Sample records for computational image analysis

  1. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    PubMed

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  2. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arimura, Hidetaka, E-mail: arimurah@med.kyushu-u.ac.jp; Kamezawa, Hidemi; Jin, Ze

    Good relationships between computational image analysis and radiological physics have been constructed for increasing the accuracy of medical diagnostic imaging and radiation therapy in radiological physics. Computational image analysis has been established based on applied mathematics, physics, and engineering. This review paper will introduce how computational image analysis is useful in radiation therapy with respect to radiological physics.

  4. From Image Analysis to Computer Vision: Motives, Methods, and Milestones.

    DTIC Science & Technology

    1998-07-01

    images. Initially, work on digital image analysis dealt with specific classes of images such as text, photomicrographs, nuclear particle tracks, and aerial...photographs; but by the 1960’s, general algorithms and paradigms for image analysis began to be formulated. When the artificial intelligence...scene, but eventually from image sequences obtained by a moving camera; at this stage, image analysis had become scene analysis or computer vision

  5. A computational image analysis glossary for biologists.

    PubMed

    Roeder, Adrienne H K; Cunha, Alexandre; Burl, Michael C; Meyerowitz, Elliot M

    2012-09-01

    Recent advances in biological imaging have resulted in an explosion in the quality and quantity of images obtained in a digital format. Developmental biologists are increasingly acquiring beautiful and complex images, thus creating vast image datasets. In the past, patterns in image data have been detected by the human eye. Larger datasets, however, necessitate high-throughput objective analysis tools to computationally extract quantitative information from the images. These tools have been developed in collaborations between biologists, computer scientists, mathematicians and physicists. In this Primer we present a glossary of image analysis terms to aid biologists and briefly discuss the importance of robust image analysis in developmental studies.

  6. Computer-Controlled Image Anaysis of Solid Propellant Combustion Holograms Using a Quantimet 720 and a PDP-11.

    DTIC Science & Technology

    1985-09-01

    TND 1 96 PIN11. L 4. c. j;. NAVAL POSTGRADUATE SCHOOL Monterey, California NOV 19 19853 THESIS COMPUTER-CONTROLLED IMAGE ANALYSIS OF SOLID PROPELLANT...Controlled Image Analysis of Master’s Thesis Solid Propellant Combustion Holograms September, 1985 Using a Quantimet 720 and a PDP-11 S. PERFORMING ORG...unlimited Computer-Controlled Image Analysis of Solid Propellant * - Combustion Holograms Using a Quantimet 720 and a PDP-11 by Marvin Philip Shook

  7. Information granules in image histogram analysis.

    PubMed

    Wieclawek, Wojciech

    2018-04-01

    A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantification of video-taped images in microcirculation research using inexpensive imaging software (Adobe Photoshop).

    PubMed

    Brunner, J; Krummenauer, F; Lehr, H A

    2000-04-01

    Study end-points in microcirculation research are usually video-taped images rather than numeric computer print-outs. Analysis of these video-taped images for the quantification of microcirculatory parameters usually requires computer-based image analysis systems. Most software programs for image analysis are custom-made, expensive, and limited in their applicability to selected parameters and study end-points. We demonstrate herein that an inexpensive, commercially available computer software (Adobe Photoshop), run on a Macintosh G3 computer with inbuilt graphic capture board provides versatile, easy to use tools for the quantification of digitized video images. Using images obtained by intravital fluorescence microscopy from the pre- and postischemic muscle microcirculation in the skinfold chamber model in hamsters, Photoshop allows simple and rapid quantification (i) of microvessel diameters, (ii) of the functional capillary density and (iii) of postischemic leakage of FITC-labeled high molecular weight dextran from postcapillary venules. We present evidence of the technical accuracy of the software tools and of a high degree of interobserver reliability. Inexpensive commercially available imaging programs (i.e., Adobe Photoshop) provide versatile tools for image analysis with a wide range of potential applications in microcirculation research.

  9. Computer vision-based analysis of foods: a non-destructive colour measurement tool to monitor quality and safety.

    PubMed

    Mogol, Burçe Ataç; Gökmen, Vural

    2014-05-01

    Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed. © 2013 Society of Chemical Industry.

  10. [Development of an original computer program FISHMet: use for molecular cytogenetic diagnosis and genome mapping by fluorescent in situ hybridization (FISH)].

    PubMed

    Iurov, Iu B; Khazatskiĭ, I A; Akindinov, V A; Dovgilov, L V; Kobrinskiĭ, B A; Vorsanova, S G

    2000-08-01

    Original software FISHMet has been developed and tried for improving the efficiency of diagnosis of hereditary diseases caused by chromosome aberrations and for chromosome mapping by fluorescent in situ hybridization (FISH) method. The program allows creation and analysis of pseudocolor chromosome images and hybridization signals in the Windows 95 system, allows computer analysis and editing of the results of pseudocolor hybridization in situ, including successive imposition of initial black-and-white images created using fluorescent filters (blue, green, and red), and editing of each image individually or of a summary pseudocolor image in BMP, TIFF, and JPEG formats. Components of image computer analysis system (LOMO, Leitz Ortoplan, and Axioplan fluorescent microscopes, COHU 4910 and Sanyo VCB-3512P CCD cameras, Miro-Video, Scion LG-3 and VG-5 image capture maps, and Pentium 100 and Pentium 200 computers) and specialized software for image capture and visualization (Scion Image PC and Video-Cup) have been used with good results in the study.

  11. Computer-Assisted Digital Image Analysis of Plus Disease in Retinopathy of Prematurity.

    PubMed

    Kemp, Pavlina S; VanderVeen, Deborah K

    2016-01-01

    The objective of this study is to review the current state and role of computer-assisted analysis in diagnosis of plus disease in retinopathy of prematurity. Diagnosis and documentation of retinopathy of prematurity are increasingly being supplemented by digital imaging. The incorporation of computer-aided techniques has the potential to add valuable information and standardization regarding the presence of plus disease, an important criterion in deciding the necessity of treatment of vision-threatening retinopathy of prematurity. A review of literature found that several techniques have been published examining the process and role of computer aided analysis of plus disease in retinopathy of prematurity. These techniques use semiautomated image analysis techniques to evaluate retinal vascular dilation and tortuosity, using calculated parameters to evaluate presence or absence of plus disease. These values are then compared with expert consensus. The study concludes that computer-aided image analysis has the potential to use quantitative and objective criteria to act as a supplemental tool in evaluating for plus disease in the setting of retinopathy of prematurity.

  12. Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications

    ERIC Educational Resources Information Center

    Makovoz, Gennadiy

    2010-01-01

    The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…

  13. Comparison of computed radiography and conventional radiography in detection of small volume pneumoperitoneum.

    PubMed

    Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret

    2008-01-01

    The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.

  14. The application of computer image analysis in life sciences and environmental engineering

    NASA Astrophysics Data System (ADS)

    Mazur, R.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.

    2014-04-01

    The main aim of the article was to present research on the application of computer image analysis in Life Science and Environmental Engineering. The authors used different methods of computer image analysis in developing of an innovative biotest in modern biomonitoring of water quality. Created tools were based on live organisms such as bioindicators Lemna minor L. and Hydra vulgaris Pallas as well as computer image analysis method in the assessment of negatives reactions during the exposition of the organisms to selected water toxicants. All of these methods belong to acute toxicity tests and are particularly essential in ecotoxicological assessment of water pollutants. Developed bioassays can be used not only in scientific research but are also applicable in environmental engineering and agriculture in the study of adverse effects on water quality of various compounds used in agriculture and industry.

  15. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    PubMed Central

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-01-01

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis. PMID:19175137

  16. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-12-15

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less

  17. Histopathological Image Analysis: A Review

    PubMed Central

    Gurcan, Metin N.; Boucheron, Laura; Can, Ali; Madabhushi, Anant; Rajpoot, Nasir; Yener, Bulent

    2010-01-01

    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement to the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe. PMID:20671804

  18. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  19. Computer analysis of arteriograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Armstrong, J. H.; Beckenbach, E. B.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.; Sanmarco, M. E.

    1977-01-01

    A computer system has been developed to quantify the degree of atherosclerosis in the human femoral artery. The analysis involves first scanning and digitizing angiographic film, then tracking the outline of the arterial image and finally computing the relative amount of roughness or irregularity in the vessel wall. The image processing system and method are described.

  20. NiftyNet: a deep-learning platform for medical imaging.

    PubMed

    Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom

    2018-05-01

    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Automated analysis and classification of melanocytic tumor on skin whole slide images.

    PubMed

    Xu, Hongming; Lu, Cheng; Berendt, Richard; Jha, Naresh; Mandal, Mrinal

    2018-06-01

    This paper presents a computer-aided technique for automated analysis and classification of melanocytic tumor on skin whole slide biopsy images. The proposed technique consists of four main modules. First, skin epidermis and dermis regions are segmented by a multi-resolution framework. Next, epidermis analysis is performed, where a set of epidermis features reflecting nuclear morphologies and spatial distributions is computed. In parallel with epidermis analysis, dermis analysis is also performed, where dermal cell nuclei are segmented and a set of textural and cytological features are computed. Finally, the skin melanocytic image is classified into different categories such as melanoma, nevus or normal tissue by using a multi-class support vector machine (mSVM) with extracted epidermis and dermis features. Experimental results on 66 skin whole slide images indicate that the proposed technique achieves more than 95% classification accuracy, which suggests that the technique has the potential to be used for assisting pathologists on skin biopsy image analysis and classification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Radiomic analysis in prediction of Human Papilloma Virus status.

    PubMed

    Yu, Kaixian; Zhang, Youyi; Yu, Yang; Huang, Chao; Liu, Rongjie; Li, Tengfei; Yang, Liuqing; Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Zhu, Hongtu

    2017-12-01

    Human Papilloma Virus (HPV) has been associated with oropharyngeal cancer prognosis. Traditionally the HPV status is tested through invasive lab test. Recently, the rapid development of statistical image analysis techniques has enabled precise quantitative analysis of medical images. The quantitative analysis of Computed Tomography (CT) provides a non-invasive way to assess HPV status for oropharynx cancer patients. We designed a statistical radiomics approach analyzing CT images to predict HPV status. Various radiomics features were extracted from CT scans, and analyzed using statistical feature selection and prediction methods. Our approach ranked the highest in the 2016 Medical Image Computing and Computer Assisted Intervention (MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics Challenge, Human Papilloma Virus (HPV) Status Prediction. Further analysis on the most relevant radiomic features distinguishing HPV positive and negative subjects suggested that HPV positive patients usually have smaller and simpler tumors.

  3. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review.

    PubMed

    Ohkubo, Hirotsugu; Nakagawa, Hiroaki; Niimi, Akio

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of progressive idiopathic interstitial pneumonia in adults. Many computer-based image analysis methods of chest computed tomography (CT) used in patients with IPF include the mean CT value of the whole lungs, density histogram analysis, density mask technique, and texture classification methods. Most of these methods offer good assessment of pulmonary functions, disease progression, and mortality. Each method has merits that can be used in clinical practice. One of the texture classification methods is reported to be superior to visual CT scoring by radiologist for correlation with pulmonary function and prediction of mortality. In this mini review, we summarize the current literature on computer-based CT image analysis of IPF and discuss its limitations and several future directions. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  4. Meta-Analysis of Stress Myocardial Perfusion Imaging

    ClinicalTrials.gov

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  5. On Two-Dimensional ARMA Models for Image Analysis.

    DTIC Science & Technology

    1980-03-24

    2-D ARMA models for image analysis . Particular emphasis is placed on restoration of noisy images using 2-D ARMA models. Computer results are...is concluded that the models are very effective linear models for image analysis . (Author)

  6. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP" System and Image Features Associated With Expert Diagnosis.

    PubMed

    Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Campbell, J Peter; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir; Jonas, Karyn; Chan, R V Paul; Ostmo, Susan; Chiang, Michael F

    2015-11-01

    We developed and evaluated the performance of a novel computer-based image analysis system for grading plus disease in retinopathy of prematurity (ROP), and identified the image features, shapes, and sizes that best correlate with expert diagnosis. A dataset of 77 wide-angle retinal images from infants screened for ROP was collected. A reference standard diagnosis was determined for each image by combining image grading from 3 experts with the clinical diagnosis from ophthalmoscopic examination. Manually segmented images were cropped into a range of shapes and sizes, and a computer algorithm was developed to extract tortuosity and dilation features from arteries and veins. Each feature was fed into our system to identify the set of characteristics that yielded the highest-performing system compared to the reference standard, which we refer to as the "i-ROP" system. Among the tested crop shapes, sizes, and measured features, point-based measurements of arterial and venous tortuosity (combined), and a large circular cropped image (with radius 6 times the disc diameter), provided the highest diagnostic accuracy. The i-ROP system achieved 95% accuracy for classifying preplus and plus disease compared to the reference standard. This was comparable to the performance of the 3 individual experts (96%, 94%, 92%), and significantly higher than the mean performance of 31 nonexperts (81%). This comprehensive analysis of computer-based plus disease suggests that it may be feasible to develop a fully-automated system based on wide-angle retinal images that performs comparably to expert graders at three-level plus disease discrimination. Computer-based image analysis, using objective and quantitative retinal vascular features, has potential to complement clinical ROP diagnosis by ophthalmologists.

  7. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

  8. Political leaders and the media. Can we measure political leadership images in newspapers using computer-assisted content analysis?

    PubMed

    Aaldering, Loes; Vliegenthart, Rens

    Despite the large amount of research into both media coverage of politics as well as political leadership, surprisingly little research has been devoted to the ways political leaders are discussed in the media. This paper studies whether computer-aided content analysis can be applied in examining political leadership images in Dutch newspaper articles. It, firstly, provides a conceptualization of political leader character traits that integrates different perspectives in the literature. Moreover, this paper measures twelve political leadership images in media coverage, based on a large-scale computer-assisted content analysis of Dutch media coverage (including almost 150.000 newspaper articles), and systematically tests the quality of the employed measurement instrument by assessing the relationship between the images, the variance in the measurement, the over-time development of images for two party leaders and by comparing the computer results with manual coding. We conclude that the computerized content analysis provides a valid measurement for the leadership images in Dutch newspapers. Moreover, we find that the dimensions political craftsmanship, vigorousness, integrity, communicative performances and consistency are regularly applied in discussing party leaders, but that portrayal of party leaders in terms of responsiveness is almost completely absent in Dutch newspapers.

  9. Numerical image manipulation and display in solar astronomy

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Flagg, J. C.

    1977-01-01

    The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.

  10. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  11. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  12. Ultrasonic image analysis and image-guided interventions.

    PubMed

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  13. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  14. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  15. Grid-Enabled Quantitative Analysis of Breast Cancer

    DTIC Science & Technology

    2010-10-01

    large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...research, we designed a pilot study utilizing large scale parallel Grid computing harnessing nationwide infrastructure for medical image analysis . Also

  16. Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging.

    PubMed

    Fang, Yu-Hua Dean; Asthana, Pravesh; Salinas, Cristian; Huang, Hsuan-Ming; Muzic, Raymond F

    2010-01-01

    An integrated software package, Compartment Model Kinetic Analysis Tool (COMKAT), is presented in this report. COMKAT is an open-source software package with many functions for incorporating pharmacokinetic analysis in molecular imaging research and has both command-line and graphical user interfaces. With COMKAT, users may load and display images, draw regions of interest, load input functions, select kinetic models from a predefined list, or create a novel model and perform parameter estimation, all without having to write any computer code. For image analysis, COMKAT image tool supports multiple image file formats, including the Digital Imaging and Communications in Medicine (DICOM) standard. Image contrast, zoom, reslicing, display color table, and frame summation can be adjusted in COMKAT image tool. It also displays and automatically registers images from 2 modalities. Parametric imaging capability is provided and can be combined with the distributed computing support to enhance computation speeds. For users without MATLAB licenses, a compiled, executable version of COMKAT is available, although it currently has only a subset of the full COMKAT capability. Both the compiled and the noncompiled versions of COMKAT are free for academic research use. Extensive documentation, examples, and COMKAT itself are available on its wiki-based Web site, http://comkat.case.edu. Users are encouraged to contribute, sharing their experience, examples, and extensions of COMKAT. With integrated functionality specifically designed for imaging and kinetic modeling analysis, COMKAT can be used as a software environment for molecular imaging and pharmacokinetic analysis.

  17. Remote sensor digital image data analysis using the General Electric Image 100 analysis system (a study of analysis speed, cost, and performance)

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.

  18. Semivariogram Analysis of Bone Images Implemented on FPGA Architectures.

    PubMed

    Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang

    2017-03-01

    Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ ( h ), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h . Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O ( n 2 ) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor.

  19. Semivariogram Analysis of Bone Images Implemented on FPGA Architectures

    PubMed Central

    Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang

    2016-01-01

    Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O (n2) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor. PMID:28428829

  20. Image analysis library software development

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Bryant, J.

    1977-01-01

    The Image Analysis Library consists of a collection of general purpose mathematical/statistical routines and special purpose data analysis/pattern recognition routines basic to the development of image analysis techniques for support of current and future Earth Resources Programs. Work was done to provide a collection of computer routines and associated documentation which form a part of the Image Analysis Library.

  1. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications.

    PubMed

    Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

  2. Computer measurement of arterial disease

    NASA Technical Reports Server (NTRS)

    Armstrong, J.; Selzer, R. H.; Barndt, R.; Blankenhorn, D. H.; Brooks, S.

    1980-01-01

    Image processing technique quantifies human atherosclerosis by computer analysis of arterial angiograms. X-ray film images are scanned and digitized, arterial shadow is tracked, and several quantitative measures of lumen irregularity are computed. In other tests, excellent agreement was found between computer evaluation of femoral angiograms on living subjects and evaluation by teams of trained angiographers.

  3. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  4. An Efficient Computational Framework for the Analysis of Whole Slide Images: Application to Follicular Lymphoma Immunohistochemistry

    PubMed Central

    Samsi, Siddharth; Krishnamurthy, Ashok K.; Gurcan, Metin N.

    2012-01-01

    Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist’s disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach. PMID:22962572

  5. Objective definition of rosette shape variation using a combined computer vision and data mining approach.

    PubMed

    Camargo, Anyela; Papadopoulou, Dimitra; Spyropoulou, Zoi; Vlachonasios, Konstantinos; Doonan, John H; Gay, Alan P

    2014-01-01

    Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.

  6. System design and implementation of digital-image processing using computational grids

    NASA Astrophysics Data System (ADS)

    Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping

    2005-06-01

    As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.

  7. Application of automatic image analysis in wood science

    Treesearch

    Charles W. McMillin

    1982-01-01

    In this paper I describe an image analysis system and illustrate with examples the application of automatic quantitative measurement to wood science. Automatic image analysis, a powerful and relatively new technology, uses optical, video, electronic, and computer components to rapidly derive information from images with minimal operator interaction. Such instruments...

  8. Legal issues of computer imaging in plastic surgery: a primer.

    PubMed

    Chávez, A E; Dagum, P; Koch, R J; Newman, J P

    1997-11-01

    Although plastic surgeons are increasingly incorporating computer imaging techniques into their practices, many fear the possibility of legally binding themselves to achieve surgical results identical to those reflected in computer images. Computer imaging allows surgeons to manipulate digital photographs of patients to project possible surgical outcomes. Some of the many benefits imaging techniques pose include improving doctor-patient communication, facilitating the education and training of residents, and reducing administrative and storage costs. Despite the many advantages computer imaging systems offer, however, surgeons understandably worry that imaging systems expose them to immense legal liability. The possible exploitation of computer imaging by novice surgeons as a marketing tool, coupled with the lack of consensus regarding the treatment of computer images, adds to the concern of surgeons. A careful analysis of the law, however, reveals that surgeons who use computer imaging carefully and conservatively, and adopt a few simple precautions, substantially reduce their vulnerability to legal claims. In particular, surgeons face possible claims of implied contract, failure to instruct, and malpractice from their use or failure to use computer imaging. Nevertheless, legal and practical obstacles frustrate each of those causes of actions. Moreover, surgeons who incorporate a few simple safeguards into their practice may further reduce their legal susceptibility.

  9. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  10. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  11. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  12. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    PubMed Central

    Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576

  13. PlantCV v2: Image analysis software for high-throughput plant phenotyping.

    PubMed

    Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

  14. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  15. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE PAGES

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...

    2017-12-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  16. Tolerance analysis through computational imaging simulations

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.; LaCasse, Charles F.; Stubbs, Jaclynn J.; Dagel, Amber L.; Bradley, Jon

    2017-11-01

    The modeling and simulation of non-traditional imaging systems require holistic consideration of the end-to-end system. We demonstrate this approach through a tolerance analysis of a random scattering lensless imaging system.

  17. High-Performance Computational Analysis of Glioblastoma Pathology Images with Database Support Identifies Molecular and Survival Correlates.

    PubMed

    Kong, Jun; Wang, Fusheng; Teodoro, George; Cooper, Lee; Moreno, Carlos S; Kurc, Tahsin; Pan, Tony; Saltz, Joel; Brat, Daniel

    2013-12-01

    In this paper, we present a novel framework for microscopic image analysis of nuclei, data management, and high performance computation to support translational research involving nuclear morphometry features, molecular data, and clinical outcomes. Our image analysis pipeline consists of nuclei segmentation and feature computation facilitated by high performance computing with coordinated execution in multi-core CPUs and Graphical Processor Units (GPUs). All data derived from image analysis are managed in a spatial relational database supporting highly efficient scientific queries. We applied our image analysis workflow to 159 glioblastomas (GBM) from The Cancer Genome Atlas dataset. With integrative studies, we found statistics of four specific nuclear features were significantly associated with patient survival. Additionally, we correlated nuclear features with molecular data and found interesting results that support pathologic domain knowledge. We found that Proneural subtype GBMs had the smallest mean of nuclear Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength. We also found gene expressions of stem cell marker MYC and cell proliferation maker MKI67 were correlated with nuclear features. To complement and inform pathologists of relevant diagnostic features, we queried the most representative nuclear instances from each patient population based on genetic and transcriptional classes. Our results demonstrate that specific nuclear features carry prognostic significance and associations with transcriptional and genetic classes, highlighting the potential of high throughput pathology image analysis as a complementary approach to human-based review and translational research.

  18. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    PubMed

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  19. Texture functions in image analysis: A computationally efficient solution

    NASA Technical Reports Server (NTRS)

    Cox, S. C.; Rose, J. F.

    1983-01-01

    A computationally efficient means for calculating texture measurements from digital images by use of the co-occurrence technique is presented. The calculation of the statistical descriptors of image texture and a solution that circumvents the need for calculating and storing a co-occurrence matrix are discussed. The results show that existing efficient algorithms for calculating sums, sums of squares, and cross products can be used to compute complex co-occurrence relationships directly from the digital image input.

  20. Energy and Technology Review

    NASA Astrophysics Data System (ADS)

    Poggio, Andrew J.

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.

  1. Parallel Algorithms for Image Analysis.

    DTIC Science & Technology

    1982-06-01

    8217 _ _ _ _ _ _ _ 4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED PARALLEL ALGORITHMS FOR IMAGE ANALYSIS TECHNICAL 6. PERFORMING O4G. REPORT NUMBER TR-1180...Continue on reverse side it neceesary aid Identlfy by block number) Image processing; image analysis ; parallel processing; cellular computers. 20... IMAGE ANALYSIS TECHNICAL 6. PERFORMING ONG. REPORT NUMBER TR-1180 - 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s) Azriel Rosenfeld AFOSR-77-3271 9

  2. Low-cost digital image processing at the University of Oklahoma

    NASA Technical Reports Server (NTRS)

    Harrington, J. A., Jr.

    1981-01-01

    Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.

  3. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    NASA Astrophysics Data System (ADS)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  4. Liver CT image processing: a short introduction of the technical elements.

    PubMed

    Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni

    2006-05-01

    In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.

  5. A computer vision for animal ecology.

    PubMed

    Weinstein, Ben G

    2018-05-01

    A central goal of animal ecology is to observe species in the natural world. The cost and challenge of data collection often limit the breadth and scope of ecological study. Ecologists often use image capture to bolster data collection in time and space. However, the ability to process these images remains a bottleneck. Computer vision can greatly increase the efficiency, repeatability and accuracy of image review. Computer vision uses image features, such as colour, shape and texture to infer image content. I provide a brief primer on ecological computer vision to outline its goals, tools and applications to animal ecology. I reviewed 187 existing applications of computer vision and divided articles into ecological description, counting and identity tasks. I discuss recommendations for enhancing the collaboration between ecologists and computer scientists and highlight areas for future growth of automated image analysis. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  6. Retinal imaging analysis based on vessel detection.

    PubMed

    Jamal, Arshad; Hazim Alkawaz, Mohammed; Rehman, Amjad; Saba, Tanzila

    2017-07-01

    With an increase in the advancement of digital imaging and computing power, computationally intelligent technologies are in high demand to be used in ophthalmology cure and treatment. In current research, Retina Image Analysis (RIA) is developed for optometrist at Eye Care Center in Management and Science University. This research aims to analyze the retina through vessel detection. The RIA assists in the analysis of the retinal images and specialists are served with various options like saving, processing and analyzing retinal images through its advanced interface layout. Additionally, RIA assists in the selection process of vessel segment; processing these vessels by calculating its diameter, standard deviation, length, and displaying detected vessel on the retina. The Agile Unified Process is adopted as the methodology in developing this research. To conclude, Retina Image Analysis might help the optometrist to get better understanding in analyzing the patient's retina. Finally, the Retina Image Analysis procedure is developed using MATLAB (R2011b). Promising results are attained that are comparable in the state of art. © 2017 Wiley Periodicals, Inc.

  7. Cardiac image modelling: Breadth and depth in heart disease.

    PubMed

    Suinesiaputra, Avan; McCulloch, Andrew D; Nash, Martyn P; Pontre, Beau; Young, Alistair A

    2016-10-01

    With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction. Copyright © 2016. Published by Elsevier B.V.

  8. Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.

    PubMed

    Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A

    2003-07-01

    Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.

  9. Soft computing approach to 3D lung nodule segmentation in CT.

    PubMed

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The computer treatment of remotely sensed data: An introduction to techniques which have geologic applications. [image enhancement and thematic classification in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.

    1982-01-01

    Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.

  11. MORPH-I (Ver 1.0) a software package for the analysis of scanning electron micrograph (binary formatted) images for the assessment of the fractal dimension of enclosed pore surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert

    1998-01-01

    MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.

  12. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    PubMed Central

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558

  13. Computer-aided classification of lung nodules on computed tomography images via deep learning technique.

    PubMed

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.

  14. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  15. Remote sensing image ship target detection method based on visual attention model

    NASA Astrophysics Data System (ADS)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  16. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  17. Dental computed tomographic imaging as age estimation: morphological analysis of the third molar of a group of Turkish population.

    PubMed

    Cantekin, Kenan; Sekerci, Ahmet Ercan; Buyuk, Suleyman Kutalmis

    2013-12-01

    Computed tomography (CT) is capable of providing accurate and measurable 3-dimensional images of the third molar. The aims of this study were to analyze the development of the mandibular third molar and its relation to chronological age and to create new reference data for a group of Turkish participants aged 9 to 25 years on the basis of cone-beam CT images. All data were obtained from the patients' records including medical, social, and dental anamnesis and cone-beam CT images of 752 patients. Linear regression analysis was performed to obtain regression formulas for dental age calculation with chronological age and to determine the coefficient of determination (r) for each sex. Statistical analysis showed a strong correlation between age and third-molar development for the males (r2 = 0.80) and the females (r2 = 0.78). Computed tomographic images are clinically useful for accurate and reliable estimation of dental ages of children and youth.

  18. Quantitative Enzymatic and Immunologic Histophotometry of Diseased Human Kid-Ney Tissues Using Tv-Camera and Computer Assisted Image Processing Systems.

    NASA Astrophysics Data System (ADS)

    Heinert, G.; Mondorf, W.

    1982-11-01

    High speed image processing was used to analyse morphologic and metabolic characteristics of clinically relevant kidney tissue alterations.Qualitative computer-assisted histophotometry was performed to measure alterations in levels of the enzymes alkaline phosphatase (Ap),alanine aminopeptidase (AAP),g-glutamyltranspepti-dase (GGTP) and A-glucuronidase (B-G1) and AAP and GGTP immunologically determined in prepared renal and cancer tissue sections. A "Mioro-Videomat 2" image analysis system with a "Tessovar" macroscope,a computer-assisted "Axiomat" photomicroscope and an "Interactive Image Analysis System (IBAS)" were employed for analysing changes in enzyme activities determined by changes in absorbance or transmission.Diseased kidney as well as renal neoplastic tissues could be distinguished by significantly (wilcoxon test,p<0,05) decreased enzyme concentrations as compared to those found in normal human kidney tissues.This image analysis techniques might be of potential use in diagnostic and prognostic evaluation of renal cancer and diseased kidney tissues.

  19. MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation.

    PubMed

    Oetjen, Janina; Aichler, Michaela; Trede, Dennis; Strehlow, Jan; Berger, Judith; Heldmann, Stefan; Becker, Michael; Gottschalk, Michael; Kobarg, Jan Hendrik; Wirtz, Stefan; Schiffler, Stefan; Thiele, Herbert; Walch, Axel; Maass, Peter; Alexandrov, Theodore

    2013-09-02

    MALDI imaging mass spectrometry (MALDI-imaging) has emerged as a spatially-resolved label-free bioanalytical technique for direct analysis of biological samples and was recently introduced for analysis of 3D tissue specimens. We present a new experimental and computational pipeline for molecular analysis of tissue specimens which integrates 3D MALDI-imaging, magnetic resonance imaging (MRI), and histological staining and microscopy, and evaluate the pipeline by applying it to analysis of a mouse kidney. To ensure sample integrity and reproducible sectioning, we utilized the PAXgene fixation and paraffin embedding and proved its compatibility with MRI. Altogether, 122 serial sections of the kidney were analyzed using MALDI-imaging, resulting in a 3D dataset of 200GB comprised of 2million spectra. We show that elastic image registration better compensates for local distortions of tissue sections. The computational analysis of 3D MALDI-imaging data was performed using our spatial segmentation pipeline which determines regions of distinct molecular composition and finds m/z-values co-localized with these regions. For facilitated interpretation of 3D distribution of ions, we evaluated isosurfaces providing simplified visualization. We present the data in a multimodal fashion combining 3D MALDI-imaging with the MRI volume rendering and with light microscopic images of histologically stained sections. Our novel experimental and computational pipeline for 3D MALDI-imaging can be applied to address clinical questions such as proteomic analysis of the tumor morphologic heterogeneity. Examining the protein distribution as well as the drug distribution throughout an entire tumor using our pipeline will facilitate understanding of the molecular mechanisms of carcinogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Sharp-Focus Composite Microscope Imaging by Computer

    NASA Technical Reports Server (NTRS)

    Wall, R. J.

