverse computation and illustrations
NASA Technical Reports Server (NTRS)
Yang, T. T.; Ntone, F.
1986-01-01
An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.
OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems
NASA Technical Reports Server (NTRS)
Kao, David L.; Chan, William M.
2012-01-01
Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.
NASA Astrophysics Data System (ADS)
Xu, Kun; He, Xin; Cai, Chunpei
2008-07-01
It is well known that for increasingly rarefied flowfields, the predictions from continuum formulation, such as the Navier-Stokes equations lose accuracy. For the high speed diatomic molecular flow in the transitional regime, the inaccuracies are partially attributed to the single temperature approximations in the Navier-Stokes equations. Here, we propose a continuum multiple temperature model based on the Bhatnagar-Gross-Krook (BGK) equation for the non-equilibrium flow computation. In the current model, the Landau-Teller-Jeans relaxation model for the rotational energy is used to evaluate the energy exchange between the translational and rotational modes. Due to the multiple temperature approximation, the second viscosity coefficient in the Navier-Stokes equations is replaced by the temperature relaxation term. In order to solve the multiple temperature kinetic model, a multiscale gas-kinetic finite volume scheme is proposed, where the gas-kinetic equation is numerically solved for the fluxes to update the macroscopic flow variables inside each control volume. Since the gas-kinetic scheme uses a continuous gas distribution function at a cell interface for the fluxes evaluation, the moments of a gas distribution function can be explicitly obtained for the multiple temperature model. Therefore, the kinetic scheme is much more efficient than the DSMC method, especially in the near continuum flow regime. For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate, the computational results are validated in comparison with experimental measurements and DSMC solutions.
A survey of computational intelligence techniques in protein function prediction.
Tiwari, Arvind Kumar; Srivastava, Rajeev
2014-01-01
During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
Special Issue: Big data and predictive computational modeling
NASA Astrophysics Data System (ADS)
Koutsourelakis, P. S.; Zabaras, N.; Girolami, M.
2016-09-01
The motivation for this special issue stems from the symposium on ;Big Data and Predictive Computational Modeling; that took place at the Institute for Advanced Study, Technical University of Munich, during May 18-21, 2015. With a mindset firmly grounded in computational discovery, but a polychromatic set of viewpoints, several leading scientists, from physics and chemistry, biology, engineering, applied mathematics, scientific computing, neuroscience, statistics and machine learning, engaged in discussions and exchanged ideas for four days. This special issue contains a subset of the presentations. Video and slides of all the presentations are available on the TUM-IAS website http://www.tum-ias.de/bigdata2015/.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.
IHT: Tools for Computing Insolation Absorption by Particle Laden Flows
Grout, R. W.
2013-10-01
This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.
Computational studies of flow through cross flow fans - effect of blade geometry
NASA Astrophysics Data System (ADS)
Govardhan, M.; Sampat, D. Lakshmana
2005-09-01
This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG k-ɛ two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.
New computer program solves wide variety of heat flow problems
NASA Technical Reports Server (NTRS)
Almond, J. C.
1966-01-01
Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.
Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes
Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.
2002-07-01
A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)
Computation of turbulent flows-state-of-the-art, 1970
NASA Technical Reports Server (NTRS)
Reynolds, W. C.
1972-01-01
The state-of-the-art of turbulent flow computation is surveyed. The formulations were generalized to increase the range of their applicability, and the excitement of current debate on equation models was brought into the review. Some new ideas on the modeling of the pressure-strain term in the Reynolds stress equations are also suggested.
Chemical kinetics computer program for static and flow reactions
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
General chemical kinetics computer program for complex gas mixtures has been developed. Program can be used for any homogeneous reaction in either one dimensional flow or static system. It is flexible, accurate, and easy to use. It can be used for any chemical system for which species thermodynamic data and reaction rate constant data are known.
Computational analysis of hypersonic airbreathing aircraft flow fields
NASA Technical Reports Server (NTRS)
Dwoyer, Douglas L.; Kumar, Ajay
1987-01-01
The general problem of calculating the flow fields associated with hypersonic airbreathing aircraft is presented. Unique aspects of hypersonic aircraft aerodynamics are introduced and their demands on computational fluid dynamics are outlined. Example calculations associated with inlet/forebody integration and hypersonic nozzle design are presented to illustrate the nature of the problems considered.
Computational flow development for unsteady viscous flows: Foundation of the numerical method
NASA Technical Reports Server (NTRS)
Bratanow, T.; Spehert, T.
1978-01-01
A procedure is presented for effective consideration of viscous effects in computational development of high Reynolds number flows. The procedure is based on the interpretation of the Navier-Stokes equations as vorticity transport equations. The physics of the flow was represented in a form suitable for numerical analysis. Lighthill's concept for flow development for computational purposes was adapted. The vorticity transport equations were cast in a form convenient for computation. A statement for these equations was written using the method of weighted residuals and applying the Galerkin criterion. An integral representation of the induced velocity was applied on the basis of the Biot-Savart law. Distribution of new vorticity, produced at wing surfaces over small computational time intervals, was assumed to be confined to a thin region around the wing surfaces.
Flow in the well: computational fluid dynamics is essential in flow chamber construction.
Vogel, Markus; Franke, Jörg; Frank, Wolfram; Schroten, Horst
2007-09-01
A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish.
Measurements and Computations of Flow in an Urban Street System
NASA Astrophysics Data System (ADS)
Castro, Ian P.; Xie, Zheng-Tong; Fuka, V.; Robins, Alan G.; Carpentieri, M.; Hayden, P.; Hertwig, D.; Coceal, O.
2017-02-01
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.
Computational Analysis of Flow Field Inside Coral Colony
NASA Astrophysics Data System (ADS)
Hossain, Md Monir; Staples, Anne
2015-11-01
Development of the flow field inside coral colonies is a key issue for understanding coral natural uptake, photosynthesis and wave dissipation capabilities. But most of the computations and experiments conducted earlier, measured the flow outside the coral reef canopies. Experimental studies are also constrained due to the limitation of measurement techniques and limited environmental conditions. Numerical simulations can be an answer to overcome these shortcomings. In this work, a detailed, three-dimensional simulation of flow around a single coral colony was developed to examine the interaction between coral geometry and hydrodynamics. To simplify grid generation and minimize computational cost, Immersed Boundary method (IBM) was implemented. The computation of IBM involves identification of the interface between the solid body and the fluid, establishment of the grid/interface relation and identification of the forcing points on the grid and distribution of the forcing function on the corresponding points. LES was chosen as the framework to capture the turbulent flow field without requiring extensive modeling. The results presented will give insight into internal coral colony flow fields and the interaction between coral and surrounding ocean hydrodynamics.
Computation of the deformation spectrum for flows on a sphere
NASA Astrophysics Data System (ADS)
Ameli, Siavash; Shadden, Shawn
2016-11-01
The most common example of flow on a manifold is flow on a sphere with numerous geophysical examples. In this talk we consider the direct and accurate computation of the nonlinear deformation tensor describing fluid kinematics on manifold surfaces, and in particular efficient computation on spherical domains. We demonstrate that standard spherical coordinate computations are undesirable and instead integration of the singular deformation tensor in Cartesian coordinates restricted to the sphere can be advantageous. This approach yields a set of differential algebraic equations that can be reduced by symmetry to yield differential equations for a 2D flow. We have applied our method to the steady and unsteady flows generated by vortex sets on the sphere as well as geophysical flow models. For the former, we demonstrate that the evolution equations near the vortices can become singular and numerically unstable. To resolve this, we derived an exact solution for the spectral components of the deformation tensor near the vortices, which also enables us to match and validate our numerical solution.
Real-time Tsunami Inundation Prediction Using High Performance Computers
NASA Astrophysics Data System (ADS)
Oishi, Y.; Imamura, F.; Sugawara, D.
2014-12-01
Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the
A low computation cost method for seizure prediction.
Zhang, Yanli; Zhou, Weidong; Yuan, Qi; Wu, Qi
2014-10-01
The dynamic changes of electroencephalograph (EEG) signals in the period prior to epileptic seizures play a major role in the seizure prediction. This paper proposes a low computation seizure prediction algorithm that combines a fractal dimension with a machine learning algorithm. The presented seizure prediction algorithm extracts the Higuchi fractal dimension (HFD) of EEG signals as features to classify the patient's preictal or interictal state with Bayesian linear discriminant analysis (BLDA) as a classifier. The outputs of BLDA are smoothed by a Kalman filter for reducing possible sporadic and isolated false alarms and then the final prediction results are produced using a thresholding procedure. The algorithm was evaluated on the intracranial EEG recordings of 21 patients in the Freiburg EEG database. For seizure occurrence period of 30 min and 50 min, our algorithm obtained an average sensitivity of 86.95% and 89.33%, an average false prediction rate of 0.20/h, and an average prediction time of 24.47 min and 39.39 min, respectively. The results confirm that the changes of HFD can serve as a precursor of ictal activities and be used for distinguishing between interictal and preictal epochs. Both HFD and BLDA classifier have a low computational complexity. All of these make the proposed algorithm suitable for real-time seizure prediction.
CFD prediction of flow and phase distribution in fuel assemblies with spacers
Anglart, H.; Nylund, O.; Kurul, N.
1995-09-01
This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.
Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Abujelala, M. T.; Lilley, D. G.
1985-01-01
The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.
Computer program for predicting creep behavior of bodies of revolution
NASA Technical Reports Server (NTRS)
Adams, R.; Greenbaum, G.
1971-01-01
Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.
Multiscale prediction of patient-specific platelet function under flow.
Flamm, Matthew H; Colace, Thomas V; Chatterjee, Manash S; Jing, Huiyan; Zhou, Songtao; Jaeger, Daniel; Brass, Lawrence F; Sinno, Talid; Diamond, Scott L
2012-07-05
During thrombotic or hemostatic episodes, platelets bind collagen and release ADP and thromboxane A(2), recruiting additional platelets to a growing deposit that distorts the flow field. Prediction of clotting function under hemodynamic conditions for a patient's platelet phenotype remains a challenge. A platelet signaling phenotype was obtained for 3 healthy donors using pairwise agonist scanning, in which calcium dye-loaded platelets were exposed to pairwise combinations of ADP, U46619, and convulxin to activate the P2Y(1)/P2Y(12), TP, and GPVI receptors, respectively, with and without the prostacyclin receptor agonist iloprost. A neural network model was trained on each donor's pairwise agonist scanning experiment and then embedded into a multiscale Monte Carlo simulation of donor-specific platelet deposition under flow. The simulations were compared directly with microfluidic experiments of whole blood flowing over collagen at 200 and 1000/s wall shear rate. The simulations predicted the ranked order of drug sensitivity for indomethacin, aspirin, MRS-2179 (a P2Y(1) inhibitor), and iloprost. Consistent with measurement and simulation, one donor displayed larger clots and another presented with indomethacin resistance (revealing a novel heterozygote TP-V241G mutation). In silico representations of a subject's platelet phenotype allowed prediction of blood function under flow, essential for identifying patient-specific risks, drug responses, and novel genotypes.
Predictive Capabilities of a Relaxation Model for Parcel-Based Granular Flow Simulations
NASA Astrophysics Data System (ADS)
Radl, Stefan; Sundaresan, Sankaran
2011-11-01
Parcel-based methods have a great potential to reduce the computational cost of particle simulations for dense flows. Here we investigate a relaxation model, similar to that of Bhatnagar-Gross-Krook (BGK), when applied to such a parcel-based simulation method. Specifically, we have chosen the simulation methodology initially proposed by Patankar and Joseph, and combined it with the relaxation model published by O'Rourke and Snider. We show that a relaxation model is key to correctly predicting macroscopic flow features, e.g., the scattering pattern of a granular jet impinging on a flat surface, studied experimentally by Cheng et al.. Simple shear flow simulations reveal that calculation of the locally-averaged velocity is a critical ingredient to correctly predict streaming and collisional stresses. SR acknowledges the support of the Austrian Science Foundation through the Erwin-Schroedinger fellowship J-3072.
Christensen, S.; Cooley, R.L.
1999-01-01
We tested the accuracy of 95% individual prediction intervals for hydraulic heads, streamflow gains, and effective transmissivities computed by groundwater models of two Danish aquifers. To compute the intervals, we assumed that each predicted value can be written as the sum of a computed dependent variable and a random error. Testing was accomplished by using a cross-validation method and by using new field measurements of hydraulic heads and transmissivities that were not used to develop or calibrate the models. The tested null hypotheses are that the coverage probability of the prediction intervals is not significantly smaller than the assumed probability (95%) and that each tail probability is not significantly different from the assumed probability (2.5%). In all cases tested, these hypotheses were accepted at the 5% level of significance. We therefore conclude that for the groundwater models of two real aquifers the individual prediction intervals appear to be accurate.We tested the accuracy of 95% individual prediction intervals for hydraulic heads, streamflow gains, and effective transmissivities computed by groundwater models of two Danish aquifers. To compute the intervals, we assumed that each predicted value can be written as the sum of a computed dependent variable and a random error. Testing was accomplished by using a cross-validation method and by using new field measurements of hydraulic heads and transmissivities that were not used to develop or calibrate the models. The tested null hypotheses are that the coverage probability of the prediction intervals is not significantly smaller than the assumed probability (95%) and that each tail probability is not significantly different from the assumed probability (2.5%). In all cases tested, these hypotheses were accepted at the 5% level of significance. We therefore conclude that for the groundwater models of two real aquifers the individual prediction intervals appear to be accurate.
Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering.
Fraanje, Rufus; Rice, Justin; Verhaegen, Michel; Doelman, Niek
2010-11-01
Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wavefront sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of error budgeting and algorithm performance, the evaluation of an accurate estimate of the optimal performance of a particular adaptive optics configuration is important. However, due to the large number of grid points, high sampling rates, and the non-rationality of the turbulence power spectral density, the computational complexity of the optimal predictor is huge. This paper shows how a structure in the frozen flow propagation can be exploited to obtain a state-space innovation model with a particular sparsity structure. This sparsity structure enables one to efficiently compute a structured Kalman filter. By simulation it is shown that the performance can be improved and the computational complexity can be reduced in comparison with auto-regressive predictors of low order.
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
Direct match data flow memory for data driven computing
Davidson, George S.; Grafe, Victor Gerald
1997-01-01
A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.
Direct match data flow memory for data driven computing
Davidson, G.S.; Grafe, V.G.
1997-10-07
A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.
Implicit preconditioned WENO scheme for steady viscous flow computation
NASA Astrophysics Data System (ADS)
Huang, Juan-Chen; Lin, Herng; Yang, Jaw-Yen
2009-02-01
A class of lower-upper symmetric Gauss-Seidel implicit weighted essentially nonoscillatory (WENO) schemes is developed for solving the preconditioned Navier-Stokes equations of primitive variables with Spalart-Allmaras one-equation turbulence model. The numerical flux of the present preconditioned WENO schemes consists of a first-order part and high-order part. For first-order part, we adopt the preconditioned Roe scheme and for the high-order part, we employ preconditioned WENO methods. For comparison purpose, a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning algorithm is devised and a discriminant is devised for adjusting the preconditioning parameters at low Mach numbers and turning off the preconditioning at intermediate or high Mach numbers. The computations are performed for the two-dimensional lid driven cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed viscous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic flow over HB-2 model. The solutions of the present algorithms are in good agreement with the experimental data. The application of the preconditioned WENO schemes to viscous flows at all speeds not only enhances the accuracy and robustness of resolving shock and discontinuities for supersonic flows, but also improves the accuracy of low Mach number flow with complicated smooth solution structures.
The computational modeling of supercritical carbon dioxide flow in solid wood material
NASA Astrophysics Data System (ADS)
Gething, Brad Allen
The use of supercritical carbon dioxide (SC CO2) as a solvent to deliver chemicals to porous media has shown promise in various industries. Recently, efforts by the wood treating industry have been made to use SC CO 2 as a replacement to more traditional methods of chemical preservative delivery. Previous studies have shown that the SC CO2 pressure treatment process is capable of impregnating solid wood materials with chemical preservatives, but concentration gradients of preservative often develop during treatment. Widespread application of the treatment process is unlikely unless the treatment inconsistencies can be improved for greater overall treating homogeneity. The development of a computational flow model to accurately predict the internal pressure of CO2 during treatment is integral to a more consistent treatment process. While similar models that attempt to describe the flow process have been proposed by Ward (1989) and Sahle-Demessie (1994), neither have been evaluated for accuracy. The present study was an evaluation of those models. More specifically, the present study evaluated the performance of a computational flow model, which was based on the viscous flow of compressible CO2 as a single phase through a porous medium at the macroscopic scale. Flow model performance was evaluated through comparisons between predicted pressures that corresponded to internal pressure development measured with inserted sensor probes during treatment of specimens. Pressure measurements were applied through a technique developed by Schneider (2000), which utilizes epoxy-sealed stainless steel tubes that are inserted into the wood as pressure probes. Two different wood species were investigated as treating specimens, Douglas-fir and shortleaf pine. Evaluations of the computational flow model revealed that it is sensitive to input parameters that relate to both processing conditions and material properties, particularly treating temperature and wood permeability
A large-scale evaluation of computational protein function prediction.