    1983-01-01

    Enhanced depth of focus aids medical analysis. Computer image-processing system synthesizes sharply-focused composite picture from series of photomicrographs of same object taken at different depths. Computer rejects blured parts of each photomicrograph. Remaining in focus portions form focused composite. System used to study alveolar lung tissue and has applications in medicine and physical sciences.

  1. Automated Analysis of Composition and Style of Photographs and Paintings

    ERIC Educational Resources Information Center

    Yao, Lei

    2013-01-01

    Computational aesthetics is a newly emerging cross-disciplinary field with its core situated in traditional research areas such as image processing and computer vision. Using a computer to interpret aesthetic terms for images is very challenging. In this dissertation, I focus on solving specific problems about analyzing the composition and style…

  2. Image improvement and three-dimensional reconstruction using holographic image processing

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.

    1977-01-01

    Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.

  3. A comparative study of 2 computer-assisted methods of quantifying brightfield microscopy images.

    PubMed

    Tse, George H; Marson, Lorna P

    2013-10-01

    Immunohistochemistry continues to be a powerful tool for the detection of antigens. There are several commercially available software packages that allow image analysis; however, these can be complex, require relatively high level of computer skills, and can be expensive. We compared 2 commonly available software packages, Adobe Photoshop CS6 and ImageJ, in their ability to quantify percentage positive area after picrosirius red (PSR) staining and 3,3'-diaminobenzidine (DAB) staining. On analysis of DAB-stained B cells in the mouse spleen, with a biotinylated primary rat anti-mouse-B220 antibody, there was no significant difference on converting images from brightfield microscopy to binary images to measure black and white pixels using ImageJ compared with measuring a range of brown pixels with Photoshop (Student t test, P=0.243, correlation r=0.985). When analyzing mouse kidney allografts stained with PSR, Photoshop achieved a greater interquartile range while maintaining a lower 10th percentile value compared with analysis with ImageJ. A lower 10% percentile reflects that Photoshop analysis is better at analyzing tissues with low levels of positive pixels; particularly relevant for control tissues or negative controls, whereas after ImageJ analysis the same images would result in spuriously high levels of positivity. Furthermore comparing the 2 methods by Bland-Altman plot revealed that these 2 methodologies did not agree when measuring images with a higher percentage of positive staining and correlation was poor (r=0.804). We conclude that for computer-assisted analysis of images of DAB-stained tissue there is no difference between using Photoshop or ImageJ. However, for analysis of color images where differentiation into a binary pattern is not easy, such as with PSR, Photoshop is superior at identifying higher levels of positivity while maintaining differentiation of low levels of positive staining.

  4. Software phantom with realistic speckle modeling for validation of image analysis methods in echocardiography

    NASA Astrophysics Data System (ADS)

    Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten

    2014-03-01

    Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.

  5. Statistical Inference for Porous Materials using Persistent Homology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chul; Heath, Jason E.; Mitchell, Scott A.

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability,more » anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.« less

  6. Computer assisted analysis of medical x-ray images

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ewert

    1996-01-01

    X-rays were originally used to expose film. The early computers did not have enough capacity to handle images with useful resolution. The rapid development of computer technology over the last few decades has, however, led to the introduction of computers into radiology. In this overview paper, the various possible roles of computers in radiology are examined. The state of the art is briefly presented, and some predictions about the future are made.

  7. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.

    PubMed

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.

  8. On the importance of mathematical methods for analysis of MALDI-imaging mass spectrometry data.

    PubMed

    Trede, Dennis; Kobarg, Jan Hendrik; Oetjen, Janina; Thiele, Herbert; Maass, Peter; Alexandrov, Theodore

    2012-03-21

    In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 10⁸ to 10⁹ intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.

  9. On the Importance of Mathematical Methods for Analysis of MALDI-Imaging Mass Spectrometry Data.

    PubMed

    Trede, Dennis; Kobarg, Jan Hendrik; Oetjen, Janina; Thiele, Herbert; Maass, Peter; Alexandrov, Theodore

    2012-03-01

    In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 108 to 109 intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.

  10. Computer Assisted Thermography And Its Application In Ovulation Detection

    NASA Astrophysics Data System (ADS)

    Rao, K. H.; Shah, A. V.

    1984-08-01

    Hardware and software of a computer-assisted image analyzing system used for infrared images in medical applications are discussed. The application of computer-assisted thermography (CAT) as a complementary diagnostic tool in centralized diagnostic management is proposed. The authors adopted 'Computer Assisted Thermography' to study physiological changes in the breasts related to the hormones characterizing the menstrual cycle of a woman. Based on clinical experi-ments followed by thermal image analysis, they suggest that 'differential skin temperature (DST)1 be measured to detect the fertility interval in the menstrual cycle of a woman.

  11. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    PubMed

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  12. Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.

    PubMed

    Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus

    We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.

  13. Data, Analysis, and Visualization | Computational Science | NREL

    Science.gov Websites

    Data, Analysis, and Visualization Data, Analysis, and Visualization Data management, data analysis . At NREL, our data management, data analysis, and scientific visualization capabilities help move the approaches to image analysis and computer vision. Data Management and Big Data Systems, software, and tools

  14. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  15. Prototype for Meta-Algorithmic, Content-Aware Image Analysis

    DTIC Science & Technology

    2015-03-01

    PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS UNIVERSITY OF VIRGINIA MARCH 2015 FINAL TECHNICAL REPORT...ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS 5a. CONTRACT NUMBER FA8750-12-C-0181 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62305E 6. AUTHOR(S) S...approaches were studied in detail and their results on a sample dataset are presented. 15. SUBJECT TERMS Image Analysis , Computer Vision, Content

  16. Tug-of-war lacunarity—A novel approach for estimating lacunarity

    NASA Astrophysics Data System (ADS)

    Reiss, Martin A.; Lemmerer, Birgit; Hanslmeier, Arnold; Ahammer, Helmut

    2016-11-01

    Modern instrumentation provides us with massive repositories of digital images that will likely only increase in the future. Therefore, it has become increasingly important to automatize the analysis of digital images, e.g., with methods from pattern recognition. These methods aim to quantify the visual appearance of captured textures with quantitative measures. As such, lacunarity is a useful multi-scale measure of texture's heterogeneity but demands high computational efforts. Here we investigate a novel approach based on the tug-of-war algorithm, which estimates lacunarity in a single pass over the image. We computed lacunarity for theoretical and real world sample images, and found that the investigated approach is able to estimate lacunarity with low uncertainties. We conclude that the proposed method combines low computational efforts with high accuracy, and that its application may have utility in the analysis of high-resolution images.

  17. a Cognitive Approach to Teaching a Graduate-Level Geobia Course

    NASA Astrophysics Data System (ADS)

    Bianchetti, Raechel A.

    2016-06-01

    Remote sensing image analysis training occurs both in the classroom and the research lab. Education in the classroom for traditional pixel-based image analysis has been standardized across college curriculums. However, with the increasing interest in Geographic Object-Based Image Analysis (GEOBIA), there is a need to develop classroom instruction for this method of image analysis. While traditional remote sensing courses emphasize the expansion of skills and knowledge related to the use of computer-based analysis, GEOBIA courses should examine the cognitive factors underlying visual interpretation. This current paper provides an initial analysis of the development, implementation, and outcomes of a GEOBIA course that considers not only the computational methods of GEOBIA, but also the cognitive factors of expertise, that such software attempts to replicate. Finally, a reflection on the first instantiation of this course is presented, in addition to plans for development of an open-source repository for course materials.

  18. Vision-sensing image analysis for GTAW process control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, D.D.

    1994-11-01

    Image analysis of a gas tungsten arc welding (GTAW) process was completed using video images from a charge coupled device (CCD) camera inside a specially designed coaxial (GTAW) electrode holder. Video data was obtained from filtered and unfiltered images, with and without the GTAW arc present, showing weld joint features and locations. Data Translation image processing boards, installed in an IBM PC AT 386 compatible computer, and Media Cybernetics image processing software were used to investigate edge flange weld joint geometry for image analysis.

  19. Development of alternative data analysis techniques for improving the accuracy and specificity of natural resource inventories made with digital remote sensing data

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Meisner, D. E. (Principal Investigator)

    1980-01-01

    An investigation was conducted into ways to improve the involvement of state and local user personnel in the digital image analysis process by isolating those elements of the analysis process which require extensive involvement by field personnel and providing means for performing those activities apart from a computer facility. In this way, the analysis procedure can be converted from a centralized activity focused on a computer facility to a distributed activity in which users can interact with the data at the field office level or in the field itself. A general image processing software was developed on the University of Minnesota computer system (Control Data Cyber models 172 and 74). The use of color hardcopy image data as a primary medium in supervised training procedures was investigated and digital display equipment and a coordinate digitizer were procured.

  20. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2001-10-25

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  1. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol.

    PubMed

    Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-02-01

    Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p < 0.05]. Analysis of regional distribution was possible for both lungs in 3D but not in 2D due to overlap of the stomach on the left lung. The mean conducting airways deposition fraction from SPECT for both lungs was not significantly different from 24-h clearance (COV 18%). Both spatial and generational measures of central deposition were significantly higher for the left than for the right lung. Combined SPECT/CT enabled improved analysis of aerosol deposition from gamma camera imaging compared to planar imaging. 3D radionuclide imaging combined with anatomical information from CT and computer analysis is a useful approach for applications requiring regional information on deposition.

  3. LittleQuickWarp: an ultrafast image warping tool.

    PubMed

    Qu, Lei; Peng, Hanchuan

    2015-02-01

    Warping images into a standard coordinate space is critical for many image computing related tasks. However, for multi-dimensional and high-resolution images, an accurate warping operation itself is often very expensive in terms of computer memory and computational time. For high-throughput image analysis studies such as brain mapping projects, it is desirable to have high performance image warping tools that are compatible with common image analysis pipelines. In this article, we present LittleQuickWarp, a swift and memory efficient tool that boosts 3D image warping performance dramatically and at the same time has high warping quality similar to the widely used thin plate spline (TPS) warping. Compared to the TPS, LittleQuickWarp can improve the warping speed 2-5 times and reduce the memory consumption 6-20 times. We have implemented LittleQuickWarp as an Open Source plug-in program on top of the Vaa3D system (http://vaa3d.org). The source code and a brief tutorial can be found in the Vaa3D plugin source code repository. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Medical imaging and computers in the diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Giger, Maryellen L.

    2014-09-01

    Computer-aided diagnosis (CAD) and quantitative image analysis (QIA) methods (i.e., computerized methods of analyzing digital breast images: mammograms, ultrasound, and magnetic resonance images) can yield novel image-based tumor and parenchyma characteristics (i.e., signatures that may ultimately contribute to the design of patient-specific breast cancer management plans). The role of QIA/CAD has been expanding beyond screening programs towards applications in risk assessment, diagnosis, prognosis, and response to therapy as well as in data mining to discover relationships of image-based lesion characteristics with genomics and other phenotypes; thus, as they apply to disease states. These various computer-based applications are demonstrated through research examples from the Giger Lab.

  5. Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Rekha, Suganthini; Bupesh Raja, V. K.

    2017-05-01

    The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.

  6. Digital Imaging

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.

  7. An Approach to Knowledge-Directed Image Analysis,

    DTIC Science & Technology

    1977-09-01

    34AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS D.H. Ballard, C.M.’Brown, J.A. Feldman Computer Science Department iThe University of Rochester...Rochester, New York 14627 DTII EECTE UTIC FILE COPY o n I, n 83 - ’ f t 8 11 28 19 1f.. AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS 5*., D.H...semantic network model and a distributed control structure to accomplish the image analysis process. The process of " understanding an image" leads to

  8. Low Cost Desktop Image Analysis Workstation With Enhanced Interactive User Interface

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Huang, H. K.

    1989-05-01

    A multimodality picture archiving and communication system (PACS) is in routine clinical use in the UCLA Radiology Department. Several types workstations are currently implemented for this PACS. Among them, the Apple Macintosh II personal computer was recently chosen to serve as a desktop workstation for display and analysis of radiological images. This personal computer was selected mainly because of its extremely friendly user-interface, its popularity among the academic and medical community and its low cost. In comparison to other microcomputer-based systems the Macintosh II offers the following advantages: the extreme standardization of its user interface, file system and networking, and the availability of a very large variety of commercial software packages. In the current configuration the Macintosh II operates as a stand-alone workstation where images are imported from a centralized PACS server through an Ethernet network using a standard TCP-IP protocol, and stored locally on magnetic disk. The use of high resolution screens (1024x768 pixels x 8bits) offer sufficient performance for image display and analysis. We focused our project on the design and implementation of a variety of image analysis algorithms ranging from automated structure and edge detection to sophisticated dynamic analysis of sequential images. Specific analysis programs were developed for ultrasound images, digitized angiograms, MRI and CT tomographic images and scintigraphic images.

  9. APPLEPIPS /Apple Personal Image Processing System/ - An interactive digital image processing system for the Apple II microcomputer

    NASA Technical Reports Server (NTRS)

    Masuoka, E.; Rose, J.; Quattromani, M.

    1981-01-01

    Recent developments related to microprocessor-based personal computers have made low-cost digital image processing systems a reality. Image analysis systems built around these microcomputers provide color image displays for images as large as 256 by 240 pixels in sixteen colors. Descriptive statistics can be computed for portions of an image, and supervised image classification can be obtained. The systems support Basic, Fortran, Pascal, and assembler language. A description is provided of a system which is representative of the new microprocessor-based image processing systems currently on the market. While small systems may never be truly independent of larger mainframes, because they lack 9-track tape drives, the independent processing power of the microcomputers will help alleviate some of the turn-around time problems associated with image analysis and display on the larger multiuser systems.

  10. Image analysis and machine learning in digital pathology: Challenges and opportunities.

    PubMed

    Madabhushi, Anant; Lee, George

    2016-10-01

    With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis.

    PubMed

    Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui

    2014-07-11

    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.

  12. Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate

    DTIC Science & Technology

    2010-05-01

    Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic

  13. Grid-Enabled Quantitative Analysis of Breast Cancer

    DTIC Science & Technology

    2009-10-01

    large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...pilot study to utilize large scale parallel Grid computing to harness the nationwide cluster infrastructure for optimization of medical image ... analysis parameters. Additionally, we investigated the use of cutting edge dataanalysis/ mining techniques as applied to Ultrasound, FFDM, and DCE-MRI Breast

  14. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  15. Roles of universal three-dimensional image analysis devices that assist surgical operations.

    PubMed

    Sakamoto, Tsuyoshi

    2014-04-01

    The circumstances surrounding medical image analysis have undergone rapid evolution. In such a situation, it can be said that "imaging" obtained through medical imaging modality and the "analysis" that we employ have become amalgamated. Recently, we feel the distance between "imaging" and "analysis" has become closer regarding the imaging analysis of any organ system, as if both terms mentioned above have become integrated. The history of medical image analysis started with the appearance of the computer. The invention of multi-planar reconstruction (MPR) used in the helical scan had a significant impact and became the basis for recent image analysis. Subsequently, curbed MPR (CPR) and other methods were developed, and the 3D diagnostic imaging and image analysis of the human body have started on a full scale. Volume rendering: the development of a new rendering algorithm and the significant improvement of memory and CPUs contributed to the development of "volume rendering," which allows 3D views with retained internal information. A new value was created by this development; computed tomography (CT) images that used to be for "diagnosis" before that time have become "applicable to treatment." In the past, before the development of volume rendering, a clinician had to mentally reconstruct an image reconfigured for diagnosis into a 3D image, but these developments have allowed the depiction of a 3D image on a monitor. Current technology: Currently, in Japan, the estimation of the liver volume and the perfusion area of the portal vein and hepatic vein are vigorously being adopted during preoperative planning for hepatectomy. Such a circumstance seems to be brought by the substantial improvement of said basic techniques and by upgrading the user interface, allowing doctors easy manipulation by themselves. The following describes the specific techniques. Future of post-processing technology: It is expected, in terms of the role of image analysis, for better or worse, that computer-aided diagnosis (CAD) will develop to a highly advanced level in every diagnostic field. Further, it is also expected in the treatment field that a technique coordinating various devices will be strongly required as a surgery navigator. Actually, surgery using an image navigator is being widely studied, and coordination with hardware, including robots, will also be developed. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. Image acquisitions, processing and analysis in the process of obtaining characteristics of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Włodarek, J.; Przybylak, A.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Boniecki, P.; Koszela, K.; Przybył, J.; Skwarcz, J.

    2015-07-01

    The aim of this study was investigate the possibility of using methods of computer image analysis for the assessment and classification of morphological variability and the state of health of horse navicular bone. Assumption was that the classification based on information contained in the graphical form two-dimensional digital images of navicular bone and information of horse health. The first step in the research was define the classes of analyzed bones, and then using methods of computer image analysis for obtaining characteristics from these images. This characteristics were correlated with data concerning the animal, such as: side of hooves, number of navicular syndrome (scale 0-3), type, sex, age, weight, information about lace, information about heel. This paper shows the introduction to the study of use the neural image analysis in the diagnosis of navicular bone syndrome. Prepared method can provide an introduction to the study of non-invasive way to assess the condition of the horse navicular bone.

  17. Quantum computation in the analysis of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gomez, Richard B.; Ghoshal, Debabrata; Jayanna, Anil

    2004-08-01

    Recent research on the topic of quantum computation provides us with some quantum algorithms with higher efficiency and speedup compared to their classical counterparts. In this paper, it is our intent to provide the results of our investigation of several applications of such quantum algorithms - especially the Grover's Search algorithm - in the analysis of Hyperspectral Data. We found many parallels with Grover's method in existing data processing work that make use of classical spectral matching algorithms. Our efforts also included the study of several methods dealing with hyperspectral image analysis work where classical computation methods involving large data sets could be replaced with quantum computation methods. The crux of the problem in computation involving a hyperspectral image data cube is to convert the large amount of data in high dimensional space to real information. Currently, using the classical model, different time consuming methods and steps are necessary to analyze these data including: Animation, Minimum Noise Fraction Transform, Pixel Purity Index algorithm, N-dimensional scatter plot, Identification of Endmember spectra - are such steps. If a quantum model of computation involving hyperspectral image data can be developed and formalized - it is highly likely that information retrieval from hyperspectral image data cubes would be a much easier process and the final information content would be much more meaningful and timely. In this case, dimensionality would not be a curse, but a blessing.

  18. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  19. Bone texture analysis on dental radiographic images: results with several angulated radiographs on the same region of interest

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre

    2011-03-01

    Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.

  20. Impact of remote sensing upon the planning, management and development of water resources. Summary of computers and computer growth trends for hydrologic modeling and the input of ERTS image data processing load

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.

    1975-01-01

    An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.

  1. Software for Analyzing Sequences of Flow-Related Images

    NASA Technical Reports Server (NTRS)

    Klimek, Robert; Wright, Ted

    2004-01-01

    Spotlight is a computer program for analysis of sequences of images generated in combustion and fluid physics experiments. Spotlight can perform analysis of a single image in an interactive mode or a sequence of images in an automated fashion. The primary type of analysis is tracking of positions of objects over sequences of frames. Features and objects that are typically tracked include flame fronts, particles, droplets, and fluid interfaces. Spotlight automates the analysis of object parameters, such as centroid position, velocity, acceleration, size, shape, intensity, and color. Images can be processed to enhance them before statistical and measurement operations are performed. An unlimited number of objects can be analyzed simultaneously. Spotlight saves results of analyses in a text file that can be exported to other programs for graphing or further analysis. Spotlight is a graphical-user-interface-based program that at present can be executed on Microsoft Windows and Linux operating systems. A version that runs on Macintosh computers is being considered.

  2. A Comparative Evaluation of Mixed Dentition Analysis on Reliability of Cone Beam Computed Tomography Image Compared to Plaster Model.

    PubMed

    Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam

    2017-01-01

    The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t -test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis.

  3. Fast Steerable Principal Component Analysis

    PubMed Central

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-01-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA. PMID:27570801

  4. Tissue classification for laparoscopic image understanding based on multispectral texture analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena

    2016-03-01

    Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.

  5. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  6. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  7. Computer-based analysis of microvascular alterations in a mouse model for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Heinzer, Stefan; Müller, Ralph; Stampanoni, Marco; Abela, Rafael; Meyer, Eric P.; Ulmann-Schuler, Alexandra; Krucker, Thomas

    2007-03-01

    Vascular factors associated with Alzheimer's disease (AD) have recently gained increased attention. To investigate changes in vascular, particularly microvascular architecture, we developed a hierarchical imaging framework to obtain large-volume, high-resolution 3D images from brains of transgenic mice modeling AD. In this paper, we present imaging and data analysis methods which allow compiling unique characteristics from several hundred gigabytes of image data. Image acquisition is based on desktop micro-computed tomography (µCT) and local synchrotron-radiation µCT (SRµCT) scanning with a nominal voxel size of 16 µm and 1.4 µm, respectively. Two visualization approaches were implemented: stacks of Z-buffer projections for fast data browsing, and progressive-mesh based surface rendering for detailed 3D visualization of the large datasets. In a first step, image data was assessed visually via a Java client connected to a central database. Identified characteristics of interest were subsequently quantified using global morphometry software. To obtain even deeper insight into microvascular alterations, tree analysis software was developed providing local morphometric parameters such as number of vessel segments or vessel tortuosity. In the context of ever increasing image resolution and large datasets, computer-aided analysis has proven both powerful and indispensable. The hierarchical approach maintains the context of local phenomena, while proper visualization and morphometry provide the basis for detailed analysis of the pathology related to structure. Beyond analysis of microvascular changes in AD this framework will have significant impact considering that vascular changes are involved in other neurodegenerative diseases as well as in cancer, cardiovascular disease, asthma, and arthritis.

  8. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  9. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  10. A neotropical Miocene pollen database employing image-based search and semantic modeling.

    PubMed

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-08-01

    Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.

  11. High-throughput Analysis of Large Microscopy Image Datasets on CPU-GPU Cluster Platforms

    PubMed Central

    Teodoro, George; Pan, Tony; Kurc, Tahsin M.; Kong, Jun; Cooper, Lee A. D.; Podhorszki, Norbert; Klasky, Scott; Saltz, Joel H.

    2014-01-01

    Analysis of large pathology image datasets offers significant opportunities for the investigation of disease morphology, but the resource requirements of analysis pipelines limit the scale of such studies. Motivated by a brain cancer study, we propose and evaluate a parallel image analysis application pipeline for high throughput computation of large datasets of high resolution pathology tissue images on distributed CPU-GPU platforms. To achieve efficient execution on these hybrid systems, we have built runtime support that allows us to express the cancer image analysis application as a hierarchical data processing pipeline. The application is implemented as a coarse-grain pipeline of stages, where each stage may be further partitioned into another pipeline of fine-grain operations. The fine-grain operations are efficiently managed and scheduled for computation on CPUs and GPUs using performance aware scheduling techniques along with several optimizations, including architecture aware process placement, data locality conscious task assignment, data prefetching, and asynchronous data copy. These optimizations are employed to maximize the utilization of the aggregate computing power of CPUs and GPUs and minimize data copy overheads. Our experimental evaluation shows that the cooperative use of CPUs and GPUs achieves significant improvements on top of GPU-only versions (up to 1.6×) and that the execution of the application as a set of fine-grain operations provides more opportunities for runtime optimizations and attains better performance than coarser-grain, monolithic implementations used in other works. An implementation of the cancer image analysis pipeline using the runtime support was able to process an image dataset consisting of 36,848 4Kx4K-pixel image tiles (about 1.8TB uncompressed) in less than 4 minutes (150 tiles/second) on 100 nodes of a state-of-the-art hybrid cluster system. PMID:25419546

  12. Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions

    NASA Astrophysics Data System (ADS)

    Ogiela, M. R.; Bodzioch, S.

    2011-06-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards automatic detection and interpretation of disease symptoms on processed US images. First, in this paper, there is presented a new heuristic method of filtering gallbladder contours from images. A major stage in this filtration is to segment and section off areas occupied by the said organ. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours, based on rank filtration, as well as on the analysis of line profile sections on tested organs. The second part concerns detecting the most important lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. The methodology of computer analysis of US gallbladder images presented here is clearly utilitarian in nature and after standardising can be used as a technique for supporting the diagnostics of selected gallbladder disorders using the images of this organ.

  13. Biomedical image analysis and processing in clouds

    NASA Astrophysics Data System (ADS)

    Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John

    2013-10-01

    Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.

  14. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  15. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review.

    PubMed

    Chen, Jia-Mei; Li, Yan; Xu, Jun; Gong, Lei; Wang, Lin-Wei; Liu, Wen-Lou; Liu, Juan

    2017-03-01

    With the advance of digital pathology, image analysis has begun to show its advantages in information analysis of hematoxylin and eosin histopathology images. Generally, histological features in hematoxylin and eosin images are measured to evaluate tumor grade and prognosis for breast cancer. This review summarized recent works in image analysis of hematoxylin and eosin histopathology images for breast cancer prognosis. First, prognostic factors for breast cancer based on hematoxylin and eosin histopathology images were summarized. Then, usual procedures of image analysis for breast cancer prognosis were systematically reviewed, including image acquisition, image preprocessing, image detection and segmentation, and feature extraction. Finally, the prognostic value of image features and image feature-based prognostic models was evaluated. Moreover, we discussed the issues of current analysis, and some directions for future research.

  16. Computer-assisted image analysis to quantify daily growth rates of broiler chickens.

    PubMed

    De Wet, L; Vranken, E; Chedad, A; Aerts, J M; Ceunen, J; Berckmans, D

    2003-09-01

    1. The objective was to investigate the possibility of detecting daily body weight changes of broiler chickens with computer-assisted image analysis. 2. The experiment included 50 broiler chickens reared under commercial conditions. Ten out of 50 chickens were randomly selected and video recorded (upper view) 18 times during the 42-d growing period. The number of surface and periphery pixels from the images was used to derive a relationship between body dimension and live weight. 3. The relative error in weight estimation, expressed in terms of the standard deviation of the residuals from image surface data was 10%, while it was found to be 15% for the image periphery data. 4. Image-processing systems could be developed to assist the farmer in making important management and marketing decisions.

  17. Computer-Generated, Three-Dimensional Character Animation: A Report and Analysis.

    ERIC Educational Resources Information Center

    Kingsbury, Douglas Lee

    This master's thesis details the experience gathered in the production "Snoot and Muttly," a short character animation with 3-D computer generated images, and provides an analysis of the computer-generated 3-D character animation system capabilities. Descriptions are provided of the animation environment at the Ohio State University…

  18. Image/Time Series Mining Algorithms: Applications to Developmental Biology, Document Processing and Data Streams

    ERIC Educational Resources Information Center

    Tataw, Oben Moses

    2013-01-01

    Interdisciplinary research in computer science requires the development of computational techniques for practical application in different domains. This usually requires careful integration of different areas of technical expertise. This dissertation presents image and time series analysis algorithms, with practical interdisciplinary applications…

  19. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  20. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  1. FFDM image quality assessment using computerized image texture analysis

    NASA Astrophysics Data System (ADS)

    Berger, Rachelle; Carton, Ann-Katherine; Maidment, Andrew D. A.; Kontos, Despina

    2010-04-01

    Quantitative measures of image quality (IQ) are routinely obtained during the evaluation of imaging systems. These measures, however, do not necessarily correlate with the IQ of the actual clinical images, which can also be affected by factors such as patient positioning. No quantitative method currently exists to evaluate clinical IQ. Therefore, we investigated the potential of using computerized image texture analysis to quantitatively assess IQ. Our hypothesis is that image texture features can be used to assess IQ as a measure of the image signal-to-noise ratio (SNR). To test feasibility, the "Rachel" anthropomorphic breast phantom (Model 169, Gammex RMI) was imaged with a Senographe 2000D FFDM system (GE Healthcare) using 220 unique exposure settings (target/filter, kVs, and mAs combinations). The mAs were varied from 10%-300% of that required for an average glandular dose (AGD) of 1.8 mGy. A 2.5cm2 retroareolar region of interest (ROI) was segmented from each image. The SNR was computed from the ROIs segmented from images linear with dose (i.e., raw images) after flat-field and off-set correction. Image texture features of skewness, coarseness, contrast, energy, homogeneity, and fractal dimension were computed from the Premium ViewTM postprocessed image ROIs. Multiple linear regression demonstrated a strong association between the computed image texture features and SNR (R2=0.92, p<=0.001). When including kV, target and filter as additional predictor variables, a stronger association with SNR was observed (R2=0.95, p<=0.001). The strong associations indicate that computerized image texture analysis can be used to measure image SNR and potentially aid in automating IQ assessment as a component of the clinical workflow. Further work is underway to validate our findings in larger clinical datasets.

  2. Systematic review, critical appraisal, and analysis of the quality of economic evaluations in stroke imaging.

    PubMed

    Burton, Kirsteen R; Perlis, Nathan; Aviv, Richard I; Moody, Alan R; Kapral, Moira K; Krahn, Murray D; Laupacis, Andreas

    2014-03-01

    This study reviews the quality of economic evaluations of imaging after acute stroke and identifies areas for improvement. We performed full-text searches of electronic databases that included Medline, Econlit, the National Health Service Economic Evaluation Database, and the Tufts Cost Effectiveness Analysis Registry through July 2012. Search strategy terms included the following: stroke*; cost*; or cost-benefit analysis*; and imag*. Inclusion criteria were empirical studies published in any language that reported the results of economic evaluations of imaging interventions for patients with stroke symptoms. Study quality was assessed by a commonly used checklist (with a score range of 0% to 100%). Of 568 unique potential articles identified, 5 were included in the review. Four of 5 articles were explicit in their analysis perspectives, which included healthcare system payers, hospitals, and stroke services. Two studies reported results during a 5-year time horizon, and 3 studies reported lifetime results. All included the modified Rankin Scale score as an outcome measure. The median quality score was 84.4% (range=71.9%-93.5%). Most studies did not consider the possibility that patients could not tolerate contrast media or could incur contrast-induced nephropathy. Three studies compared perfusion computed tomography with unenhanced computed tomography but assumed that outcomes guided by the results of perfusion computed tomography were equivalent to outcomes guided by the results of magnetic resonance imaging or noncontrast computed tomography. Economic evaluations of imaging modalities after acute ischemic stroke were generally of high methodological quality. However, important radiology-specific clinical components were missing from all of these analyses.

  3. Effects of Image Compression on Automatic Count of Immunohistochemically Stained Nuclei in Digital Images

    PubMed Central

    López, Carlos; Lejeune, Marylène; Escrivà, Patricia; Bosch, Ramón; Salvadó, Maria Teresa; Pons, Lluis E.; Baucells, Jordi; Cugat, Xavier; Álvaro, Tomás; Jaén, Joaquín

    2008-01-01

    This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3×, 23× and 46× compression. Counts of TIFF format images were compared with the other three groups. Overall, differences in the count of the images increased with the percentage of compression. Low-complexity images (≤100 cells/field, without clusters or with small-area clusters) had small differences (<5 cells/field in 95–100% of cases) and high-complexity images showed substantial differences (<35–50 cells/field in 95–100% of cases). Compression does not compromise the accuracy of immunohistochemical nuclear marker counts obtained by computer-assisted analysis systems for digital images with low complexity and could be an efficient method for storing these images. PMID:18755997

  4. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    PubMed

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  6. Deep Learning in Medical Image Analysis.

    PubMed

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  7. Realization of the FPGA-based reconfigurable computing environment by the example of morphological processing of a grayscale image

    NASA Astrophysics Data System (ADS)

    Shatravin, V.; Shashev, D. V.

    2018-05-01

    Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.

  8. Estimation of Fine-Scale Histologic Features at Low Magnification.

    PubMed

    Zarella, Mark D; Quaschnick, Matthew R; Breen, David E; Garcia, Fernando U

    2018-06-18

    - Whole-slide imaging has ushered in a new era of technology that has fostered the use of computational image analysis for diagnostic support and has begun to transfer the act of analyzing a slide to computer monitors. Due to the overwhelming amount of detail available in whole-slide images, analytic procedures-whether computational or visual-often operate at magnifications lower than the magnification at which the image was acquired. As a result, a corresponding reduction in image resolution occurs. It is unclear how much information is lost when magnification is reduced, and whether the rich color attributes of histologic slides can aid in reconstructing some of that information. - To examine the correspondence between the color and spatial properties of whole-slide images to elucidate the impact of resolution reduction on the histologic attributes of the slide. - We simulated image resolution reduction and modeled its effect on classification of the underlying histologic structure. By harnessing measured histologic features and the intrinsic spatial relationships between histologic structures, we developed a predictive model to estimate the histologic composition of tissue in a manner that exceeds the resolution of the image. - Reduction in resolution resulted in a significant loss of the ability to accurately characterize histologic components at magnifications less than ×10. By utilizing pixel color, this ability was improved at all magnifications. - Multiscale analysis of histologic images requires an adequate understanding of the limitations imposed by image resolution. Our findings suggest that some of these limitations may be overcome with computational modeling.

  9. Ki-67 reactivity in breast carcinoma analyzed by a computer-assisted image system: preliminary results.

    PubMed Central

    Mir, R.; Johnson, H.; Mathur, R.; Wise, L.; Kahn, L. B.

    1995-01-01

    The proliferative index of 63 breast carcinomas was measured on Ki-67 immunostained frozen tissue sections with a computer-assisted image analysis system. The mean proliferative index in estrogen-positive breast carcinomas was lower than in estrogen-negative carcinomas. An inverse relationship between proliferative index and short-term disease-free survival was noted. Images Figure 1 Figure 2 PMID:7674345

  10. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.

    PubMed

    Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé

    2012-10-01

    In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.

  11. Instant Grainification: Real-Time Grain-Size Analysis from Digital Images in the Field

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.; Chezar, H.

    2007-12-01

    Over the past few years, digital cameras and underwater microscopes have been developed to collect in-situ images of sand-sized bed sediment, and software has been developed to measure grain size from those digital images (Chezar and Rubin, 2004; Rubin, 2004; Rubin et al., 2006). Until now, all image processing and grain- size analysis was done back in the office where images were uploaded from cameras and processed on desktop computers. Computer hardware has become small and rugged enough to process images in the field, which for the first time allows real-time grain-size analysis of sand-sized bed sediment. We present such a system consisting of weatherproof tablet computer, open source image-processing software (autocorrelation code of Rubin, 2004, running under Octave and Cygwin), and digital camera with macro lens. Chezar, H., and Rubin, D., 2004, Underwater microscope system: U.S. Patent and Trademark Office, patent number 6,680,795, January 20, 2004. Rubin, D.M., 2004, A simple autocorrelation algorithm for determining grain size from digital images of sediment: Journal of Sedimentary Research, v. 74, p. 160-165. Rubin, D.M., Chezar, H., Harney, J.N., Topping, D.J., Melis, T.S., and Sherwood, C.R., 2006, Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size: USGS Open-File Report 2006-1360.

  12. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  13. What Is A Picture Archiving And Communication System (PACS)?

    NASA Astrophysics Data System (ADS)

    Marceau, Carla

    1982-01-01

    A PACS is a digital system for acquiring, storing, moving and displaying picture or image information. It is an alternative to film jackets that has been made possible by recent breakthroughs in computer technology: telecommunications, local area nets and optical disks. The fundamental concept of the digital representation of image information is introduced. It is shown that freeing images from a material representation on film or paper leads to a dramatic increase in flexibility in our use of the images. The ultimate goal of a medical PACS system is a radiology department without film jackets. The inherent nature of digital images and the power of the computer allow instant free "copies" of images to be made and thrown away. These copies can be transmitted to distant sites in seconds, without the "original" ever leaving the archives of the radiology department. The result is a radiology department with much freer access to patient images and greater protection against lost or misplaced image information. Finally, images in digital form can be treated as data for the computer in image processing, which includes enhancement, reconstruction and even computer-aided analysis.

  14. Plasma cell quantification in bone marrow by computer-assisted image analysis.

    PubMed

    Went, P; Mayer, S; Oberholzer, M; Dirnhofer, S

    2006-09-01

    Minor and major criteria for the diagnosis of multiple meloma according to the definition of the WHO classification include different categories of the bone marrow plasma cell count: a shift from the 10-30% group to the > 30% group equals a shift from a minor to a major criterium, while the < 10% group does not contribute to the diagnosis. Plasma cell fraction in the bone marrow is therefore critical for the classification and optimal clinical management of patients with plasma cell dyscrasias. The aim of this study was (i) to establish a digital image analysis system able to quantify bone marrow plasma cells and (ii) to evaluate two quantification techniques in bone marrow trephines i.e. computer-assisted digital image analysis and conventional light-microscopic evaluation. The results were compared regarding inter-observer variation of the obtained results. Eighty-seven patients, 28 with multiple myeloma, 29 with monoclonal gammopathy of undetermined significance, and 30 with reactive plasmocytosis were included in the study. Plasma cells in H&E- and CD138-stained slides were quantified by two investigators using light-microscopic estimation and computer-assisted digital analysis. The sets of results were correlated with rank correlation coefficients. Patients were categorized according to WHO criteria addressing the plasma cell content of the bone marrow (group 1: 0-10%, group 2: 11-30%, group 3: > 30%), and the results compared by kappa statistics. The degree of agreement in CD138-stained slides was higher for results obtained using the computer-assisted image analysis system compared to light microscopic evaluation (corr.coeff. = 0.782), as was seen in the intra- (corr.coeff. = 0.960) and inter-individual results correlations (corr.coeff. = 0.899). Inter-observer agreement for categorized results (SM/PW: kappa 0.833) was in a high range. Computer-assisted image analysis demonstrated a higher reproducibility of bone marrow plasma cell quantification. This might be of critical importance for diagnosis, clinical management and prognostics when plasma cell numbers are low, which makes exact quantifications difficult.

  15. Computer-Assisted Analysis of Near-Bottom Photos for Benthic Habitat Studies

    DTIC Science & Technology

    2006-09-01

    navigated survey platform greatly increases the efficiency of image analysis and provides new insight about the relationships between benthic organisms...increase in the efficiency of image analysis for benthic habitat studies, and provides the opportunity to assess small scale spatial distribution of

  16. Real time imaging and infrared background scene analysis using the Naval Postgraduate School infrared search and target designation (NPS-IRSTD) system

    NASA Astrophysics Data System (ADS)

    Bernier, Jean D.

    1991-09-01

    The imaging in real time of infrared background scenes with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was achieved through extensive software developments in protected mode assembly language on an Intel 80386 33 MHz computer. The new software processes the 512 by 480 pixel images directly in the extended memory area of the computer where the DT-2861 frame grabber memory buffers are mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame grabber and the host computer AT bus enables each load of the frame grabber memory buffers to be effected under software control. The protected mode assembly language program can refresh the display of a six degree pseudo-color sector in the scanner rotation within the two second period of the scanner. A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on image analysis and contrast enhancement of infrared background scenes.

  17. Analysis of severe storm data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1983-01-01

    The Mesoscale Analysis and Space Sensor (MASS) Data Management and Analysis System developed by Atsuko Computing International (ACI) on the MASS HP-1000 Computer System within the Systems Dynamics Laboratory of the Marshall Space Flight Center is described. The MASS Data Management and Analysis System was successfully implemented and utilized daily by atmospheric scientists to graphically display and analyze large volumes of conventional and satellite derived meteorological data. The scientists can process interactively various atmospheric data (Sounding, Single Level, Gird, and Image) by utilizing the MASS (AVE80) share common data and user inputs, thereby reducing overhead, optimizing execution time, and thus enhancing user flexibility, useability, and understandability of the total system/software capabilities. In addition ACI installed eight APPLE III graphics/imaging computer terminals in individual scientist offices and integrated them into the MASS HP-1000 Computer System thus providing significant enhancement to the overall research environment.

  18. Comparison of low‐dose, half‐rotation, cone‐beam CT with electronic portal imaging device for registration of fiducial markers during prostate radiotherapy

    PubMed Central

    Wee, Leonard; Hackett, Sara Lyons; Jones, Andrew; Lim, Tee Sin; Harper, Christopher Stirling

    2013-01-01

    This study evaluated the agreement of fiducial marker localization between two modalities — an electronic portal imaging device (EPID) and cone‐beam computed tomography (CBCT) — using a low‐dose, half‐rotation scanning protocol. Twenty‐five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half‐rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker‐matching algorithms, seed‐chamfer and grey‐value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland‐Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter‐rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior–inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half‐rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed‐chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey‐value matching algorithm with EPID‐based registration. PACS numbers: 87.55.km, 87.55.Qr PMID:23835391

  19. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  20. Image detection and compression for memory efficient system analysis

    NASA Astrophysics Data System (ADS)

    Bayraktar, Mustafa

    2015-02-01

    The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.

  1. Computer system for scanning tunneling microscope automation

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; García, A.; Pascual, P. J.; Presa, J.; Santisteban, A.

    1987-03-01

    A computerized system for the automation of a scanning tunneling microscope is presented. It is based on an IBM personal computer (PC) either an XT or an AT, which performs the control, data acquisition and storage operations, displays the STM "images" in real time, and provides image processing tools for the restoration and analysis of data. It supports different data acquisition and control cards and image display cards. The software has been designed in a modular way to allow the replacement of these cards and other equipment improvements as well as the inclusion of user routines for data analysis.

  2. An adhered-particle analysis system based on concave points

    NASA Astrophysics Data System (ADS)

    Wang, Wencheng; Guan, Fengnian; Feng, Lin

    2018-04-01

    Particles adhered together will influence the image analysis in computer vision system. In this paper, a method based on concave point is designed. First, corner detection algorithm is adopted to obtain a rough estimation of potential concave points after image segmentation. Then, it computes the area ratio of the candidates to accurately localize the final separation points. Finally, it uses the separation points of each particle and the neighboring pixels to estimate the original particles before adhesion and provides estimated profile images. The experimental results have shown that this approach can provide good results that match the human visual cognitive mechanism.

  3. Computer-Aided Diagnostic System For Mass Survey Chest Images

    NASA Astrophysics Data System (ADS)

    Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi

    1988-06-01

    In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.

  4. Development of a Reference Image Collection Library for Histopathology Image Processing, Analysis and Decision Support Systems Research.

    PubMed

    Kostopoulos, Spiros; Ravazoula, Panagiota; Asvestas, Pantelis; Kalatzis, Ioannis; Xenogiannopoulos, George; Cavouras, Dionisis; Glotsos, Dimitris

    2017-06-01

    Histopathology image processing, analysis and computer-aided diagnosis have been shown as effective assisting tools towards reliable and intra-/inter-observer invariant decisions in traditional pathology. Especially for cancer patients, decisions need to be as accurate as possible in order to increase the probability of optimal treatment planning. In this study, we propose a new image collection library (HICL-Histology Image Collection Library) comprising 3831 histological images of three different diseases, for fostering research in histopathology image processing, analysis and computer-aided diagnosis. Raw data comprised 93, 116 and 55 cases of brain, breast and laryngeal cancer respectively collected from the archives of the University Hospital of Patras, Greece. The 3831 images were generated from the most representative regions of the pathology, specified by an experienced histopathologist. The HICL Image Collection is free for access under an academic license at http://medisp.bme.teiath.gr/hicl/ . Potential exploitations of the proposed library may span over a board spectrum, such as in image processing to improve visualization, in segmentation for nuclei detection, in decision support systems for second opinion consultations, in statistical analysis for investigation of potential correlations between clinical annotations and imaging findings and, generally, in fostering research on histopathology image processing and analysis. To the best of our knowledge, the HICL constitutes the first attempt towards creation of a reference image collection library in the field of traditional histopathology, publicly and freely available to the scientific community.

  5. Formulas for Image Factor Scores

    ERIC Educational Resources Information Center

    Hakstian, A. Ralph

    1973-01-01

    Formulas are presented in this paper for computing scores associated with factors of G, the image covariance matrix, under three conditions. The subject of the paper is restricted to "pure" image analysis. (Author/NE)

  6. Development of a Multi-Centre Clinical Trial Data Archiving and Analysis Platform for Functional Imaging

    NASA Astrophysics Data System (ADS)

    Driscoll, Brandon; Jaffray, David; Coolens, Catherine

    2014-03-01

    Purpose: To provide clinicians & researchers participating in multi-centre clinical trials with a central repository for large volume dynamic imaging data as well as a set of tools for providing end-to-end testing and image analysis standards of practice. Methods: There are three main pieces to the data archiving and analysis system; the PACS server, the data analysis computer(s) and the high-speed networks that connect them. Each clinical trial is anonymized using a customizable anonymizer and is stored on a PACS only accessible by AE title access control. The remote analysis station consists of a single virtual machine per trial running on a powerful PC supporting multiple simultaneous instances. Imaging data management and analysis is performed within ClearCanvas Workstation® using custom designed plug-ins for kinetic modelling (The DCE-Tool®), quality assurance (The DCE-QA Tool) and RECIST. Results: A framework has been set up currently serving seven clinical trials spanning five hospitals with three more trials to be added over the next six months. After initial rapid image transfer (+ 2 MB/s), all data analysis is done server side making it robust and rapid. This has provided the ability to perform computationally expensive operations such as voxel-wise kinetic modelling on very large data archives (+20 GB/50k images/patient) remotely with minimal end-user hardware. Conclusions: This system is currently in its proof of concept stage but has been used successfully to send and analyze data from remote hospitals. Next steps will involve scaling up the system with a more powerful PACS and multiple high powered analysis machines as well as adding real-time review capabilities.

  7. Progressive data transmission for anatomical landmark detection in a cloud.

    PubMed

    Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D

    2012-01-01

    In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.

  8. Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1984-01-01

    Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.

  9. A preliminary computer pattern analysis of satellite images of mature extratropical cyclones

    NASA Technical Reports Server (NTRS)

    Burfeind, Craig R.; Weinman, James A.; Barkstrom, Bruce R.

    1987-01-01

    This study has applied computerized pattern analysis techniques to the location and classification of features of several mature extratropical cyclones that were depicted in GOES satellite images. These features include the location of the center of the cyclone vortex core and the location of the associated occluded front. The cyclone type was classified in accord with the scheme of Troup and Streten. The present analysis was implemented on a personal computer; results were obtained within approximately one or two minutes without the intervention of an analyst.

  10. Enhancements to the Image Analysis Tool for Core Punch Experiments and Simulations (vs. 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John Edward; Unal, Cetin

    A previous paper (Hogden & Unal, 2012, Image Analysis Tool for Core Punch Experiments and Simulations) described an image processing computer program developed at Los Alamos National Laboratory. This program has proven useful so developement has been continued. In this paper we describe enhacements to the program as of 2014.

  11. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners.

    PubMed

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results.

  12. Computer-based image analysis of one-dimensional electrophoretic gels used for the separation of DNA restriction fragments.

    PubMed Central

    Gray, A J; Beecher, D E; Olson, M V

    1984-01-01

    A stand-alone, interactive computer system has been developed that automates the analysis of ethidium bromide-stained agarose and acrylamide gels on which DNA restriction fragments have been separated by size. High-resolution digital images of the gels are obtained using a camera that contains a one-dimensional, 2048-pixel photodiode array that is mechanically translated through 2048 discrete steps in a direction perpendicular to the gel lanes. An automatic band-detection algorithm is used to establish the positions of the gel bands. A color-video graphics system, on which both the gel image and a variety of operator-controlled overlays are displayed, allows the operator to visualize and interact with critical stages of the analysis. The principal interactive steps involve defining the regions of the image that are to be analyzed and editing the results of the band-detection process. The system produces a machine-readable output file that contains the positions, intensities, and descriptive classifications of all the bands, as well as documentary information about the experiment. This file is normally further processed on a larger computer to obtain fragment-size assignments. Images PMID:6320097

  13. Imaging systems and methods for obtaining and using biometric information

    DOEpatents

    McMakin, Douglas L [Richland, WA; Kennedy, Mike O [Richland, WA

    2010-11-30

    Disclosed herein are exemplary embodiments of imaging systems and methods of using such systems. In one exemplary embodiment, one or more direct images of the body of a clothed subject are received, and a motion signature is determined from the one or more images. In this embodiment, the one or more images show movement of the body of the subject over time, and the motion signature is associated with the movement of the subject's body. In certain implementations, the subject can be identified based at least in part on the motion signature. Imaging systems for performing any of the disclosed methods are also disclosed herein. Furthermore, the disclosed imaging, rendering, and analysis methods can be implemented, at least in part, as one or more computer-readable media comprising computer-executable instructions for causing a computer to perform the respective methods.

  14. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  15. Memory Analysis of the KBeast Linux Rootkit: Investigating Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework

    DTIC Science & Technology

    2015-06-01

    examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills , can successfully...memory images and malware, this new series of reports will be directed at those who must analyse Linux malware-infected memory images. The skills ...disable 1287 1000 1000 /usr/lib/policykit-1-gnome/polkit-gnome-authentication- agent-1 1310 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1350

  16. A Comparative Evaluation of Mixed Dentition Analysis on Reliability of Cone Beam Computed Tomography Image Compared to Plaster Model

    PubMed Central

    Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam

    2017-01-01

    Aims and Objective: The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Materials and Methods: Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t-test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Results: Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. Conclusion: CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis. PMID:28852639

  17. STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.

    PubMed

    Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X

    2009-08-01

    This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.

  18. Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants.

    PubMed

    Navarro, Pedro J; Pérez, Fernando; Weiss, Julia; Egea-Cortines, Marcos

    2016-05-05

    Phenomics is a technology-driven approach with promising future to obtain unbiased data of biological systems. Image acquisition is relatively simple. However data handling and analysis are not as developed compared to the sampling capacities. We present a system based on machine learning (ML) algorithms and computer vision intended to solve the automatic phenotype data analysis in plant material. We developed a growth-chamber able to accommodate species of various sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three different algorithms: k-nearest neighbour (kNN), Naive Bayes Classifier (NBC), and Support Vector Machine. Each ML algorithm was executed with different kernel functions and they were trained with raw data and two types of data normalisation. Different metrics were computed to determine the optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully but may require different ML algorithms for segmentation.

  19. Tc-99m Labeled and VIP-Receptor Targeted Liposomes for Effective Imaging of Breast Cancer

    DTIC Science & Technology

    2006-09-01

    computer. The images (100,000 counts/image) were acquired and stored in a 512X512 matrix. Image Analysis : The Odyssey software program was used to...as well as between normal and tumor- were calculated. Statistical analysis was performed bearing rats for each of the formulations using using...large signal-to-noise ratio, thereby rendering data analysis impractical. Moreover, -helicity of VIP associated with SSM is potentiated in the presence

  20. Computer image analysis of etched tracks from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1994-01-01

    I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.

  1. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  2. A neotropical Miocene pollen database employing image-based search and semantic modeling1

    PubMed Central

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-01-01

    • Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648

  3. Design and calibration of a vacuum compatible scanning tunneling microscope

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1990-01-01

    A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.

  4. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  5. Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.

    PubMed

    Arganda-Carreras, Ignacio; Andrey, Philippe

    2017-01-01

    With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

  6. Auto-Versioning Systems Image Manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzaglia, Larry

    2013-08-01

    The av_sys_image_mgr utility provides an interface for the creation, manipulation, and analysis of system boot images for computer systems. It is primarily intended to provide a convenient method for managing the introduction of changes to boot images for long-lived production HPC systems.

  7. A web-based system for neural network based classification in temporomandibular joint osteoarthritis.

    PubMed

    de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos

    2018-07-01

    The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this study demonstrate a comprehensive phenotypic characterization of TMJ health and disease at clinical, imaging and biological levels, using novel flexible and versatile open-source tools for a web-based system that provides advanced shape statistical analysis and a neural network based classification of temporomandibular joint osteoarthritis. Published by Elsevier Ltd.

  8. Image processing and pattern recognition with CVIPtools MATLAB toolbox: automatic creation of masks for veterinary thermographic images

    NASA Astrophysics Data System (ADS)

    Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph

    2016-09-01

    CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.

  9. Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat.

    PubMed

    Zhou, Ji; Applegate, Christopher; Alonso, Albor Dobon; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick

    2017-01-01

    Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat ( Triticum aestivum ) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.

  10. Automatic content-based analysis of georeferenced image data: Detection of Beggiatoa mats in seafloor video mosaics from the HÅkon Mosby Mud Volcano

    NASA Astrophysics Data System (ADS)

    Jerosch, K.; Lüdtke, A.; Schlüter, M.; Ioannidis, G. T.

    2007-02-01

    The combination of new underwater technology as remotely operating vehicles (ROVs), high-resolution video imagery, and software to compute georeferenced mosaics of the seafloor provides new opportunities for marine geological or biological studies and applications in offshore industry. Even during single surveys by ROVs or towed systems large amounts of images are compiled. While these underwater techniques are now well-engineered, there is still a lack of methods for the automatic analysis of the acquired image data. During ROV dives more than 4200 georeferenced video mosaics were compiled for the HÅkon Mosby Mud Volcano (HMMV). Mud volcanoes as HMMV are considered as significant source locations for methane characterised by unique chemoautotrophic communities as Beggiatoa mats. For the detection and quantification of the spatial distribution of Beggiatoa mats an automated image analysis technique was developed, which applies watershed transformation and relaxation-based labelling of pre-segmented regions. Comparison of the data derived by visual inspection of 2840 video images with the automated image analysis revealed similarities with a precision better than 90%. We consider this as a step towards a time-efficient and accurate analysis of seafloor images for computation of geochemical budgets and identification of habitats at the seafloor.

  11. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    PubMed

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  12. A database system to support image algorithm evaluation

    NASA Technical Reports Server (NTRS)

    Lien, Y. E.

    1977-01-01

    The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.

  13. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  14. Spatial compression algorithm for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  15. A Novel Bit-level Image Encryption Method Based on Chaotic Map and Dynamic Grouping

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Ji; Shen, Yan

    2012-10-01

    In this paper, a novel bit-level image encryption method based on dynamic grouping is proposed. In the proposed method, the plain-image is divided into several groups randomly, then permutation-diffusion process on bit level is carried out. The keystream generated by logistic map is related to the plain-image, which confuses the relationship between the plain-image and the cipher-image. The computer simulation results of statistical analysis, information entropy analysis and sensitivity analysis show that the proposed encryption method is secure and reliable enough to be used for communication application.

  16. Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs

    NASA Astrophysics Data System (ADS)

    De Vylder, Jonas; Philips, Wilfried

    2011-02-01

    This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.

  17. The application of digital techniques to the analysis of metallurgical experiments

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1977-01-01

    The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. The basic hardware and software components of the Image Data Processing System are presented. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.

  18. Analysis of Orientations of Collagen Fibers by Novel Fiber-Tracking Software

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Rajwa, Bartlomiej; Filmer, David L.; Hoffmann, Christoph M.; Yuan, Bo; Chiang, Ching-Shoei; Sturgis, Jennie; Robinson, J. Paul

    2003-12-01

    Recent evidence supports the notion that biological functions of extracellular matrix (ECM) are highly correlated to not only its composition but also its structure. This article integrates confocal microscopy imaging and image-processing techniques to analyze the microstructural properties of ECM. This report describes a two- and three-dimensional fiber middle-line tracing algorithm that may be used to quantify collagen fibril organization. We utilized computer simulation and statistical analysis to validate the developed algorithm. These algorithms were applied to confocal images of collagen gels made with reconstituted bovine collagen type I, to demonstrate the computation of orientations of individual fibers.

  19. Genetic Interaction Score (S-Score) Calculation, Clustering, and Visualization of Genetic Interaction Profiles for Yeast.

    PubMed

    Roguev, Assen; Ryan, Colm J; Xu, Jiewei; Colson, Isabelle; Hartsuiker, Edgar; Krogan, Nevan

    2018-02-01

    This protocol describes computational analysis of genetic interaction screens, ranging from data capture (plate imaging) to downstream analyses. Plate imaging approaches using both digital camera and office flatbed scanners are included, along with a protocol for the extraction of colony size measurements from the resulting images. A commonly used genetic interaction scoring method, calculation of the S-score, is discussed. These methods require minimal computer skills, but some familiarity with MATLAB and Linux/Unix is a plus. Finally, an outline for using clustering and visualization software for analysis of resulting data sets is provided. © 2018 Cold Spring Harbor Laboratory Press.

  20. Fast linear feature detection using multiple directional non-maximum suppression.

    PubMed

    Sun, C; Vallotton, P

    2009-05-01

    The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.

  1. Analysis of intensity variability in multislice and cone beam computed tomography.

    PubMed

    Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde

    2011-08-01

    The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.

  2. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  3. Deep Learning in Medical Image Analysis

    PubMed Central

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2016-01-01

    The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements. PMID:28301734

  4. Traffic analysis and control using image processing

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Ellappan, Vijayan; Arun, A. R.

    2017-11-01

    This paper shows the work on traffic analysis and control till date. It shows an approach to regulate traffic the use of image processing and MATLAB systems. This concept uses computational images that are to be compared with original images of the street taken in order to determine the traffic level percentage and set the timing for the traffic signal accordingly which are used to reduce the traffic stoppage on traffic lights. They concept proposes to solve real life scenarios in the streets, thus enriching the traffic lights by adding image receivers like HD cameras and image processors. The input is then imported into MATLAB to be used. as a method for calculating the traffic on roads. Their results would be computed in order to adjust the traffic light timings on a particular street, and also with respect to other similar proposals but with the added value of solving a real, big instance.

  5. Towards a computer-aided diagnosis system for vocal cord diseases.

    PubMed

    Verikas, A; Gelzinis, A; Bacauskiene, M; Uloza, V

    2006-01-01

    The objective of this work is to investigate a possibility of creating a computer-aided decision support system for an automated analysis of vocal cord images aiming to categorize diseases of vocal cords. The problem is treated as a pattern recognition task. To obtain a concise and informative representation of a vocal cord image, colour, texture, and geometrical features are used. The representation is further analyzed by a pattern classifier categorizing the image into healthy, diffuse, and nodular classes. The approach developed was tested on 785 vocal cord images collected at the Department of Otolaryngology, Kaunas University of Medicine, Lithuania. A correct classification rate of over 87% was obtained when categorizing a set of unseen images into the aforementioned three classes. Bearing in mind the high similarity of the decision classes, the results obtained are rather encouraging and the developed tools could be very helpful for assuring objective analysis of the images of laryngeal diseases.

  6. From macro-scale to micro-scale computational anatomy: a perspective on the next 20 years.

    PubMed

    Mori, Kensaku

    2016-10-01

    This paper gives our perspective on the next two decades of computational anatomy, which has made great strides in the recognition and understanding of human anatomy from conventional clinical images. The results from this field are now used in a variety of medical applications, including quantitative analysis of organ shapes, interventional assistance, surgical navigation, and population analysis. Several anatomical models have also been used in computational anatomy, and these mainly target millimeter-scale shapes. For example, liver-shape models are almost completely modeled at the millimeter scale, and shape variations are described at such scales. Most clinical 3D scanning devices have had just under 1 or 0.5 mm per voxel resolution for over 25 years, and this resolution has not changed drastically in that time. Although Z-axis (head-to-tail direction) resolution has been drastically improved by the introduction of multi-detector CT scanning devices, in-plane resolutions have not changed very much either. When we look at human anatomy, we can see different anatomical structures at different scales. For example, pulmonary blood vessels and lung lobes can be observed in millimeter-scale images. If we take 10-µm-scale images of a lung specimen, the alveoli and bronchiole regions can be located in them. Most work in millimeter-scale computational anatomy has been done by the medical-image analysis community. In the next two decades, we encourage our community to focus on micro-scale computational anatomy. In this perspective paper, we briefly review the achievements of computational anatomy and its impacts on clinical applications; furthermore, we show several possibilities from the viewpoint of microscopic computational anatomy by discussing experimental results from our recent research activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.

    1991-01-01

    Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.

  8. A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

    PubMed

    Nanthagopal, A Padma; Rajamony, R Sukanesh

    2012-07-01

    The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

  9. Automatic detection and analysis of cell motility in phase-contrast time-lapse images using a combination of maximally stable extremal regions and Kalman filter approaches.