Radivojac, Predrag; Clark, Wyatt T; Oron, Tal Ronnen; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kaßner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Boehm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas A; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo
2013-03-01
Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.
A large-scale evaluation of computational protein function prediction
Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo
2013-01-01
Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650
Computational Flow Analysis of a Left Ventricular Assist Device
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Benkowski, Robert
1995-01-01
Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.
Prediction of strongly-heated internal gas flows
McEligot, D.M. ||; Shehata, A.M.; Kunugi, Tomoaki |
1997-12-31
The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions.
Predicting sediment delivery from debris flows after wildfire
NASA Astrophysics Data System (ADS)
Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.
2015-12-01
Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the
Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Khavaran, Abbas
2004-01-01
Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.
Prediction of turbulent flow through a transition duct using a second-moment closure
NASA Astrophysics Data System (ADS)
Sotiropoulos, F.; Patel, V. C.
1994-11-01
The near-wall, full Reynolds-stress closure of Launder and Shima is employed to calculate the three-dimensional turbulent flow through a circular-to-rectangular transition duct. The solutions are compared with the recent experimental data of Davis and Gessner. The comparisons reveal that the computed streamwise velocity and vorticity fields are in remarkable agreement with the measurements. Downstream of the transition region, however, the computed Reynolds stresses appear to decay at a much faster rate than observed in the measurements. These results point to the need for further refinement of Reynolds-stress models to correctly predict the relaxation of rapidly strained turbulence towards equilibrium.
Prediction of light aircraft horizontal tail onset flows: A review and analysis
NASA Technical Reports Server (NTRS)
Summey, D. C.; Smetana, F. O.
1977-01-01
The theoretical basis of the two computer programs (WASH and WAKE) are developed. WASH calculates the location of wake-sheet streamlines behind the wing, and upwash and downwash angles ahead of and behind the wing, respectively. WAKE computes two-dimensional velocity profiles along the wake streamlines given the upper and lower surface velocity profiles at the wing trailing edge. Comparisons with experiment indicate good agreement for wake location, downwash angles, and two-dimensional velocity profiles at low to moderate angles of attack. The adaptation of the results of the two programs to predict the total onset flow at the tail is discussed.
Computational and Experimental Study of Supersonic Nozzle Flow and Shock Interactions
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Elmiligui, Alaa A.; Nayani, Sudheer N.; Castner, Ray; Bruce, Walter E., IV; Inskeep, Jacob
2015-01-01
This study focused on the capability of NASA Tetrahedral Unstructured Software System's CFD code USM3D capability to predict the interaction between a shock and supersonic plume flow. Previous studies, published in 2004, 2009 and 2013, investigated USM3D's supersonic plume flow results versus historical experimental data. This current study builds on that research by utilizing the best practices from the early papers for properly capturing the plume flow and then adding a wedge acting as a shock generator. This computational study is in conjunction with experimental tests conducted at the Glenn Research Center 1'x1' Supersonic Wind Tunnel. The comparison of the computational and experimental data shows good agreement for location and strength of the shocks although there are vertical shifts between the data sets that may be do to the measurement technique.
A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms.
Canchi, Tejas; Kumar, S D; Ng, E Y K; Narayanan, Sriram
2015-01-01
Computational methods have played an important role in health care in recent years, as determining parameters that affect a certain medical condition is not possible in experimental conditions in many cases. Computational fluid dynamics (CFD) methods have been used to accurately determine the nature of blood flow in the cardiovascular and nervous systems and air flow in the respiratory system, thereby giving the surgeon a diagnostic tool to plan treatment accordingly. Machine learning or data mining (MLD) methods are currently used to develop models that learn from retrospective data to make a prediction regarding factors affecting the progression of a disease. These models have also been successful in incorporating factors such as patient history and occupation. MLD models can be used as a predictive tool to determine rupture potential in patients with abdominal aortic aneurysms (AAA) along with CFD-based prediction of parameters like wall shear stress and pressure distributions. A combination of these computer methods can be pivotal in bridging the gap between translational and outcomes research in medicine. This paper reviews the use of computational methods in the diagnosis and treatment of AAA.
Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Morris, Philip J.
1997-01-01
Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
Numerical computation of steady-state acoustic disturbances in flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Myers, M. K.
1992-01-01
Two time domain methods for computing two dimensional steady-state acoustic disturbances propagating through internal subsonic viscous flow fields in the presence of variable area are investigated. The first method solves the Navier-Stokes equations for the combined steady and acoustic field together and subtracts the steady flow to obtain the acoustic field. The second method solves a system of perturbation equations to obtain the acoustic disturbances, making use of a separate steady flow computation as input to the system. In each case the periodic steady-state acoustic fluctuations are obtained numerically on a supercomputer using a second order unsplit explicit MacCormack predictor-corrector method. Results show that the first method is not very effective for computing acoustic disturbances of even moderate amplitude. It appears that more accurate steady flow algorithms are required for this method to succeed. On the other hand, linear and nonlinear acoustic disturbances extracted from the perturbation approach are shown to exhibit expected behavior for the problems considered. It is also found that inflow boundary conditions for an equivalent uniform duct can be successfully applied to a nonuniform duct to obtain steady-state acoustic disturbances.
Implementation of Parallel Computing Technology to Vortex Flow
NASA Technical Reports Server (NTRS)
Dacles-Mariani, Jennifer
1999-01-01
Mainframe supercomputers such as the Cray C90 was invaluable in obtaining large scale computations using several millions of grid points to resolve salient features of a tip vortex flow over a lifting wing. However, real flight configurations require tracking not only of the flow over several lifting wings but its growth and decay in the near- and intermediate- wake regions, not to mention the interaction of these vortices with each other. Resolving and tracking the evolution and interaction of these vortices shed from complex bodies is computationally intensive. Parallel computing technology is an attractive option in solving these flows. In planetary science vortical flows are also important in studying how planets and protoplanets form when cosmic dust and gases become gravitationally unstable and eventually form planets or protoplanets. The current paradigm for the formation of planetary systems maintains that the planets accreted from the nebula of gas and dust left over from the formation of the Sun. Traditional theory also indicate that such a preplanetary nebula took the form of flattened disk. The coagulation of dust led to the settling of aggregates toward the midplane of the disk, where they grew further into asteroid-like planetesimals. Some of the issues still remaining in this process are the onset of gravitational instability, the role of turbulence in the damping of particles and radial effects. In this study the focus will be with the role of turbulence and the radial effects.
Computational analysis of flow in 3D propulsive transition ducts
NASA Technical Reports Server (NTRS)
Sepri, Paavo
1990-01-01
A numerical analysis of fully three dimensional, statistically steady flows in propulsive transition ducts being considered for use in future aircraft of higher maneuverability is investigated. The purpose of the transition duct is to convert axisymmetric flow from conventional propulsion systems to that of a rectangular geometry of high aspect ratio. In an optimal design, the transition duct would be of minimal length in order to reduce the weight penalty, while the geometrical change would be gradual enough to avoid detrimental flow perturbations. Recent experiments conducted at the Propulsion Aerodynamics Branch have indicated that thrust losses in ducts of superelliptic cross-section can be surprisingly low, even if flow separation occurs near the divergent walls. In order to address the objective of developing a rational design procedure for optimal transition ducts, it is necessary to have available a reliable computational tool for the analysis of flows achieved in a sequence of configurations. Current CFD efforts involving complicated geometries usually must contend with two separate but interactive aspects: namely, grid generation and flow solution. The first two avenues of the present investigation were comprised of suitable grid generation for a class of transition ducts of superelliptic cross-section, and the subsequent application of the flow solver PAB3D to this geometry. The code, PAB3D, was developed as a comprehensive tool for the solution of both internal and external high speed flows. The third avenue of investigation has involved analytical formulations to aid in the understanding of the nature of duct flows, and also to provide a basis of comparison for subsequent numerical solutions. Numerical results to date include the generation of two preliminary grid systems for duct flows, and the initial application of PAB3D to the corresponding geometries, which are of the class tested experimentally.
Computer simulation of cerebral blood flow in moyamoya and the results of surgical therapies.
Charbel, F T; Misra, M; Clarke, M E; Ausman, J I
1997-10-01
Moyamoya is the disease which involves the terminal portions of the internal carotid or origins of the middle or anterior cerebral arteries. The posterior communicating arteries are also involved, but not the vertebrals or the basilar artery. The disease occurs more commonly in females than males and it has two age peaks at less than 10 and 40 years. Over the years many treatment options or procedures have been advocated for this disease either with direct bypasses or indirect revascularization procedures or both in combination. Whether one procedure is better than another is a matter of question and still to be determined. Along with it, there are various diagnostic and research work have been done for the etiology and the management of this disease. We have tried to implement a computer model of cerebral blood flow in order to assess and predict the flow in this disease process. At this time to know and predict the effectivity of certain types of offered treatment of Moyamoya disease is only to evaluate patients clinically with long term follow ups and at some interval after surgery with angiography or blood flow determinations. This study tries to focus on the use of computerized model of predicting cerebral blood flow which tries to assess the cerebral flow and decide which treatment option would be the best for a particular patient. After various computer simulations the blood flow following each treatment option is detected and the situation which offers the best treatment in a particular case is offered to the patient. To confirm the use of utility of this computer model a larger population of patients with Moyamoya disease need to be evaluated.
Computation of nozzle flow fields using the PARC2D Navier-Stokes code
NASA Technical Reports Server (NTRS)
Collins, Frank G.
1986-01-01
Supersonic nozzles which operate at low Reynolds numbers and have large expansion ratios have very thick boundary layers at their exit. This leads to a very strong viscous/inviscid interaction upon the flow within the nozzle and the traditional nozzle design techniques which correct the inviscid core with a boundary layer displacement do not accurately predict the nozzle exit conditions. A full Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated using the interactive grid generator code TBGG. All computations were made on the NASA MSFC CRAY X-MP computer. Comparison was made between the computations and in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreement existed between the computations and measurements for a stagnation pressure of 29.4 psia and stagnation temperature of 1060 R. However, agreement did not exist at a stagnation pressure of 7.4 psia. Several reasons for the lack of agreement are possible. The computational code assumed a constant gas gamma whereas gamma for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. Finally, it is possible that condensation occurred during the expansion at the lower stagnation pressure.
Comparison of heat transfer measurements with computations for turbulent flow around a 180 deg bend
NASA Astrophysics Data System (ADS)
Besserman, D. L.; Tanrikut, S.
1992-10-01
Detailed heat transfer measurements for all four walls of a 180-deg 1:1 aspect ratio duct are reported. Experiments using a transient heat transfer technique with liquid crystal thermography were conducted for turbulent flow over a Reynolds number range of 12,500-50,000. Computational results using a Navier-Stokes code are also presented to complement the experiments. Two near-wall shear-stress treatments are evaluated in conjunction with k-epsilon formulation of turbulence to assess their ability to predict high local gradients in heat transfer. Results show that heat transfer on the convex and concave walls is a manifestation of the complex flow field created by the 180-deg bend. For the flat walls, the streamwise average Nusselt number increases approximately two times the fully developed turbulent flow value. The numerical predictions with the two-layer wall integration k-epsilon turbulence model show very good agreement with the experimental data.
A Review of Computational Methods for Predicting Drug Targets.
Huang, Guohua; Yan, Fengxia; Tan, Duoduo
2016-11-14
Drug discovery and development is not only a time-consuming and labor-intensive process but also full of risk. Identifying targets of small molecules helps evaluate safety of drugs and find new therapeutic applications. The biotechnology measures a wide variety of properties related to drug and targets from different perspectives, thus generating a large body of data. This undoubtedly provides a solid foundation to explore relationships between drugs and targets. A large number of computational techniques have recently been developed for drug target prediction. In this paper, we summarize these computational methods and classify them into structure-based, molecular activity-based, side-effect-based and multi-omics-based predictions according to the used data for inference. The multi-omics-based methods are further grouped into two types: classifier-based and network-based predictions. Furthermore，the advantages and limitations of each type of methods are discussed. Finally, we point out the future directions of computational predictions for drug targets.
Computational Analysis of the G-III Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan
2011-01-01
Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.
Computational Predictions of the Performance Wright 'Bent End' Propellers
NASA Technical Reports Server (NTRS)
Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)
2002-01-01
Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.
Computing nonhydrostatic shallow-water flow over steep terrain
Denlinger, R.P.; O'Connell, D. R. H.
2008-01-01
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.
Computer programs for calculating potential flow in propulsion system inlets
NASA Technical Reports Server (NTRS)
Stockman, N. O.; Button, S. L.
1973-01-01
In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.
Computational Methods for Predictive Simulation of Stochastic Turbulence Systems
2015-11-05
Enter title and subtitle with volume number and part number, if applicable . On classified documents, enter the title classification in parentheses. 5a...accuracy, and range of applicability of non-intrusive methods, such as stochastic collocation methods, and intrusive techniques, such as stochastic...engineering flows) over a long time interval is not possible within time and resource constraints. Many applications central to predictive CFD today
Defining boundary conditions for RANS predictions of urban flows using mesoscale simulations
NASA Astrophysics Data System (ADS)
Garcia Sanchez, Clara; Gorle, Catherine; van Beeck, Jeroen
2015-11-01
Pollutant dispersion and wind flows in urban canopies are major concerns for human health and energy, and the complex nature of the flow and transport processes remains a challenge when using Computational Fluid Dynamics (CFD) to predict wind flows. The definition of the inflow boundary condition in Reynolds-Averaged Navier-Stokes simulations (RANS) is one of the uncertainties that will strongly influence the prediction of the flow field, and thus, the dispersion pattern. The goal of the work presented is to define a methodology that improves the level of realism in the inflow condition for RANS simulations by accounting for larger mesoscale effects. The Weather Research and Forecasting model (WRF) is used to forecast mesoscale flow patterns, and two different approaches are used to define inflow conditions for the RANS simulations performed with OpenFOAM: 1) WRF variables such as local velocity magnitude, ABL height and friction velocity are directly interpolated onto the boundaries of the CFD domain; 2) WRF predictions for the geostrophic wind and friction velocity are applied as a forcing boundary condition. Simulations of the Joint Urban 2003 experimental campaign in Oklahoma City have been performed using both approaches and a comparison of the results will be presented.
Predicting streamflows in snowmelt-driven watersheds using the flow duration curve method
NASA Astrophysics Data System (ADS)
Kim, D.; Kaluarachchi, J.
2014-05-01
Predicting streamflows in snow-fed watersheds in the Western United States is important for water allocation. Since many of these watersheds are heavily regulated through canal networks and reservoirs, predicting expected natural flows and therefore water availability under limited data is always a challenge. This study investigates the applicability of the flow duration curve (FDC) method for predicting natural flows in gauged and regulated snow-fed watersheds. Point snow observations, air temperature, precipitation, and snow water equivalent were used to simulate the snowmelt process with the SNOW-17 model, and extended to streamflow simulation using the FDC method with a modified current precipitation index. For regulated watersheds, a parametric regional FDC method was applied to reconstruct natural flow. For comparison, a simplified tank model was used considering both lumped and semi-distributed approaches. The proximity regionalization method was used to simulate streamflows in the regulated watersheds with the tank model. The results showed that the FDC method is capable of producing satisfactory natural flow estimates in gauged watersheds when high correlation exists between current precipitation index and streamflow. For regulated watersheds, the regional FDC method produced acceptable river diversion estimates, but it seemed to have more uncertainty due to less robustness of the FDC method. In spite of its simplicity, the FDC method is a practical approach with less computational burden for studies with minimal data availability.
Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe
2013-11-01
In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k-ɛ model, RNG k-ɛ model, realizable k-ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.
NASA Astrophysics Data System (ADS)
Bradney, D. R.; Evans, S. P.; Salles Pereira Da Costa, M.; Clausen, P. D.
2016-09-01
Small horizontal-axis wind turbines are likely to operate in a broad range of operating flow conditions, often in highly turbulent flow, due, in part, to their varied site placements. This paper compares the computational simulations of the performance of a 5 kW horizontal-axis wind turbine to detailed field measurements, with a particular focus on the impact of unsteady operating conditions on the drivetrain performance and generator output. Results indicate that the current Blade Element Momentum Theory based aerodynamic models under-predict the effect of high turbine yaw on the rotor torque, leading to a difference between predicted and measured shaft speed and power production. Furthermore, the results show discrepancies between the predicted instantaneous turbine yaw performance and measurements.
Assessing computer waste generation in Chile using material flow analysis.