    PubMed

    Kaakinen, M; Huttunen, S; Paavolainen, L; Marjomäki, V; Heikkilä, J; Eklund, L

    2014-01-01

    Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  10. Design and validation of Segment--freely available software for cardiovascular image analysis.

    PubMed

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-11

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.

  11. Automatic image analysis and spot classification for detection of pathogenic Escherichia coli on glass slide DNA microarrays

    USDA-ARS?s Scientific Manuscript database

    A computer algorithm was created to inspect scanned images from DNA microarray slides developed to rapidly detect and genotype E. Coli O157 virulent strains. The algorithm computes centroid locations for signal and background pixels in RGB space and defines a plane perpendicular to the line connect...

  12. Why Do Photo Finish Images Look Weird?

    ERIC Educational Resources Information Center

    Gregorcic, Bor; Planinsic, Gorazd

    2012-01-01

    This paper deals with effects that appear on photographs of rotating objects when taken by a photo finish camera, a rolling shutter camera or a computer scanner. These effects are very similar to Roget's palisade illusion. A simple quantitative analysis of the images is also provided. The effects are explored using a computer scanner in a way that…

  13. Pervasive access to images and data--the use of computing grids and mobile/wireless devices across healthcare enterprises.

    PubMed

    Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard

    2007-01-01

    Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.

  14. Dimensionality of visual complexity in computer graphics scenes

    NASA Astrophysics Data System (ADS)

    Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce

    2008-02-01

    How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.

  15. High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array.

    PubMed

    Liu, Chunbo; Chen, Jingqiu; Liu, Jiaxin; Han, Xiang'e

    2018-04-16

    To obtain a high imaging frame rate, a computational ghost imaging system scheme is proposed based on optical fiber phased array (OFPA). Through high-speed electro-optic modulators, the randomly modulated OFPA can provide much faster speckle projection, which can be precomputed according to the geometry of the fiber array and the known phases for modulation. Receiving the signal light with a low-pixel APD array can effectively decrease the requirement on sampling quantity and computation complexity owing to the reduced data dimensionality while avoiding the image aliasing due to the spatial periodicity of the speckles. The results of analysis and simulation show that the frame rate of the proposed imaging system can be significantly improved compared with traditional systems.

  16. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  17. Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment. PMID:23940626

  18. [Computational medical imaging (radiomics) and potential for immuno-oncology].

    PubMed

    Sun, R; Limkin, E J; Dercle, L; Reuzé, S; Zacharaki, E I; Chargari, C; Schernberg, A; Dirand, A S; Alexis, A; Paragios, N; Deutsch, É; Ferté, C; Robert, C

    2017-10-01

    The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  19. An Interdisciplinary Bibliography for Computers and the Humanities Courses.

    ERIC Educational Resources Information Center

    Ehrlich, Heyward

    1991-01-01

    Presents an annotated bibliography of works related to the subject of computers and the humanities. Groups items into textbooks and overviews; introductions; human and computer languages; literary and linguistic analysis; artificial intelligence and robotics; social issue debates; computers' image in fiction; anthologies; writing and the…

  20. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  1. Ganalyzer: A tool for automatic galaxy image analysis

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2011-05-01

    Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.

  2. Digital 3D Microstructure Analysis of Concrete using X-Ray Micro Computed Tomography SkyScan 1173: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.

    2017-11-01

    Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.

  3. High-Throughput Histopathological Image Analysis via Robust Cell Segmentation and Hashing

    PubMed Central

    Zhang, Xiaofan; Xing, Fuyong; Su, Hai; Yang, Lin; Zhang, Shaoting

    2015-01-01

    Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate diagnosis. Traditional computational methods may have efficiency issues when performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to examine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells extracted from the training dataset. We evaluate this proposed framework on a challenging and important clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method has achieved promising accuracy and running time by searching among half-million cells. PMID:26599156

  4. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity

    PubMed Central

    Wittenberg, Leah A.; Jonsson, Nina J.; Chan, RV Paul; Chiang, Michael F.

    2014-01-01

    Presence of plus disease in retinopathy of prematurity (ROP) is an important criterion for identifying treatment-requiring ROP. Plus disease is defined by a standard published photograph selected over 20 years ago by expert consensus. However, diagnosis of plus disease has been shown to be subjective and qualitative. Computer-based image analysis, using quantitative methods, has potential to improve the objectivity of plus disease diagnosis. The objective was to review the published literature involving computer-based image analysis for ROP diagnosis. The PubMed and Cochrane library databases were searched for the keywords “retinopathy of prematurity” AND “image analysis” AND/OR “plus disease.” Reference lists of retrieved articles were searched to identify additional relevant studies. All relevant English-language studies were reviewed. There are four main computer-based systems, ROPtool (AU ROC curve, plus tortuosity 0.95, plus dilation 0.87), RISA (AU ROC curve, arteriolar TI 0.71, venular diameter 0.82), Vessel Map (AU ROC curve, arteriolar dilation 0.75, venular dilation 0.96), and CAIAR (AU ROC curve, arteriole tortuosity 0.92, venular dilation 0.91), attempting to objectively analyze vessel tortuosity and dilation in plus disease in ROP. Some of them show promise for identification of plus disease using quantitative methods. This has potential to improve the diagnosis of plus disease, and may contribute to the management of ROP using both traditional binocular indirect ophthalmoscopy and image-based telemedicine approaches. PMID:21366159

  5. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.

  6. Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors

    PubMed Central

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena

    2013-01-01

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804

  7. Computational burden resulting from image recognition of high resolution radar sensors.

    PubMed

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena

    2013-04-22

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.

  8. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

    PubMed

    Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander

    2015-01-01

    Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.

  9. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.

    PubMed

    Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard

    2018-06-01

    Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .

  10. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer's disease.

    PubMed

    Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong

    2016-07-01

    Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).

  11. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer’s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhateja, Vikrant, E-mail: bhateja.vikrant@gmail.com, E-mail: nhuongld@hus.edu.vn; Moin, Aisha; Srivastava, Anuja

    Computer based diagnosis of Alzheimer’s disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer’s disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Componentmore » Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).« less

  12. Social computing for image matching

    PubMed Central

    Rivas, Alberto; Sánchez-Torres, Ramiro; Rodríguez, Sara

    2018-01-01

    One of the main technological trends in the last five years is mass data analysis. This trend is due in part to the emergence of concepts such as social networks, which generate a large volume of data that can provide added value through their analysis. This article is focused on a business and employment-oriented social network. More specifically, it focuses on the analysis of information provided by different users in image form. The images are analyzed to detect whether other existing users have posted or talked about the same image, even if the image has undergone some type of modification such as watermarks or color filters. This makes it possible to establish new connections among unknown users by detecting what they are posting or whether they are talking about the same images. The proposed solution consists of an image matching algorithm, which is based on the rapid calculation and comparison of hashes. However, there is a computationally expensive aspect in charge of revoking possible image transformations. As a result, the image matching process is supported by a distributed forecasting system that enables or disables nodes to serve all the possible requests. The proposed system has shown promising results for matching modified images, especially when compared with other existing systems. PMID:29813082

  13. Improved Cloud Detection Utilizing Defense Meteorological Satellite Program near Infrared Measurements

    DTIC Science & Technology

    1982-01-27

    Visible 3. 3 Ea r th Location, Colocation, and Normalization 4. IMAGE ANALYSIS 4. 1 Interactive Capabilities 4.2 Examples 5. AUTOMATED CLOUD...computer Interactive Data Access System (McIDAS) before image analysis and algorithm development were done. Earth-location is an automated procedure to...the factor l / s in (SSE) toward the gain settings given in Table 5. 4. IMAGE ANALYSIS 4.1 Interactive Capabilities The development of automated

  14. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.

    PubMed

    Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y

    2014-07-08

    The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model for drug screens in industry and academia.

  15. Principal Component Analysis in the Spectral Analysis of the Dynamic Laser Speckle Patterns

    NASA Astrophysics Data System (ADS)

    Ribeiro, K. M.; Braga, R. A., Jr.; Horgan, G. W.; Ferreira, D. D.; Safadi, T.

    2014-02-01

    Dynamic laser speckle is a phenomenon that interprets an optical patterns formed by illuminating a surface under changes with coherent light. Therefore, the dynamic change of the speckle patterns caused by biological material is known as biospeckle. Usually, these patterns of optical interference evolving in time are analyzed by graphical or numerical methods, and the analysis in frequency domain has also been an option, however involving large computational requirements which demands new approaches to filter the images in time. Principal component analysis (PCA) works with the statistical decorrelation of data and it can be used as a data filtering. In this context, the present work evaluated the PCA technique to filter in time the data from the biospeckle images aiming the reduction of time computer consuming and improving the robustness of the filtering. It was used 64 images of biospeckle in time observed in a maize seed. The images were arranged in a data matrix and statistically uncorrelated by PCA technique, and the reconstructed signals were analyzed using the routine graphical and numerical methods to analyze the biospeckle. Results showed the potential of the PCA tool in filtering the dynamic laser speckle data, with the definition of markers of principal components related to the biological phenomena and with the advantage of fast computational processing.

  16. Fiji: an open-source platform for biological-image analysis.

    PubMed

    Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert

    2012-06-28

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

  17. Neutron imaging data processing using the Mantid framework

    NASA Astrophysics Data System (ADS)

    Pouzols, Federico M.; Draper, Nicholas; Nagella, Sri; Yang, Erica; Sajid, Ahmed; Ross, Derek; Ritchie, Brian; Hill, John; Burca, Genoveva; Minniti, Triestino; Moreton-Smith, Christopher; Kockelmann, Winfried

    2016-09-01

    Several imaging instruments are currently being constructed at neutron sources around the world. The Mantid software project provides an extensible framework that supports high-performance computing for data manipulation, analysis and visualisation of scientific data. At ISIS, IMAT (Imaging and Materials Science & Engineering) will offer unique time-of-flight neutron imaging techniques which impose several software requirements to control the data reduction and analysis. Here we outline the extensions currently being added to Mantid to provide specific support for neutron imaging requirements.

  18. Cancer Imaging Phenomics Toolkit (CaPTk) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    CaPTk is a software toolkit to facilitate translation of quantitative image analysis methods that help us obtain rich imaging phenotypic signatures of oncologic images and relate them to precision diagnostics and prediction of clinical outcomes, as well as to underlying molecular characteristics of cancer. The stand-alone graphical user interface of CaPTk brings analysis methods from the realm of medical imaging research to the clinic, and will be extended to use web-based services for computationally-demanding pipelines.

  19. Promise of new imaging technologies for assessing ovarian function.

    PubMed

    Singh, Jaswant; Adams, Gregg P; Pierson, Roger A

    2003-10-15

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.

  20. A Computational Observer For Performing Contrast-Detail Analysis Of Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Loew, M. H.

    1988-06-01

    Contrast-Detail (C/D) analysis allows the quantitative determination of an imaging system's ability to display a range of varying-size targets as a function of contrast. Using this technique, a contrast-detail plot is obtained which can, in theory, be used to compare image quality from one imaging system to another. The C/D plot, however, is usually obtained by using data from human observer readings. We have shown earlier(7) that the performance of human observers in the task of threshold detection of simulated lesions embedded in random ultrasound noise is highly inaccurate and non-reproducible for untrained observers. We present an objective, computational method for the determination of the C/D curve for ultrasound images. This method utilizes digital images of the C/D phantom developed at CDRH, and lesion-detection algorithms that simulate the Bayesian approach using the likelihood function for an ideal observer. We present the results of this method, and discuss the relationship to the human observer and to the comparability of image quality between systems.

  1. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  2. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser

    PubMed Central

    Almeida, Jonas S.; Iriabho, Egiebade E.; Gorrepati, Vijaya L.; Wilkinson, Sean R.; Grüneberg, Alexander; Robbins, David E.; Hackney, James R.

    2012-01-01

    Background: Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. Materials and Methods: ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Results: Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. Conclusions: The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local “download and installation”. PMID:22934238

  3. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser.

    PubMed

    Almeida, Jonas S; Iriabho, Egiebade E; Gorrepati, Vijaya L; Wilkinson, Sean R; Grüneberg, Alexander; Robbins, David E; Hackney, James R

    2012-01-01

    Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local "download and installation".

  4. SMART USE OF COMPUTER-AIDED SPERM ANALYSIS (CASA) TO CHARACTERIZE SPERM MOTION

    EPA Science Inventory

    Computer-aided sperm analysis (CASA) has evolved over the past fifteen years to provide an objective, practical means of measuring and characterizing the velocity and parttern of sperm motion. CASA instruments use video frame-grabber boards to capture multiple images of spermato...

  5. Fractal and Gray Level Cooccurrence Matrix Computational Analysis of Primary Osteosarcoma Magnetic Resonance Images Predicts the Chemotherapy Response.

    PubMed

    Djuričić, Goran J; Radulovic, Marko; Sopta, Jelena P; Nikitović, Marina; Milošević, Nebojša T

    2017-01-01

    The prediction of induction chemotherapy response at the time of diagnosis may improve outcomes in osteosarcoma by allowing for personalized tailoring of therapy. The aim of this study was thus to investigate the predictive potential of the so far unexploited computational analysis of osteosarcoma magnetic resonance (MR) images. Fractal and gray level cooccurrence matrix (GLCM) algorithms were employed in retrospective analysis of MR images of primary osteosarcoma localized in distal femur prior to the OsteoSa induction chemotherapy. The predicted and actual chemotherapy response outcomes were then compared by means of receiver operating characteristic (ROC) analysis and accuracy calculation. Dbin, Λ, and SCN were the standard fractal and GLCM features which significantly associated with the chemotherapy outcome, but only in one of the analyzed planes. Our newly developed normalized fractal dimension, called the space-filling ratio (SFR) exerted an independent and much better predictive value with the prediction significance accomplished in two of the three imaging planes, with accuracy of 82% and area under the ROC curve of 0.20 (95% confidence interval 0-0.41). In conclusion, SFR as the newly designed fractal coefficient provided superior predictive performance in comparison to standard image analysis features, presumably by compensating for the tumor size variation in MR images.

  6. CMEIAS color segmentation: an improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution.

    PubMed

    Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B

    2010-02-01

    Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.

  7. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito

    2012-07-01

    In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.

  8. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  9. An Automated Method of Scanning Probe Microscopy (SPM) Data Analysis and Reactive Site Tracking for Mineral-Water Interface Reactions Observed at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Campbell, B. D.; Higgins, S. R.

    2008-12-01

    Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.

  10. Flightspeed Integral Image Analysis Toolkit

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2009-01-01

    The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles

  11. Parallel Guessing: A Strategy for High-Speed Computation

    DTIC Science & Technology

    1984-09-19

    for using additional hardware to obtain higher processing speed). In this paper we argue that parallel guessing for image analysis is a useful...from a true solution, or the correctness of a guess, can be readily checked. We review image - analysis algorithms having a parallel guessing or

  12. Progress in analysis of computed tomography (CT) images of hardwood logs for defect detection

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    This paper addresses the problem of automatically detecting internal defects in logs using computed tomography (CT) images. The overall purpose is to assist in breakdown optimization. Several studies have shown that the commercial value of resulting boards can be increased substantially if defect locations are known in advance, and if this information is used to make...

  13. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less

  14. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  15. Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems

    PubMed Central

    Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C. M. A.; Saltz, Joel

    2017-01-01

    We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies. PMID:29081725

  16. The microcomputer in the dental office: a new diagnostic aid.

    PubMed

    van der Stelt, P F

    1985-06-01

    The first computer applications in the dental office were based upon standard accountancy procedures. Recently, more and more computer applications have become available to meet the specific requirements of dental practice. This implies not only business procedures, but also facilities to store patient records in the system and retrieve them easily. Another development concerns the automatic calculation of diagnostic data such as those provided in cephalometric analysis. Furthermore, growth and surgical results in the craniofacial area can be predicted by computerized extrapolation. Computers have been useful in obtaining the patient's anamnestic data objectively and for the making of decisions based on such data. Computer-aided instruction systems have been developed for undergraduate students to bridge the gap between textbook and patient interaction without the risks inherent in the latter. Radiology will undergo substantial changes as a result of the application of electronic imaging devices instead of the conventional radiographic films. Computer-assisted electronic imaging will enable image processing, image enhancement, pattern recognition and data transmission for consultation and storage purposes. Image processing techniques will increase image quality whilst still allowing low-dose systems. Standardization of software and system configuration and the development of 'user friendly' programs is the major concern for the near future.

  17. Visual analytics for semantic queries of TerraSAR-X image content

    NASA Astrophysics Data System (ADS)

    Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai

    2015-10-01

    With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?

  18. 2D hybrid analysis: Approach for building three-dimensional atomic model by electron microscopy image matching.

    PubMed

    Matsumoto, Atsushi; Miyazaki, Naoyuki; Takagi, Junichi; Iwasaki, Kenji

    2017-03-23

    In this study, we develop an approach termed "2D hybrid analysis" for building atomic models by image matching from electron microscopy (EM) images of biological molecules. The key advantage is that it is applicable to flexible molecules, which are difficult to analyze by 3DEM approach. In the proposed approach, first, a lot of atomic models with different conformations are built by computer simulation. Then, simulated EM images are built from each atomic model. Finally, they are compared with the experimental EM image. Two kinds of models are used as simulated EM images: the negative stain model and the simple projection model. Although the former is more realistic, the latter is adopted to perform faster computations. The use of the negative stain model enables decomposition of the averaged EM images into multiple projection images, each of which originated from a different conformation or orientation. We apply this approach to the EM images of integrin to obtain the distribution of the conformations, from which the pathway of the conformational change of the protein is deduced.

  19. Clinical and mathematical introduction to computer processing of scintigraphic images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goris, M.L.; Briandet, P.A.

    The authors state in their preface:''...we believe that there is no book yet available in which computing in nuclear medicine has been approached in a reasonable manner. This book is our attempt to correct the situation.'' The book is divided into four sections: (1) Clinical Applications of Quantitative Scintigraphic Analysis; (2) Mathematical Derivations; (3) Processing Methods of Scintigraphic Images; and (4) The (Computer) System. Section 1 has chapters on quantitative approaches to congenital and acquired heart diseases, nephrology and urology, and pulmonary medicine.

  20. Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.

    PubMed

    Noll, R; Haas, C R; Weikl, B; Herziger, G

    1986-03-01

    Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.

  1. Segmentation and Estimation of the Histological Composition of the Tumor Mass in Computed Tomographic Images of Neuroblastoma

    DTIC Science & Technology

    2001-10-25

    a CT image, each voxel contains an integer number which is the CT value, in Hounsfield units (HU), of the voxel. Therefore, the standard method of...Task Number Work Unit Number Performing Organization Name(s) and Address(es) Department of Electrical and Computer Engineering, University of...34, Journal of Pediatric Surgery, vol 24(7), pp. 708-711, 1989. [4] I. N. Bankman, editor, Handbook of Medical Image Analysis, Academic Press, London, UK

  2. Container-Based Clinical Solutions for Portable and Reproducible Image Analysis.

    PubMed

    Matelsky, Jordan; Kiar, Gregory; Johnson, Erik; Rivera, Corban; Toma, Michael; Gray-Roncal, William

    2018-05-08

    Medical imaging analysis depends on the reproducibility of complex computation. Linux containers enable the abstraction, installation, and configuration of environments so that software can be both distributed in self-contained images and used repeatably by tool consumers. While several initiatives in neuroimaging have adopted approaches for creating and sharing more reliable scientific methods and findings, Linux containers are not yet mainstream in clinical settings. We explore related technologies and their efficacy in this setting, highlight important shortcomings, demonstrate a simple use-case, and endorse the use of Linux containers for medical image analysis.

  3. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  4. Computer vision applications for coronagraphic optical alignment and image processing.

    PubMed

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  5. The microcomputer workstation - An alternate hardware architecture for remotely sensed image analysis

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.; Hofman, L. B.; Donovan, W. E.

    1984-01-01

    Difficulties regarding the digital image analysis of remotely sensed imagery can arise in connection with the extensive calculations required. In the past, an expensive large to medium mainframe computer system was needed for performing these calculations. For image-processing applications smaller minicomputer-based systems are now used by many organizations. The costs for such systems are still in the range from $100K to $300K. Recently, as a result of new developments, the use of low-cost microcomputers for image processing and display systems appeared to have become feasible. These developments are related to the advent of the 16-bit microprocessor and the concept of the microcomputer workstation. Earlier 8-bit microcomputer-based image processing systems are briefly examined, and a computer workstation architecture is discussed. Attention is given to a microcomputer workstation developed by Stanford University, and the design and implementation of a workstation network.

  6. Computer Image Analysis of Histochemically-Labeled Acetylcholinesterase.

    DTIC Science & Technology

    1984-11-30

    image analysis on conjunction with histochemical techniques to describe the distribution of acetylcholinesterase (AChE) activity in nervous and muscular tissue in rats treated with organophosphates (OPs). The objective of the first year of work on this remaining 2 years. We began by adopting a version of the AChE staining method as modified by Hanker, which consistent with the optical properties of our video system. We wrote computer programs for provide a numeric quantity which represents the degree of staining in a tissue section. The staining was calibrated by

  7. Incorporating Colour Information for Computer-Aided Diagnosis of Melanoma from Dermoscopy Images: A Retrospective Survey and Critical Analysis

    PubMed Central

    Drew, Mark S.

    2016-01-01

    Cutaneous melanoma is the most life-threatening form of skin cancer. Although advanced melanoma is often considered as incurable, if detected and excised early, the prognosis is promising. Today, clinicians use computer vision in an increasing number of applications to aid early detection of melanoma through dermatological image analysis (dermoscopy images, in particular). Colour assessment is essential for the clinical diagnosis of skin cancers. Due to this diagnostic importance, many studies have either focused on or employed colour features as a constituent part of their skin lesion analysis systems. These studies range from using low-level colour features, such as simple statistical measures of colours occurring in the lesion, to availing themselves of high-level semantic features such as the presence of blue-white veil, globules, or colour variegation in the lesion. This paper provides a retrospective survey and critical analysis of contributions in this research direction. PMID:28096807

  8. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    PubMed Central

    Bayır, Şafak

    2016-01-01

    With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272

  9. Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis

    PubMed Central

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-01-01

    Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  10. Multicenter study of quantitative computed tomography analysis using a computer-aided three-dimensional system in patients with idiopathic pulmonary fibrosis.

    PubMed

    Iwasawa, Tae; Kanauchi, Tetsu; Hoshi, Toshiko; Ogura, Takashi; Baba, Tomohisa; Gotoh, Toshiyuki; Oba, Mari S

    2016-01-01

    To evaluate the feasibility of automated quantitative analysis with a three-dimensional (3D) computer-aided system (i.e., Gaussian histogram normalized correlation, GHNC) of computed tomography (CT) images from different scanners. Each institution's review board approved the research protocol. Informed patient consent was not required. The participants in this multicenter prospective study were 80 patients (65 men, 15 women) with idiopathic pulmonary fibrosis. Their mean age was 70.6 years. Computed tomography (CT) images were obtained by four different scanners set at different exposures. We measured the extent of fibrosis using GHNC, and used Pearson's correlation analysis, Bland-Altman plots, and kappa analysis to directly compare the GHNC results with manual scoring by radiologists. Multiple linear regression analysis was performed to determine the association between the CT data and forced vital capacity (FVC). For each scanner, the extent of fibrosis as determined by GHNC was significantly correlated with the radiologists' score. In multivariate analysis, the extent of fibrosis as determined by GHNC was significantly correlated with FVC (p < 0.001). There was no significant difference between the results obtained using different CT scanners. Gaussian histogram normalized correlation was feasible, irrespective of the type of CT scanner used.

  11. Machine learning for a Toolkit for Image Mining

    NASA Technical Reports Server (NTRS)

    Delanoy, Richard L.

    1995-01-01

    A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.

  12. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  13. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    PubMed

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  15. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  16. Digitizing zone maps, using modified LARSYS program. [computer graphics and computer techniques for mapping

    NASA Technical Reports Server (NTRS)

    Giddings, L.; Boston, S.

    1976-01-01

    A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.

  17. Computational imaging of light in flight

    NASA Astrophysics Data System (ADS)

    Hullin, Matthias B.

    2014-10-01

    Many computer vision tasks are hindered by image formation itself, a process that is governed by the so-called plenoptic integral. By averaging light falling into the lens over space, angle, wavelength and time, a great deal of information is irreversibly lost. The emerging idea of transient imaging operates on a time resolution fast enough to resolve non-stationary light distributions in real-world scenes. It enables the discrimination of light contributions by the optical path length from light source to receiver, a dimension unavailable in mainstream imaging to date. Until recently, such measurements used to require high-end optical equipment and could only be acquired under extremely restricted lab conditions. To address this challenge, we introduced a family of computational imaging techniques operating on standard time-of-flight image sensors, for the first time allowing the user to "film" light in flight in an affordable, practical and portable way. Just as impulse responses have proven a valuable tool in almost every branch of science and engineering, we expect light-in-flight analysis to impact a wide variety of applications in computer vision and beyond.

  18. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    PubMed Central

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  19. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

    PubMed

    Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan

    2014-10-03

    One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

  20. [Mobile phone-computer wireless interactive graphics transmission technology and its medical application].

    PubMed

    Huang, Shuo; Liu, Jing

    2010-05-01

    Application of clinical digital medical imaging has raised many tough issues to tackle, such as data storage, management, and information sharing. Here we investigated a mobile phone based medical image management system which is capable of achieving personal medical imaging information storage, management and comprehensive health information analysis. The technologies related to the management system spanning the wireless transmission technology, the technical capabilities of phone in mobile health care and management of mobile medical database were discussed. Taking medical infrared images transmission between phone and computer as an example, the working principle of the present system was demonstrated.

  1. Comparative analysis of numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.

    2017-07-01

    Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.

  2. SU-F-J-94: Development of a Plug-in Based Image Analysis Tool for Integration Into Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, D; Anderson, C; Mayo, C

    Purpose: To extend the functionality of a commercial treatment planning system (TPS) to support (i) direct use of quantitative image-based metrics within treatment plan optimization and (ii) evaluation of dose-functional volume relationships to assist in functional image adaptive radiotherapy. Methods: A script was written that interfaces with a commercial TPS via an Application Programming Interface (API). The script executes a program that performs dose-functional volume analyses. Written in C#, the script reads the dose grid and correlates it with image data on a voxel-by-voxel basis through API extensions that can access registration transforms. A user interface was designed through WinFormsmore » to input parameters and display results. To test the performance of this program, image- and dose-based metrics computed from perfusion SPECT images aligned to the treatment planning CT were generated, validated, and compared. Results: The integration of image analysis information was successfully implemented as a plug-in to a commercial TPS. Perfusion SPECT images were used to validate the calculation and display of image-based metrics as well as dose-intensity metrics and histograms for defined structures on the treatment planning CT. Various biological dose correction models, custom image-based metrics, dose-intensity computations, and dose-intensity histograms were applied to analyze the image-dose profile. Conclusion: It is possible to add image analysis features to commercial TPSs through custom scripting applications. A tool was developed to enable the evaluation of image-intensity-based metrics in the context of functional targeting and avoidance. In addition to providing dose-intensity metrics and histograms that can be easily extracted from a plan database and correlated with outcomes, the system can also be extended to a plug-in optimization system, which can directly use the computed metrics for optimization of post-treatment tumor or normal tissue response models. Supported by NIH - P01 - CA059827.« less

  3. Computational imaging of sperm locomotion.

    PubMed

    Daloglu, Mustafa Ugur; Ozcan, Aydogan

    2017-08-01

    Not only essential for scientific research, but also in the analysis of male fertility and for animal husbandry, sperm tracking and characterization techniques have been greatly benefiting from computational imaging. Digital image sensors, in combination with optical microscopy tools and powerful computers, have enabled the use of advanced detection and tracking algorithms that automatically map sperm trajectories and calculate various motility parameters across large data sets. Computational techniques are driving the field even further, facilitating the development of unconventional sperm imaging and tracking methods that do not rely on standard optical microscopes and objective lenses, which limit the field of view and volume of the semen sample that can be imaged. As an example, a holographic on-chip sperm imaging platform, only composed of a light-emitting diode and an opto-electronic image sensor, has emerged as a high-throughput, low-cost and portable alternative to lens-based traditional sperm imaging and tracking methods. In this approach, the sample is placed very close to the image sensor chip, which captures lensfree holograms generated by the interference of the background illumination with the light scattered from sperm cells. These holographic patterns are then digitally processed to extract both the amplitude and phase information of the spermatozoa, effectively replacing the microscope objective lens with computation. This platform has further enabled high-throughput 3D imaging of spermatozoa with submicron 3D positioning accuracy in large sample volumes, revealing various rare locomotion patterns. We believe that computational chip-scale sperm imaging and 3D tracking techniques will find numerous opportunities in both sperm related research and commercial applications. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Development of a Simple Image Processing Application that Makes Abdominopelvic Tumor Visible on Positron Emission Tomography/Computed Tomography Image.

    PubMed

    Pandey, Anil Kumar; Saroha, Kartik; Sharma, Param Dev; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    In this study, we have developed a simple image processing application in MATLAB that uses suprathreshold stochastic resonance (SSR) and helps the user to visualize abdominopelvic tumor on the exported prediuretic positron emission tomography/computed tomography (PET/CT) images. A brainstorming session was conducted for requirement analysis for the program. It was decided that program should load the screen captured PET/CT images and then produces output images in a window with a slider control that should enable the user to view the best image that visualizes the tumor, if present. The program was implemented on personal computer using Microsoft Windows and MATLAB R2013b. The program has option for the user to select the input image. For the selected image, it displays output images generated using SSR in a separate window having a slider control. The slider control enables the user to view images and select one which seems to provide the best visualization of the area(s) of interest. The developed application enables the user to select, process, and view output images in the process of utilizing SSR to detect the presence of abdominopelvic tumor on prediuretic PET/CT image.