Steubing, Bernhard; Böni, Heinz; Schluep, Mathias; Silva, Uca; Ludwig, Christian
2010-03-01
The quantities of e-waste are expected to increase sharply in Chile. The purpose of this paper is to provide a quantitative data basis on generated e-waste quantities. A material flow analysis was carried out assessing the generation of e-waste from computer equipment (desktop and laptop PCs as well as CRT and LCD-monitors). Import and sales data were collected from the Chilean Customs database as well as from publications by the International Data Corporation. A survey was conducted to determine consumers' choices with respect to storage, re-use and disposal of computer equipment. The generation of e-waste was assessed in a baseline as well as upper and lower scenarios until 2020. The results for the baseline scenario show that about 10,000 and 20,000 tons of computer waste may be generated in the years 2010 and 2020, respectively. The cumulative e-waste generation will be four to five times higher in the upcoming decade (2010-2019) than during the current decade (2000-2009). By 2020, the shares of LCD-monitors and laptops will increase more rapidly replacing other e-waste including the CRT-monitors. The model also shows the principal flows of computer equipment from production and sale to recycling and disposal. The re-use of computer equipment plays an important role in Chile. An appropriate recycling scheme will have to be introduced to provide adequate solutions for the growing rate of e-waste generation.
Computational flow field in energy efficient engine (EEE)
NASA Astrophysics Data System (ADS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2016-11-01
In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.
Computational Prediction of RNA-Binding Proteins and Binding Sites
Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling
2015-01-01
Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions. PMID:26540053
NASA Technical Reports Server (NTRS)
Abid, R.; Speziale, C. G.
1992-01-01
Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.
Two inviscid computational simulations of separated flow about airfoils
NASA Technical Reports Server (NTRS)
Barnwell, R. W.
1976-01-01
Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.
2010-01-01
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
NASA Technical Reports Server (NTRS)
Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.
2012-01-01
Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computation of high Reynolds number internal/external flows. [VNAP2 computer code
Cline, M.C.; Wilmoth, R.G.
1981-01-01
A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.
Model-Invariant Hybrid LES-RANS Computation of Separated Flow Past Periodic Hills
NASA Technical Reports Server (NTRS)
Woodruff, Stephen
2014-01-01
The requirement that physical quantities not vary with a hybrid LESRANS model's blending parameter imposes conditions on the computation that lead to better results across LES-RANS transitions. This promises to allow placement of those transitions so that LES is performed only where required by the physics, improving computational efficiency. The approach is applied to separated flow past periodic hills, where good predictions of separation-bubble size are seen due to the gradual, controlled, LES-RANS transition and the resulting enhanced near-wall eddy viscosity.
Computational design and experimental testing of a novel axial flow LVAD.
Untaroiu, Alexandrina; Wood, Houston G; Allaire, Paul E; Throckmorton, Amy L; Day, Steven; Patel, Sonna M; Ellman, Peter; Tribble, Curt; Olsen, Don B
2005-01-01
Thousands of cardiac failure patients per year in the United States could benefit from long-term mechanical circulatory support as destination therapy. To provide an improvement over currently available devices, we have designed a fully implantable axial-flow ventricular assist device with a magnetically levitated impeller (LEV-VAD). In contrast to currently available devices, the LEV-VAD has an unobstructed blood flow path and no secondary flow regions, generating substantially less retrograde and stagnant flow. The pump design included the extensive use of conventional pump design equations and computational fluid dynamics (CFD) modeling for predicting pressure-flow curves, hydraulic efficiencies, scalar fluid stress levels, exposure times to such stress, and axial fluid forces exerted on the impeller for the suspension design. Flow performance testing was completed on a plastic prototype of the LEV-VAD for comparison with the CFD predictions. Animal fit trials were completed to determine optimum pump location and cannulae configuration for future acute and long-term animal implantations, providing additional insight into the LEV-VAD configuration and implantability. Per the CFD results, the LEV-VAD produces 6 l/min and 100 mm Hg at a rotational speed of approximately 6300 rpm for steady flow conditions. The pressure-flow performance predictions demonstrated the VAD's ability to deliver adequate flow over physiologic pressures for reasonable rotational speeds with best efficiency points ranging from 25% to 30%. The CFD numerical estimations generally agree within 10% of the experimental measurements over the entire range of rotational speeds tested. Animal fit trials revealed that the LEV-VAD's size and configuration were adequate, requiring no alterations to cannulae configurations for future animal testing. These acceptable performance results for LEV-VAD design support proceeding with manufacturing of a prototype for extensive mock loop and initial acute
Improved prediction of disturbed flow via hemodynamically-inspired geometric variables.
Bijari, Payam B; Antiga, Luca; Gallo, Diego; Wasserman, Bruce A; Steinman, David A
2012-06-01
Arterial geometry has long been considered as a pragmatic alternative for inferring arterial flow disturbances, and their impact on the natural history and treatment of vascular diseases. Traditionally, definition of geometric variables is based on convenient shape descriptors, with only superficial consideration of their influence on flow and wall shear stress patterns. In the present study we demonstrate that a more studied consideration of the actual (cf. nominal) local hemodynamics can lead to substantial improvements in the prediction of disturbed flow by geometry. Starting from a well-characterized computational fluid dynamics (CFD) dataset of 50 normal carotid bifurcations, we observed that disturbed flow tended to be confined proximal to the flow divider, whereas geometric variables previously shown to be significant predictors of disturbed flow included features distal to the flow divider in their definitions. Flaring of the bifurcation leading to flow separation was redefined as the maximum relative expansion of the common carotid artery (CCA), proximal to the flow divider. The beneficial effect of primary curvature on flow inertia, via suppression of flow separation, was characterized by the in-plane tortuosity of CCA as it enters the flare region. Multiple linear regressions of these redefined geometric variables against various metrics of disturbed flow revealed R(2) values approaching 0.6, better than the roughly 0.3 achieved using the conventional shape-based variables, while maintaining their demonstrated real-world reproducibility. Such a hemodynamically-inspired approach to the definition of geometric variables may reap benefits for other applications where geometry is used as a surrogate marker of local hemodynamics.
Predictive onboard flow control for packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, Eric A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
Evaluation of the three-dimensional parabolic flow computer program SHIP
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James
2010-01-01
Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
NASA Technical Reports Server (NTRS)
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
Transitional flow in aneurysms and the computation of haemodynamic parameters
Poelma, Christian; Watton, Paul N.; Ventikos, Yiannis
2015-01-01
Haemodynamic forces appear to play an influential role in the evolution of aneurysms. This has led to numerous studies, usually based on computational fluid dynamics. Their focus is predominantly on the wall shear stress (WSS) and associated derived parameters, attempting to find correlations between particular patterns of haemodynamic indices and regions subjected to disease formation and progression. The indices are generally determined by integration of flow properties over a single cardiac cycle. In this study, we illustrate that in some cases the transitional flow in aneurysms can lead to significantly different WSS distributions in consecutive cardiac cycles. Accurate determination of time-averaged haemodynamic indices may thus require simulation of a large number of cycles, which contrasts with the common approach to determine parameters using data from a single cycle. To demonstrate the role of transitional flow, two exemplary cases are considered: flow in an abdominal aortic aneurysm and in an intracranial aneurysm. The key differences that are observed between these cases are explained in terms of the integral timescale of the transitional flows in comparison with the cardiac cycle duration: for relatively small geometries, transients will decay before the next cardiac cycle. In larger geometries, transients are still present when the systolic phase produces new instabilities. These residual fluctuations serve as random initial conditions and thus seed different flow patterns in each cycle. To judge whether statistics are converged, the derived indices from at least two successive cardiac cycles should be compared. PMID:25694540
Survey of Computational Algorithms for MicroRNA Target Prediction
Yue, Dong; Liu, Hui; Huang, Yufei
2009-01-01
MicroRNAs (miRNAs) are 19 to 25 nucleotides non-coding RNAs known to possess important post-transcriptional regulatory functions. Identifying targeting genes that miRNAs regulate are important for understanding their specific biological functions. Usually, miRNAs down-regulate target genes through binding to the complementary sites in the 3' untranslated region (UTR) of the targets. In part, due to the large number of miRNAs and potential targets, an experimental based prediction design would be extremely laborious and economically unfavorable. However, since the bindings of the animal miRNAs are not a perfect one-to-one match with the complementary sites of their targets, it is difficult to predict targets of animal miRNAs by accessing their alignment to the 3' UTRs of potential targets. Consequently, sophisticated computational approaches for miRNA target prediction are being considered as essential methods in miRNA research. We surveyed most of the current computational miRNA target prediction algorithms in this paper. Particularly, we provided a mathematical definition and formulated the problem of target prediction under the framework of statistical classification. Moreover, we summarized the features of miRNA-target pairs in target prediction approaches and discussed these approaches according to two categories, which are the rule-based and the data-driven approaches. The rule-based approach derives the classifier mainly on biological prior knowledge and important observations from biological experiments, whereas the data driven approach builds statistic models using the training data and makes predictions based on the models. Finally, we tested a few different algorithms on a set of experimentally validated true miRNA-target pairs [1] and a set of false miRNA-target pairs, derived from miRNA overexpression experiment [2]. Receiver Operating Characteristic (ROC) curves were drawn to show the performances of these algorithms. PMID:20436875
Validation of Computational Fluid Dynamics Simulations for Realistic Flows (Preprint)
2007-12-01
these calculations, the reference length is the vortex core radius, the reference flow conditions are the free stream conditions with the Mach number M...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED...From - To) 11-10-2007 Technical Paper & Briefing Charts 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Validation of Computational Fluid Dynamics
Modeling of supersonic combustor flows using parallel computing
NASA Technical Reports Server (NTRS)
Riggins, D.; Underwood, M.; Mcmillin, B.; Reeves, L.; Lu, E. J.-L.
1992-01-01
While current 3D CFD codes and modeling techniques have been shown capable of furnishing engineering data for complex scramjet flowfields, the usefulness of such efforts is primarily limited by solutions' CPU time requirements, and secondarily by memory requirements. Attention is presently given to the use of parallel computing capabilities for engineering CFD tools for the analysis of supersonic reacting flows, and to an illustrative incompressible CFD problem using up to 16 iPSC/2 processors with single-domain decomposition.
Computational fluid dynamics evaluation of flow reversal treatment of giant basilar tip aneurysm.
Alnæs, Martin Sandve; Mardal, Kent-Andre; Bakke, Søren; Sorteberg, Angelika
2015-10-01
Therapeutic parent artery flow reversal is a treatment option for giant, partially thrombosed basilar tip aneurysms. The effectiveness of this treatment has been variable and not yet studied by applying computational fluid dynamics. Computed tomography images and blood flow velocities acquired with transcranial Doppler ultrasonography were obtained prior to and after bilateral endovascular vertebral artery occlusion for a giant basilar tip aneurysm. Patient-specific geometries and velocity waveforms were used in computational fluid dynamics simulations in order to determine the velocity and wall shear stress changes induced by treatment. Therapeutic parent artery flow reversal lead to a dramatic increase in aneurysm inflow and wall shear stress (30 to 170 Pa) resulting in an increase in intra-aneurysmal circulation. The enlargement of the circulated area within the aneurysm led to a re-normalization of the wall shear stress and the aneurysm remained stable for more than 8 years thereafter. Therapeutic parent artery flow reversal can lead to unintended, potentially harmful changes in aneurysm inflow which can be quantified and possibly predicted by applying computational fluid dynamics.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-01-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Astrophysics Data System (ADS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-08-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
This study presents a method to predict flow duration curves (FDCs) and streamflow for ungauged catchments in the Mid-Atlantic Region, USA. We selected 29 catchments from the Appalachian Plateau, Ridge and Valley, and Piedmont physiographic provinces to develop and test the propo...
Fully consistent CFD methods for incompressible flow computations
NASA Astrophysics Data System (ADS)
Kolmogorov, D. K.; Shen, W. Z.; Sørensen, N. N.; Sørensen, J. N.
2014-06-01
Nowadays collocated grid based CFD methods are one of the most efficient tools for computations of the flows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure-velocity coupling on collocated grids use the so-called momentum interpolation method of Rhie and Chow [1]. As known, the method and some of its widely spread modifications result in solutions, which are dependent of time step at convergence. In this paper the magnitude of the dependence is shown to contribute about 0.5% into the total error in a typical turbulent flow computation. Nevertheless if coarse grids are used, the standard interpolation methods result in much higher non-consistent behavior. To overcome the problem, a recently developed interpolation method, which is independent of time step, is used. It is shown that in comparison to other time step independent method, the method may enhance the convergence rate of the SIMPLEC algorithm up to 25 %. The method is verified using turbulent flow computations around a NACA 64618 airfoil and the roll-up of a shear layer, which may appear in wind turbine wake.
An experiment in hurricane track prediction using parallel computing methods
NASA Technical Reports Server (NTRS)
Song, Chang G.; Jwo, Jung-Sing; Lakshmivarahan, S.; Dhall, S. K.; Lewis, John M.; Velden, Christopher S.
1994-01-01
The barotropic model is used to explore the advantages of parallel processing in deterministic forecasting. We apply this model to the track forecasting of hurricane Elena (1985). In this particular application, solutions to systems of elliptic equations are the essence of the computational mechanics. One set of equations is associated with the decomposition of the wind into irrotational and nondivergent components - this determines the initial nondivergent state. Another set is associated with recovery of the streamfunction from the forecasted vorticity. We demonstrate that direct parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to this decomposition and forecast problem. A 72-h track prediction was made using incremental time steps of 16 min on a network of 3000 grid points nominally separated by 100 km. The prediction took 30 sec on the 8-processor Alliant FX/8 computer. This was a speed-up of 3.7 when compared to the one-processor version. The 72-h prediction of Elena's track was made as the storm moved toward Florida's west coast. Approximately 200 km west of Tampa Bay, Elena executed a dramatic recurvature that ultimately changed its course toward the northwest. Although the barotropic track forecast was unable to capture the hurricane's tight cycloidal looping maneuver, the subsequent northwesterly movement was accurately forecasted as was the location and timing of landfall near Mobile Bay.
The magnitude of basset forces in unsteady multiphase flow computations
Li, L.; Michaelides, E.E. . Dept. of Mechanical Engineering)
1992-09-01
This paper reports on the equation of motion of a small spherical particle moving in a fluid which is solved numerically with the radius of the sphere and the ratio of fluid to particle densities being parameters. The Basset force term is computed and compared to the total force on the particle for the case of turbulent flow in a duct. It is found that the Basset force may be neglected in the equation of motion of the particle only when the fluid to particle density ratio is very high and the particle diameter is greater than 1[mu]m. A dimensional analysis is also performed for the case when the particle size and the characteristic flow dimension are of the same order of magnitude. In the latter case, it is deduced that the Basset force is significant whenever the flow Reynolds number is greater than one.
Predicted Variations in Flow Patterns in a Horizontal CVD Reactor
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.
1999-01-01
Expressions in terms of common reactor operating parameters were derived for the ratio of the Grashof number to the Reynolds number, Gr/Re, the ratio of the Grashof to the square of 2 the Reynolds number, Gr/Re(exp 2), and the Rayleigh number, Ra. Values for these numbers were computed for an example horizontal CVD reactor and compared to numerical simulations to gauge their effectiveness as predictors of the presence or absence of transverse and longitudinal rolls in the reactor. Comparisons were made for both argon and hydrogen carrier gases over the pressure range 2- 101 kPa. Reasonable agreement was achieved in most cases when using Gr/Re to predict the presence of transverse rolls and Ra to predict the presence of longitudinal rolls. The ratio Gr/Re(exp 2) did not yield useful predictions regarding the presence of transverse rolls. This comparison showed that the ratio of the Grashof number to the Reynolds number, as well as the Rayleigh number, can be used to predict the presence or absence of transverse and longitudinal rolls in a horizontal CVD reactor for a given set of reactor conditions. These predictions are approximate, and care must be exercised when making predictions near transition regions.
Axial flow fan broad-band noise and prediction
NASA Astrophysics Data System (ADS)
Carolus, Thomas; Schneider, Marc; Reese, Hauke
2007-02-01
Two prediction methods for broad-band noise of low-pressure axial fans are investigated. Emphasis is put on the interaction noise due to ingested turbulence. The numerical large eddy simulation (LES) is applied to predict the unsteady blade forces due to grid generated highly turbulent inflow; the blade forces are then fed into an analytical two-dimensional acoustic ducted source model. A simple semi-empirical noise prediction model (SEM) is utilized for indicative comparison. Finally, to obtain a database for detailed verification, the turbulence statistics for a variety of different inflow configurations are determined experimentally using hot wire anemometry and a correlation analysis. In the limits of the necessary assumptions the SEM predicts the noise spectra and the overall sound power surprisingly well without any further tuning of parameters; the influence of the fan operating point and the nature of the inflow is obtained. Naturally, the predicted spectra appear unrealistically "smooth", since the empirical input data are averaged and modeled in the frequency domain. By way of contrast the LES yields the fluctuating forces on the blades in the time domain. Details of the source characteristics and their origin are obtained rather clearly. The predicted effects of the ingested turbulence on the fluctuating blade forces and the fan noise compare favorably with experiments. However, the choice of the numerical grid size determines the maximal resolvable frequency and the computational cost. As contrasted with the SEM, the cost for the LES-based method are immense.
On the inconsistencies related to prediction of flow into an enclosing hood obstructed by a worker.
Karaismail, Ertan; Celik, Ismail
2010-06-01
The recirculating flow structures formed in the wake of a worker standing in front of an enclosing fume hood were numerically investigated. Two- and three-dimensional, unsteady, laminar/turbulent computations were performed for a Reynolds number (Re) range of 1.0 x 10(3)-1.0 x 10(5). The standard k-epsilon, Renormalization group (RNG) k-epsilon, and Shear Stress Transport (SST) k-omega models were used in Unsteady Reynolds Averaged Navier-Stokes (URANS) computations, and the results were compared with each other and also with the previous predictions reported in the literature. Numerical issues regarding the grid convergence and the inadequacies of turbulence models that may come into play at low Reynolds numbers were addressed. On the whole, SST k-omega model was found to be promising for qualitatively accurate prediction of both steady and unsteady recirculatory flow patterns in the wake of the worker. On the other hand, the standard and RNG k-epsilon models failed in prediction of anticipated unsteadiness at low Reynolds numbers. In a more realistic three-dimensional simulation with SST k-omega model, the anticipated unsteady and recirculating flow field in the wake of the worker was captured. Present results seem to qualitatively agree with the deductions made from experimental analyses in the literature while conflicting with some aspects of the previously reported numerical results. The apparent inconsistencies observed between the current results and those published in the literature were elucidated.
Computation of free-molecular flow in nuclear materials
NASA Astrophysics Data System (ADS)
Casella, Andrew M.; Loyalka, Sudarshan K.; Hanson, Brady D.
2009-11-01
Generally, the transport of gases and vapors in nuclear materials is adequately described by the diffusion equation with an effective diffusion coefficient. There are instances however, in which the flow pathway can be so restrictive that the diffusion description has limitations. In general, molecular transport is governed by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and by molecule-surface interactions. However, if nano-scale pathways exist within these materials, as has been suggested, then molecular transport can be characterized as being in the free-molecular flow regime where intermolecular interactions can be ignored and flow is determined entirely by molecule-surface collisions. Our purpose in this investigation is to focus on free-molecular transport in fine capillaries of a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo techniques in our calculations, and for simple geometries we have benchmarked our results against some analytical and previously available results. We have used Mathematica ® which has exceptional built-in symbolic and graphical capabilities, permitting easy handling of complicated geometries and good visualization of the results. Our computations provide insights into the role of geometry in molecular transport in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations that include intermolecular collisions and more realistic gas-surface collision operators.
Verifying a computational method for predicting extreme ground motion
Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, B.T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.
2011-01-01
In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.
1980-04-15
continuous). A continuous doublet strength, once again, is much more important in supersonic than in subsonic flow. That is due to the failure of...latter, since quadratic functions are not amenable to extrapolation, but need to be " pinned down" at network edges. (b) tangential velocity bounoary...rsh 2 a v V- V- vv dv 2 -ddv + vsh adv aqrs 5 Rdv + rsh2 [aqrs f + rsh f V- V- RV- (a+ sfR (J.6.210) Definirng 2 2 2R q2I() J621 12 2 ra2 + rqh2 and
Integrated Computational Solution for Predicting Skin Sensitization Potential of Molecules
Desai, Aarti; Singh, Vivek K.; Jere, Abhay
2016-01-01
Introduction Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense) that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage. Results The key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with ‘High’ reliability scoring), DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT (accuracy = 60.00% and CCR = 61.67%). Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%), the coverage was very low (only 10 out of 77 molecules were predicted reliably). Conclusions Owing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing. PMID:27271321
Three computational tools for predicting bacterial essential genes.
Guo, Feng-Biao; Ye, Yuan-Nong; Ning, Lu-Wen; Wei, Wen
2015-01-01
Essential genes are those genes indispensable for the survival of any living cell. Bacterial essential genes constitute the cornerstones of synthetic biology and are often attractive targets in the development of antibiotics and vaccines. Because identification of essential genes with wet-lab ways often means expensive economic costs and tremendous labor, scientists changed to seek for alternative way of computational prediction. Aiming to help to solve this issue, our research group (CEFG: group of Computational, Comparative, Evolutionary and Functional Genomics, http://cefg.uestc.edu.cn) has constructed three online services to predict essential genes in bacterial genomes. These freely available tools are applicable for single gene sequences without annotated functions, single genes with definite names, and complete genomes of bacterial strains. To ensure reliable predictions, the investigated species should belong to the same family (for EGP) or phylum (for CEG_Match and Geptop) with one of the reference species, respectively. As the pilot software for the issue, predicting accuracies of them have been assessed and compared with existing algorithms, and note that all of other published algorithms have not any formed online services. We hope these services at CEFG will help scientists and researchers in the field of essential genes.
NASA Astrophysics Data System (ADS)
Sauvage-Boutar, E.; Desclaux, J.
1990-07-01
Two methods of prediction of partial cavitation in inducers of rocket engine turbopumps have been developed. The first one is an analytical method previously developed to predict minimum NPSH (inlet total head minus vapor pressure) and the choking flow limit which was modified to include the computation of blade and boundary layer blockage. The second one is a method based on the work of Moore and Ruggeri (1969). This method takes into account thermodynamic effect for the prediction of the cavitation parameter Ki. For the choking flow limit, the first method can be extended to cryogenic fluids. Comparisons with available experimental data obtained with VULCAIN inducer pumping water and liquid hydrogen are presented.
Computing transitional flows using wall-modeled large eddy simulation
NASA Astrophysics Data System (ADS)
Bodart, Julien; Larsson, Johan
2012-11-01
To be applicable to complex aerodynamic flows at realistic Reynolds numbers, large eddy simulation (LES) must be combined with a model for the inner part of the boundary layer. Aerodynamic flows are, in general, sensitive to the location of boundary layer transition. While traditional LES can predict the transition location and process accurately, existing wall-modeled LES approaches can not. In the present work, the behavior of the wall-model is locally adapted using a sensor in the LES-resolved part of boundary layer. This sensor estimates whether the boundary layer is turbulent or not, in a way that does not rely on any homogeneous direction. The proposed method is validated on controlled transition scenarios on a flat plat boundary layer, and finally applied to the flow around a multi-element airfoil at realistic Reynolds number.
Computational Prediction of Protein-Protein Interactions of Human Tyrosinase
Wang, Su-Fang; Oh, Sangho; Si, Yue-Xiu; Wang, Zhi-Jiang; Han, Hong-Yan; Lee, Jinhyuk; Qian, Guo-Ying
2012-01-01
The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms. PMID:22577521
Computational Study of Axisymmetric Off-Design Nozzle Flows
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles operating off-design at transonic Mach numbers have been completed. These computations span the very difficult transonic flight regime with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined, including the Explicit Algebraic Stress model. Computations have been completed at freestream Mach numbers of 0.9 and 1.2, and nozzle pressure ratios (NPR) of 4 and 6. Calculations completed with variable time-stepping (steady-state) did not converge to a true steady-state solution. Calculations obtained using constant timestepping (timeaccurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was the result of using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show reasonable agreement with experimental data. The SST turbulence model demonstrates the best overall agreement with experimental data.
Massively parallel finite element computation of three dimensional flow problems
NASA Astrophysics Data System (ADS)
Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S.
1992-12-01
The parallel finite element computation of three-dimensional compressible, and incompressible flows, with emphasis on the space-time formulations, mesh moving schemes and implementations on the Connection Machines CM-200 and CM-5 are presented. For computation of unsteady compressible and incompressible flows involving moving boundaries and interfaces, the Deformable-Spatial-Domain/Stabilized-Space-Time (DSD/SST) formulation that previously developed are employed. In this approach, the stabilized finite element formulations of the governing equations are written over the space-time domain of the problem; therefore, the deformation of the spatial domain with respect to time is taken into account automatically. This approach gives the capability to solve a large class of problems involving free surfaces, moving interfaces, and fluid-structure and fluid-particle interactions. By using special mesh moving schemes, the frequency of remeshing is minimized to reduce the projection errors involved in remeshing and also to increase the parallelization ease of the computations. The implicit equation systems arising from the finite element discretizations are solved iteratively by using the GMRES update technique with the diagonal and nodal-block-diagonal preconditioners. These formulations have all been implemented on the CM-200 and CM-5, and have been applied to several large-scale problems. The three-dimensional problems in this report were all computed on the CM-200 and CM-5.
Computational wing design studies relating to natural laminar flow
NASA Technical Reports Server (NTRS)
Waggoner, Edgar G.
1986-01-01
Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.
A computational approach for flow-acoustic coupling in closed side branches.
Radavich, P M; Selamet, A; Novak, J M
2001-04-01
The quarter-wave resonator, which produces a narrow band of high acoustic attenuation at regularly spaced frequency intervals, is a common type of silencer used in ducts. The presence of mean flow in the main duct, however, is likely to promote an interaction between these acoustic resonances and the flow. The coupling for some discrete flow conditions leads to the production of both large wave amplitudes in the side branch and high noise levels in the main duct, thereby transforming the quarter-wave silencer into a noise generator. The present approach employs computational fluid dynamics (CFD) to model this complex interaction between the flow and acoustic resonances at low Mach number by solving the unsteady, turbulent, and compressible Navier-Stokes equations. Comparisons between the present computations and the experiments of Ziada [PVP-Vol. 258, ASME, 35-59 (1993)] for a system with two coaxial side branches show that the method is capable of reproducing the physics of the flow-acoustic coupling and predicting the flow conditions when the coupling occurs. The theory of Howe [IMA J. Appl. Math. 32, 187-209 (1984)] is then employed to determine the location and timing of the acoustic power production during a cycle.
Computation of Separated and Unsteady Flows with One- and Two-Equation Turbulence Models
NASA Technical Reports Server (NTRS)
Ekaterinaris, John A.; Menter, Florian R.
1994-01-01
The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. The two-equation turbulence models are discretized in space with an upwind-biased, second order accurate total variation diminishing scheme. One and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading edge and where natural transition was allowed to occur naturally are considered. The more recently developed field-equation turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are obtained. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading edge transitional flow region in order to capture the correct physical mechanism that leads to dynamic stall.
Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC
NASA Technical Reports Server (NTRS)
Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.
2001-01-01
The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.
Integrated uncertainty assessment of flow predictions in a Swiss catchment
NASA Astrophysics Data System (ADS)
Honti, M.; Stamm, C.; Reichert, P.
2012-04-01
, in an aggregated sense the model performed satisfactorily with about 10% discharge error along the flow duration curve. Although the uncertainty of future inputs was even bigger, the model results suggest that on the system level the magnitude of expected changes exceed the present uncertainty. Despite the varying predictions on the seasonal distribution and amount of precipitation between the model chains, there was a consensus that extreme events (floods and low flow periods) are likely to get more severe. The results suggest that by defining the predicted set of indicators we implicitly influence whether the predicted changes will be statistically different from the present or will be dissolved in the existing uncertainty.
Rayz, V L; Boussel, L; Lawton, M T; Acevedo-Bolton, G; Ge, L; Young, W L; Higashida, R T; Saloner, D
2008-11-01
The deposition of intralumenal thrombus in intracranial aneurysms adds a risk of thrombo-embolism over and above that posed by mass effect and rupture. In addition to biochemical factors, hemodynamic factors that are governed by lumenal geometry and blood flow rates likely play an important role in the thrombus formation and deposition process. In this study, patient-specific computational fluid dynamics (CFD) models of blood flow were constructed from MRA data for three patients who had fusiform basilar aneurysms that were thrombus free and then proceeded to develop intralumenal thrombus. In order to determine whether features of the flow fields could suggest which regions had an elevated potential for thrombus deposition, the flow was modeled in the baseline, thrombus-free geometries. Pulsatile flow simulations were carried out using patient-specific inlet flow conditions measured with MR velocimetry. Newtonian and non-Newtonian blood behavior was considered. A strong similarity was found between the intra-aneurysmal regions with CFD-predicted slow, recirculating flows and the regions of thrombus deposition observed in vivo in the follow-up MR studies. In two cases with larger aneurysms, the agreement between the low velocity zones and clotted-off regions improved when non-Newtonian blood behavior was taken into account. A similarity was also found between the calculated low shear stress regions and the regions that were later observed to clot.
Simple numerical method for predicting steady compressible flows
NASA Technical Reports Server (NTRS)
Von Lavante, E.; Melson, N. Duane
1987-01-01
The present numerical method for the solution of the isenthalpic form of the governing equations for compressible viscous and inviscid flows has its basis in the concept of flux vector splitting in its implicit form, and has been tested in the cases of several difficult viscous and inviscid configurations. An acceleration of time-marching to steady state is accomplished by implementing a multigrid procedure which effectively increases the convergence rate. The steady state results obtained are largely of good quality, and required only short computational times.
Simple numerical method for predicting steady compressible flows
NASA Technical Reports Server (NTRS)
Vonlavante, Ernst; Nelson, N. Duane
1986-01-01
A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1988-01-01
A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.
Computational neurorehabilitation: modeling plasticity and learning to predict recovery.
Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas
2016-04-30
Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.
Predicting Turbulent Convective Heat Transfer in Fully Developed Duct Flows
NASA Technical Reports Server (NTRS)
Rokni, Masoud; Gatski, Thomas B.
2001-01-01
The performance of an explicit algebraic stress model (EASM) is assessed in predicting the turbulent flow and forced heat transfer in both straight and wavy ducts, with rectangular, trapezoidal and triangular cross-sections, under fully developed conditions. A comparison of secondary flow patterns. including velocity vectors and velocity and temperature contours, are shown in order to study the effect of waviness on flow dynamics, and comparisons between the hydraulic parameters. Fanning friction factor and Nusselt number, are also presented. In all cases. isothermal conditions are imposed on the duct walls, and the turbulent heat fluxes are modeled using gradient-diffusion type models. The formulation is valid for Reynolds numbers up to 10(exp 5) and this minimizes the need for wall functions that have been used with mixed success in previous studies of complex duct flows. In addition, the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Criteria in terms of heat transfer and friction factor needed to choose the optimal wavy duct cross-section for industrial applications among the ones considered are discussed.
CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.
Cooley, Richard L.; Vecchia, Aldo V.
1987-01-01
A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.
NASA Technical Reports Server (NTRS)
Rowe, W. S.; Sebastian, J. D.; Petrarca, J. R.
1979-01-01
Results of theoretical and numerical investigations conducted to develop economical computing procedures were applied to an existing computer program that predicts unsteady aerodynamic loadings caused by leading and trailing edge control surface motions in subsonic compressible flow. Large reductions in computing costs were achieved by removing the spanwise singularity of the downwash integrand and evaluating its effect separately in closed form. Additional reductions were obtained by modifying the incremental pressure term that account for downwash singularities at control surface edges. Accuracy of theoretical predictions of unsteady loading at high reduced frequencies was increased by applying new pressure expressions that exactly satisified the high frequency boundary conditions of an oscillating control surface. Comparative computer result indicated that the revised procedures provide more accurate predictions of unsteady loadings as well as providing reduction of 50 to 80 percent in computer usage costs.
TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT
Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y
2014-06-15
Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant
Prediction of inverted velocity profile for gas flow in nanochannel
NASA Astrophysics Data System (ADS)
Zhang, T. T.; Ren, Y. R.
2014-11-01
Velocity inversion is an interesting phenomenon of nanoscale which means that the velocity near the wall is greater than that of center. To solve this problem, fluid flow in nanochannel attracts more attention in recent years. The physical model of gas flow in two-dimensional nanochannel was established here. To describe the process with conventional control equations, Navier-Stokes equations combined with high-order accurate slip boundary conditions was used as mathematical model. With the introduction of new dimensionless variables, the problem was reduced to an ordinary differential equation. Then it was analytically solved and investigated using homotopy analysis method (HAM). The results were verified by comparing with other available experiment data. Result shows that the proposed method could predict velocity phenomenon.
Material flow analysis of used personal computers in Japan.
Yoshida, Aya; Tasaki, Tomohiro; Terazono, Atsushi
2009-05-01
Most personal computers (PCs) are discarded by consumers after the data files have been moved to a new PC. Therefore, a used PC collection scheme should be created that does not depend on the distribution route of new PCs. In Japan, manufacturers' voluntary take-back recycling schemes were established in 2001 (for business PCs) and 2003 (for household PCs). At the same time, the export of used PCs from Japan increased, affecting the domestic PC reuse market. These regulatory and economic conditions would have changed the flow of used PCs. In this paper, we developed a method of minimizing the errors in estimating the material flow of used PCs. The method's features include utilization of both input and output flow data and elimination of subjective estimation as much as possible. Flow rate data from existing surveys were used for estimating the flow of used PCs in Japan for fiscal years (FY) 2000, 2001, and 2004. The results show that 3.92 million and 4.88 million used PCs were discarded in FY 2000 and 2001, respectively. Approximately two-thirds of the discarded PCs were disposed of or recycled within the country, one-fourth was reused within the country, and 8% were exported. In FY 2004, 7.47 million used PCs were discarded. The ratio of domestic disposal and recycling decreased to 37% in FY 2004, whereas the domestic reuse and export ratios increased to 37% and 26%, respectively. Flows from businesses to retailers in FY 2004 increased dramatically, which led to increased domestic reuse. An increase in the flow of used PCs from lease and rental companies to secondhand shops has led to increased exports. Results of interviews with members of PC reuse companies were and trade statistics were used to verify the results of our estimation of domestic reuse and export of used PCs.
Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Gatski, Thomas B.
2000-01-01
Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.
Flow and noise predictions for the tandem cylinder aeroacoustic benchmarka)
NASA Astrophysics Data System (ADS)
Brès, Guillaume A.; Freed, David; Wessels, Michael; Noelting, Swen; Pérot, Franck
2012-03-01
Flow and noise predictions for the tandem cylinder benchmark are performed using lattice Boltzmann and Ffowcs Williams-Hawkings methods. The numerical results are compared to experimental measurements from the Basic Aerodynamic Research Tunnel and Quiet Flow Facility (QFF) at NASA Langley Research Center. The present study focuses on two configurations: the first configuration corresponds to the typical setup with uniform inflow and spanwise periodic boundary condition. To investigate installation effects, the second configuration matches the QFF setup and geometry, including the rectangular open jet nozzle, and the two vertical side plates mounted in the span to support the test models. For both simulations, the full span of 16 cylinder diameters is simulated, matching the experimental dimensions. Overall, good agreement is obtained with the experimental surface data, flow field, and radiated noise measurements. In particular, the presence of the side plates significantly reduces the excessive spanwise coherence observed with periodic boundary conditions and improves the predictions of the tonal peak amplitude in the far-field noise spectra. Inclusion of the contributions from the side plates in the calculation of the radiated noise shows an overall increase in the predicted spectra and directivity, leading to a better match with the experimental measurements. The measured increase is about 1 to 2 dB at the main shedding frequency and harmonics, and is likely caused by reflections on the spanwise side plates. The broadband levels are also slightly higher by about 2 to 3 dB, likely due to the shear layers from the nozzle exit impacting the side plates.
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
Computation of interactional aerodynamics for noise prediction of heavy lift rotorcraft
NASA Astrophysics Data System (ADS)
Hennes, Christopher C.
Many computational tools are used when developing a modern helicopter. As the design space is narrowed, more accurate and time-intensive tools are brought to bear. These tools are used to determine the effect of a design decision on the performance, handling, stability and efficiency of the aircraft. One notable parameter left out of this process is acoustics. This is due in part to the difficulty in making useful acoustics calculations that reveal the differences between various design configurations. This thesis presents a new approach designed to bridge the gap in prediction capability between fast but low-fidelity Lagrangian particle methods, and slow but high-fidelity Eulerian computational fluid dynamics simulations. A multi-pronged approach is presented. First, a simple flow solver using well-understood and tested flow solution methodologies is developed specifically to handle bodies in arbitrary motion. To this basic flow solver two new technologies are added. The first is an Immersed Boundary technique designed to be tolerant of geometric degeneracies and low-resolution grids. This new technique allows easy inclusion of complex fuselage geometries at minimal computational cost, improving the ability of a solver to capture the complex interactional aerodynamic effects expected in modern rotorcraft design. The second new technique is an extension of a concept from flow visualization where the motion of tip vortices are tracked through the solution using massless particles convecting with the local flow. In this extension of that concept, the particles maintain knowledge of the expected and actual vortex strength. As a post-processing step, when the acoustic calculations are made, these particles are used to augment the loading noise calculation and reproduce the highly-impulsive character of blade-vortex interaction noise. In combination these new techniques yield a significant improvement to the state of the art in rotorcraft blade-vortex interaction noise
NASA Astrophysics Data System (ADS)
Schilling, S. P.; Griswold, J. P.; Iverson, R. M.
2008-12-01
LAHARZ is a computational model that uses statistical descriptions of areas inundated by past mass-flow events to forecast areas likely to be inundated by hypothetical future events. The forecasts are based on sets of physically motivated and statistically calibrated power-law equations that each have a form A = cV2/3, relating mass-flow volume (V) to planimetric or cross-sectional areas (A) inundated by an average flow as it descends a given drainage. Calibration of the equations utilizes logarithmic transformation and linear regression to determine the best-fit values of c. The LAHARZ software uses specified values of V, an algorithm for idenitifying mass-flow source areas, and digital elevation models of topography to portray forecast hazard zones on maps. In typical applications, a range of plausible V values results in a set of nested hazard zones showing areas likely to be inundated by a range of hypothetical flows. LAHARZ forecasts have not included explicit confidence limits for areas likely to be inundated by individual flows, however; here we describe work that remedies this shortcoming. The basic elements required to generate explict confidence limits in LAHARZ forecasts are the sets of data pairs relating values of V and A, the statistically calibrated prediction equations, a user-specified level of confidence, and t-distribution statistics. The prediction equations and data are used to calculate the standard error of regression, standard error of the mean, and standard error of prediction. Calculation of these standard errors closely parallels procedures described in many statistics books, but differs subtly because the LAHARZ prediction equations have only one calibrated parameter (c), not two as in typical linear regression. Standard errors do not fully determine prediction uncertainty, however, because it does not account for the fact that predictions are based on an incomplete sample of the population of V and A values. The effect of incomplete
NASA Technical Reports Server (NTRS)
Lin, S. J.; Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.
1983-01-01
Procedure for computing subsonic, turbulent flow in turbofan lobe mixers was extended to allow consideration of flow fields in which a swirl component of velocity may be present. Additional, an optional k-lambda turbulence model was added to the procedure. The method of specifying the initial flow field was also modified, allowing parametric specification or radial secondary flow velocities, and making it possible to consider initial flow fields which have significant inlet secondary flow vorticity. A series of example calculations was performed which demonstrate the various capabilities of the modified code. These calculations demonstrate the effects of initial secondary flows of various magnitudes, the effects of swirl, and the effects of turbulence model on the mixing process. The results of these calculations indicate that the initial secondary flows, presumed to be generated within the lobes, play a dominant role in the mixing process, and that the predicted results are relatively insensitive to the turbulence model used.
Computer software improves CT drag and buckling prediction
Wu, J.
1998-12-31
Coiled tubing drag and buckling prediction is very important in coiled tubing operations including drilling, completion and workover. Bit weight, packer load, and well depth penetration can be limited by a severe drag and buckling problem in coiled tubing operations. Enormous drag can be resulted from the buckling of coiled tubing, causing a lockup of coiled tubing in the wellbore. Many factors can affect coiled tubing drag and buckling, including wellbore condition, coiled tubing size, bit weight/packer load, well depth, residual bend, and wellbore pressure. This paper presents a newly developed computer software to help predict coiled tubing drag and buckling. The software`s user-friendly interface makes it easy for field engineers to predict coiled tubing drag and buckling. Three coiled tubing operation categories and several buckling criteria are used in the software to improve coiled tubing drag and buckling prediction. The advanced graphical animation helps visualize the development of coiled tubing drag and buckling in the operation process. The prediction of coiled tubing drag and buckling is improved by using this software to obtain a success in coiled tubing operations.
Turbulent Boundary Layers in Oscillating Flows. Part 1: an Experimental and Computational Study
NASA Technical Reports Server (NTRS)
Cook, W. J.
1986-01-01
An experimental-computational study of the behavior of turbulent boundary layers for oscillating air flows over a plane surface with a small favorable mean pressure gradient is described. Experimental studies were conducted for boundary layers generated on the test section wall of a facility that produces a flow with a mean free stream velocity and a superposed nearly-pure sinusoidal component over a wide range of frequency. Flow at a nominal mean free stream velocity of 50 m/s were studied at atmospheric pressure and temperature at selected axial positions over a 2 m test length for frequencies ranging from 4 to 29 Hz. Quantitative experimental results are presented for unsteady velocity profiles and longitudinal turbulence levels obtained from hot wire anemometer measurements at three axial positions. Mean velocity profiles for oscillating flows were found to exhibit only small deviations from corresponding steady flow profiles, while amplitudes and phase relationships exhibited a strong dependence on axial position and frequency. Since sinusoidal flows could be generated over a wide range of frequency, studies at fixed values of reduced frequency at different axial positions were studied. Results show that there is some utility in the use of reduced frequency to correlate unsteady velocity results. The turbulence level u' sub rms was observed to vary essentially sinusoidally around values close to those measured in steady flow. However, the amplitude of oscillation and phase relations for turbulence level were found to be strongly frequency dependent. Numerical predictions were obtained using an unsteady boundary layer computational code and the Cebeci-Smith and Glushko turbulence models. Predicted quantities related to unsteady velocity profiles exhibit fair agreement with experiment when the Cebeci-Smith turbulence model is used.
USM3D Predictions of Supersonic Nozzle Flow
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Elmiligui, Alaa A.; Campbell, Richard L.; Nayani, Sudheer N.
2014-01-01
This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure.
A multigrid nonoscillatory method for computing high speed flows
NASA Technical Reports Server (NTRS)
Li, C. P.; Shieh, T. H.
1993-01-01
A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.
Geostatistical prediction of flow-duration curves in an index-flow framework
NASA Astrophysics Data System (ADS)
Pugliese, Alessio; Castellarin, Attilio; Brath, Armando
2014-05-01
An empirical period-of-record Flow-Duration Curve (FDC) describes the percentage of time (duration) in which a given streamflow was equaled or exceeded over an historical period of time. FDCs have always attracted a great deal of interest in engineering applications because of their ability to provide a simple yet comprehensive graphical view of the overall historical variability of streamflows in a river basin, from floods to low-flows. Nevertheless, in many practical applications one has to construct FDC in basins that are ungauged or where very few observations are available. We present in this study an application strategy of Topological kriging (or Top-kriging), which makes the geostatistical procedure capable of predicting flow-duration curves (FDCs) in ungauged catchments. Previous applications of Top-kriging mainly focused on the prediction of point streamflow indices (e.g. flood quantiles, low-flow indices, etc.). In this study Top-kriging is used to predict FDCs in ungauged sites as a weighted average of standardised empirical FDCs through the traditional linear-weighting scheme of kriging methods. Our study focuses on the prediction of FDCs for 18 unregulated catchments located in Central Italy, for which daily streamflow series with length from 5 to 40 years are available, together with information on climate referring to the same time-span of each daily streamflow sequence. Empirical FDCs are standardised by a reference index-flow value (i.e. mean annual flow, or mean annual precipitation times the catchment drainage area) and the overall deviation of the curves from this reference value is then used for expressing the hydrological similarity between catchments and for deriving the geostatistical weights. We performed an extensive leave-one-out cross-validation to quantify the accuracy of the proposed technique, and to compare it to traditional regionalisation models that were recently developed for the same study region. The cross-validation points
Prediction of RNA secondary structure, including pseudoknotting, by computer simulation.
Abrahams, J P; van den Berg, M; van Batenburg, E; Pleij, C
1990-01-01
A computer program is presented which determines the secondary structure of linear RNA molecules by simulating a hypothetical process of folding. This process implies the concept of 'nucleation centres', regions in RNA which locally trigger the folding. During the simulation, the RNA is allowed to fold into pseudoknotted structures, unlike all other programs predicting RNA secondary structure. The simulation uses published, experimentally determined free energy values for nearest neighbour base pair stackings and loop regions, except for new extrapolated values for loops larger than seven nucleotides. The free energy value for a loop arising from pseudoknot formation is set to a single, estimated value of 4.2 kcal/mole. Especially in the case of long RNA sequences, our program appears superior to other secondary structure predicting programs described so far, as tests on tRNAs, the LSU intron of Tetrahymena thermophila and a number of plant viral RNAs show. In addition, pseudoknotted structures are often predicted successfully. The program is written in mainframe APL and is adapted to run on IBM compatible PCs, Atari ST and Macintosh personal computers. On an 8 MHz 8088 standard PC without coprocessor, using STSC APL, it folds a sequence of 700 nucleotides in one and a half hour. PMID:1693421
Computational approaches to predict bacteriophage-host relationships.
Edwards, Robert A; McNair, Katelyn; Faust, Karoline; Raes, Jeroen; Dutilh, Bas E
2016-03-01
Metagenomics has changed the face of virus discovery by enabling the accurate identification of viral genome sequences without requiring isolation of the viruses. As a result, metagenomic virus discovery leaves the first and most fundamental question about any novel virus unanswered: What host does the virus infect? The diversity of the global virosphere and the volumes of data obtained in metagenomic sequencing projects demand computational tools for virus-host prediction. We focus on bacteriophages (phages, viruses that infect bacteria), the most abundant and diverse group of viruses found in environmental metagenomes. By analyzing 820 phages with annotated hosts, we review and assess the predictive power of in silico phage-host signals. Sequence homology approaches are the most effective at identifying known phage-host pairs. Compositional and abundance-based methods contain significant signal for phage-host classification, providing opportunities for analyzing the unknowns in viral metagenomes. Together, these computational approaches further our knowledge of the interactions between phages and their hosts. Importantly, we find that all reviewed signals significantly link phages to their hosts, illustrating how current knowledge and insights about the interaction mechanisms and ecology of coevolving phages and bacteria can be exploited to predict phage-host relationships, with potential relevance for medical and industrial applications.
Comparison of turbine annulus mass flow computed by one- and two-dimensional analysis
NASA Technical Reports Server (NTRS)
Wasserbauer, C. A.; Glassman, A. J.
1972-01-01
Variations in specific heat ratio, flow angle, critical velocity ratio, swirl distribution exponent, and radius ratio were considered in computing the mass flow. Variations in specific heat ratio had no significant effect and variations in critical velocity ratio had only small effect on computed mass flow between a one- and two-dimensional analysis. All non-free-vortex cases considered showed larger differences in computed mass flow between one- and two-dimensional analysis than for free vortex flow. For the non-free-vortex cases, decreasing radius ratio and increasing flow angle resulted in larger differences in mass flow as computed by the two methods.
Monthly to seasonal low flow prediction: statistical versus dynamical models
NASA Astrophysics Data System (ADS)
Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke
2016-04-01
While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with
NASA Technical Reports Server (NTRS)
Sidwell, Kenneth W.; Baruah, Pranab K.; Bussoletti, John E.; Medan, Richard T.; Conner, R. S.; Purdon, David J.
1990-01-01
A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines.
Computational techniques for flows with finite-rate condensation
NASA Technical Reports Server (NTRS)
Candler, Graham V.
1993-01-01
A computational method to simulate the inviscid two-dimensional flow of a two-phase fluid was developed. This computational technique treats the gas phase and each of a prescribed number of particle sizes as separate fluids which are allowed to interact with one another. Thus, each particle-size class is allowed to move through the fluid at its own velocity at each point in the flow field. Mass, momentum, and energy are exchanged between each particle class and the gas phase. It is assumed that the particles do not collide with one another, so that there is no inter-particle exchange of momentum and energy. However, the particles are allowed to grow, and therefore, they may change from one size class to another. Appropriate rates of mass, momentum, and energy exchange between the gas and particle phases and between the different particle classes were developed. A numerical method was developed for use with this equation set. Several test cases were computed and show qualitative agreement with previous calculations.
A massively parallel computational approach to coupled thermoelastic/porous gas flow problems
NASA Technical Reports Server (NTRS)
Shia, David; Mcmanus, Hugh L.
1995-01-01
A new computational scheme for coupled thermoelastic/porous gas flow problems is presented. Heat transfer, gas flow, and dynamic thermoelastic governing equations are expressed in fully explicit form, and solved on a massively parallel computer. The transpiration cooling problem is used as an example problem. The numerical solutions have been verified by comparison to available analytical solutions. Transient temperature, pressure, and stress distributions have been obtained. Small spatial oscillations in pressure and stress have been observed, which would be impractical to predict with previously available schemes. Comparisons between serial and massively parallel versions of the scheme have also been made. The results indicate that for small scale problems the serial and parallel versions use practically the same amount of CPU time. However, as the problem size increases the parallel version becomes more efficient than the serial version.
Introduction: Prediction of F-16XL Flight Flow Physics
NASA Technical Reports Server (NTRS)
Lamar, John E.
2009-01-01
This special section is the result of fruitful endeavors by an international group of researchers in industry, government laboratories and university-led efforts to improve the technology readiness level of their CFD solvers through comparisons with flight data collected on the F-16XL-1 aircraft at a variety of test conditions. These 1996 flight data were documented and detailed the flight-flow physics of this aircraft through surface tufts and pressures, boundary-layer rakes and skin-friction measurements. The flight project was called the Cranked Wing Aerodynamics Project (CAWAP), due to its leading-edge sweep crank (70 degrees inboard, 50 degrees outboard), and served as a basis for the International comparisons to be made, called CAWAPI. This highly focused effort was one of two vortical flow studies facilitated by the NATO Research and Technology Organization through its Applied Vehicle Panel with a title of Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft. It was given a task group number of AVT-113 and had an official start date of Spring 2003. The companion part of this task group dealt with fundamentals of vortical flow from both an experimental and numerical perspective on an analytically describable 65 degree delta-wing model for which much surface pressure data had already been measured at NASA Langley Research Center at a variety of Mach and Reynolds numbers and is called the Vortex Flow Experiment - 2 (VFE-2). These two parts or facets helped one another in understanding the predictions and data that had been or were being collected.