  5. Deep Learning in Gastrointestinal Endoscopy.

    PubMed

    Patel, Vivek; Armstrong, David; Ganguli, Malika; Roopra, Sandeep; Kantipudi, Neha; Albashir, Siwar; Kamath, Markad V

    2016-01-01

    Gastrointestinal (GI) endoscopy is used to inspect the lumen or interior of the GI tract for several purposes, including, (1) making a clinical diagnosis, in real time, based on the visual appearances; (2) taking targeted tissue samples for subsequent histopathological examination; and (3) in some cases, performing therapeutic interventions targeted at specific lesions. GI endoscopy is therefore predicated on the assumption that the operator-the endoscopist-is able to identify and characterize abnormalities or lesions accurately and reproducibly. However, as in other areas of clinical medicine, such as histopathology and radiology, many studies have documented marked interobserver and intraobserver variability in lesion recognition. Thus, there is a clear need and opportunity for techniques or methodologies that will enhance the quality of lesion recognition and diagnosis and improve the outcomes of GI endoscopy. Deep learning models provide a basis to make better clinical decisions in medical image analysis. Biomedical image segmentation, classification, and registration can be improved with deep learning. Recent evidence suggests that the application of deep learning methods to medical image analysis can contribute significantly to computer-aided diagnosis. Deep learning models are usually considered to be more flexible and provide reliable solutions for image analysis problems compared to conventional computer vision models. The use of fast computers offers the possibility of real-time support that is important for endoscopic diagnosis, which has to be made in real time. Advanced graphics processing units and cloud computing have also favored the use of machine learning, and more particularly, deep learning for patient care. This paper reviews the rapidly evolving literature on the feasibility of applying deep learning algorithms to endoscopic imaging.

  6. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  7. Polarization Imaging Apparatus

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin K.; Chen, Qiushui

    2010-01-01

    A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.

  8. Image segmentation evaluation for very-large datasets

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  9. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Suh, T; Yoon, D

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less

  11. Advances in medical image computing.

    PubMed

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  12. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?

    PubMed

    Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C

    2012-08-01

    The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.

  13. An interactive machine-learning approach for defect detection in computed tomogaraphy (CT) images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman

    2005-01-01

    This paper describes recent progress in the analysis of computed tomography (CT) images of hardwood logs. The long-term goal of the work is to develop a system that is capable of autonomous (or semiautonomous) detection of internal defects, so that log breakdown decisions can be optimized based on defect locations. The problem is difficult because wood exhibits large...

  14. Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging.

    PubMed

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2015-01-01

    In CT imaging, pulmonary emphysema appears as lung regions with Low-Attenuation Areas (LAA). In this study we propose a finite element (FE) model of lung parenchyma, based on a 2-D grid of beam elements, which simulates pulmonary emphysema related to smoking in CT imaging. Simulated LAA images were generated through space sampling of the model output. We employed two measurements of emphysema extent: Relative Area (RA) and the exponent D of the cumulative distribution function of LAA clusters size. The model has been used to compare RA and D computed on the simulated LAA images with those computed on the models output. Different mesh element sizes and various model parameters, simulating different physiological/pathological conditions, have been considered and analyzed. A proper mesh element size has been determined as the best trade-off between reliable results and reasonable computational cost. Both RA and D computed on simulated LAA images were underestimated with respect to those calculated on the models output. Such underestimations were larger for RA (≈ -44 ÷ -26%) as compared to those for D (≈ -16 ÷ -2%). Our FE model could be useful to generate standard test images and to design realistic physical phantoms of LAA images for the assessment of the accuracy of descriptors for quantifying emphysema in CT imaging.

  15. Viewpoints on Medical Image Processing: From Science to Application

    PubMed Central

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  16. Viewpoints on Medical Image Processing: From Science to Application.

    PubMed

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  17. Quantitative morphometrical characterization of human pronuclear zygotes.

    PubMed

    Beuchat, A; Thévenaz, P; Unser, M; Ebner, T; Senn, A; Urner, F; Germond, M; Sorzano, C O S

    2008-09-01

    Identification of embryos with high implantation potential remains a challenge in in vitro fertilization (IVF). Subjective pronuclear (PN) zygote scoring systems have been developed for that purpose. The aim of this work was to provide a software tool that enables objective measuring of morphological characteristics of the human PN zygote. A computer program was created to analyse zygote images semi-automatically, providing precise morphological measurements. The accuracy of this approach was first validated by comparing zygotes from two different IVF centres with computer-assisted measurements or subjective scoring. Computer-assisted measurement and subjective scoring were then compared for their ability to classify zygotes with high and low implantation probability by using a linear discriminant analysis. Zygote images coming from the two IVF centres were analysed with the software, resulting in a series of precise measurements of 24 variables. Using subjective scoring, the cytoplasmic halo was the only feature which was significantly different between the two IVF centres. Computer-assisted measurements revealed significant differences between centres in PN centring, PN proximity, cytoplasmic halo and features related to nucleolar precursor bodies distribution. The zygote classification error achieved with the computer-assisted measurements (0.363) was slightly inferior to that of the subjective ones (0.393). A precise and objective characterization of the morphology of human PN zygotes can be achieved by the use of an advanced image analysis tool. This computer-assisted analysis allows for a better morphological characterization of human zygotes and can be used for classification.

  18. 3D Position and Velocity Vector Computations of Objects Jettisoned from the International Space Station Using Close-Range Photogrammetry Approach

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri; Oshle, Edward; Adamo, Daniel

    2008-01-01

    Measurement of the jettisoned object departure trajectory and velocity vector in the International Space Station (ISS) reference frame is vitally important for prompt evaluation of the object s imminent orbit. We report on the first successful application of photogrammetric analysis of the ISS imagery for the prompt computation of the jettisoned object s position and velocity vectors. As post-EVA analyses examples, we present the Floating Potential Probe (FPP) and the Russian "Orlan" Space Suit jettisons, as well as the near-real-time (provided in several hours after the separation) computations of the Video Stanchion Support Assembly Flight Support Assembly (VSSA-FSA) and Early Ammonia Servicer (EAS) jettisons during the US astronauts space-walk. Standard close-range photogrammetry analysis was used during this EVA to analyze two on-board camera image sequences down-linked from the ISS. In this approach the ISS camera orientations were computed from known coordinates of several reference points on the ISS hardware. Then the position of the jettisoned object for each time-frame was computed from its image in each frame of the video-clips. In another, "quick-look" approach used in near-real time, orientation of the cameras was computed from their position (from the ISS CAD model) and operational data (pan and tilt) then location of the jettisoned object was calculated only for several frames of the two synchronized movies. Keywords: Photogrammetry, International Space Station, jettisons, image analysis.

  19. Micro-computed tomography imaging and analysis in developmental biology and toxicology.

    PubMed

    Wise, L David; Winkelmann, Christopher T; Dogdas, Belma; Bagchi, Ansuman

    2013-06-01

    Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  20. Anima: Modular Workflow System for Comprehensive Image Data Analysis

    PubMed Central

    Rantanen, Ville; Valori, Miko; Hautaniemi, Sampsa

    2014-01-01

    Modern microscopes produce vast amounts of image data, and computational methods are needed to analyze and interpret these data. Furthermore, a single image analysis project may require tens or hundreds of analysis steps starting from data import and pre-processing to segmentation and statistical analysis; and ending with visualization and reporting. To manage such large-scale image data analysis projects, we present here a modular workflow system called Anima. Anima is designed for comprehensive and efficient image data analysis development, and it contains several features that are crucial in high-throughput image data analysis: programing language independence, batch processing, easily customized data processing, interoperability with other software via application programing interfaces, and advanced multivariate statistical analysis. The utility of Anima is shown with two case studies focusing on testing different algorithms developed in different imaging platforms and an automated prediction of alive/dead C. elegans worms by integrating several analysis environments. Anima is a fully open source and available with documentation at www.anduril.org/anima. PMID:25126541

  1. Object-Based Image Analysis Beyond Remote Sensing - the Human Perspective

    NASA Astrophysics Data System (ADS)

    Blaschke, T.; Lang, S.; Tiede, D.; Papadakis, M.; Györi, A.

    2016-06-01

    We introduce a prototypical methodological framework for a place-based GIS-RS system for the spatial delineation of place while incorporating spatial analysis and mapping techniques using methods from different fields such as environmental psychology, geography, and computer science. The methodological lynchpin for this to happen - when aiming to delineate place in terms of objects - is object-based image analysis (OBIA).

  2. Low-cost data analysis systems for processing multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitely, S. L.

    1976-01-01

    The basic hardware and software requirements are described for four low cost analysis systems for computer generated land use maps. The data analysis systems consist of an image display system, a small digital computer, and an output recording device. Software is described together with some of the display and recording devices, and typical costs are cited. Computer requirements are given, and two approaches are described for converting black-white film and electrostatic printer output to inexpensive color output products. Examples of output products are shown.

  3. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences

    PubMed Central

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099

  4. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    PubMed

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  5. Trends in radiology and experimental research.

    PubMed

    Sardanelli, Francesco

    2017-01-01

    European Radiology Experimental , the new journal launched by the European Society of Radiology, is placed in the context of three general and seven radiology-specific trends. After describing the impact of population aging, personalized/precision medicine, and information technology development, the article considers the following trends: the tension between subspecialties and the unity of the discipline; attention to patient safety; the challenge of reproducibility for quantitative imaging; standardized and structured reporting; search for higher levels of evidence in radiology (from diagnostic performance to patient outcome); the increasing relevance of interventional radiology; and continuous technological evolution. The new journal will publish not only studies on phantoms, cells, or animal models but also those describing development steps of imaging biomarkers or those exploring secondary end-points of large clinical trials. Moreover, consideration will be given to studies regarding: computer modelling and computer aided detection and diagnosis; contrast materials, tracers, and theranostics; advanced image analysis; optical, molecular, hybrid and fusion imaging; radiomics and radiogenomics; three-dimensional printing, information technology, image reconstruction and post-processing, big data analysis, teleradiology, clinical decision support systems; radiobiology; radioprotection; and physics in radiology. The journal aims to establish a forum for basic science, computer and information technology, radiology, and other medical subspecialties.

  6. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  7. 3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications

    PubMed Central

    Shahmirzadi, Danial; Li, Ronny X.; Doyle, Barry J.; Konofagou, Elisa E.; McGloughlin, Tim M.

    2014-01-01

    Abstract Abdominal aortic aneurysm (AAA) is a permanent, irreversible dilation of the distal region of the aorta. Recent efforts have focused on improved AAA screening and biomechanics-based failure prediction. Idealized and patient-specific AAA phantoms are often employed to validate numerical models and imaging modalities. To produce such phantoms, the investment casting process is frequently used, reconstructing the 3D vessel geometry from computed tomography patient scans. In this study the alternative use of 3D printing to produce phantoms is investigated. The mechanical properties of flexible 3D-printed materials are benchmarked against proven elastomers. We demonstrate the utility of this process with particular application to the emerging imaging modality of ultrasound-based pulse wave imaging, a noninvasive diagnostic methodology being developed to obtain regional vascular wall stiffness properties, differentiating normal and pathologic tissue in vivo. Phantom wall displacements under pulsatile loading conditions were observed, showing good correlation to fluid–structure interaction simulations and regions of peak wall stress predicted by finite element analysis. 3D-printed phantoms show a strong potential to improve medical imaging and computational analysis, potentially helping bridge the gap between experimental and clinical diagnostic tools. PMID:28804733

  8. Korean coastal water depth/sediment and land cover mapping (1:25,000) by computer analysis of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Park, K. Y.; Miller, L. D.

    1978-01-01

    Computer analysis was applied to single date LANDSAT MSS imagery of a sample coastal area near Seoul, Korea equivalent to a 1:50,000 topographic map. Supervised image processing yielded a test classification map from this sample image containing 12 classes: 5 water depth/sediment classes, 2 shoreline/tidal classes, and 5 coastal land cover classes at a scale of 1:25,000 and with a training set accuracy of 76%. Unsupervised image classification was applied to a subportion of the site analyzed and produced classification maps comparable in results in a spatial sense. The results of this test indicated that it is feasible to produce such quantitative maps for detailed study of dynamic coastal processes given a LANDSAT image data base at sufficiently frequent time intervals.

  9. A Stochastic-Variational Model for Soft Mumford-Shah Segmentation

    PubMed Central

    2006-01-01

    In contemporary image and vision analysis, stochastic approaches demonstrate great flexibility in representing and modeling complex phenomena, while variational-PDE methods gain enormous computational advantages over Monte Carlo or other stochastic algorithms. In combination, the two can lead to much more powerful novel models and efficient algorithms. In the current work, we propose a stochastic-variational model for soft (or fuzzy) Mumford-Shah segmentation of mixture image patterns. Unlike the classical hard Mumford-Shah segmentation, the new model allows each pixel to belong to each image pattern with some probability. Soft segmentation could lead to hard segmentation, and hence is more general. The modeling procedure, mathematical analysis on the existence of optimal solutions, and computational implementation of the new model are explored in detail, and numerical examples of both synthetic and natural images are presented. PMID:23165059

  10. Software for Real-Time Analysis of Subsonic Test Shot Accuracy

    DTIC Science & Technology

    2014-03-01

    used the C++ programming language, the Open Source Computer Vision ( OpenCV ®) software library, and Microsoft Windows® Application Programming...video for comparison through OpenCV image analysis tools. Based on the comparison, the software then computed the coordinates of each shot relative to...DWB researchers wanted to use the Open Source Computer Vision ( OpenCV ) software library for capturing and analyzing frames of video. OpenCV contains

  11. Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging

    NASA Astrophysics Data System (ADS)

    Gureyev, T. E.; Paganin, D. M.; Kozlov, A.; Nesterets, Ya. I.; Quiney, H. M.

    2018-05-01

    A generic computational imaging setup is considered which assumes sequential illumination of a semitransparent object by an arbitrary set of structured coherent illumination patterns. For each incident illumination pattern, all transmitted light is collected by a photon-counting bucket (single-pixel) detector. The transmission coefficients measured in this way are then used to reconstruct the spatial distribution of the object's projected transmission. It is demonstrated that the square of the spatial resolution of such a setup is usually equal to the ratio of the image area to the number of linearly independent illumination patterns. If the noise in the measured transmission coefficients is dominated by photon shot noise, then the ratio of the square of the mean signal to the noise variance is proportional to the ratio of the mean number of registered photons to the number of illumination patterns. The signal-to-noise ratio in a reconstructed transmission distribution is always lower if the illumination patterns are nonorthogonal, because of spatial correlations in the measured data. Examples of imaging methods relevant to the presented analysis include conventional imaging with a pixelated detector, computational ghost imaging, compressive sensing, super-resolution imaging, and computed tomography.

  12. Direct biomechanical modeling of trabecular bone using a nonlinear manifold-based volumetric representation

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.

    2017-03-01

    Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This preliminary results show the accuracy of the new nonlinear manifold modelling algorithm for TB, and demonstrate the feasibility of a new direct mechanical strain-strain analysis on a nonlinear manifold model of a highly complex biological structure.

  13. Travelogue--a newcomer encounters statistics and the computer.

    PubMed

    Bruce, Peter

    2011-11-01

    Computer-intensive methods have revolutionized statistics, giving rise to new areas of analysis and expertise in predictive analytics, image processing, pattern recognition, machine learning, genomic analysis, and more. Interest naturally centers on the new capabilities the computer allows the analyst to bring to the table. This article, instead, focuses on the account of how computer-based resampling methods, with their relative simplicity and transparency, enticed one individual, untutored in statistics or mathematics, on a long journey into learning statistics, then teaching it, then starting an education institution.

  14. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  15. Determination of fiber volume in graphite/epoxy materials using computer image analysis

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1990-01-01

    The fiber volume of graphite/epoxy specimens was determined by analyzing optical images of cross sectioned specimens using image analysis software. Test specimens were mounted and polished using standard metallographic techniques and examined at 1000 times magnification. Fiber volume determined using the optical imaging agreed well with values determined using the standard acid digestion technique. The results were found to agree within 5 percent over a fiber volume range of 45 to 70 percent. The error observed is believed to arise from fiber volume variations within the graphite/epoxy panels themselves. The determination of ply orientation using image analysis techniques is also addressed.

  16. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.

    PubMed

    Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J

    2013-07-23

    Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers' understanding of infectious diseases. We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All segmentation processes were compared with expert radiologists' delineations (ground truths). Metabolic and gross volume of lesions were automatically computed with the segmentation processes using PET and CT images, and percentage changes in those volumes over time were calculated. (Continued on next page)(Continued from previous page) Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT images using the aforementioned quantification metrics outputted from the proposed framework. Each animal study was evaluated within the same subject class, and all steps of the proposed methodology were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths (R2=0.8922,p<0.01 and R2=0.8664,p<0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4±4.5% for normal lung CT scans and 86.0±7.1% for pathological lung CT scans. Experiments showed excellent agreements (all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover, we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis. We explored the feasibility of using PET and CT imaging modalities in three distinct small animal models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy.

  17. A comparative study between xerographic, computer-assisted overlay generation and animated-superimposition methods in bite mark analyses.

    PubMed

    Tai, Meng Wei; Chong, Zhen Feng; Asif, Muhammad Khan; Rahmat, Rabiah A; Nambiar, Phrabhakaran

    2016-09-01

    This study was to compare the suitability and precision of xerographic and computer-assisted methods for bite mark investigations. Eleven subjects were asked to bite on their forearm and the bite marks were photographically recorded. Alginate impressions of the subjects' dentition were taken and their casts were made using dental stone. The overlays generated by xerographic method were obtained by photocopying the subjects' casts and the incisal edge outlines were then transferred on a transparent sheet. The bite mark images were imported into Adobe Photoshop® software and printed to life-size. The bite mark analyses using xerographically generated overlays were done by comparing an overlay to the corresponding printed bite mark images manually. In computer-assisted method, the subjects' casts were scanned into Adobe Photoshop®. The bite mark analyses using computer-assisted overlay generation were done by matching an overlay and the corresponding bite mark images digitally using Adobe Photoshop®. Another comparison method was superimposing the cast images with corresponding bite mark images employing the Adobe Photoshop® CS6 and GIF-Animator©. A score with a range of 0-3 was given during analysis to each precision-determining criterion and the score was increased with better matching. The Kruskal Wallis H test showed significant difference between the three sets of data (H=18.761, p<0.05). In conclusion, bite mark analysis using the computer-assisted animated-superimposition method was the most accurate, followed by the computer-assisted overlay generation and lastly the xerographic method. The superior precision contributed by digital method is discernible despite the human skin being a poor recording medium of bite marks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo

    PubMed Central

    Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.

    2016-01-01

    Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341

  19. Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-08-01

    The high false-positive recall rate is one of the major dilemmas that significantly reduce the efficacy of screening mammography, which harms a large fraction of women and increases healthcare cost. This study aims to investigate the feasibility of helping reduce false-positive recalls by developing a new computer-aided diagnosis (CAD) scheme based on the analysis of global mammographic texture and density features computed from four-view images. Our database includes full-field digital mammography (FFDM) images acquired from 1052 recalled women (669 positive for cancer and 383 benign). Each case has four images: two craniocaudal (CC) and two mediolateral oblique (MLO) views. Our CAD scheme first computed global texture features related to the mammographic density distribution on the segmented breast regions of four images. Second, the computed features were given to two artificial neural network (ANN) classifiers that were separately trained and tested in a ten-fold cross-validation scheme on CC and MLO view images, respectively. Finally, two ANN classification scores were combined using a new adaptive scoring fusion method that automatically determined the optimal weights to assign to both views. CAD performance was tested using the area under a receiver operating characteristic curve (AUC). The AUC = 0.793  ±  0.026 was obtained for this four-view CAD scheme, which was significantly higher at the 5% significance level than the AUCs achieved when using only CC (p = 0.025) or MLO (p = 0.0004) view images, respectively. This study demonstrates that a quantitative assessment of global mammographic image texture and density features could provide useful and/or supplementary information to classify between malignant and benign cases among the recalled cases, which may eventually help reduce the false-positive recall rate in screening mammography.

  20. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    NASA Astrophysics Data System (ADS)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  1. Imaging quality analysis of computer-generated holograms using the point-based method and slice-based method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Chen, Siqing; Zheng, Huadong; Sun, Tao; Yu, Yingjie; Gao, Hongyue; Asundi, Anand K.

    2017-06-01

    Computer holography has made a notably progress in recent years. The point-based method and slice-based method are chief calculation algorithms for generating holograms in holographic display. Although both two methods are validated numerically and optically, the differences of the imaging quality of these methods have not been specifically analyzed. In this paper, we analyze the imaging quality of computer-generated phase holograms generated by point-based Fresnel zone plates (PB-FZP), point-based Fresnel diffraction algorithm (PB-FDA) and slice-based Fresnel diffraction algorithm (SB-FDA). The calculation formula and hologram generation with three methods are demonstrated. In order to suppress the speckle noise, sequential phase-only holograms are generated in our work. The results of reconstructed images numerically and experimentally are also exhibited. By comparing the imaging quality, the merits and drawbacks with three methods are analyzed. Conclusions are given by us finally.

  2. KAMEDIN: a telemedicine system for computer supported cooperative work and remote image analysis in radiology.

    PubMed

    Handels, H; Busch, C; Encarnação, J; Hahn, C; Kühn, V; Miehe, J; Pöppl, S I; Rinast, E; Rossmanith, C; Seibert, F; Will, A

    1997-03-01

    The software system KAMEDIN (Kooperatives Arbeiten und MEdizinische Diagnostik auf Innovativen Netzen) is a multimedia telemedicine system for exchange, cooperative diagnostics, and remote analysis of digital medical image data. It provides components for visualisation, processing, and synchronised audio-visual discussion of medical images. Techniques of computer supported cooperative work (CSCW) synchronise user interactions during a teleconference. Visibility of both local and remote cursor on the conference workstations facilitates telepointing and reinforces the conference partner's telepresence. Audio communication during teleconferences is supported by an integrated audio component. Furthermore, brain tissue segmentation with artificial neural networks can be performed on an external supercomputer as a remote image analysis procedure. KAMEDIN is designed as a low cost CSCW tool for ISDN based telecommunication. However it can be used on any TCP/IP supporting network. In a field test, KAMEDIN was installed in 15 clinics and medical departments to validate the systems' usability. The telemedicine system KAMEDIN has been developed, tested, and evaluated within a research project sponsored by German Telekom.

  3. Image analysis of pubic bone for age estimation in a computed tomography sample.

    PubMed

    López-Alcaraz, Manuel; González, Pedro Manuel Garamendi; Aguilera, Inmaculada Alemán; López, Miguel Botella

    2015-03-01

    Radiology has demonstrated great utility for age estimation, but most of the studies are based on metrical and morphological methods in order to perform an identification profile. A simple image analysis-based method is presented, aimed to correlate the bony tissue ultrastructure with several variables obtained from the grey-level histogram (GLH) of computed tomography (CT) sagittal sections of the pubic symphysis surface and the pubic body, and relating them with age. The CT sample consisted of 169 hospital Digital Imaging and Communications in Medicine (DICOM) archives of known sex and age. The calculated multiple regression models showed a maximum R (2) of 0.533 for females and 0.726 for males, with a high intra- and inter-observer agreement. The method suggested is considered not only useful for performing an identification profile during virtopsy, but also for application in further studies in order to attach a quantitative correlation for tissue ultrastructure characteristics, without complex and expensive methods beyond image analysis.

  4. Applicability of Cone Beam Computed Tomography to the Assessment of the Vocal Tract before and after Vocal Exercises in Normal Subjects.

    PubMed

    Garcia, Elisângela Zacanti; Yamashita, Hélio Kiitiro; Garcia, Davi Sousa; Padovani, Marina Martins Pereira; Azevedo, Renata Rangel; Chiari, Brasília Maria

    2016-01-01

    Cone beam computed tomography (CBCT), which represents an alternative to traditional computed tomography and magnetic resonance imaging, may be a useful instrument to study vocal tract physiology related to vocal exercises. This study aims to evaluate the applicability of CBCT to the assessment of variations in the vocal tract of healthy individuals before and after vocal exercises. Voice recordings and CBCT images before and after vocal exercises performed by 3 speech-language pathologists without vocal complaints were collected and compared. Each participant performed 1 type of exercise, i.e., Finnish resonance tube technique, prolonged consonant "b" technique, or chewing technique. The analysis consisted of an acoustic analysis and tomographic imaging. Modifications of the vocal tract settings following vocal exercises were properly detected by CBCT, and changes in the acoustic parameters were, for the most part, compatible with the variations detected in image measurements. CBCT was shown to be capable of properly assessing the changes in vocal tract settings promoted by vocal exercises. © 2017 S. Karger AG, Basel.

  5. Computer analysis of three-dimensional morphological characteristics of the bile duct

    NASA Astrophysics Data System (ADS)

    Ma, Jinyuan; Chen, Houjin; Peng, Yahui; Shang, Hua

    2017-01-01

    In this paper, a computer image-processing algorithm for analyzing the morphological characteristics of bile ducts in Magnetic Resonance Cholangiopancreatography (MRCP) images was proposed. The algorithm consisted of mathematical morphology methods including erosion, closing and skeletonization, and a spline curve fitting method to obtain the length and curvature of the center line of the bile duct. Of 10 cases, the average length of the bile duct was 14.56 cm. The maximum curvature was in the range of 0.111 2.339. These experimental results show that using the computer image-processing algorithm to assess the morphological characteristics of the bile duct is feasible and further research is needed to evaluate its potential clinical values.

  6. The New Physical Optics Notebook: Tutorials in Fourier Optics.

    ERIC Educational Resources Information Center

    Reynolds, George O.; And Others

    This is a textbook of Fourier optics for the classroom or self-study. Major topics included in the 38 chapters are: Huygens' principle and Fourier transforms; image formation; optical coherence theory; coherent imaging; image analysis; coherent noise; interferometry; holography; communication theory techniques; analog optical computing; phase…

  7. Analysis of live cell images: Methods, tools and opportunities.

    PubMed

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.

  8. Hybrid SPECT/CT imaging in neurology.

    PubMed

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  9. An independent software system for the analysis of dynamic MR images.

    PubMed

    Torheim, G; Lombardi, M; Rinck, P A

    1997-01-01

    A computer system for the manual, semi-automatic, and automatic analysis of dynamic MR images was to be developed on UNIX and personal computer platforms. The system was to offer an integrated and standardized way of performing both image processing and analysis that was independent of the MR unit used. The system consists of modules that are easily adaptable to special needs. Data from MR units or other diagnostic imaging equipment in techniques such as CT, ultrasonography, or nuclear medicine can be processed through the ACR-NEMA/DICOM standard file formats. A full set of functions is available, among them cine-loop visual analysis, and generation of time-intensity curves. Parameters such as cross-correlation coefficients, area under the curve, peak/maximum intensity, wash-in and wash-out slopes, time to peak, and relative signal intensity/contrast enhancement can be calculated. Other parameters can be extracted by fitting functions like the gamma-variate function. Region-of-interest data and parametric values can easily be exported. The system has been successfully tested in animal and patient examinations.

  10. Luggage and shipped goods.

    PubMed

    Vogel, H; Haller, D

    2007-08-01

    Control of luggage and shipped goods are frequently carried out. The possibilities of X-ray technology shall be demonstrated. There are different imaging techniques. The main concepts are transmission imaging, backscatter imaging, computed tomography, and dual energy imaging and the combination of different methods The images come from manufacturers and personal collections. The search concerns mainly, weapons, explosives, and drugs; furthermore animals, and stolen goods, Special problems offer the control of letters and the detection of Improvised Explosive Devices (IED). One has to expect that controls will increase and that imaging with X-rays will have their part. Pattern recognition software will be used for analysis enforced by economy and by demand for higher efficiency - man and computer will produce more security than man alone.

  11. Image analysis in modern ophthalmology: from acquisition to computer assisted diagnosis and telemedicine

    NASA Astrophysics Data System (ADS)

    Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip

    2012-06-01

    Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.

  12. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.

    PubMed

    Samant, Sanjiv S; Xia, Junyi; Muyan-Ozcelik, Pinar; Owens, John D

    2008-08-01

    The advent of readily available temporal imaging or time series volumetric (4D) imaging has become an indispensable component of treatment planning and adaptive radiotherapy (ART) at many radiotherapy centers. Deformable image registration (DIR) is also used in other areas of medical imaging, including motion corrected image reconstruction. Due to long computation time, clinical applications of DIR in radiation therapy and elsewhere have been limited and consequently relegated to offline analysis. With the recent advances in hardware and software, graphics processing unit (GPU) based computing is an emerging technology for general purpose computation, including DIR, and is suitable for highly parallelized computing. However, traditional general purpose computation on the GPU is limited because the constraints of the available programming platforms. As well, compared to CPU programming, the GPU currently has reduced dedicated processor memory, which can limit the useful working data set for parallelized processing. We present an implementation of the demons algorithm using the NVIDIA 8800 GTX GPU and the new CUDA programming language. The GPU performance will be compared with single threading and multithreading CPU implementations on an Intel dual core 2.4 GHz CPU using the C programming language. CUDA provides a C-like language programming interface, and allows for direct access to the highly parallel compute units in the GPU. Comparisons for volumetric clinical lung images acquired using 4DCT were carried out. Computation time for 100 iterations in the range of 1.8-13.5 s was observed for the GPU with image size ranging from 2.0 x 10(6) to 14.2 x 10(6) pixels. The GPU registration was 55-61 times faster than the CPU for the single threading implementation, and 34-39 times faster for the multithreading implementation. For CPU based computing, the computational time generally has a linear dependence on image size for medical imaging data. Computational efficiency is characterized in terms of time per megapixels per iteration (TPMI) with units of seconds per megapixels per iteration (or spmi). For the demons algorithm, our CPU implementation yielded largely invariant values of TPMI. The mean TPMIs were 0.527 spmi and 0.335 spmi for the single threading and multithreading cases, respectively, with <2% variation over the considered image data range. For GPU computing, we achieved TPMI =0.00916 spmi with 3.7% variation, indicating optimized memory handling under CUDA. The paradigm of GPU based real-time DIR opens up a host of clinical applications for medical imaging.

  13. Ganalyzer: A Tool for Automatic Galaxy Image Analysis

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2011-08-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  14. Structure and properties of clinical coralline implants measured via 3D imaging and analysis.

    PubMed

    Knackstedt, Mark Alexander; Arns, Christoph H; Senden, Tim J; Gross, Karlis

    2006-05-01

    The development and design of advanced porous materials for biomedical applications requires a thorough understanding of how material structure impacts on mechanical and transport properties. This paper illustrates a 3D imaging and analysis study of two clinically proven coral bone graft samples (Porites and Goniopora). Images are obtained from X-ray micro-computed tomography (micro-CT) at a resolution of 16.8 microm. A visual comparison of the two images shows very different structure; Porites has a homogeneous structure and consistent pore size while Goniopora has a bimodal pore size and a strongly disordered structure. A number of 3D structural characteristics are measured directly on the images including pore volume-to-surface-area, pore and solid size distributions, chord length measurements and tortuosity. Computational results made directly on the digitized tomographic images are presented for the permeability, diffusivity and elastic modulus of the coral samples. The results allow one to quantify differences between the two samples. 3D digital analysis can provide a more thorough assessment of biomaterial structure including the pore wall thickness, local flow, mechanical properties and diffusion pathways. We discuss the implications of these results to the development of optimal scaffold design for tissue ingrowth.

  15. Predicting the amount of coke deposition on catalyst pellets through image analysis and soft computing

    NASA Astrophysics Data System (ADS)

    Zhang, Jingqiong; Zhang, Wenbiao; He, Yuting; Yan, Yong

    2016-11-01

    The amount of coke deposition on catalyst pellets is one of the most important indexes of catalytic property and service life. As a result, it is essential to measure this and analyze the active state of the catalysts during a continuous production process. This paper proposes a new method to predict the amount of coke deposition on catalyst pellets based on image analysis and soft computing. An image acquisition system consisting of a flatbed scanner and an opaque cover is used to obtain catalyst images. After imaging processing and feature extraction, twelve effective features are selected and two best feature sets are determined by the prediction tests. A neural network optimized by a particle swarm optimization algorithm is used to establish the prediction model of the coke amount based on various datasets. The root mean square error of the prediction values are all below 0.021 and the coefficient of determination R 2, for the model, are all above 78.71%. Therefore, a feasible, effective and precise method is demonstrated, which may be applied to realize the real-time measurement of coke deposition based on on-line sampling and fast image analysis.

  16. Imaging biomarkers in multiple Sclerosis: From image analysis to population imaging.

    PubMed

    Barillot, Christian; Edan, Gilles; Commowick, Olivier

    2016-10-01

    The production of imaging data in medicine increases more rapidly than the capacity of computing models to extract information from it. The grand challenges of better understanding the brain, offering better care for neurological disorders, and stimulating new drug design will not be achieved without significant advances in computational neuroscience. The road to success is to develop a new, generic, computational methodology and to confront and validate this methodology on relevant diseases with adapted computational infrastructures. This new concept sustains the need to build new research paradigms to better understand the natural history of the pathology at the early phase; to better aggregate data that will provide the most complete representation of the pathology in order to better correlate imaging with other relevant features such as clinical, biological or genetic data. In this context, one of the major challenges of neuroimaging in clinical neurosciences is to detect quantitative signs of pathological evolution as early as possible to prevent disease progression, evaluate therapeutic protocols or even better understand and model the natural history of a given neurological pathology. Many diseases encompass brain alterations often not visible on conventional MRI sequences, especially in normal appearing brain tissues (NABT). MRI has often a low specificity for differentiating between possible pathological changes which could help in discriminating between the different pathological stages or grades. The objective of medical image analysis procedures is to define new quantitative neuroimaging biomarkers to track the evolution of the pathology at different levels. This paper illustrates this issue in one acute neuro-inflammatory pathology: Multiple Sclerosis (MS). It exhibits the current medical image analysis approaches and explains how this field of research will evolve in the next decade to integrate larger scale of information at the temporal, cellular, structural and morphological levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion.

    PubMed

    Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E

    2017-09-13

    Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.

  18. Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.

    2012-02-01

    Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.

  19. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  20. Modeling resident error-making patterns in detection of mammographic masses using computer-extracted image features: preliminary experiments

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora

    2014-03-01

    Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.

  1. Computer vision for microscopy diagnosis of malaria.

    PubMed

    Tek, F Boray; Dempster, Andrew G; Kale, Izzet

    2009-07-13

    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  2. AutoCNet: A Python library for sparse multi-image correspondence identification for planetary data

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Rodriguez, Kelvin; Paquette, Adam C.; Dunn, Evin

    2018-01-01

    In this work we describe the AutoCNet library, written in Python, to support the application of computer vision techniques for n-image correspondence identification in remotely sensed planetary images and subsequent bundle adjustment. The library is designed to support exploratory data analysis, algorithm and processing pipeline development, and application at scale in High Performance Computing (HPC) environments for processing large data sets and generating foundational data products. We also present a brief case study illustrating high level usage for the Apollo 15 Metric camera.

  3. Physics and engineering aspects of cell and tissue imaging systems: microscopic devices and computer assisted diagnosis.

    PubMed

    Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong

    2013-01-01

    The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.

  4. Computer image analysis in obtaining characteristics of images: greenhouse tomatoes in the process of generating learning sets of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Przybył, J.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The aim of the project was to make the software which on the basis on image of greenhouse tomato allows for the extraction of its characteristics. Data gathered during the image analysis and processing were used to build learning sets of artificial neural networks. Program enables to process pictures in jpeg format, acquisition of statistical information of the picture and export them to an external file. Produced software is intended to batch analyze collected research material and obtained information saved as a csv file. Program allows for analysis of 33 independent parameters implicitly to describe tested image. The application is dedicated to processing and image analysis of greenhouse tomatoes. The program can be used for analysis of other fruits and vegetables of a spherical shape.

  5. Expert diagnosis of plus disease in retinopathy of prematurity from computer-based image analysis

    PubMed Central

    Campbell, J. Peter; Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir N.; Reynolds, James D.; Horowitz, Jason; Hutcheson, Kelly; Shapiro, Michael; Repka, Michael X.; Ferrone, Phillip; Drenser, Kimberly; Martinez-Castellanos, Maria Ana; Ostmo, Susan; Jonas, Karyn; Chan, R.V. Paul; Chiang, Michael F.

    2016-01-01

    Importance Published definitions of “plus disease” in retinopathy of prematurity (ROP) reference arterial tortuosity and venous dilation within the posterior pole based on a standard published photograph. One possible explanation for limited inter-expert reliability for plus disease diagnosis is that experts deviate from the published definitions. Objective To identify vascular features used by experts for diagnosis of plus disease through quantitative image analysis. Design We developed a computer-based image analysis system (Imaging and Informatics in ROP, i-ROP), and trained the system to classify images compared to a reference standard diagnosis (RSD). System performance was analyzed as a function of the field of view (circular crops 1–6 disc diameters [DD] radius) and vessel subtype (arteries only, veins only, or all vessels). The RSD was compared to the majority diagnosis of experts. Setting Routine ROP screening in neonatal intensive care units at 8 academic institutions. Participants A set of 77 digital fundus images was used to develop the i-ROP system. A subset of 73 images was independently classified by 11 ROP experts for validation. Main Outcome Measures The primary outcome measure was the percentage accuracy of i-ROP system classification of plus disease with the RSD as a function of field-of-view and vessel type. Secondary outcome measures included the accuracy of the 11 experts compared to the RSD. Results Accuracy of plus disease diagnosis by the i-ROP computer based system was highest (95%, confidence interval [CI] 94 – 95%) when it incorporated vascular tortuosity from both arteries and veins, and with the widest field of view (6 disc diameter radius). Accuracy was ≤90% when using only arterial tortuosity (P<0.001), and ≤85% using a 2–3 disc diameter view similar to the standard published photograph (p<0.001). Diagnostic accuracy of the i-ROP system (95%) was comparable to that of 11 expert clinicians (79–99%). Conclusions and Relevance ROP experts appear to consider findings from beyond the posterior retina when diagnosing plus disease, and consider tortuosity of both arteries and veins, in contrast to published definitions. It is feasible for a computer-based image analysis system to perform comparably to ROP experts, using manually segmented images. PMID:27077667

  6. Expert Diagnosis of Plus Disease in Retinopathy of Prematurity From Computer-Based Image Analysis.

    PubMed

    Campbell, J Peter; Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir N; Reynolds, James D; Horowitz, Jason; Hutcheson, Kelly; Shapiro, Michael; Repka, Michael X; Ferrone, Phillip; Drenser, Kimberly; Martinez-Castellanos, Maria Ana; Ostmo, Susan; Jonas, Karyn; Chan, R V Paul; Chiang, Michael F

    2016-06-01

    Published definitions of plus disease in retinopathy of prematurity (ROP) reference arterial tortuosity and venous dilation within the posterior pole based on a standard published photograph. One possible explanation for limited interexpert reliability for a diagnosis of plus disease is that experts deviate from the published definitions. To identify vascular features used by experts for diagnosis of plus disease through quantitative image analysis. A computer-based image analysis system (Imaging and Informatics in ROP [i-ROP]) was developed using a set of 77 digital fundus images, and the system was designed to classify images compared with a reference standard diagnosis (RSD). System performance was analyzed as a function of the field of view (circular crops with a radius of 1-6 disc diameters) and vessel subtype (arteries only, veins only, or all vessels). Routine ROP screening was conducted from June 29, 2011, to October 14, 2014, in neonatal intensive care units at 8 academic institutions, with a subset of 73 images independently classified by 11 ROP experts for validation. The RSD was compared with the majority diagnosis of experts. The primary outcome measure was the percentage of accuracy of the i-ROP system classification of plus disease, with the RSD as a function of the field of view and vessel type. Secondary outcome measures included the accuracy of the 11 experts compared with the RSD. Accuracy of plus disease diagnosis by the i-ROP computer-based system was highest (95%; 95% CI, 94%-95%) when it incorporated vascular tortuosity from both arteries and veins and with the widest field of view (6-disc diameter radius). Accuracy was 90% or less when using only arterial tortuosity and 85% or less using a 2- to 3-disc diameter view similar to the standard published photograph. Diagnostic accuracy of the i-ROP system (95%) was comparable to that of 11 expert physicians (mean 87%, range 79%-99%). Experts in ROP appear to consider findings from beyond the posterior retina when diagnosing plus disease and consider tortuosity of both arteries and veins, in contrast with published definitions. It is feasible for a computer-based image analysis system to perform comparably with ROP experts, using manually segmented images.

  7. Visidep (TM): A Three-Dimensional Imaging System For The Unaided Eye

    NASA Astrophysics Data System (ADS)

    McLaurin, A. Porter; Jones, Edwin R.; Cathey, LeConte

    1984-05-01

    The VISIDEP process for creating images in three dimensions on flat screens is suitable for photographic, electrographic and computer generated imaging systems. Procedures for generating these images vary from medium to medium due to the specific requirements of each technology. Imaging requirements for photographic and electrographic media are more directly tied to the hardware than are computer based systems. Applications of these technologies are not limited to entertainment, but have implications for training, interactive computer/video systems, medical imaging, and inspection equipment. Through minor modification the system can provide three-dimensional images with accurately measureable relationships for robotics and adds this factor for future developments in artificial intelligence. In almost any area requiring image analysis or critical review, VISIDEP provides the added advantage of three-dimensionality. All of this is readily accomplished without aids to the human eye. The system can be viewed in full color, false-color infra-red, and monochromatic modalities from any angle and is also viewable with a single eye. Thus, the potential of application for this developing system is extensive and covers the broad spectrum of human endeavor from entertainment to scientific study.

  8. Computer-aided diagnosis in radiological imaging: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Doi, Kunio

    2009-10-01

    Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.

  9. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis: Results From the VIRTU-Fast Study.

    PubMed

    Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2017-08-01

    Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  10. Cloud-based processing of multi-spectral imaging data

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  11. Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy

    NASA Astrophysics Data System (ADS)

    Amir-Khalili, A.; Hamarneh, G.; Zakariaee, R.; Spadinger, I.; Abugharbieh, R.

    2017-10-01

    Multi-fraction cervical cancer brachytherapy is a form of image-guided radiotherapy that heavily relies on 3D imaging during treatment planning, delivery, and quality control. In this context, deformable image registration can increase the accuracy of dosimetric evaluations, provided that one can account for the uncertainties associated with the registration process. To enable such capability, we propose a mathematical framework that first estimates the registration uncertainty and subsequently propagates the effects of the computed uncertainties from the registration stage through to the visualizations, organ segmentations, and dosimetric evaluations. To ensure the practicality of our proposed framework in real world image-guided radiotherapy contexts, we implemented our technique via a computationally efficient and generalizable algorithm that is compatible with existing deformable image registration software. In our clinical context of fractionated cervical cancer brachytherapy, we perform a retrospective analysis on 37 patients and present evidence that our proposed methodology for computing and propagating registration uncertainties may be beneficial during therapy planning and quality control. Specifically, we quantify and visualize the influence of registration uncertainty on dosimetric analysis during the computation of the total accumulated radiation dose on the bladder wall. We further show how registration uncertainty may be leveraged into enhanced visualizations that depict the quality of the registration and highlight potential deviations from the treatment plan prior to the delivery of radiation treatment. Finally, we show that we can improve the transfer of delineated volumetric organ segmentation labels from one fraction to the next by encoding the computed registration uncertainties into the segmentation labels.

  12. Induction of Social Behavior in Zebrafish: Live Versus Computer Animated Fish as Stimuli

    PubMed Central

    Qin, Meiying; Wong, Albert; Seguin, Diane

    2014-01-01

    Abstract The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish. PMID:24575942

  13. Induction of social behavior in zebrafish: live versus computer animated fish as stimuli.

    PubMed

    Qin, Meiying; Wong, Albert; Seguin, Diane; Gerlai, Robert

    2014-06-01

    The zebrafish offers an excellent compromise between system complexity and practical simplicity and has been suggested as a translational research tool for the analysis of human brain disorders associated with abnormalities of social behavior. Unlike laboratory rodents zebrafish are diurnal, thus visual cues may be easily utilized in the analysis of their behavior and brain function. Visual cues, including the sight of conspecifics, have been employed to induce social behavior in zebrafish. However, the method of presentation of these cues and the question of whether computer animated images versus live stimulus fish have differential effects have not been systematically analyzed. Here, we compare the effects of five stimulus presentation types: live conspecifics in the experimental tank or outside the tank, playback of video-recorded live conspecifics, computer animated images of conspecifics presented by two software applications, the previously employed General Fish Animator, and a new application Zebrafish Presenter. We report that all stimuli were equally effective and induced a robust social response (shoaling) manifesting as reduced distance between stimulus and experimental fish. We conclude that presentation of live stimulus fish, or 3D images, is not required and 2D computer animated images are sufficient to induce robust and consistent social behavioral responses in zebrafish.

  14. Exploitation of realistic computational anthropomorphic phantoms for the optimization of nuclear imaging acquisition and processing protocols.

    PubMed

    Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C

    2014-01-01

    Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.

  15. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  16. Computation of fluid and particle motion from a time-sequenced image pair: a global outlier identification approach.

    PubMed

    Ray, Nilanjan

    2011-10-01

    Fluid motion estimation from time-sequenced images is a significant image analysis task. Its application is widespread in experimental fluidics research and many related areas like biomedical engineering and atmospheric sciences. In this paper, we present a novel flow computation framework to estimate the flow velocity vectors from two consecutive image frames. In an energy minimization-based flow computation, we propose a novel data fidelity term, which: 1) can accommodate various measures, such as cross-correlation or sum of absolute or squared differences of pixel intensities between image patches; 2) has a global mechanism to control the adverse effect of outliers arising out of motion discontinuities, proximity of image borders; and 3) can go hand-in-hand with various spatial smoothness terms. Further, the proposed data term and related regularization schemes are both applicable to dense and sparse flow vector estimations. We validate these claims by numerical experiments on benchmark flow data sets. © 2011 IEEE

  17. MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.

    PubMed

    Katsigiannis, Stamos; Zacharia, Eleni; Maroulis, Dimitris

    2017-05-01

    Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.

  18. Melanie II--a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface.

    PubMed

    Appel, R D; Palagi, P M; Walther, D; Vargas, J R; Sanchez, J C; Ravier, F; Pasquali, C; Hochstrasser, D F

    1997-12-01

    Although two-dimensional electrophoresis (2-DE) computer analysis software packages have existed ever since 2-DE technology was developed, it is only now that the hardware and software technology allows large-scale studies to be performed on low-cost personal computers or workstations, and that setting up a 2-DE computer analysis system in a small laboratory is no longer considered a luxury. After a first attempt in the seventies and early eighties to develop 2-DE analysis software systems on hardware that had poor or even no graphical capabilities, followed in the late eighties by a wave of innovative software developments that were possible thanks to new graphical interface standards such as XWindows, a third generation of 2-DE analysis software packages has now come to maturity. It can be run on a variety of low-cost, general-purpose personal computers, thus making the purchase of a 2-DE analysis system easily attainable for even the smallest laboratory that is involved in proteome research. Melanie II 2-D PAGE, developed at the University Hospital of Geneva, is such a third-generation software system for 2-DE analysis. Based on unique image processing algorithms, this user-friendly object-oriented software package runs on multiple platforms, including Unix, MS-Windows 95 and NT, and Power Macintosh. It provides efficient spot detection and quantitation, state-of-the-art image comparison, statistical data analysis facilities, and is Internet-ready. Linked to proteome databases such as those available on the World Wide Web, it represents a valuable tool for the "Virtual Lab" of the post-genome area.

  19. [The procedure for documentation of digital images in forensic medical histology].

    PubMed

    Putintsev, V A; Bogomolov, D V; Fedulova, M V; Gribunov, Iu P; Kul'bitskiĭ, B N

    2012-01-01

    This paper is devoted to the novel computer technologies employed in the studies of histological preparations. These technologies allow to visualize digital images, structurize the data obtained and store the results in computer memory. The authors emphasize the necessity to properly document digital images obtained during forensic-histological studies and propose the procedure for the formulation of electronic documents in conformity with the relevant technical and legal requirements. It is concluded that the use of digital images as a new study object permits to obviate the drawbacks inherent in the work with the traditional preparations and pass from descriptive microscopy to their quantitative analysis.

  20. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    PubMed

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  1. Cardiac imaging: working towards fully-automated machine analysis & interpretation.

    PubMed

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-03-01

    Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.

  2. Statistical-techniques-based computer-aided diagnosis (CAD) using texture feature analysis: application in computed tomography (CT) imaging to fatty liver disease

    NASA Astrophysics Data System (ADS)

    Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae

    2012-09-01

    This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.

  3. Display system for imaging scientific telemetric information

    NASA Technical Reports Server (NTRS)

    Zabiyakin, G. I.; Rykovanov, S. N.

    1979-01-01

    A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.

  4. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

    PubMed

    Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F

    2014-03-01

    Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires <1 min and <5 min for 2D and 3D images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

  5. Automated virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Hunt, Gordon W.; Hemler, Paul F.; Vining, David J.

    1997-05-01

    Virtual colonscopy (VC) is a minimally invasive alternative to conventional fiberoptic endoscopy for colorectal cancer screening. The VC technique involves bowel cleansing, gas distension of the colon, spiral computed tomography (CT) scanning of a patient's abdomen and pelvis, and visual analysis of multiplanar 2D and 3D images created from the spiral CT data. Despite the ability of interactive computer graphics to assist a physician in visualizing 3D models of the colon, a correct diagnosis hinges upon a physician's ability to properly identify small and sometimes subtle polyps or masses within hundreds of multiplanar and 3D images. Human visual analysis is time-consuming, tedious, and often prone to error of interpretation.We have addressed the problem of visual analysis by creating a software system that automatically highlights potential lesions in the 2D and 3D images in order to expedite a physician's interpretation of the colon data.

  6. Comparative study viruses with computer-aided phase microscope AIRYSCAN

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.

    1996-12-01

    Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.

  7. Computer-implemented system and method for automated and highly accurate plaque analysis, reporting, and visualization

    NASA Technical Reports Server (NTRS)

    Kemp, James Herbert (Inventor); Talukder, Ashit (Inventor); Lambert, James (Inventor); Lam, Raymond (Inventor)

    2008-01-01

    A computer-implemented system and method of intra-oral analysis for measuring plaque removal is disclosed. The system includes hardware for real-time image acquisition and software to store the acquired images on a patient-by-patient basis. The system implements algorithms to segment teeth of interest from surrounding gum, and uses a real-time image-based morphing procedure to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The system integrates these components into a single software suite with an easy-to-use graphical user interface (GUI) that allows users to do an end-to-end run of a patient record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image.

  8. User's manual for University of Arizona APART program (Analysis Program - Arizona Radiation Trace)

    NASA Technical Reports Server (NTRS)

    Breault, R. P.

    1975-01-01

    A description and operating instructions for the Analysis Program Arizona Radiation Trace (APART) are given. This is a computer program that is able to efficiently and accurately predict the off-axis rejection characteristics of unwanted stray radiation for complex rotationally symmetric optical systems. The program first determines the critical objects or areas that scatter radiation to the image plane either directly or through imaging elements: this provides the opportunity to modify, if necessary, the design so that the number of critical areas seen by the image plane is reduced or the radiation to these critical areas is minimized. Next, the power distribution reaching the image plane and a sectional power map of all internal surfaces are computed. Angular information is also provided that relates the angle by which the radiation came into a surface to the angle by which the radiation is scattered out of the surface.

  9. Automated metastatic brain lesion detection: a computer aided diagnostic and clinical research tool

    NASA Astrophysics Data System (ADS)

    Devine, Jeremy; Sahgal, Arjun; Karam, Irene; Martel, Anne L.

    2016-03-01

    The accurate localization of brain metastases in magnetic resonance (MR) images is crucial for patients undergoing stereotactic radiosurgery (SRS) to ensure that all neoplastic foci are targeted. Computer automated tumor localization and analysis can improve both of these tasks by eliminating inter and intra-observer variations during the MR image reading process. Lesion localization is accomplished using adaptive thresholding to extract enhancing objects. Each enhancing object is represented as a vector of features which includes information on object size, symmetry, position, shape, and context. These vectors are then used to train a random forest classifier. We trained and tested the image analysis pipeline on 3D axial contrast-enhanced MR images with the intention of localizing the brain metastases. In our cross validation study and at the most effective algorithm operating point, we were able to identify 90% of the lesions at a precision rate of 60%.

  10. Extracting the Data From the LCM vk4 Formatted Output File

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.

    These are slides about extracting the data from the LCM vk4 formatted output file. The following is covered: vk4 file produced by Keyence VK Software, custom analysis, no off the shelf way to read the file, reading the binary data in a vk4 file, various offsets in decimal lines, finding the height image data, directly in MATLAB, binary output beginning of height image data, color image information, color image binary data, color image decimal and binary data, MATLAB code to read vk4 file (choose a file, read the file, compute offsets, read optical image, laser optical image, read and computemore » laser intensity image, read height image, timing, display height image, display laser intensity image, display RGB laser optical images, display RGB optical images, display beginning data and save images to workspace, gamma correction subroutine), reading intensity form the vk4 file, linear in the low range, linear in the high range, gamma correction for vk4 files, computing the gamma intensity correction, observations.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOREN,NEALL E.

    Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processingmore » step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction with SVPF. This research concludes that PFA in conjunction with SVPF provides a computationally efficient spotlight-mode image formation solution that solves the wavefront curvature problem for most standoff distances and patch sizes, regardless of squint, resolution or radar center frequency. Additional advantages are that SVPF is not iterative and has no dependence on the visual contents of the scene: resulting in a deterministic computational complexity which typically adds only thirty percent to the overall image formation time.« less

  12. Application of near-infrared image processing in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hong; Zhang, Guo-ping; Xia, Hongxing

    2009-07-01

    Recently, with development of computer technology, the application field of near-infrared image processing becomes much wider. In this paper the technical characteristic and development of modern NIR imaging and NIR spectroscopy analysis were introduced. It is concluded application and studying of the NIR imaging processing technique in the agricultural engineering in recent years, base on the application principle and developing characteristic of near-infrared image. The NIR imaging would be very useful in the nondestructive external and internal quality inspecting of agricultural products. It is important to detect stored-grain insects by the application of near-infrared spectroscopy. Computer vision detection base on the NIR imaging would be help to manage food logistics. Application of NIR imaging promoted quality management of agricultural products. In the further application research fields of NIR image in the agricultural engineering, Some advices and prospect were put forward.

  13. An Approach towards Ultrasound Kidney Cysts Detection using Vector Graphic Image Analysis

    NASA Astrophysics Data System (ADS)

    Mahmud, Wan Mahani Hafizah Wan; Supriyanto, Eko

    2017-08-01

    This study develops new approach towards detection of kidney ultrasound image for both with single cyst as well as multiple cysts. 50 single cyst images and 25 multiple cysts images were used to test the developed algorithm. Steps involved in developing this algorithm were vector graphic image formation and analysis, thresholding, binarization, filtering as well as roundness test. Performance evaluation to 50 single cyst images gave accuracy of 92%, while for multiple cysts images, the accuracy was about 86.89% when tested to 25 multiple cysts images. This developed algorithm may be used in developing a computerized system such as computer aided diagnosis system to help medical experts in diagnosis of kidney cysts.

  14. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-12-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  15. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.

  16. Use of neural image analysis methods in the process to determine the dry matter content in the compost

    NASA Astrophysics Data System (ADS)

    Wojcieszak, D.; Przybył, J.; Lewicki, A.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Witaszek, K.

    2015-07-01

    The aim of this research was investigate the possibility of using methods of computer image analysis and artificial neural networks for to assess the amount of dry matter in the tested compost samples. The research lead to the conclusion that the neural image analysis may be a useful tool in determining the quantity of dry matter in the compost. Generated neural model may be the beginning of research into the use of neural image analysis assess the content of dry matter and other constituents of compost. The presented model RBF 19:19-2-1:1 characterized by test error 0.092189 may be more efficient.

  17. A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.

    PubMed

    Noh, Dong K; Lee, Nam G; You, Joshua H

    2014-01-01

    This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).

  18. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary

  19. Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone

    NASA Technical Reports Server (NTRS)

    Harwood, P. (Principal Investigator); Malin, P.; Finley, R.; Mcculloch, S.; Murphy, D.; Hupp, B.; Schell, J. A.

    1977-01-01

    The author has identified the following significant results. Four LANDSAT scenes were analyzed for the Harbor Island area test sites to produce land cover and land use maps using both image interpretation and computer-assisted techniques. When evaluated against aerial photography, the mean accuracy for three scenes was 84% for the image interpretation product and 62% for the computer-assisted classification maps. Analysis of the fourth scene was not completed using the image interpretation technique, because of poor quality, false color composite, but was available from the computer technique. Preliminary results indicate that these LANDSAT products can be applied to a variety of planning and management activities in the Texas coastal zone.

  20. Computer quantitation of coronary angiograms

    NASA Technical Reports Server (NTRS)

    Ledbetter, D. C.; Selzer, R. H.; Gordon, R. M.; Blankenhorn, D. H.; Sanmarco, M. E.

    1978-01-01

    A computer technique is being developed at the Jet Propulsion Laboratory to automate the measurement of coronary stenosis. A Vanguard 35mm film transport is optically coupled to a Spatial Data System vidicon/digitizer which in turn is controlled by a DEC PDP 11/55 computer. Programs have been developed to track the edges of the arterial shadow, to locate normal and atherosclerotic vessel sections and to measure percent stenosis. Multiple frame analysis techniques are being investigated that involve on the one hand, averaging stenosis measurements from adjacent frames, and on the other hand, averaging adjacent frame images directly and then measuring stenosis from the averaged image. For the latter case, geometric transformations are used to force registration of vessel images whose spatial orientation changes.

  1. Knowledge-based low-level image analysis for computer vision systems

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.

    1988-01-01

    Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.

  2. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  3. Practical considerations of image analysis and quantification of signal transduction IHC staining.

    PubMed

    Grunkin, Michael; Raundahl, Jakob; Foged, Niels T

    2011-01-01

    The dramatic increase in computer processing power in combination with the availability of high-quality digital cameras during the last 10 years has fertilized the grounds for quantitative microscopy based on digital image analysis. With the present introduction of robust scanners for whole slide imaging in both research and routine, the benefits of automation and objectivity in the analysis of tissue sections will be even more obvious. For in situ studies of signal transduction, the combination of tissue microarrays, immunohistochemistry, digital imaging, and quantitative image analysis will be central operations. However, immunohistochemistry is a multistep procedure including a lot of technical pitfalls leading to intra- and interlaboratory variability of its outcome. The resulting variations in staining intensity and disruption of original morphology are an extra challenge for the image analysis software, which therefore preferably should be dedicated to the detection and quantification of histomorphometrical end points.

  4. Classification of large-scale fundus image data sets: a cloud-computing framework.

    PubMed

    Roychowdhury, Sohini

    2016-08-01

    Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.

  5. In vivo automated quantification of quality of apples during storage using optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Dalal, Devjyoti; Kumar, Anuj; Prakash, Surya; Dalal, Krishna

    2018-06-01

    Moisture content is an important feature of fruits and vegetables. As 80% of apple content is water, so decreasing the moisture content will degrade the quality of apples (Golden Delicious). The computational and texture features of the apples were extracted from optical coherence tomography (OCT) images. A support vector machine with a Gaussian kernel model was used to perform automated classification. To evaluate the quality of wax coated apples during storage in vivo, our proposed method opens up the possibility of fully automated quantitative analysis based on the morphological features of apples. Our results demonstrate that the analysis of the computational and texture features of OCT images may be a good non-destructive method for the assessment of the quality of apples.

  6. Design and Construction of a Field Capable Snapshot Hyperspectral Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Arik, Glenda H.

    2005-01-01

    The computed-tomography imaging spectrometer (CTIS) is a device which captures the spatial and spectral content of a rapidly evolving same in a single image frame. The most recent CTIS design is optically all reflective and uses as its dispersive device a stated the-art reflective computer generated hologram (CGH). This project focuses on the instrument's transition from laboratory to field. This design will enable the CTIS to withstand a harsh desert environment. The system is modeled in optical design software using a tolerance analysis. The tolerances guide the design of the athermal mount and component parts. The parts are assembled into a working mount shell where the performance of the mounts is tested for thermal integrity. An interferometric analysis of the reflective CGH is also performed.

  7. Coherent multiscale image processing using dual-tree quaternion wavelets.

    PubMed

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  8. Computer Majors' Education as Moral Enterprise: A Durkheimian Analysis.

    ERIC Educational Resources Information Center

    Rigoni, David P.; Lamagdeleine, Donald R.