Euler equation computations for the flow over a hovering helicopter rotor
NASA Technical Reports Server (NTRS)
Roberts, Thomas Wesley
1988-01-01
A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.
NASA Technical Reports Server (NTRS)
Chima, R. V.; Strazisar, A. J.
1982-01-01
A procedure for using an efficient axisymmetric code to generate downstream pressure input for more costly Euler codes is discussed. Two and three dimensional inviscid solutions for the flow within a transonic axial compressor rotor at design speed are compared to laser anemometer measurements at maximum flow and near stall operating points. Computational details of the 2-D axisymmetric stream function solution and the 3-D full Euler solution are described. Relative Mach number contours, shock location, and shock strength as measured and as predicted by the 3-D code are compared. Downstream of the rotor the inviscid computations agree with each other but predict higher pressure ratios than those measured. Euler codes require a downstream pressure as input. Since that pressure controls the computed mass flow and shock system, it must be consistent with an inviscid solution.
Vali, Alireza; Abla, Adib A; Lawton, Michael T; Saloner, David; Rayz, Vitaliy L
2017-01-04
In vivo measurement of blood velocity fields and flow descriptors remains challenging due to image artifacts and limited resolution of current imaging methods; however, in vivo imaging data can be used to inform and validate patient-specific computational fluid dynamics (CFD) models. Image-based CFD can be particularly useful for planning surgical interventions in complicated cases such as fusiform aneurysms of the basilar artery, where it is crucial to alter pathological hemodynamics while preserving flow to the distal vasculature. In this study, patient-specific CFD modeling was conducted for two basilar aneurysm patients considered for surgical treatment. In addition to velocity fields, transport of contrast agent was simulated for the preoperative and postoperative conditions using two approaches. The transport of a virtual contrast passively following the flow streamlines was simulated to predict post-surgical flow regions prone to thrombus deposition. In addition, the transport of a mixture of blood with an iodine-based contrast agent was modeled to compare and verify the CFD results with X-ray angiograms. The CFD-predicted patterns of contrast flow were qualitatively compared to in vivo X-ray angiograms acquired before and after the intervention. The results suggest that the mixture modeling approach, accounting for the flow rates and properties of the contrast injection, is in better agreement with the X-ray angiography data. The virtual contrast modeling assessed the residence time based on flow patterns unaffected by the injection procedure, which makes the virtual contrast modeling approach better suited for prediction of thrombus deposition, which is not limited to the peri-procedural state.
Dynamic computing resource allocation in online flood monitoring and prediction
NASA Astrophysics Data System (ADS)
Kuchar, S.; Podhoranyi, M.; Vavrik, R.; Portero, A.
2016-08-01
This paper presents tools and methodologies for dynamic allocation of high performance computing resources during operation of the Floreon+ online flood monitoring and prediction system. The resource allocation is done throughout the execution of supported simulations to meet the required service quality levels for system operation. It also ensures flexible reactions to changing weather and flood situations, as it is not economically feasible to operate online flood monitoring systems in the full performance mode during non-flood seasons. Different service quality levels are therefore described for different flooding scenarios, and the runtime manager controls them by allocating only minimal resources currently expected to meet the deadlines. Finally, an experiment covering all presented aspects of computing resource allocation in rainfall-runoff and Monte Carlo uncertainty simulation is performed for the area of the Moravian-Silesian region in the Czech Republic.
Community-Wide Evaluation of Computational Function Prediction.
Friedberg, Iddo; Radivojac, Predrag
2017-01-01
A biological experiment is the most reliable way of assigning function to a protein. However, in the era of high-throughput sequencing, scientists are unable to carry out experiments to determine the function of every single gene product. Therefore, to gain insights into the activity of these molecules and guide experiments, we must rely on computational means to functionally annotate the majority of sequence data. To understand how well these algorithms perform, we have established a challenge involving a broad scientific community in which we evaluate different annotation methods according to their ability to predict the associations between previously unannotated protein sequences and Gene Ontology terms. Here we discuss the rationale, benefits, and issues associated with evaluating computational methods in an ongoing community-wide challenge.
DEEP: a general computational framework for predicting enhancers.
Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B
2015-01-01
Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer's properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/.
Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors
Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Moffat, H.K.
1997-12-01
Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.
Computational and Experimental Investigations of Flow past Spinning Cylinders
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Buckley, Liam; Carlucci, Pasquale; Carlucci, Donald; Aljalis, Elias; Thangam, Siva; Stevens-Ardec Collaboration
2012-11-01
An anisotropic two-equation Reynolds-stress model is developed by considering the modifications to the energy spectrum and through invariance based scaling. In this approach the effect of rotation is used to modify the energy spectrum, while the influence of swirl is modeled based on scaling laws. The resulting generalized model is validated for benchmark turbulent flows with swirl and curvature. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. Computations for flow past an axially rotating cylinder with a free-spinning base are performed along with experiments for a range of spin rates and free stream flow conditions. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. The experimental results of Carlucci & Thangam (2001) are used to benchmark flow over spinning cylinders. The data is extended to munitions spinning in the wake of other munitions and applications involving the design of projectiles are discussed. This work was funded in part by U. S. Army ARDEC.
Computational heat transfer analysis for oscillatory channel flows
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Kannapareddy, Mohan
1993-01-01
An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.
Multidomain solution algorithm for potential flow computations around complex configurations
NASA Astrophysics Data System (ADS)
Jacquotte, Olivier-Pierre; Godard, Jean-Luc
1994-04-01
A method is presented for the computation of irrotational transonic flows of perfect gas around a wide class of geometries. It is based on the construction of a multidomain structured grid and then on the solution of the full potential equation discretized with finite elements. The novelty of the paper is the combination of three embedded algorithms: a mixed fixed-point/Newton algorithm to treat the non-linearity, a multidomain conjugate gradient algorithm to handle the grid topology and another conjugate gradient algorithm in each of the structured domains. This method has made possible the calculations of flows around geometries that cannot be treated in a structured approach without the multidomain algorithm; an application of this method to the study of the wing-pylon-nacelle interactions is presented.
Computational analysis of the SSME fuel preburner flow
NASA Technical Reports Server (NTRS)
Wang, T. S.; Farmer, R. C.
1986-01-01
A computational fluid dynamics model which simulates the steady state operation of the SSME fuel preburner is developed. Specifically, the model will be used to quantify the flow factors which cause local hot spots in the fuel preburner in order to recommend experiments whereby the control of undesirable flow features can be demonstrated. The results of a two year effort to model the preburner are presented. In this effort, investigating the fuel preburner flowfield, the appropriate transport equations were numerically solved for both an axisymmetric and a three-dimensional configuration. Continuum's VAST (Variational Solution of the Transport equations) code, in conjunction with the CM-1000 Engineering Analysis Workstation and the NASA/Ames CYBER 205, was used to perform the required calculations. It is concluded that the preburner operational anomalies are not due to steady state phenomena and must, therefore, be related to transient operational procedures.
Computation of viscous transonic flow about a lifting airfoil
NASA Technical Reports Server (NTRS)
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
Grid generation and inviscid flow computation about aircraft geometries
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1989-01-01
Grid generation and Euler flow about fighter aircraft are described. A fighter aircraft geometry is specified by an area ruled fuselage with an internal duct, cranked delta wing or strake/wing combinations, canard and/or horizontal tail surfaces, and vertical tail surfaces. The initial step before grid generation and flow computation is the determination of a suitable grid topology. The external grid topology that has been applied is called a dual-block topology which is a patched C (exp 1) continuous multiple-block system where inner blocks cover the highly-swept part of a cranked wing or strake, rearward inner-part of the wing, and tail components. Outer-blocks cover the remainder of the fuselage, outer-part of the wing, canards and extend to the far field boundaries. The grid generation is based on transfinite interpolation with Lagrangian blending functions. This procedure has been applied to the Langley experimental fighter configuration and a modified F-18 configuration. Supersonic flow between Mach 1.3 and 2.5 and angles of attack between 0 degrees and 10 degrees have been computed with associated Euler solvers based on the finite-volume approach. When coupling geometric details such as boundary layer diverter regions, duct regions with inlets and outlets, or slots with the general external grid, imposing C (exp 1) continuity can be extremely tedious. The approach taken here is to patch blocks together at common interfaces where there is no grid continuity, but enforce conservation in the finite-volume solution. The key to this technique is how to obtain the information required for a conservative interface. The Ramshaw technique which automates the computation of proportional areas of two overlapping grids on a planar surface and is suitable for coding was used. Researchers generated internal duct grids for the Langley experimental fighter configuration independent of the external grid topology, with a conservative interface at the inlet and outlet.
Predicting drug metabolism: experiment and/or computation?
Kirchmair, Johannes; Göller, Andreas H; Lang, Dieter; Kunze, Jens; Testa, Bernard; Wilson, Ian D; Glen, Robert C; Schneider, Gisbert
2015-06-01
Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.
Prediction by linear regression on a quantum computer
NASA Astrophysics Data System (ADS)
Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco
2016-08-01
We give an algorithm for prediction on a quantum computer which is based on a linear regression model with least-squares optimization. In contrast to related previous contributions suffering from the problem of reading out the optimal parameters of the fit, our scheme focuses on the machine-learning task of guessing the output corresponding to a new input given examples of data points. Furthermore, we adapt the algorithm to process nonsparse data matrices that can be represented by low-rank approximations, and significantly improve the dependency on its condition number. The prediction result can be accessed through a single-qubit measurement or used for further quantum information processing routines. The algorithm's runtime is logarithmic in the dimension of the input space provided the data is given as quantum information as an input to the routine.
Structure-based Methods for Computational Protein Functional Site Prediction
Dukka, B KC
2013-01-01
Due to the advent of high throughput sequencing techniques and structural genomic projects, the number of gene and protein sequences has been ever increasing. Computational methods to annotate these genes and proteins are even more indispensable. Proteins are important macromolecules and study of the function of proteins is an important problem in structural bioinformatics. This paper discusses a number of methods to predict protein functional site especially focusing on protein ligand binding site prediction. Initially, a short overview is presented on recent advances in methods for selection of homologous sequences. Furthermore, a few recent structural based approaches and sequence-and-structure based approaches for protein functional sites are discussed in details. PMID:24688745
A Roll, Fin, and Fin Controller Prediction Computer Program.
1980-06-01
Reference 1, and specific details of this improve- ment will be published in a future report currently under preparation by Cox. *A complete listing of...effects. CONCLUDING RMARKS This report provides a user’s guide to FINCON, a roll, fin, fin con- troller prediction computer program. No attempt to...180. FLOATIMUOIINU) ROLL I# OA14PUINUI a OUCIIV,1 ROLL 19 IF ( ITEPATE .EQ.0) O T3 98’ ROLL 106 Ise NTIY 0 ROLL lot To 0.0 ROLL lit s0 NTRY - NTYRY I
Application of a computational model for vortex generators in subsonic internal flows
NASA Technical Reports Server (NTRS)
Kunik, W. G.
1986-01-01
A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vorticity source term is used in a modified form of the Parabolized Navier-Stokes equations to model the shed vortex. Computed results are compared with idealized flow vortex paths, and with experimental data for vortex generators embedded in a thick turbulent boundary layer. The analysis is also compared with experimental data for a separated diffusing S-duct and for a diffusing S-duct with vortex generators. Quantitative comparisons are shown for the latter three cases. Emphasis is placed on verifying the ability of the model to predict global distortions in the flow field.
Program Predicts Time Courses of Human/Computer Interactions
NASA Technical Reports Server (NTRS)
Vera, Alonso; Howes, Andrew
2005-01-01
CPM X is a computer program that predicts sequences of, and amounts of time taken by, routine actions performed by a skilled person performing a task. Unlike programs that simulate the interaction of the person with the task environment, CPM X predicts the time course of events as consequences of encoded constraints on human behavior. The constraints determine which cognitive and environmental processes can occur simultaneously and which have sequential dependencies. The input to CPM X comprises (1) a description of a task and strategy in a hierarchical description language and (2) a description of architectural constraints in the form of rules governing interactions of fundamental cognitive, perceptual, and motor operations. The output of CPM X is a Program Evaluation Review Technique (PERT) chart that presents a schedule of predicted cognitive, motor, and perceptual operators interacting with a task environment. The CPM X program allows direct, a priori prediction of skilled user performance on complex human-machine systems, providing a way to assess critical interfaces before they are deployed in mission contexts.
Prediction of pesticides chromatographic lipophilicity from the computational molecular descriptors.
Casoni, Dorina; Petre, Jana; David, Victor; Sârbu, Costel
2011-02-01
Quantitative structure-property relationship models were developed for the prediction of pesticides and some PAH compounds lipophilicity based on a wide set of computational molecular descriptors and a set of experimental chromatographic data. The chromatographic lipophilicity of pesticides has been evaluated by high-performance liquid chromatography (HPLC) using different chemically bonded (C18, C8, CN and Phenyl HPLC columns) stationary phases and two different organic modifiers (methanol and acetonitrile, respectively) in the mobile phase composition. Through a systematic study, by using the classic multivariate analysis, several quantitative structure-property/lipophilicity multi-dimensional models were established. Multiple linear regression and genetic algorithm for the variable subset selection were used. The internal and external statistical evaluation procedures revealed some appropriate models for the chromatographic lipophilicity prediction of pesticides. Moreover, the statistical parameters of regression and those obtained by applying t-test for the intercept (a(0)) and for the slope (a(1)) in order to evaluate relationship between experimental and predicted octanol-water partition coefficients in case of the test set compounds, revealed two statistically valid models that can be successfully used in lipophilicity prediction of pesticides.
Computations of Torque-Balanced Coaxial Rotor Flows
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.
2017-01-01
Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.
Simulating Subsurface Flow and Transport on Ultrascale Computers using PFLOTRAN
Mills, Richard T; Lu, Chuan; Hammond, Glenn; Lichtner, Peter
2007-01-01
We describe PFLOTRAN, a recently developed code for modeling multi-phase, multicomponent subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop--with a relatively modest investment in development effort--a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.
Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN
NASA Astrophysics Data System (ADS)
Tran Mills, Richard; Lu, Chuan; Lichtner, Peter C.; Hammond, Glenn E.
2007-07-01
We describe PFLOTRAN, a recently developed code for modeling multi-phase, multi-component subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop—with a relatively modest investment in development effort—a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.
Computation of convective flow with gravity modulation in rectangular cavities
NASA Technical Reports Server (NTRS)
Biringen, S.; Danabasoglu, G.
1990-01-01
In this work, a computational study is presented for the investigation of gravity modulation (g-jitter) effects in thermally driven cavity flows at terrestrial and microgravity environments. The two-dimensional, time-dependent Navier-Stokes equations are numerically integrated by a time-split method using direct matrix solvers. Computations at terrestrial gravity are utilized to assess the effects of adiabatic side-wall boundary conditions as well as the full nonlinearity of the governing equations on the sinusoidally forced Benard problem studied by Gresho and Sani. The low-g calculations focus on the establishment of critical frequency ranges and consider the effects of modulation direction and randomness. The applicability of linear analysis in the excitable frequency range at low g is also discussed.
Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions
NASA Technical Reports Server (NTRS)
Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.
2015-01-01
Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.
PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A
2008-04-01
Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement
Parallel Computation of Unsteady Flows on a Network of Workstations
NASA Technical Reports Server (NTRS)
1997-01-01
Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced.
A validated predictive model of coronary fractional flow reserve
Huo, Yunlong; Svendsen, Mark; Choy, Jenny Susana; Zhang, Z.-D.; Kassab, Ghassan S.
2012-01-01
Myocardial fractional flow reserve (FFR), an important index of coronary stenosis, is measured by a pressure sensor guidewire. The determination of FFR, only based on the dimensions (lumen diameters and length) of stenosis and hyperaemic coronary flow with no other ad hoc parameters, is currently not possible. We propose an analytical model derived from conservation of energy, which considers various energy losses along the length of a stenosis, i.e. convective and diffusive energy losses as well as energy loss due to sudden constriction and expansion in lumen area. In vitro (constrictions were created in isolated arteries using symmetric and asymmetric tubes as well as an inflatable occluder cuff) and in vivo (constrictions were induced in coronary arteries of eight swine by an occluder cuff) experiments were used to validate the proposed analytical model. The proposed model agreed well with the experimental measurements. A least-squares fit showed a linear relation as (Δp or FFR)experiment = a(Δp or FFR)theory + b, where a and b were 1.08 and −1.15 mmHg (r2 = 0.99) for in vitro Δp, 0.96 and 1.79 mmHg (r2 = 0.75) for in vivo Δp, and 0.85 and 0.1 (r2 = 0.7) for FFR. Flow pulsatility and stenosis shape (e.g. eccentricity, exit angle divergence, etc.) had a negligible effect on myocardial FFR, while the entrance effect in a coronary stenosis was found to contribute significantly to the pressure drop. We present a physics-based experimentally validated analytical model of coronary stenosis, which allows prediction of FFR based on stenosis dimensions and hyperaemic coronary flow with no empirical parameters. PMID:22112650
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1979-01-01
The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.