    1998-01-01

    Building on Durkheim's (Emile) emphasis on the moral dimensions of social reality and using it to explore contemporary computer education, contends that many of his claims are justified. Argues that the college computer department has created a set of images, maxims, and operating assumptions that frames its curriculum, courses, and student…

  9. Lytro camera technology: theory, algorithms, performance analysis

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  10. Computer Analysis of Eye Blood-Vessel Images

    NASA Technical Reports Server (NTRS)

    Wall, R. J.; White, B. S.

    1984-01-01

    Technique rapidly diagnoses diabetes mellitus. Photographs of "whites" of patients' eyes scanned by computerized image analyzer programmed to quantify density of small blood vessels in conjuctiva. Comparison with data base of known normal and diabetic patients facilitates rapid diagnosis.

  11. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  12. Chromatic Image Analysis For Quantitative Thermal Mapping

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  13. Application of abstract harmonic analysis to the high-speed recognition of images

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.

    1979-01-01

    Methods are constructed for rapidly computing correlation functions using the theory of abstract harmonic analysis. The theory developed includes as a particular case the familiar Fourier transform method for a correlation function which makes it possible to find images which are independent of their translation in the plane. Two examples of the application of the general theory described are the search for images, independent of their rotation and scale, and the search for images which are independent of their translations and rotations in the plane.

  14. An extraction algorithm of pulmonary fissures from multislice CT image

    NASA Astrophysics Data System (ADS)

    Tachibana, Hiroyuki; Saita, Shinsuke; Yasutomo, Motokatsu; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Sasagawa, Michizo; Eguchi, Kenji; Moriyama, Noriyuki

    2005-04-01

    Aging and smoking history increases number of pulmonary emphysema. Alveoli restoration destroyed by pulmonary emphysema is difficult and early direction is important. Multi-slice CT technology has been improving 3-D image analysis with higher body axis resolution and shorter scan time. And low-dose high accuracy scanning becomes available. Multi-slice CT image helps physicians with accurate measuring but huge volume of the image data takes time and cost. This paper is intended for computer added emphysema region analysis and proves effectiveness of proposed algorithm.

  15. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue

    PubMed Central

    Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath

    2009-01-01

    Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697

  16. Automated Analysis of CT Images for the Inspection of Hardwood Logs

    Treesearch

    Harbin Li; A. Lynn Abbott; Daniel L. Schmoldt

    1996-01-01

    This paper investigates several classifiers for labeling internal features of hardwood logs using computed tomography (CT) images. A primary motivation is to locate and classify internal defects so that an optimal cutting strategy can be chosen. Previous work has relied on combinations of low-level processing, image segmentation, autoregressive texture modeling, and...

  17. Analysis of contour images using optics of spiral beams

    NASA Astrophysics Data System (ADS)

    Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.

    2018-03-01

    An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.

  18. Crowdsourcing scoring of immunohistochemistry images: Evaluating Performance of the Crowd and an Automated Computational Method

    NASA Astrophysics Data System (ADS)

    Irshad, Humayun; Oh, Eun-Yeong; Schmolze, Daniel; Quintana, Liza M.; Collins, Laura; Tamimi, Rulla M.; Beck, Andrew H.

    2017-02-01

    The assessment of protein expression in immunohistochemistry (IHC) images provides important diagnostic, prognostic and predictive information for guiding cancer diagnosis and therapy. Manual scoring of IHC images represents a logistical challenge, as the process is labor intensive and time consuming. Since the last decade, computational methods have been developed to enable the application of quantitative methods for the analysis and interpretation of protein expression in IHC images. These methods have not yet replaced manual scoring for the assessment of IHC in the majority of diagnostic laboratories and in many large-scale research studies. An alternative approach is crowdsourcing the quantification of IHC images to an undefined crowd. The aim of this study is to quantify IHC images for labeling of ER status with two different crowdsourcing approaches, image-labeling and nuclei-labeling, and compare their performance with automated methods. Crowdsourcing- derived scores obtained greater concordance with the pathologist interpretations for both image-labeling and nuclei-labeling tasks (83% and 87%), as compared to the pathologist concordance achieved by the automated method (81%) on 5,338 TMA images from 1,853 breast cancer patients. This analysis shows that crowdsourcing the scoring of protein expression in IHC images is a promising new approach for large scale cancer molecular pathology studies.

  19. Distribution quantification on dermoscopy images for computer-assisted diagnosis of cutaneous melanomas.

    PubMed

    Liu, Zhao; Sun, Jiuai; Smith, Lyndon; Smith, Melvyn; Warr, Robert

    2012-05-01

    Computerised analysis on skin lesion images has been reported to be helpful in achieving objective and reproducible diagnosis of melanoma. In particular, asymmetry in shape, colour and structure reflects the irregular growth of melanin under the skin and is of great importance for diagnosing the malignancy of skin lesions. This paper proposes a novel asymmetry analysis based on a newly developed pigmentation elevation model and the global point signatures (GPSs). Specifically, the pigmentation elevation model was first constructed by computer-based analysis of dermoscopy images, for the identification of melanin and haemoglobin. Asymmetry of skin lesions was then assessed through quantifying distributions of the pigmentation elevation model using the GPSs, derived from a Laplace-Beltrami operator. This new approach allows quantifying the shape and pigmentation distributions of cutaneous lesions simultaneously. Algorithm performance was tested on 351 dermoscopy images, including 88 malignant melanomas and 263 benign naevi, employing a support vector machine (SVM) with tenfold cross-validation strategy. Competitive diagnostic results were achieved using the proposed asymmetry descriptor only, presenting 86.36 % sensitivity, 82.13 % specificity and overall 83.43 % accuracy, respectively. In addition, the proposed GPS-based asymmetry analysis enables working on dermoscopy images from different databases and is approved to be inherently robust to the external imaging variations. These advantages suggested that the proposed method has good potential for follow-up treatment.

  20. Pilot Task Profiles, Human Factors, And Image Realism

    NASA Astrophysics Data System (ADS)

    McCormick, Dennis

    1982-06-01

    Computer Image Generation (CIG) visual systems provide real time scenes for state-of-the-art flight training simulators. The visual system reauires a greater understanding of training tasks, human factors, and the concept of image realism to produce an effective and efficient training scene than is required by other types of visual systems. Image realism must be defined in terms of pilot visual information reauirements. Human factors analysis of training and perception is necessary to determine the pilot's information requirements. System analysis then determines how the CIG and display device can best provide essential information to the pilot. This analysis procedure ensures optimum training effectiveness and system performance.

  1. Geometric processing of digital images of the planets

    NASA Technical Reports Server (NTRS)

    Edwards, Kathleen

    1987-01-01

    New procedures and software have been developed for geometric transformation of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases. Completed Sinusoidal databases may be used for digital analysis and registration with other spatial data. They may also be reproduced as published image maps by digitally transforming them to appropriate map projections.

  2. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    PubMed

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  3. An improved K-means clustering algorithm in agricultural image segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  4. Supervised graph hashing for histopathology image retrieval and classification.

    PubMed

    Shi, Xiaoshuang; Xing, Fuyong; Xu, KaiDi; Xie, Yuanpu; Su, Hai; Yang, Lin

    2017-12-01

    In pathology image analysis, morphological characteristics of cells are critical to grade many diseases. With the development of cell detection and segmentation techniques, it is possible to extract cell-level information for further analysis in pathology images. However, it is challenging to conduct efficient analysis of cell-level information on a large-scale image dataset because each image usually contains hundreds or thousands of cells. In this paper, we propose a novel image retrieval based framework for large-scale pathology image analysis. For each image, we encode each cell into binary codes to generate image representation using a novel graph based hashing model and then conduct image retrieval by applying a group-to-group matching method to similarity measurement. In order to improve both computational efficiency and memory requirement, we further introduce matrix factorization into the hashing model for scalable image retrieval. The proposed framework is extensively validated with thousands of lung cancer images, and it achieves 97.98% classification accuracy and 97.50% retrieval precision with all cells of each query image used. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator.

    PubMed

    Bednarkiewicz, Artur; Whelan, Maurice P

    2008-01-01

    Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.

  6. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services.

    PubMed

    Bao, Shunxing; Damon, Stephen M; Landman, Bennett A; Gokhale, Aniruddha

    2016-02-27

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  7. Performance management of high performance computing for medical image processing in Amazon Web Services

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-03-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical- Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for- use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  8. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services

    PubMed Central

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-01-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline. PMID:27127335

  9. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions

    PubMed Central

    Patwary, Nurmohammed; Preza, Chrysanthe

    2015-01-01

    A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634

  10. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging

    PubMed Central

    2013-01-01

    Background Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers’ understanding of infectious diseases. Methods We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All segmentation processes were compared with expert radiologists’ delineations (ground truths). Metabolic and gross volume of lesions were automatically computed with the segmentation processes using PET and CT images, and percentage changes in those volumes over time were calculated. (Continued on next page)(Continued from previous page) Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT images using the aforementioned quantification metrics outputted from the proposed framework. Results Each animal study was evaluated within the same subject class, and all steps of the proposed methodology were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths (R2=0.8922,p<0.01 and R2=0.8664,p<0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4±4.5% for normal lung CT scans and 86.0±7.1% for pathological lung CT scans. Experiments showed excellent agreements (all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover, we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis. Conclusions We explored the feasibility of using PET and CT imaging modalities in three distinct small animal models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy. PMID:23879987

  11. Quantitative analysis of defects in silicon. Silicon sheet growth development for the large are silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Bruce, T.; Oidwai, H. A.

    1980-01-01

    One hundred and seventy four silicon sheet samples were analyzed for twin boundary density, dislocation pit density, and grain boundary length. Procedures were developed for the quantitative analysis of the twin boundary and dislocation pit densities using a QTM-720 Quantitative Image Analyzing system. The QTM-720 system was upgraded with the addition of a PDP 11/03 mini-computer with dual floppy disc drive, a digital equipment writer high speed printer, and a field-image feature interface module. Three versions of a computer program that controls the data acquisition and analysis on the QTM-720 were written. Procedures for the chemical polishing and etching were also developed.

  12. MIDAS - ESO's new image processing system

    NASA Astrophysics Data System (ADS)

    Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.

    1983-03-01

    The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.

  13. Computer program documentation for the patch subsampling processor

    NASA Technical Reports Server (NTRS)

    Nieves, M. J.; Obrien, S. O.; Oney, J. K. (Principal Investigator)

    1981-01-01

    The programs presented are intended to provide a way to extract a sample from a full-frame scene and summarize it in a useful way. The sample in each case was chosen to fill a 512-by-512 pixel (sample-by-line) image since this is the largest image that can be displayed on the Integrated Multivariant Data Analysis and Classification System. This sample size provides one megabyte of data for manipulation and storage and contains about 3% of the full-frame data. A patch image processor computes means for 256 32-by-32 pixel squares which constitute the 512-by-512 pixel image. Thus, 256 measurements are available for 8 vegetation indexes over a 100-mile square.

  14. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  15. Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor

    PubMed Central

    Sampson, David D.; Kennedy, Brendan F.

    2017-01-01

    High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15–25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy. PMID:28250098

  16. Digital image processing for information extraction.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1973-01-01

    The modern digital computer has made practical image processing techniques for handling nonlinear operations in both the geometrical and the intensity domains, various types of nonuniform noise cleanup, and the numerical analysis of pictures. An initial requirement is that a number of anomalies caused by the camera (e.g., geometric distortion, MTF roll-off, vignetting, and nonuniform intensity response) must be taken into account or removed to avoid their interference with the information extraction process. Examples illustrating these operations are discussed along with computer techniques used to emphasize details, perform analyses, classify materials by multivariate analysis, detect temporal differences, and aid in human interpretation of photos.

  17. The study on the parallel processing based time series correlation analysis of RBC membrane flickering in quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag

    2017-02-01

    Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.

  18. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  19. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  20. Computational model of lightness perception in high dynamic range imaging

    NASA Astrophysics Data System (ADS)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  1. Plus Disease in Retinopathy of Prematurity: Improving Diagnosis by Ranking Disease Severity and Using Quantitative Image Analysis.

    PubMed

    Kalpathy-Cramer, Jayashree; Campbell, J Peter; Erdogmus, Deniz; Tian, Peng; Kedarisetti, Dharanish; Moleta, Chace; Reynolds, James D; Hutcheson, Kelly; Shapiro, Michael J; Repka, Michael X; Ferrone, Philip; Drenser, Kimberly; Horowitz, Jason; Sonmez, Kemal; Swan, Ryan; Ostmo, Susan; Jonas, Karyn E; Chan, R V Paul; Chiang, Michael F

    2016-11-01

    To determine expert agreement on relative retinopathy of prematurity (ROP) disease severity and whether computer-based image analysis can model relative disease severity, and to propose consideration of a more continuous severity score for ROP. We developed 2 databases of clinical images of varying disease severity (100 images and 34 images) as part of the Imaging and Informatics in ROP (i-ROP) cohort study and recruited expert physician, nonexpert physician, and nonphysician graders to classify and perform pairwise comparisons on both databases. Six participating expert ROP clinician-scientists, each with a minimum of 10 years of clinical ROP experience and 5 ROP publications, and 5 image graders (3 physicians and 2 nonphysician graders) who analyzed images that were obtained during routine ROP screening in neonatal intensive care units. Images in both databases were ranked by average disease classification (classification ranking), by pairwise comparison using the Elo rating method (comparison ranking), and by correlation with the i-ROP computer-based image analysis system. Interexpert agreement (weighted κ statistic) compared with the correlation coefficient (CC) between experts on pairwise comparisons and correlation between expert rankings and computer-based image analysis modeling. There was variable interexpert agreement on diagnostic classification of disease (plus, preplus, or normal) among the 6 experts (mean weighted κ, 0.27; range, 0.06-0.63), but good correlation between experts on comparison ranking of disease severity (mean CC, 0.84; range, 0.74-0.93) on the set of 34 images. Comparison ranking provided a severity ranking that was in good agreement with ranking obtained by classification ranking (CC, 0.92). Comparison ranking on the larger dataset by both expert and nonexpert graders demonstrated good correlation (mean CC, 0.97; range, 0.95-0.98). The i-ROP system was able to model this continuous severity with good correlation (CC, 0.86). Experts diagnose plus disease on a continuum, with poor absolute agreement on classification but good relative agreement on disease severity. These results suggest that the use of pairwise rankings and a continuous severity score, such as that provided by the i-ROP system, may improve agreement on disease severity in the future. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. Computational oncology.

    PubMed

    Lefor, Alan T

    2011-08-01

    Oncology research has traditionally been conducted using techniques from the biological sciences. The new field of computational oncology has forged a new relationship between the physical sciences and oncology to further advance research. By applying physics and mathematics to oncologic problems, new insights will emerge into the pathogenesis and treatment of malignancies. One major area of investigation in computational oncology centers around the acquisition and analysis of data, using improved computing hardware and software. Large databases of cellular pathways are being analyzed to understand the interrelationship among complex biological processes. Computer-aided detection is being applied to the analysis of routine imaging data including mammography and chest imaging to improve the accuracy and detection rate for population screening. The second major area of investigation uses computers to construct sophisticated mathematical models of individual cancer cells as well as larger systems using partial differential equations. These models are further refined with clinically available information to more accurately reflect living systems. One of the major obstacles in the partnership between physical scientists and the oncology community is communications. Standard ways to convey information must be developed. Future progress in computational oncology will depend on close collaboration between clinicians and investigators to further the understanding of cancer using these new approaches.

  3. Computer assessment of atherosclerosis from angiographic images

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.; Brooks, S. H.; Crawford, D. W.; Cashin, W. L.

    1982-01-01

    A computer method for detection and quantification of atherosclerosis from angiograms has been developed and used to measure lesion change in human clinical trials. The technique involves tracking the vessel edges and measuring individual lesions as well as the overall irregularity of the arterial image. Application of the technique to conventional arterial-injection femoral and coronary angiograms is outlined and an experimental study to extend the technique to analysis of intravenous angiograms of the carotid and cornary arteries is described.

  4. Evaluation of image compression for computer-aided diagnosis of breast tumors in 3D sonography

    NASA Astrophysics Data System (ADS)

    Chen, We-Min; Huang, Yu-Len; Tao, Chi-Chuan; Chen, Dar-Ren; Moon, Woo-Kyung

    2006-03-01

    Medical imaging examinations form the basis for physicians diagnosing diseases, as evidenced by the increasing use of digital medical images for picture archiving and communications systems (PACS). However, with enlarged medical image databases and rapid growth of patients' case reports, PACS requires image compression to accelerate the image transmission rate and conserve disk space for diminishing implementation costs. For this purpose, JPEG and JPEG2000 have been accepted as legal formats for the digital imaging and communications in medicine (DICOM). The high compression ratio is felt to be useful for medical imagery. Therefore, this study evaluates the compression ratios of JPEG and JPEG2000 standards for computer-aided diagnosis (CAD) of breast tumors in 3-D medical ultrasound (US) images. The 3-D US data sets with various compression ratios are compressed using the two efficacious image compression standards. The reconstructed data sets are then diagnosed by a previous proposed CAD system. The diagnostic accuracy is measured based on receiver operating characteristic (ROC) analysis. Namely, the ROC curves are used to compare the diagnostic performance of two or more reconstructed images. Analysis results ensure a comparison of the compression ratios by using JPEG and JPEG2000 for 3-D US images. Results of this study provide the possible bit rates using JPEG and JPEG2000 for 3-D breast US images.

  5. Differentiation of nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger with multi-detector row computed tomography.

    PubMed

    Park, Ko Woon; Kim, Seong Hyun; Choi, Seong Ho; Lee, Won Jae

    2010-01-01

    To evaluate useful computed tomographic features to differentiate nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger. Thirty-one patients with 32 nonneoplastic polyps and 67 patients with 73 neoplastic polyps 1 cm or bigger underwent unenhanced and dual-phase (arterial and portal venous phases) multi-detector row computed tomography. Gallbladder polyps were diagnosed by cholecystectomy. Computed tomographic features including size (1.5 cm), surface (smooth or irregular), shape (pedunculated or sessile), accompanying wall thickening, basal indentation, perception on unenhanced images, and enhancement pattern between 2 groups were compared using univariate and multivariate analyses. On univariate analysis, age 55 years or older (P = 0.0019), size bigger than 1.5 cm (P < 0.0001), irregular surface (P = 0.0033), sessile shape (P = 0.0016), accompanying wall thickening (P = 0.0056), basal indentation (P = 0.0236), and perception on unenhanced images (P < 0.0001) were significantly more frequent in neoplastic polyps as compared with nonneoplastic polyps. On multivariate analysis, size bigger than 1.5 cm (P = 0.0260), sessile shape (P = 0.0397), and perception on unenhanced images (P < 0.0001) were statistically significant. Size bigger than 1.5 cm, sessile shape, and perception on unenhanced images are the main factors that differentiate neoplastic from nonneoplastic gallbladder polyps 1 cm or bigger.

  6. Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends

    PubMed Central

    Mansoor, Awais; Foster, Brent; Xu, Ziyue; Papadakis, Georgios Z.; Folio, Les R.; Udupa, Jayaram K.; Mollura, Daniel J.

    2015-01-01

    The computer-based process of identifying the boundaries of lung from surrounding thoracic tissue on computed tomographic (CT) images, which is called segmentation, is a vital first step in radiologic pulmonary image analysis. Many algorithms and software platforms provide image segmentation routines for quantification of lung abnormalities; however, nearly all of the current image segmentation approaches apply well only if the lungs exhibit minimal or no pathologic conditions. When moderate to high amounts of disease or abnormalities with a challenging shape or appearance exist in the lungs, computer-aided detection systems may be highly likely to fail to depict those abnormal regions because of inaccurate segmentation methods. In particular, abnormalities such as pleural effusions, consolidations, and masses often cause inaccurate lung segmentation, which greatly limits the use of image processing methods in clinical and research contexts. In this review, a critical summary of the current methods for lung segmentation on CT images is provided, with special emphasis on the accuracy and performance of the methods in cases with abnormalities and cases with exemplary pathologic findings. The currently available segmentation methods can be divided into five major classes: (a) thresholding-based, (b) region-based, (c) shape-based, (d) neighboring anatomy–guided, and (e) machine learning–based methods. The feasibility of each class and its shortcomings are explained and illustrated with the most common lung abnormalities observed on CT images. In an overview, practical applications and evolving technologies combining the presented approaches for the practicing radiologist are detailed. ©RSNA, 2015 PMID:26172351

  7. Image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  8. Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves.

    PubMed

    Verboven, Pieter; Herremans, Els; Helfen, Lukas; Ho, Quang T; Abera, Metadel; Baumbach, Tilo; Wevers, Martine; Nicolaï, Bart M

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) is presented as an imaging method for analyzing the three-dimensional (3D) anatomy of leaves. The SR-CL method was used to provide 3D images of 1-mm² samples of intact leaves at a pixel resolution of 750 nm. The method allowed visualization and quantitative analysis of palisade and spongy mesophyll cells, and showed local venation patterns, aspects of xylem vascular structure and stomata. The method failed to image subcellular organelles such as chloroplasts. We constructed 3D computer models of leaves that can provide a basis for calculating gas exchange, light penetration and water and solute transport. The leaf anatomy of two different tomato genotypes grown in saturating light conditions was compared by 3D analysis. Differences were found in calculated values of tissue porosity, cell number density, cell area to volume ratio and cell volume and cell shape distributions of palisade and spongy cell layers. In contrast, the exposed cell area to leaf area ratio in mesophyll, a descriptor that correlates to the maximum rate of photosynthesis in saturated light conditions, was no different between spongy and palisade cells or between genotypes. The use of 3D image processing avoids many of the limitations of anatomical analysis with two-dimensional sections. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  9. Wait, are you sad or angry? Large exposure time differences required for the categorization of facial expressions of emotion

    PubMed Central

    Du, Shichuan; Martinez, Aleix M.

    2013-01-01

    Abstract Facial expressions of emotion are essential components of human behavior, yet little is known about the hierarchical organization of their cognitive analysis. We study the minimum exposure time needed to successfully classify the six classical facial expressions of emotion (joy, surprise, sadness, anger, disgust, fear) plus neutral as seen at different image resolutions (240 × 160 to 15 × 10 pixels). Our results suggest a consistent hierarchical analysis of these facial expressions regardless of the resolution of the stimuli. Happiness and surprise can be recognized after very short exposure times (10–20 ms), even at low resolutions. Fear and anger are recognized the slowest (100–250 ms), even in high-resolution images, suggesting a later computation. Sadness and disgust are recognized in between (70–200 ms). The minimum exposure time required for successful classification of each facial expression correlates with the ability of a human subject to identify it correctly at low resolutions. These results suggest a fast, early computation of expressions represented mostly by low spatial frequencies or global configural cues and a later, slower process for those categories requiring a more fine-grained analysis of the image. We also demonstrate that those expressions that are mostly visible in higher-resolution images are not recognized as accurately. We summarize implications for current computational models. PMID:23509409

  10. Database for the collection and analysis of clinical data and images of neoplasms of the sinonasal tract.

    PubMed

    Trimarchi, Matteo; Lund, Valerie J; Nicolai, Piero; Pini, Massimiliano; Senna, Massimo; Howard, David J

    2004-04-01

    The Neoplasms of the Sinonasal Tract software package (NSNT v 1.0) implements a complete visual database for patients with sinonasal neoplasia, facilitating standardization of data and statistical analysis. The software, which is compatible with the Macintosh and Windows platforms, provides multiuser application with a dedicated server (on Windows NT or 2000 or Macintosh OS 9 or X and a network of clients) together with web access, if required. The system hardware consists of an Apple Power Macintosh G4500 MHz computer with PCI bus, 256 Mb of RAM plus 60 Gb hard disk, or any IBM-compatible computer with a Pentium 2 processor. Image acquisition may be performed with different frame-grabber cards for analog or digital video input of different standards (PAL, SECAM, or NTSC) and levels of quality (VHS, S-VHS, Betacam, Mini DV, DV). The visual database is based on 4th Dimension by 4D Inc, and video compression is made in real-time MPEG format. Six sections have been developed: demographics, symptoms, extent of disease, radiology, treatment, and follow-up. Acquisition of data includes computed tomography and magnetic resonance imaging, histology, and endoscopy images, allowing sequential comparison. Statistical analysis integral to the program provides Kaplan-Meier survival curves. The development of a dedicated, user-friendly database for sinonasal neoplasia facilitates a multicenter network and has obvious clinical and research benefits.

  11. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  12. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  13. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  14. Diagnosis of cutaneous thermal burn injuries by multispectral imaging analysis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1978-01-01

    Special photographic or television image analysis is shown to be a potentially useful technique to assist the physician in the early diagnosis of thermal burn injury. A background on the medical and physiological problems of burns is presented. The proposed methodology for burns diagnosis from both the theoretical and clinical points of view is discussed. The television/computer system constructed to accomplish this analysis is described, and the clinical results are discussed.

  15. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  16. An overview of computer vision

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    An overview of computer vision is provided. Image understanding and scene analysis are emphasized, and pertinent aspects of pattern recognition are treated. The basic approach to computer vision systems, the techniques utilized, applications, the current existing systems and state-of-the-art issues and research requirements, who is doing it and who is funding it, and future trends and expectations are reviewed.

  17. Imaging techniques in digital forensic investigation: a study using neural networks

    NASA Astrophysics Data System (ADS)

    Williams, Godfried

    2006-09-01

    Imaging techniques have been applied to a number of applications, such as translation and classification problems in medicine and defence. This paper examines the application of imaging techniques in digital forensics investigation using neural networks. A review of applications of digital image processing is presented, whiles a Pedagogical analysis of computer forensics is also highlighted. A data set describing selected images in different forms are used in the simulation and experimentation.

  18. Determining degree of optic nerve edema from color fundus photography

    NASA Astrophysics Data System (ADS)

    Agne, Jason; Wang, Jui-Kai; Kardon, Randy H.; Garvin, Mona K.

    2015-03-01

    Swelling of the optic nerve head (ONH) is subjectively assessed by clinicians using the Frisén scale. It is believed that a direct measurement of the ONH volume would serve as a better representation of the swelling. However, a direct measurement requires optic nerve imaging with spectral domain optical coherence tomography (SD-OCT) and 3D segmentation of the resulting images, which is not always available during clinical evaluation. Furthermore, telemedical imaging of the eye at remote locations is more feasible with non-mydriatic fundus cameras which are less costly than OCT imagers. Therefore, there is a critical need to develop a more quantitative analysis of optic nerve swelling on a continuous scale, similar to SD-OCT. Here, we select features from more commonly available 2D fundus images and use them to predict ONH volume. Twenty-six features were extracted from each of 48 color fundus images. The features include attributes of the blood vessels, optic nerve head, and peripapillary retina areas. These features were used in a regression analysis to predict ONH volume, as computed by a segmentation of the SD-OCT image. The results of the regression analysis yielded a mean square error of 2.43 mm3 and a correlation coefficient between computed and predicted volumes of R = 0:771, which suggests that ONH volume may be predicted from fundus features alone.

  19. Cardiac imaging: working towards fully-automated machine analysis & interpretation

    PubMed Central

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-01-01

    Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804

  20. New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images

    PubMed Central

    Chen, Jia-Mei; Qu, Ai-Ping; Wang, Lin-Wei; Yuan, Jing-Ping; Yang, Fang; Xiang, Qing-Ming; Maskey, Ninu; Yang, Gui-Fang; Liu, Juan; Li, Yan

    2015-01-01

    Computer-aided image analysis (CAI) can help objectively quantify morphologic features of hematoxylin-eosin (HE) histopathology images and provide potentially useful prognostic information on breast cancer. We performed a CAI workflow on 1,150 HE images from 230 patients with invasive ductal carcinoma (IDC) of the breast. We used a pixel-wise support vector machine classifier for tumor nests (TNs)-stroma segmentation, and a marker-controlled watershed algorithm for nuclei segmentation. 730 morphologic parameters were extracted after segmentation, and 12 parameters identified by Kaplan-Meier analysis were significantly associated with 8-year disease free survival (P < 0.05 for all). Moreover, four image features including TNs feature (HR 1.327, 95%CI [1.001 - 1.759], P = 0.049), TNs cell nuclei feature (HR 0.729, 95%CI [0.537 - 0.989], P = 0.042), TNs cell density (HR 1.625, 95%CI [1.177 - 2.244], P = 0.003), and stromal cell structure feature (HR 1.596, 95%CI [1.142 - 2.229], P = 0.006) were identified by multivariate Cox proportional hazards model to be new independent prognostic factors. The results indicated that CAI can assist the pathologist in extracting prognostic information from HE histopathology images for IDC. The TNs feature, TNs cell nuclei feature, TNs cell density, and stromal cell structure feature could be new prognostic factors. PMID:26022540

  1. Kernel analysis in TeV gamma-ray selection

    NASA Astrophysics Data System (ADS)

    Moriarty, P.; Samuelson, F. W.

    2000-06-01

    We discuss the use of kernel analysis as a technique for selecting gamma-ray candidates in Atmospheric Cherenkov astronomy. The method is applied to observations of the Crab Nebula and Markarian 501 recorded with the Whipple 10 m Atmospheric Cherenkov imaging system, and the results are compared with the standard Supercuts analysis. Since kernel analysis is computationally intensive, we examine approaches to reducing the computational load. Extension of the technique to estimate the energy of the gamma-ray primary is considered. .

  2. Mathematical models used in segmentation and fractal methods of 2-D ultrasound images

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin

    2012-11-01

    Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.

  3. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    PubMed

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  4. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    PubMed

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

  5. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology

    PubMed Central

    Bhargava, Rohit; Madabhushi, Anant

    2017-01-01

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area. PMID:27420575

  6. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  7. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    NASA Astrophysics Data System (ADS)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  8. Computer-aided global breast MR image feature analysis for prediction of tumor response to chemotherapy: performance assessment

    NASA Astrophysics Data System (ADS)

    Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel

    2016-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.

  9. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    NASA Astrophysics Data System (ADS)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  10. Data Visualization and Animation Lab (DVAL) overview

    NASA Technical Reports Server (NTRS)

    Stacy, Kathy; Vonofenheim, Bill

    1994-01-01

    The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.

  11. Interactive machine learning for postprocessing CT images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    This paper concerns the nondestructive evaluation of hardwood logs through the analysis of computed tomography (CT) images. Several studies have shown that the commercial value of resulting boards can be increased substantially if log sawing strategies are chosen using prior knowledge of internal log defects. Although CT imaging offers a potential means of obtaining...