Can computationally designed protein sequences improve secondary structure prediction?
Bondugula, Rajkumar; Wallqvist, Anders; Lee, Michael S
2011-05-01
Computational sequence design methods are used to engineer proteins with desired properties such as increased thermal stability and novel function. In addition, these algorithms can be used to identify an envelope of sequences that may be compatible with a particular protein fold topology. In this regard, we hypothesized that sequence-property prediction, specifically secondary structure, could be significantly enhanced by using a large database of computationally designed sequences. We performed a large-scale test of this hypothesis with 6511 diverse protein domains and 50 designed sequences per domain. After analysis of the inherent accuracy of the designed sequences database, we realized that it was necessary to put constraints on what fraction of the native sequence should be allowed to change. With mutational constraints, accuracy was improved vs. no constraints, but the diversity of designed sequences, and hence effective size of the database, was moderately reduced. Overall, the best three-state prediction accuracy (Q(3)) that we achieved was nearly a percentage point improved over using a natural sequence database alone, well below the theoretical possibility for improvement of 8-10 percentage points. Furthermore, our nascent method was used to augment the state-of-the-art PSIPRED program by a percentage point.
Computation of Flow and Heat Transfer in Flow Around a 180 deg Bend.
1984-04-01
with ]in streamwise planes, go of which were located on the bend itself (i.e. a 10 spacing ). The nodal density was subsequently refined to 15 x 20 in...the cross-section while over the first ASO of the bend computational planes were spaced at 14 ° intervals. These refinements, while leading to changes... explorations where the flow entering the bend is essentially at uniform velocity and studies at the low-Reynolds- number end of the turbulent regime where
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.
2007-01-01
A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.
Computational prediction of the human-microbial oral interactome
2014-01-01
Background The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments, such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is mediated by protein-protein interactions (PPIs) between the host and microorganisms. Nevertheless, this kind of PPIs is still largely undisclosed. To elucidate these interactions, we have created a computational prediction method that allows us to obtain a first model of the Human-Microbial oral interactome. Results We collected high-quality experimental PPIs from five major human databases. The obtained PPIs were used to create our positive dataset and, indirectly, our negative dataset. The positive and negative datasets were merged and used for training and validation of a naïve Bayes classifier. For the final prediction model, we used an ensemble methodology combining five distinct PPI prediction techniques, namely: literature mining, primary protein sequences, orthologous profiles, biological process similarity, and domain interactions. Performance evaluation of our method revealed an area under the ROC-curve (AUC) value greater than 0.926, supporting our primary hypothesis, as no single set of features reached an AUC greater than 0.877. After subjecting our dataset to the prediction model, the classified result was filtered for very high confidence PPIs (probability ≥ 1-10−7), leading to a set of 46,579 PPIs to be further explored. Conclusions We believe this dataset holds not only important pathways involved in the onset of infectious oral diseases, but also potential drug-targets and biomarkers. The dataset used for training and validation, the predictions obtained and the network final network are available at http://bioinformatics.ua.pt/software/oralint. PMID:24576332
Computational optimization of a pneumatic forebody flow control concept
NASA Technical Reports Server (NTRS)
Gee, Ken; Tavella, Domingo; Schiff, Lewis B.
1991-01-01
The effectiveness of a tangential slot blowing concept for generating lateral control forces on an aircraft forebody is analyzed using computational fluid dynamics. The flow about a fighter forebody is computed using a multiple-zone, thin-layer Navier-Stokes code. Tangential slot blowing is modeled by the use of an actuator plane. The effects of slot location and slot length on the efficiency of the system are analyzed. Results of the study indicate that placement of the slot near the nose of the aircraft greatly enhances the efficiency of the system, while the length and circumferential location of the slot are of secondary importance. Efficiency is defined by the amount of side force or yawing moment obtained per unit blowing coefficient. The effect of sideslip on the system is also analyzed. The system is able to generate incremental changes in forces and moments in flows with sideslip angles up to 10 deg comparable to those obtained at zero sideslip. These results are used to determine a baseline configuration for an experimental study of the tangential slot blowing concept.
Modern hardware architectures accelerate porous media flow computations
NASA Astrophysics Data System (ADS)
Kulczewski, Michal; Kurowski, Krzysztof; Kierzynka, Michal; Dohnalik, Marek; Kaczmarczyk, Jan; Borujeni, Ali Takbiri
2012-05-01
Investigation of rock properties, porosity and permeability particularly, which determines transport media characteristic, is crucial to reservoir engineering. Nowadays, micro-tomography (micro-CT) methods allow to obtain vast of petro-physical properties. The micro-CT method facilitates visualization of pores structures and acquisition of total porosity factor, determined by sticking together 2D slices of scanned rock and applying proper absorption cut-off point. Proper segmentation of pores representation in 3D is important to solve the permeability of porous media. This factor is recently determined by the means of Computational Fluid Dynamics (CFD), a popular method to analyze problems related to fluid flows, taking advantage of numerical methods and constantly growing computing powers. The recent advent of novel multi-, many-core and graphics processing unit (GPU) hardware architectures allows scientists to benefit even more from parallel processing and built-in new features. The high level of parallel scalability offers both, the time-to-solution decrease and greater accuracy - top factors in reservoir engineering. This paper aims to present research results related to fluid flow simulations, particularly solving the total porosity and permeability of porous media, taking advantage of modern hardware architectures. In our approach total porosity is calculated by the means of general-purpose computing on multiple GPUs. This application sticks together 2D slices of scanned rock and by the means of a marching tetrahedra algorithm, creates a 3D representation of pores and calculates the total porosity. Experimental results are compared with data obtained via other popular methods, including Nuclear Magnetic Resonance (NMR), helium porosity and nitrogen permeability tests. Then CFD simulations are performed on a large-scale high performance hardware architecture to solve the flow and permeability of porous media. In our experiments we used Lattice Boltzmann
Computational Agents For Flows: Waterballs, Water Paths and Ponds
NASA Astrophysics Data System (ADS)
Servat, D.; Leonard, J.; Perrier, E.
For the past four years, the RIVAGE project has been an ongoing methodological re- search involving both computer scientists from LIP6 and hydrologists from research unit GEODES at IRD around the question of applying DAI and agent-based simula- tion techniques to environmental water flow modeling. It led us to design an agent- based simulation environment which is intended to model coupled runoff dynamics, infiltration and erosion processes, so as to integrate heterogeneous events occuring at different time and space scales. A main feature of this modeling approach is the ability to account for a structured vision of the hydrological network produced during rainfall, much like that of an on field observer : for instance, when water accumulates in topographic depressions, the simulator creates pond objects, and when stable wa- ter paths emerge, water path objects are created. Beside this vision of water flow, the natural environment itself can be given a structured representation of natural objects (e.g. vegetation, infiltration maps, furrow or ditch networks, macropore patterns, etc.) which belong to various information layers. According to the scale of study, these layers may contain different types of geometrical and geographical data. Given that, our long term objective is to simulate the influence of spatial structurations of the environment on water flow dynamics and vice versa.
NASA Astrophysics Data System (ADS)
Lockard, David Patrick
This thesis makes contributions towards the use of computational aeroacoustics (CAA) as a tool for noise analysis. CAA uses numerical methods to simulate acoustic phenomena. CAA algorithms have been shown to reproduce wave propagation much better than traditional computational fluid dynamics (CFD) methods. In the current approach, a finite-difference, time-domain algorithm is used to simulate unsteady, compressible flows. Dispersion-relation-preserving methodology is used to extend the range of frequencies that can be represented properly by the scheme. Since CAA algorithms are relatively inefficient at obtaining a steady-state solution, multigrid methods are applied to accelerate the convergence. All of the calculations are performed on parallel computers. Excellent speedup ratios are obtained for the explicit, time-stepping algorithm used in this research. A common problem in the area of broadband noise is the prediction of the acoustic field generated by a vortical gust impinging on a solid body. The problem is modeled initially in two-dimensions by a flat plate experiencing a uniform mean flow with a sinusoidal, vertical velocity perturbation. Good agreement is obtained with results from semi-analytic methods for several gust frequencies. Then, a cascade of plates is used to simulate a turbomachinery blade row. A new approach is used to impose the vortical disturbance inside the computational domain rather than imposing it at the computational boundary. The influence of the mean flow on the radiated noise is examined by considering NACA0012 and RAE2822 airfoils. After a steady-state is obtained from the multigrid method, the un-steady simulation is used to model the vortical gust's interaction with the airfoil. The mean loading on the airfoil is shown to have a significant effect on the directivity of the sound with the strongest influence observed for high frequencies. Camber is shown to have a similar effect as the angle of attack. A three-dimensional problem
Topology and grid adaption for high-speed flow computations
NASA Astrophysics Data System (ADS)
Abolhassani, Jamshid S.; Tiwari, Surendra N.
1989-03-01
This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.
Topology and grid adaption for high-speed flow computations
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Tiwari, Surendra N.
1989-01-01
This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.
Assessing Computational Methods of Cis-Regulatory Module Prediction
Su, Jing; Teichmann, Sarah A.; Down, Thomas A.
2010-01-01
Computational methods attempting to identify instances of cis-regulatory modules (CRMs) in the genome face a challenging problem of searching for potentially interacting transcription factor binding sites while knowledge of the specific interactions involved remains limited. Without a comprehensive comparison of their performance, the reliability and accuracy of these tools remains unclear. Faced with a large number of different tools that address this problem, we summarized and categorized them based on search strategy and input data requirements. Twelve representative methods were chosen and applied to predict CRMs from the Drosophila CRM database REDfly, and across the human ENCODE regions. Our results show that the optimal choice of method varies depending on species and composition of the sequences in question. When discriminating CRMs from non-coding regions, those methods considering evolutionary conservation have a stronger predictive power than methods designed to be run on a single genome. Different CRM representations and search strategies rely on different CRM properties, and different methods can complement one another. For example, some favour homotypical clusters of binding sites, while others perform best on short CRMs. Furthermore, most methods appear to be sensitive to the composition and structure of the genome to which they are applied. We analyze the principal features that distinguish the methods that performed well, identify weaknesses leading to poor performance, and provide a guide for users. We also propose key considerations for the development and evaluation of future CRM-prediction methods. PMID:21152003
Predictive Capability Maturity Model for computational modeling and simulation.
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
X-33 Computational Aeroheating/Aerodynamic Predictions and Comparisons With Experimental Data
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Thompson, Richard A.; Berry, Scott A.; Horvath, Thomas J.; Murphy, Kelly J.; Nowak, Robert J.; Alter, Stephen J.
2003-01-01
This report details a computational fluid dynamics study conducted in support of the phase II development of the X-33 vehicle. Aerodynamic and aeroheating predictions were generated for the X-33 vehicle at both flight and wind-tunnel test conditions using two finite-volume, Navier-Stokes solvers. Aerodynamic computations were performed at Mach 6 and Mach 10 wind-tunnel conditions for angles of attack from 10 to 50 with body-flap deflections of 0 to 20. Additional aerodynamic computations were performed over a parametric range of free-stream conditions at Mach numbers of 4 to 10 and angles of attack from 10 to 50. Laminar and turbulent wind-tunnel aeroheating computations were performed at Mach 6 for angles of attack of 20 to 40 with body-flap deflections of 0 to 20. Aeroheating computations were performed at four flight conditions with Mach numbers of 6.6 to 8.9 and angles of attack of 10 to 40. Surface heating and pressure distributions, surface streamlines, flow field information, and aerodynamic coefficients from these computations are presented, and comparisons are made with wind-tunnel data.
NASA Technical Reports Server (NTRS)
Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.
1979-01-01
Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.
Prediction of jet flows from the axisymmetric supersonic nozzle
NASA Astrophysics Data System (ADS)
Liu, Y.; Kendall, M. A. F.; Costigan, G.; Bellhouse, B. J.
This study is motivated by the authors' interest in developing a needle-free powdered vaccine delivery device, the Epidermal Powdered Injection system(EPI). The behaviour of a supersonic jet, which accelerates powdered vaccines in micro-form to a sufficient momentum to penetrate the outer layer of human skin or mucosal tissue, is therefore of great importance. In this paper, a well established Modified Implicit Flux Vector Splitting (MIFVS) solver for the Navier-Stokes equations is extended to numerically study the transient supersonic jet flows of interest. A low Reynolds number k-ɛ turbulence model, with the compressibility effect considered, is integrated into MIFVS solver to the prediction of the turbulent structures and interactions with inherent shock systems. The results for the NASA validation case NPARC, Contoured Shock Tube and Venturi of EPI system are discussed.
Injury risk prediction from computational simulations of ocular blast loading.
Weaver, Ashley A; Stitzel, Sarah M; Stitzel, Joel D
2017-04-01
A predictive Lagrangian-Eulerian finite element eye model was used to analyze 2.27 and 0.45 kg trinitrotoluene equivalent blasts detonated from 24 different locations. Free air and ground level blasts were simulated directly in front of the eye and at lateral offset locations with box, average, less protective, and more protective orbital anthropometries, resulting in 96 simulations. Injury risk curves were developed for hyphema, lens dislocation, retinal damage, and globe rupture from experimental and computational data to compute risk from corneoscleral stress and intra-ocular pressure computational outputs. Corneoscleral stress, intra-ocular pressure, and injury risks increased when the blast size was larger and located nearer to the eye. Risks ranged from 20-100 % for hyphema, 1-100 % for lens dislocation, 2-100 % for retinal damage, and 0-98 % for globe rupture depending on the blast condition. Orbital geometry affected the stresses, pressures, and associated ocular injury risks of the blast conditions simulated. Orbital geometries that more fully surrounded the eye such as the more protective orbit tended to produce higher corneoscleral stresses and compression of the eye against the surrounding rigid orbit contributing to high stresses as the blast wave propagated. However, the more protective orbit tended to produce lower intra-ocular pressures in comparison with the other three orbital geometries which may indicate that the more protective orbit inhibits propagation of the blast wave and reduces ocular loading. Results of this parametric computational study of ocular blast loading are valuable to the design of eye protection equipment and the mitigation of blast-related eye injuries.
Domain decomposition methods for the parallel computation of reacting flows
NASA Technical Reports Server (NTRS)
Keyes, David E.
1988-01-01
Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.
Computational Fluid Dynamics Modelling of the Diurnal Variation of Flow in a Street Canyon
NASA Astrophysics Data System (ADS)
Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Sang-Hyun; Ryu, Young-Hee
2011-10-01
Urban surface and radiation processes are incorporated into a computational fluid dynamics (CFD) model to investigate the diurnal variation of flow in a street canyon with an aspect ratio of 1. The developed CFD model predicts surface and substrate temperatures of the roof, walls, and road. One-day simulations are performed with various ambient wind speeds of 2, 3, 4, 5, and 6 ms-1, with the ambient wind perpendicular to the north-south oriented canyon. During the day, the largest maximum surface temperature for all surfaces is found at the road surface for an ambient wind speed of 3 ms-1 (56.0°C). Two flow regimes are identified by the vortex configuration in the street canyon. Flow regime I is characterized by a primary vortex. Flow regime II is characterized by two counter-rotating vortices, which appears in the presence of strong downwind building-wall heating. Air temperature is relatively low near the downwind building wall in flow regime I and inside the upper vortex in flow regime II. In flow regime II, the upper vortex expands with increasing ambient wind speed, thus enlarging the extent of cool air within the canyon. The canyon wind speed in flow regime II is proportional to the ambient wind speed, but that in flow regime I is not. For weak ambient winds, the dependency of surface sensible heat flux on the ambient wind speed is found to play an essential role in determining the relationship between canyon wind speed and ambient wind speed.
Predicting the stability of a compressible periodic parallel jet flow
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.
1996-01-01
It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.
TVENT1: a computer code for analyzing tornado-induced flow in ventilation systems
Andrae, R.W.; Tang, P.K.; Gregory, W.S.
1983-07-01
TVENT1 is a new version of the TVENT computer code, which was designed to predict the flows and pressures in a ventilation system subjected to a tornado. TVENT1 is essentially the same code but has added features for turning blowers off and on, changing blower speeds, and changing the resistance of dampers and filters. These features make it possible to depict a sequence of events during a single run. Other features also have been added to make the code more versatile. Example problems are included to demonstrate the code's applications.
Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.
1993-01-01
An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.
A computationally efficient method for simulating fluid flow in elastic pipes in three dimensions
NASA Astrophysics Data System (ADS)
Doctors, G. M.; Mazzeo, M. D.; Coveney, P. V.
2010-09-01
We propose a new method for carrying out lattice-Boltzmann simulations of pulsatile fluid flow in three-dimensional elastic pipes. It is based on estimating the distances from sites at the edge of the simulation box to the wall along the lattice directions from the displacement of the closest point on the wall and the curvature there, followed by application of a nonequilibrium extrapolation method. Viscous flow in an elastic pipe is studied in three dimensions at a wall displacement of 5% of the radius of the pipe, which is realistic for blood flow through large cerebral arteries. The numerical results for the pressure difference, wall displacement and flow velocity agree well with the analytical predictions. At all sites, the calculation depends only on information from nearest neighbours, so the method proposed is suitable for efficient computation on multicore machines. Compared to simulations with rigid walls, simulations with elastic walls require only 13% more computational effort at the parameters chosen in this study.
Chen, K.F.; Olson, C.A.
1983-09-01
One reliable method that can be used to verify the solution scheme of a computer code is to compare the code prediction to a simplified problem for which an analytic solution can be derived. An analytic solution for the axial pressure drop as a function of the flow was obtained for the simplified problem of homogeneous equilibrium two-phase flow in a vertical, heated channel with a cosine axial heat flux shape. This analytic solution was then used to verify the predictions of the CONDOR computer code, which is used to evaluate the thermal-hydraulic performance of boiling water reactors. The results show excellent agreement between the analytic solution and CONDOR prediction.
Chen, K.F.; Olson, C.A.
1983-09-01
One reliable method that can be used to verify the solution scheme of a computer code is to compare the code prediction to a simplified problem for which an analytic solution can be derived. An analytic solution for the axial pressure drop as a function of the flow was obtained for the simplified problem of homogeneous equilibrium two-phase flow in a vertical, heated channel with a cosine axial heat flux shape. This analytic solution was then used to verify the predictions of the CONDOR computer code, which is used to evaluate the thermal-hydraulic performance of boiling water reactors. The results show excellent agreement between the analytic solution and CONDOR prediction.
Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.
Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert
2009-08-01
This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.
Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices
NASA Astrophysics Data System (ADS)
Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.
2015-09-01
The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.
Comparative study of turbulence models in predicting hypersonic inlet flows
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1992-01-01
A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared wery well with the experimental data, and performed better than the Thomas model near the walls.
Comparative study of turbulence models in predicting hypersonic inlet flows
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1992-01-01
A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared very well with the experimental data, and performed better than the Thomas model near the walls.
Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling.
Sinha, Nishant; Dauwels, Justin; Kaiser, Marcus; Cash, Sydney S; Brandon Westover, M; Wang, Yujiang; Taylor, Peter N
2017-02-01
SEE EISSA AND SCHEVON DOI101093/AWW332 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Surgery can be a last resort for patients with intractable, medically refractory epilepsy. For many of these patients, however, there is substantial risk that the surgery will be ineffective. The prediction of who is likely to benefit from a surgical approach is crucial for being able to inform patients better, conduct principled prospective clinical trials, and ultimately tailor therapeutic approaches to these patients more effectively. Dynamical computational models, informed with patient data, can be used to make predictions and give mechanistic insight. In this study, we develop patient-specific dynamical network models of epileptogenic cortex. We infer the network connectivity matrix from non-seizure electrographic recordings of patients and use these connectivity matrices as the network structure in our model. The model simulates the dynamics of a bi-stable switch at every node in this network, meaning that every node starts in a background state, but has the ability to transit to a co-existing seizure state. Whether a transition happens in a node is partly determined by the stochastic nature of the input to the node, but also by the input the node receives from other connected nodes in the network. By conducting simulations with such a model, we can detect the average transition time for nodes in a given network, and therefore define nodes with a short transition time as highly epileptogenic. In a retrospective study, we found that in some patients the regions with high epileptogenicity in the model overlap with those identified clinically as the seizure onset zone. Moreover, it was found that the resection of these regions in the model reduces the overall likelihood of a seizure. Following removal of these regions in the model, we predicted surgical outcomes and compared these to actual patient outcomes. Our predictions were found to be 81.3% accurate on a dataset of 16
Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling
Dauwels, Justin; Kaiser, Marcus; Cash, Sydney S.; Brandon Westover, M.; Wang, Yujiang
2017-01-01
See Eissa and Schevon (doi:10.1093/aww332) for a scientific commentary on this article. Surgery can be a last resort for patients with intractable, medically refractory epilepsy. For many of these patients, however, there is substantial risk that the surgery will be ineffective. The prediction of who is likely to benefit from a surgical approach is crucial for being able to inform patients better, conduct principled prospective clinical trials, and ultimately tailor therapeutic approaches to these patients more effectively. Dynamical computational models, informed with patient data, can be used to make predictions and give mechanistic insight. In this study, we develop patient-specific dynamical network models of epileptogenic cortex. We infer the network connectivity matrix from non-seizure electrographic recordings of patients and use these connectivity matrices as the network structure in our model. The model simulates the dynamics of a bi-stable switch at every node in this network, meaning that every node starts in a background state, but has the ability to transit to a co-existing seizure state. Whether a transition happens in a node is partly determined by the stochastic nature of the input to the node, but also by the input the node receives from other connected nodes in the network. By conducting simulations with such a model, we can detect the average transition time for nodes in a given network, and therefore define nodes with a short transition time as highly epileptogenic. In a retrospective study, we found that in some patients the regions with high epileptogenicity in the model overlap with those identified clinically as the seizure onset zone. Moreover, it was found that the resection of these regions in the model reduces the overall likelihood of a seizure. Following removal of these regions in the model, we predicted surgical outcomes and compared these to actual patient outcomes. Our predictions were found to be 81.3% accurate on a dataset of 16
Prediction of monthly regional groundwater levels through hybrid soft-computing techniques
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng
2016-10-01
Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.
A comparison of turbulence models in computing multi-element airfoil flows
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Menter, Florian; Durbin, Paul A.; Mansour, Nagi N.
1994-01-01
Four different turbulence models are used to compute the flow over a three-element airfoil configuration. These models are the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, a two-equation k-omega model, and a new one-equation Durbin-Mansour model. The flow is computed using the INS2D two-dimensional incompressible Navier-Stokes solver. An overset Chimera grid approach is utilized. Grid resolution tests are presented, and manual solution-adaptation of the grid was performed. The performance of each of the models is evaluated for test cases involving different angles-of-attack, Reynolds numbers, and flap riggings. The resulting surface pressure coefficients, skin friction, velocity profiles, and lift, drag, and moment coefficients are compared with experimental data. The models produce very similar results in most cases. Excellent agreement between computational and experimental surface pressures was observed, but only moderately good agreement was seen in the velocity profile data. In general, the difference between the predictions of the different models was less than the difference between the computational and experimental data.
Prediction of Stream Flow in Ungauged Basins - a Comprehensive Framework
NASA Astrophysics Data System (ADS)
Ganti, R.; Agarwal, V.; Shetty, A.
2012-12-01
It is well established that critical information on stream-flow is essential in reducing uncertainties in planning and design of various water resource projects. Lack of data, at the desired spatial and temporal resolution, poses an enormous challenge in developing meaningful prediction models. Powerful techniques like Artificial Neural Network (ANN) modeling provide reasonably accurate prediction models, however development of such models require substantial amount of past data. Currently, empirical equations developed across the span of several hundred years are used on a regionalized basis. These equations are usually very simple, allowing for easy application, however not very accurate. This limited accuracy can be attributed to the use of noisy data and inclusion of only limited stream-flow variables. This study is an attempt to process noisy data and incorporate catchment variables to improve the accuracy of existing relationships whilst maintaining their simplicity. This study presents a comprehensive framework starting from data-processing to data-analysis that enables the development of regionalized empirical equations. A case-study has been presented for the sub-basins in "Dakshina Kannada" (Coastal Karnataka, India). Firstly, the data has first been processed to remove any outliers and estimate missing values, by replacing missing values with the average values of the neighboring entries for discrete data-sets or by using Least Square principles (LS) for continuously distributed date. Secondly, the existing models have been improved based on the processed dataset obtained through Exploratory Data Analysis (EDA). Further, utilizing Principal Component Analysis (PCA) other important parameters have been identified. All these parameters have then been included to arrive at an "improved regionalized relationship". Finally, the improved regionalized relationships have been evaluated for their performance based on the Correlation Coefficient and Standard Error
Adaptive and Efficient Computing for Subsurface Simulation within ParFlow
Tiedeman, H; Woodward, C S
2010-11-16
This project is concerned with the PF.WRF model as a means to enable more accurate predictions of wind fluctuations and subsurface storage. As developed at LLNL, PF.WRF couples a groundwater (subsurface) and surface water flow model (ParFlow) to a mesoscale atmospheric model (WRF, Weather Research and Forecasting Model). It was developed as a unique tool to address coupled water balance and wind energy questions that occur across traditionally separated research regimes of the atmosphere, land surface, and subsurface. PF.WRF is capable of simulating fluid, mass, and energy transport processes in groundwater, vadose zone, root zone, and land surface systems, including overland flow, and allows for the WRF model to both directly drive and respond to surface and subsurface hydrologic processes and conditions. The current PF.WRF model is constrained to have uniform spatial gridding below the land surface and matching areal grids with the WRF model at the land surface. There are often cases where it is advantageous for land surface, overland flow and subsurface models to have finer gridding than their atmospheric counterparts. Finer vertical discretization is also advantageous near the land surface (to properly capture feedbacks) yet many applications have a large vertical extent. However, the surface flow is strongly dependent on topography leading to a need for greater lateral resolution in some regions and the subsurface flow is tightly coupled to the atmospheric model near the surface leading to a need for finer vertical resolution. In addition, the interactions (e.g. rain) will be highly variable in space and time across the problem domain so an adaptive scheme is preferred to a static strategy to efficiently use computing and memory resources. As a result, this project focussed on algorithmic research required for development of an adaptive simulation capability in the PF.WRF system and its subsequent use in an application problem in the Central Valley of
Computational strategies for predicting the potential risks associated with nanotechnology.
Barnard, Amanda S
2009-10-01
For the move from nanoscience to nanotechnology to be sustainable, it is important that the issues surrounding possible 'nano-hazards' be addressed before commercialization. The global push for more environmentally friendly, biodegradable products, means the introduction of the nanoparticles contained within these products into the ecosystem is an inevitability. When this happens, it is desirable to know how the hazardous properties may be affected, and what the potential hazards are. In this article, a number of strategies will be discussed, combining the desirable aspects of theory, simulation, experiment and observation, and leading to predictions for incorporation into preventative frameworks. Particular attention will be given to the role of theory and computation, and how it intersects with the participants from complementary fields.
A computational model predicting disruption of blood vessel development.
Kleinstreuer, Nicole; Dix, David; Rountree, Michael; Baker, Nancy; Sipes, Nisha; Reif, David; Spencer, Richard; Knudsen, Thomas
2013-04-01
Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/) modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic
NASA Astrophysics Data System (ADS)
Cummings, Mary L.
1994-09-01
A FORTRAN computer code (SKINTEMP) has been developed to calculate transient missile/aircraft aerodynamic heating parameters utilizing basic flight parameters such as altitude, Mach number, and angle of attack. The insulated skin temperature of a vehicle surface on either the fuselage (axisymmetric body) or wing (two-dimensional body) is computed from a basic heat balance relationship throughout the entire spectrum (subsonic, transonic, supersonic, hypersonic) of flight. This calculation method employs a simple finite difference procedure which considers radiation, forced convection, and non-reactive chemistry. Surface pressure estimates are based on a modified Newtonian flow model. Eckert's reference temperature method is used as the forced convection heat transfer model. SKINTEMP predictions are compared with a limited number of test cases. SKINTEMP was developed as a tool to enhance the conceptual design process of high speed missiles and aircraft. Recommendations are made for possible future development of SKINTEMP to further support the design process.
Prediction of fluctuating pressure environments associated with plume-induced separated flow fields
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1973-01-01
The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.
Using computational modeling to predict arrhythmogenesis and antiarrhythmic therapy
Moreno, Jonathan D.; Clancy, Colleen E.
2010-01-01
The use of computational modeling to predict arrhythmia and arrhythmogensis is a relatively new field, but has nonetheless dramatically enhanced our understanding of the physiological and pathophysiological mechanisms that lead to arrhythmia. This review summarizes recent advances in the field of computational modeling approaches with a brief review of the evolution of cellular action potential models, and the incorporation of genetic mutations to understand fundamental arrhythmia mechanisms, including how simulations have revealed situation specific mechanisms leading to multiple phenotypes for the same genotype. The review then focuses on modeling drug blockade to understand how the less-than-intuitive effects some drugs have to either ameliorate or paradoxically exacerbate arrhythmia. Quantification of specific arrhythmia indicies are discussed at each spatial scale, from channel to tissue. The utility of hERG modeling to assess altered repolarization in response to drug blockade is also briefly discussed. Finally, insights gained from Ca2+ dynamical modeling and EC coupling, neurohumoral regulation of cardiac dynamics, and cell signaling pathways are also reviewed. PMID:20652086
Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers
NASA Technical Reports Server (NTRS)
Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak
1996-01-01
This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.
“Virtual” (Computed) Fractional Flow Reserve
Morris, Paul D.; van de Vosse, Frans N.; Lawford, Patricia V.; Hose, D. Rodney; Gunn, Julian P.
2015-01-01
Fractional flow reserve (FFR) is the “gold standard” for assessing the physiological significance of coronary artery disease during invasive coronary angiography. FFR-guided percutaneous coronary intervention improves patient outcomes and reduces stent insertion and cost; yet, due to several practical and operator related factors, it is used in <10% of percutaneous coronary intervention procedures. Virtual fractional flow reserve (vFFR) is computed using coronary imaging and computational fluid dynamics modeling. vFFR has emerged as an attractive alternative to invasive FFR by delivering physiological assessment without the factors that limit the invasive technique. vFFR may offer further diagnostic and planning benefits, including virtual pullback and virtual stenting facilities. However, there are key challenges that need to be overcome before vFFR can be translated into routine clinical practice. These span a spectrum of scientific, logistic, commercial, and political areas. The method used to generate 3-dimensional geometric arterial models (segmentation) and selection of appropriate, patient-specific boundary conditions represent the primary scientific limitations. Many conflicting priorities and design features must be carefully considered for vFFR models to be sufficiently accurate, fast, and intuitive for physicians to use. Consistency is needed in how accuracy is defined and reported. Furthermore, appropriate regulatory and industry standards need to be in place, and cohesive approaches to intellectual property management, reimbursement, and clinician training are required. Assuming successful development continues in these key areas, vFFR is likely to become a desirable tool in the functional assessment of coronary artery disease. PMID:26117471
Prediction of pork color attributes using computer vision system.
Sun, Xin; Young, Jennifer; Liu, Jeng Hung; Bachmeier, Laura; Somers, Rose Marie; Chen, Kun Jie; Newman, David
2016-03-01
Color image processing and regression methods were utilized to evaluate color score of pork center cut loin samples. One hundred loin samples of subjective color scores 1 to 5 (NPB, 2011; n=20 for each color score) were selected to determine correlation values between Minolta colorimeter measurements and image processing features. Eighteen image color features were extracted from three different RGB (red, green, blue) model, HSI (hue, saturation, intensity) and L*a*b* color spaces. When comparing Minolta colorimeter values with those obtained from image processing, correlations were significant (P<0.0001) for L* (0.91), a* (0.80), and b* (0.66). Two comparable regression models (linear and stepwise) were used to evaluate prediction results of pork color attributes. The proposed linear regression model had a coefficient of determination (R(2)) of 0.83 compared to the stepwise regression results (R(2)=0.70). These results indicate that computer vision methods have potential to be used as a tool in predicting pork color attributes.
An Operational Computational Terminal Area PBL Prediction System
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1998-01-01
There are two fundamental goals of this research project which are listed here in terms of priority, i.e., a primary and secondary goal. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS), i.e., an operational computational Terminal Area PBL Prediction System (TAPPS). The second goal is to perform indepth diagnostic analyses of the meteorological conditions during the special wake vortex deployments at Memphis and Dallas during August 95 and September 97, respectively. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis and Dallas deployments will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. Concerning the primary goal, TAPPS Stage 2 was tested on the Memphis data and is about to be tested on the Dallas case studies. Furthermore benchmark tests have been undertaken to select the appropriate platform to run TAPPS in real time in support of the DFW AVOSS system. In addition, a technique to improve the initial data over the region surrounding Dallas was also tested and modified for potential operational use in TAPPS. The secondary goal involved several sensitivity simulations and comparisons to Memphis observational data sets in an effort to diagnose what specific atmospheric phenomena where occurring which may have impacted the dynamics of atmospheric wake vortices.