  12. NDE scanning and imaging of aircraft structure

    NASA Astrophysics Data System (ADS)

    Bailey, Donald; Kepler, Carl; Le, Cuong

    1995-07-01

    The Science and Engineering Lab at McClellan Air Force Base, Sacramento, Calif. has been involved in the development and use of computer-based scanning systems for NDE (nondestructive evaluation) since 1985. This paper describes the history leading up to our current applications which employ eddy current and ultrasonic scanning of aircraft structures that contain both metallics and advanced composites. The scanning is performed using industrialized computers interfaced to proprietary acquisition equipment and software. Examples are shown that image several types of damage such as exfoliation and fuselage lap joint corrosion in aluminum, impact damage, embedded foreign material, and porosity in Kevlar and graphite epoxy composites. Image analysis techniques are reported that are performed using consumer oriented computer hardware and software that are not NDE specific and not expensive

  13. Understanding the Role of Hemodynamics in the Initiation, Progression, Rupture, and Treatment Outcome of Cerebral Aneurysm from Medical Image-Based Computational Studies

    PubMed Central

    Castro, Marcelo A.

    2013-01-01

    About a decade ago, the first image-based computational hemodynamic studies of cerebral aneurysms were presented. Their potential for clinical applications was the result of a right combination of medical image processing, vascular reconstruction, and grid generation techniques used to reconstruct personalized domains for computational fluid and solid dynamics solvers and data analysis and visualization techniques. A considerable number of studies have captivated the attention of clinicians, neurosurgeons, and neuroradiologists, who realized the ability of those tools to help in understanding the role played by hemodynamics in the natural history and management of intracranial aneurysms. This paper intends to summarize the most relevant results in the field reported during the last years. PMID:24967285

  14. Robust crop and weed segmentation under uncontrolled outdoor illumination

    USDA-ARS?s Scientific Manuscript database

    A new machine vision for weed detection was developed from RGB color model images. Processes included in the algorithm for the detection were excessive green conversion, threshold value computation by statistical analysis, adaptive image segmentation by adjusting the threshold value, median filter, ...

  15. View synthesis using parallax invariance

    NASA Astrophysics Data System (ADS)

    Dornaika, Fadi

    2001-06-01

    View synthesis becomes a focus of attention of both the computer vision and computer graphics communities. It consists of creating novel images of a scene as it would appear from novel viewpoints. View synthesis can be used in a wide variety of applications such as video compression, graphics generation, virtual reality and entertainment. This paper addresses the following problem. Given a dense disparity map between two reference images, we would like to synthesize a novel view of the same scene associated with a novel viewpoint. Most of the existing work is relying on building a set of 3D meshes which are then projected onto the new image (the rendering process is performed using texture mapping). The advantages of our view synthesis approach are as follows. First, the novel view is specified by a rotation and a translation which are the most natural way to express the virtual location of the camera. Second, the approach is able to synthesize highly realistic images whose viewing position is significantly far away from the reference viewpoints. Third, the approach is able to handle the visibility problem during the synthesis process. Our developed framework has two main steps. The first step (analysis step) consists of computing the homography at infinity, the epipoles, and thus the parallax field associated with the reference images. The second step (synthesis step) consists of warping the reference image into a new one, which is based on the invariance of the computed parallax field. The analysis step is working directly on the reference views, and only need to be performed once. Examples of synthesizing novel views using either feature correspondences or dense disparity map have demonstrated the feasibility of the proposed approach.

  16. Histology image analysis for carcinoma detection and grading

    PubMed Central

    He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George R.

    2012-01-01

    This paper presents an overview of the image analysis techniques in the domain of histopathology, specifically, for the objective of automated carcinoma detection and classification. As in other biomedical imaging areas such as radiology, many computer assisted diagnosis (CAD) systems have been implemented to aid histopathologists and clinicians in cancer diagnosis and research, which have been attempted to significantly reduce the labor and subjectivity of traditional manual intervention with histology images. The task of automated histology image analysis is usually not simple due to the unique characteristics of histology imaging, including the variability in image preparation techniques, clinical interpretation protocols, and the complex structures and very large size of the images themselves. In this paper we discuss those characteristics, provide relevant background information about slide preparation and interpretation, and review the application of digital image processing techniques to the field of histology image analysis. In particular, emphasis is given to state-of-the-art image segmentation methods for feature extraction and disease classification. Four major carcinomas of cervix, prostate, breast, and lung are selected to illustrate the functions and capabilities of existing CAD systems. PMID:22436890

  17. A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun

    2017-09-01

    Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.

  18. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  19. General-purpose interface bus for multiuser, multitasking computer system

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1990-01-01

    The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.

  20. Hemodynamic analysis of intracranial aneurysms using phase-contrast magnetic resonance imaging and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Xuemei; Li, Rui; Chen, Yu; Sia, Sheau Fung; Li, Donghai; Zhang, Yu; Liu, Aihua

    2017-04-01

    Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient's specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.

  1. Automated clinical system for chromosome analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)

    1978-01-01

    An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.

  2. ImagePy: an open-source, Python-based and platform-independent software package for boimage analysis.

    PubMed

    Wang, Anliang; Yan, Xiaolong; Wei, Zhijun

    2018-04-27

    This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.

  3. Practical quantification of necrosis in histological whole-slide images.

    PubMed

    Homeyer, André; Schenk, Andrea; Arlt, Janine; Dahmen, Uta; Dirsch, Olaf; Hahn, Horst K

    2013-06-01

    Since the histological quantification of necrosis is a common task in medical research and practice, we evaluate different image analysis methods for quantifying necrosis in whole-slide images. In a practical usage scenario, we assess the impact of different classification algorithms and feature sets on both accuracy and computation time. We show how a well-chosen combination of multiresolution features and an efficient postprocessing step enables the accurate quantification necrosis in gigapixel images in less than a minute. The results are general enough to be applied to other areas of histological image analysis as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Automated, computer-guided PASI measurements by digital image analysis versus conventional physicians' PASI calculations: study protocol for a comparative, single-centre, observational study.

    PubMed

    Fink, Christine; Uhlmann, Lorenz; Klose, Christina; Haenssle, Holger A

    2018-05-17

    Reliable and accurate assessment of severity in psoriasis is very important in order to meet indication criteria for initiation of systemic treatment or to evaluate treatment efficacy. The most acknowledged tool for measuring the extent of psoriatic skin changes is the Psoriasis Area and Severity Index (PASI). However, the calculation of PASI can be tedious and subjective and high intraobserver and interobserver variability is an important concern. Therefore, there is a great need for a standardised and objective method that guarantees a reproducible PASI calculation. Within this study we will investigate the precision and reproducibility of automated, computer-guided PASI measurements in comparison to trained physicians to address these limitations. Non-interventional analyses of PASI calculations by either physicians in a prospective versus retrospective setting or an automated computer-guided algorithm in 120 patients with plaque psoriasis. All retrospective PASI calculations by physicians or by the computer algorithm are based on total body digital images. The primary objective of this study is comparison of automated computer-guided PASI measurements by means of digital image analysis versus conventional, prospective or retrospective physicians' PASI assessments. Secondary endpoints include (1) the assessment of physicians' interobserver variance in PASI calculations, (2) the assessment of physicians' intraobserver variance in PASI assessments of the same patients' images after a time interval of at least 4 weeks, (3) the assessment of the deviation between physicians' prospective versus retrospective PASI calculations, and (4) the reproducibility of automated computer-guided PASI measurements by assessment of two sets of total body digital images of the same patients taken at one time point. Ethical approval was provided by the Ethics Committee of the Medical Faculty of the University of Heidelberg (ethics approval number S-379/2016). DRKS00011818; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Physics and Computational Methods for X-ray Scatter Estimation and Correction in Cone-Beam Computed Tomography

    NASA Astrophysics Data System (ADS)

    Bootsma, Gregory J.

    X-ray scatter in cone-beam computed tomography (CBCT) is known to reduce image quality by introducing image artifacts, reducing contrast, and limiting computed tomography (CT) number accuracy. The extent of the effect of x-ray scatter on CBCT image quality is determined by the shape and magnitude of the scatter distribution in the projections. A method to allay the effects of scatter is imperative to enable application of CBCT to solve a wider domain of clinical problems. The work contained herein proposes such a method. A characterization of the scatter distribution through the use of a validated Monte Carlo (MC) model is carried out. The effects of imaging parameters and compensators on the scatter distribution are investigated. The spectral frequency components of the scatter distribution in CBCT projection sets are analyzed using Fourier analysis and found to reside predominately in the low frequency domain. The exact frequency extents of the scatter distribution are explored for different imaging configurations and patient geometries. Based on the Fourier analysis it is hypothesized the scatter distribution can be represented by a finite sum of sine and cosine functions. The fitting of MC scatter distribution estimates enables the reduction of the MC computation time by diminishing the number of photon tracks required by over three orders of magnitude. The fitting method is incorporated into a novel scatter correction method using an algorithm that simultaneously combines multiple MC scatter simulations. Running concurrent MC simulations while simultaneously fitting the results allows for the physical accuracy and flexibility of MC methods to be maintained while enhancing the overall efficiency. CBCT projection set scatter estimates, using the algorithm, are computed on the order of 1--2 minutes instead of hours or days. Resulting scatter corrected reconstructions show a reduction in artifacts and improvement in tissue contrast and voxel value accuracy.

  6. Mesoscale and severe storms (Mass) data management and analysis system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.; Dickerson, M.

    1984-01-01

    Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.

  7. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy

    PubMed Central

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin

    2016-01-01

    Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165

  8. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy.

    PubMed

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin; Sohn, Dae Kyung

    2016-07-01

    We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.

  9. IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system

    NASA Technical Reports Server (NTRS)

    Libert, J. M.

    1982-01-01

    The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.

  10. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  11. CALIPSO: an interactive image analysis software package for desktop PACS workstations

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Huang, H. K.

    1990-07-01

    The purpose of this project is to develop a low cost workstation for quantitative analysis of multimodality images using a Macintosh II personal computer. In the current configuration the Macintosh operates as a stand alone workstation where images are imported either from a central PACS server through a standard Ethernet network or recorded through video digitizer board. The CALIPSO software developed contains a large variety ofbasic image display and manipulation tools. We focused our effort however on the design and implementation ofquantitative analysis methods that can be applied to images from different imaging modalities. Analysis modules currently implemented include geometric and densitometric volumes and ejection fraction calculation from radionuclide and cine-angiograms Fourier analysis ofcardiac wall motion vascular stenosis measurement color coded parametric display of regional flow distribution from dynamic coronary angiograms automatic analysis ofmyocardial distribution ofradiolabelled tracers from tomoscintigraphic images. Several of these analysis tools were selected because they use similar color coded andparametric display methods to communicate quantitative data extracted from the images. 1. Rationale and objectives of the project Developments of Picture Archiving and Communication Systems (PACS) in clinical environment allow physicians and radiologists to assess radiographic images directly through imaging workstations (''). This convenient access to the images is often limited by the number of workstations available due in part to their high cost. There is also an increasing need for quantitative analysis ofthe images. During thepast decade

  12. Region Templates: Data Representation and Management for High-Throughput Image Analysis

    PubMed Central

    Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Klasky, Scott; Saltz, Joel

    2015-01-01

    We introduce a region template abstraction and framework for the efficient storage, management and processing of common data types in analysis of large datasets of high resolution images on clusters of hybrid computing nodes. The region template abstraction provides a generic container template for common data structures, such as points, arrays, regions, and object sets, within a spatial and temporal bounding box. It allows for different data management strategies and I/O implementations, while providing a homogeneous, unified interface to applications for data storage and retrieval. A region template application is represented as a hierarchical dataflow in which each computing stage may be represented as another dataflow of finer-grain tasks. The execution of the application is coordinated by a runtime system that implements optimizations for hybrid machines, including performance-aware scheduling for maximizing the utilization of computing devices and techniques to reduce the impact of data transfers between CPUs and GPUs. An experimental evaluation on a state-of-the-art hybrid cluster using a microscopy imaging application shows that the abstraction adds negligible overhead (about 3%) and achieves good scalability and high data transfer rates. Optimizations in a high speed disk based storage implementation of the abstraction to support asynchronous data transfers and computation result in an application performance gain of about 1.13×. Finally, a processing rate of 11,730 4K×4K tiles per minute was achieved for the microscopy imaging application on a cluster with 100 nodes (300 GPUs and 1,200 CPU cores). This computation rate enables studies with very large datasets. PMID:26139953

  13. Dedicated computer system AOTK for image processing and analysis of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Fojud, A.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P.; Piekarska-Boniecka, H.

    2017-07-01

    The aim of the research was made the dedicated application AOTK (pol. Analiza Obrazu Trzeszczki Kopytowej) for image processing and analysis of horse navicular bone. The application was produced by using specialized software like Visual Studio 2013 and the .NET platform. To implement algorithms of image processing and analysis were used libraries of Aforge.NET. Implemented algorithms enabling accurate extraction of the characteristics of navicular bones and saving data to external files. Implemented in AOTK modules allowing the calculations of distance selected by user, preliminary assessment of conservation of structure of the examined objects. The application interface is designed in a way that ensures user the best possible view of the analyzed images.

  14. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  15. Estimation of melanin content in iris of human eye: prognosis for glaucoma diagnostics

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Koblova, Ekaterina V.; Genina, Elina A.; Kamenskikh, Tatyana G.; Dolotov, Leonid E.; Sinichkin, Yury P.; Tuchin, Valery V.

    2007-02-01

    Based on the experimental data obtained in vivo from digital analysis of color images of human irises, the mean melanin content in human eye irises has been estimated. For registration of the color images a digital camera Olympus C-5060 has been used. The images have been obtained from irises of healthy volunteers as well as from irises of patients with open-angle glaucoma. The computer program has been developed for digital analysis of the images. The result has been useful for development of novel and optimization of already existing methods of non-invasive glaucoma diagnostics.

  16. Image Understanding Research and Its Application to Cartography and Computer-Based Analysis of Aerial Imagery

    DTIC Science & Technology

    1983-05-01

    Parallel Computation that Assign Canonical Object-Based Frames of Refer- ence," Proc. 7th it. .nt. Onf. on Artifcial Intellig nce (IJCAI-81), Vol. 2...Perception of Linear Struc- ture in Imaged Data ." TN 276, Artiflci!.a Intelligence Center, SRI International, Feb. 1983. [Fram75] J.P. Frain and E.S...1983 May 1983 D C By: Martin A. Fischler, Program Director S ELECTE Principal Investigator, (415)859-5106 MAY 2 21990 Artificial Intelligence Center

  17. A human visual based binarization technique for histological images

    NASA Astrophysics Data System (ADS)

    Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos

    2017-05-01

    In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.

  18. Computer-Assisted Microscopy in Science Teaching and Research.

    ERIC Educational Resources Information Center

    Radice, Gary P.

    1997-01-01

    Describes a technological approach to teaching the relationships between biological form and function. Computer-assisted image analysis was integrated into a microanatomy course. Students spend less time memorizing and more time observing, measuring, and interpreting, building technical and analytical skills. Appendices list hardware and software…

  19. Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis

    PubMed Central

    Teodoro, George; Kurc, Tahsin; Andrade, Guilherme; Kong, Jun; Ferreira, Renato; Saltz, Joel

    2015-01-01

    We carry out a comparative performance study of multi-core CPUs, GPUs and Intel Xeon Phi (Many Integrated Core-MIC) with a microscopy image analysis application. We experimentally evaluate the performance of computing devices on core operations of the application. We correlate the observed performance with the characteristics of computing devices and data access patterns, computation complexities, and parallelization forms of the operations. The results show a significant variability in the performance of operations with respect to the device used. The performances of operations with regular data access are comparable or sometimes better on a MIC than that on a GPU. GPUs are more efficient than MICs for operations that access data irregularly, because of the lower bandwidth of the MIC for random data accesses. We propose new performance-aware scheduling strategies that consider variabilities in operation speedups. Our scheduling strategies significantly improve application performance compared to classic strategies in hybrid configurations. PMID:28239253

  20. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    PubMed

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  1. Computer-assisted adjuncts for aneurysmal morphologic assessment: toward more precise and accurate approaches

    NASA Astrophysics Data System (ADS)

    Rajabzadeh-Oghaz, Hamidreza; Varble, Nicole; Davies, Jason M.; Mowla, Ashkan; Shakir, Hakeem J.; Sonig, Ashish; Shallwani, Hussain; Snyder, Kenneth V.; Levy, Elad I.; Siddiqui, Adnan H.; Meng, Hui

    2017-03-01

    Neurosurgeons currently base most of their treatment decisions for intracranial aneurysms (IAs) on morphological measurements made manually from 2D angiographic images. These measurements tend to be inaccurate because 2D measurements cannot capture the complex geometry of IAs and because manual measurements are variable depending on the clinician's experience and opinion. Incorrect morphological measurements may lead to inappropriate treatment strategies. In order to improve the accuracy and consistency of morphological analysis of IAs, we have developed an image-based computational tool, AView. In this study, we quantified the accuracy of computer-assisted adjuncts of AView for aneurysmal morphologic assessment by performing measurement on spheres of known size and anatomical IA models. AView has an average morphological error of 0.56% in size and 2.1% in volume measurement. We also investigate the clinical utility of this tool on a retrospective clinical dataset and compare size and neck diameter measurement between 2D manual and 3D computer-assisted measurement. The average error was 22% and 30% in the manual measurement of size and aneurysm neck diameter, respectively. Inaccuracies due to manual measurements could therefore lead to wrong treatment decisions in 44% and inappropriate treatment strategies in 33% of the IAs. Furthermore, computer-assisted analysis of IAs improves the consistency in measurement among clinicians by 62% in size and 82% in neck diameter measurement. We conclude that AView dramatically improves accuracy for morphological analysis. These results illustrate the necessity of a computer-assisted approach for the morphological analysis of IAs.

  2. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images.

    PubMed

    Kai, Chiharu; Uchiyama, Yoshikazu; Shiraishi, Junji; Fujita, Hiroshi; Doi, Kunio

    2018-05-10

    In the post-genome era, a novel research field, 'radiomics' has been developed to offer a new viewpoint for the use of genotypes in radiology and medicine research which have traditionally focused on the analysis of imaging phenotypes. The present study analyzed brain morphological changes related to the individual's genotype. Our data consisted of magnetic resonance (MR) images of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), as well as their apolipoprotein E (APOE) genotypes. First, statistical parametric mapping (SPM) 12 was used for three-dimensional anatomical standardization of the brain MR images. A total of 30 normal images were used to create a standard normal brain image. Z-score maps were generated to identify the differences between an abnormal image and the standard normal brain. Our experimental results revealed that cerebral atrophies, depending on genotypes, can occur in different locations and that morphological changes may differ between MCI and AD. Using a classifier to characterize cerebral atrophies related to an individual's genotype, we developed a computer-aided diagnosis (CAD) scheme to identify the disease. For the early detection of cerebral diseases, a screening system using MR images, called Brain Check-up, is widely performed in Japan. Therefore, our proposed CAD scheme would be used in Brain Check-up.

  3. Scalable computing for evolutionary genomics.

    PubMed

    Prins, Pjotr; Belhachemi, Dominique; Möller, Steffen; Smant, Geert

    2012-01-01

    Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving a quick overview of advanced programming techniques. Unfortunately, parallel programming is difficult and requires special software design. The alternative, especially attractive for legacy software, is to introduce poor man's parallelization by running whole programs in parallel as separate processes, using job schedulers. Such pipelines are often deployed on bioinformatics computer clusters. Recent advances in PC virtualization have made it possible to run a full computer operating system, with all of its installed software, on top of another operating system, inside a "box," or virtual machine (VM). Such a VM can flexibly be deployed on multiple computers, in a local network, e.g., on existing desktop PCs, and even in the Cloud, to create a "virtual" computer cluster. Many bioinformatics applications in evolutionary biology can be run in parallel, running processes in one or more VMs. Here, we show how a ready-made bioinformatics VM image, named BioNode, effectively creates a computing cluster, and pipeline, in a few steps. This allows researchers to scale-up computations from their desktop, using available hardware, anytime it is required. BioNode is based on Debian Linux and can run on networked PCs and in the Cloud. Over 200 bioinformatics and statistical software packages, of interest to evolutionary biology, are included, such as PAML, Muscle, MAFFT, MrBayes, and BLAST. Most of these software packages are maintained through the Debian Med project. In addition, BioNode contains convenient configuration scripts for parallelizing bioinformatics software. Where Debian Med encourages packaging free and open source bioinformatics software through one central project, BioNode encourages creating free and open source VM images, for multiple targets, through one central project. BioNode can be deployed on Windows, OSX, Linux, and in the Cloud. Next to the downloadable BioNode images, we provide tutorials online, which empower bioinformaticians to install and run BioNode in different environments, as well as information for future initiatives, on creating and building such images.

  4. Computer-based route-definition system for peripheral bronchoscopy.

    PubMed

    Graham, Michael W; Gibbs, Jason D; Higgins, William E

    2012-04-01

    Multi-detector computed tomography (MDCT) scanners produce high-resolution images of the chest. Given a patient's MDCT scan, a physician can use an image-guided intervention system to first plan and later perform bronchoscopy to diagnostic sites situated deep in the lung periphery. An accurate definition of complete routes through the airway tree leading to the diagnostic sites, however, is vital for avoiding navigation errors during image-guided bronchoscopy. We present a system for the robust definition of complete airway routes suitable for image-guided bronchoscopy. The system incorporates both automatic and semiautomatic MDCT analysis methods for this purpose. Using an intuitive graphical user interface, the user invokes automatic analysis on a patient's MDCT scan to produce a series of preliminary routes. Next, the user visually inspects each route and quickly corrects the observed route defects using the built-in semiautomatic methods. Application of the system to a human study for the planning and guidance of peripheral bronchoscopy demonstrates the efficacy of the system.

  5. Rapid Phenotyping of Root Systems of Brachypodium Plants Using X-ray Computed Tomography: a Comparative Study of Soil Types and Segmentation Tools

    NASA Astrophysics Data System (ADS)

    Varga, T.; McKinney, A. L.; Bingham, E.; Handakumbura, P. P.; Jansson, C.

    2017-12-01

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as in processes with important implications to farming and thus human food supply. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. Selected Brachypodium distachyon phenotypes were grown in both natural and artificial soil mixes. The specimens were imaged by XCT, and the root architectures were extracted from the data using three different software-based methods; RooTrak, ImageJ-based WEKA segmentation, and the segmentation feature in VG Studio MAX. The 3D root image was successfully segmented at 30 µm resolution by all three methods. In this presentation, ease of segmentation and the accuracy of the extracted quantitative information (root volume and surface area) will be compared between soil types and segmentation methods. The best route to easy and accurate segmentation and root analysis will be highlighted.

  6. [Computer-assisted image processing for quantifying histopathologic variables in the healing of colonic anastomosis in dogs].

    PubMed

    Novelli, M D; Barreto, E; Matos, D; Saad, S S; Borra, R C

    1997-01-01

    The authors present the experimental results of the computerized quantifying of tissular structures involved in the reparative process of colonic anastomosis performed by manual suture and biofragmentable ring. The quantified variables in this study were: oedema fluid, myofiber tissue, blood vessel and cellular nuclei. An image processing software developed at Laboratório de Informática Dedicado à Odontologia (LIDO) was utilized to quantifying the pathognomonic alterations in the inflammatory process in colonic anastomosis performed in 14 dogs. The results were compared to those obtained through traditional way diagnosis by two pathologists in view of counterproof measures. The criteria for these diagnoses were defined in levels represented by absent, light, moderate and intensive which were compared to analysis performed by the computer. There was significant statistical difference between two techniques: the biofragmentable ring technique exhibited low oedema fluid, organized myofiber tissue and higher number of alongated cellular nuclei in relation to manual suture technique. The analysis of histometric variables through computational image processing was considered efficient and powerful to quantify the main tissular inflammatory and reparative changing.

  7. Computational Methods for Nanoscale X-ray Computed Tomography Image Analysis of Fuel Cell and Battery Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Arjun S.

    Over the last fifteen years, there has been a rapid growth in the use of high resolution X-ray computed tomography (HRXCT) imaging in material science applications. We use it at nanoscale resolutions up to 50 nm (nano-CT) for key research problems in large scale operation of polymer electrolyte membrane fuel cells (PEMFC) and lithium-ion (Li-ion) batteries in automotive applications. PEMFC are clean energy sources that electrochemically react with hydrogen gas to produce water and electricity. To reduce their costs, capturing their electrode nanostructure has become significant in modeling and optimizing their performance. For Li-ion batteries, a key challenge in increasing their scope for the automotive industry is Li metal dendrite growth. Li dendrites are structures of lithium with 100 nm features of interest that can grow chaotically within a battery and eventually lead to a short-circuit. HRXCT imaging is an effective diagnostics tool for such applications as it is a non-destructive method of capturing the 3D internal X-ray absorption coefficient of materials from a large series of 2D X-ray projections. Despite a recent push to use HRXCT for quantitative information on material samples, there is a relative dearth of computational tools in nano-CT image processing and analysis. Hence, we focus on developing computational methods for nano-CT image analysis of fuel cell and battery materials as required by the limitations in material samples and the imaging environment. The first problem we address is the segmentation of nano-CT Zernike phase contrast images. Nano-CT instruments are equipped with Zernike phase contrast optics to distinguish materials with a low difference in X-ray absorption coefficient by phase shifting the X-ray wave that is not diffracted by the sample. However, it creates image artifacts that hinder the use of traditional image segmentation techniques. To restore such images, we setup an inverse problem by modeling the X-ray phase contrast optics. We solve for the artifact-free images through an optimization function that uses novel edge detection and fast image interpolation methods. We use this optics-based segmentation method in two main research problems - 1) the characterization of a failure mechanism in the internal structure of Li-ion battery electrodes and 2) the measurement of Li metal dendrite morphology for different current and temperature parameters of Li-ion battery cell operation. The second problem we address is the development of a space+time (4D) reconstruction method for in-operando imaging of samples undergoing temporal change, particularly for X-ray sources with low throughput and nanoscale spatial resolutions. The challenge in using such systems is achieving a sufficient temporal resolution despite exposure times of a 2D projection on the order of 1 minute. We develop a 4D dynamic X-ray computed tomography (CT) reconstruction method, capable of reconstructing a temporal 3D image every 2 to 8 projections. Its novel properties are its projection angle sequence and the probabilistic detection of experimental change. We show its accuracy on phantom and experimental datasets to show its promise in temporally resolving Li metal dendrite growth and in elucidating mitigation strategies.

  8. DeepInfer: open-source deep learning deployment toolkit for image-guided therapy

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-03-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  9. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.

    PubMed

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-02-11

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  10. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy

    PubMed Central

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-01-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “DeepInfer” – an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794

  11. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  12. Engineering the Ideal Gigapixel Image Viewer

    NASA Astrophysics Data System (ADS)

    Perpeet, D. Wassenberg, J.

    2011-09-01

    Despite improvements in automatic processing, analysts are still faced with the task of evaluating gigapixel-scale mosaics or images acquired by telescopes such as Pan-STARRS. Displaying such images in ‘ideal’ form is a major challenge even today, and the amount of data will only increase as sensor resolutions improve. In our opinion, the ideal viewer has several key characteristics. Lossless display - down to individual pixels - ensures all information can be extracted from the image. Support for all relevant pixel formats (integer or floating point) allows displaying data from different sensors. Smooth zooming and panning in the high-resolution data enables rapid screening and navigation in the image. High responsiveness to input commands avoids frustrating delays. Instantaneous image enhancement, e.g. contrast adjustment and image channel selection, helps with analysis tasks. Modest system requirements allow viewing on regular workstation computers or even laptops. To the best of our knowledge, no such software product is currently available. Meeting these goals requires addressing certain realities of current computer architectures. GPU hardware accelerates rendering and allows smooth zooming without high CPU load. Programmable GPU shaders enable instant channel selection and contrast adjustment without any perceptible slowdown or changes to the input data. Relatively low disk transfer speeds suggest the use of compression to decrease the amount of data to transfer. Asynchronous I/O allows decompressing while waiting for previous I/O operations to complete. The slow seek times of magnetic disks motivate optimizing the order of the data on disk. Vectorization and parallelization allow significant increases in computational capacity. Limited memory requires streaming and caching of image regions. We develop a viewer that takes the above issues into account. Its awareness of the computer architecture enables previously unattainable features such as smooth zooming and image enhancement within high-resolution data. We describe our implementation, disclosing its novel file format and lossless image codec whose decompression is faster than copying the raw data in memory. Both provide crucial performance boosts compared to conventional approaches. Usability tests demonstrate the suitability of our viewer for rapid analysis of large SAR datasets, multispectral satellite imagery and mosaics.

  13. Adaptive fusion of infrared and visible images in dynamic scene

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi

    2011-11-01

    Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.

  14. Exploration of Mars by Mariner 9 - Television sensors and image processing.

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1973-01-01

    Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.

  15. Evaluation of LANDSAT-2 (ERTS) images applied to geologic structures and mineral resources of South America. [Salar de Coposa, Chile and Salar of Uyuni, Bolivia

    NASA Technical Reports Server (NTRS)

    Carter, W. D. (Principal Investigator); Kowalik, W. S.

    1976-01-01

    The author has identified the following significant results. The Salar of Coposa is located in northern Chile along the frontier with Bolivia. The surface was divided into six general classes of materials. Analysis of LANDSAT image 1243-14001 by use of interactive multispectral computer (Image 100) enabled accurate repetition of these general classes based on reflectance. The Salar of Uyuni is the largest of the South American evaporite deposits. Using image 1243-13595, and parallel piped computer classification of reflectance units, the Salar was divided into nine classes ranging from deep to shallow water, water over salt, salt saturated with water, and several classes of dry salt.

  16. Digital Image Correlation Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Dan; Crozier, Paul; Reu, Phil

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full-field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classesmore » or through a graphical user interface.« less

  17. Contrast-enhanced digital mammography (CEDM): imaging modeling, computer simulations, and phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Jing, Zhenxue; Smith, Andrew

    2005-04-01

    Contrast enhanced digital mammography (CEDM), which is based upon the analysis of a series of x-ray projection images acquired before/after the administration of contrast agents, may provide physicians critical physiologic and morphologic information of breast lesions to determine the malignancy of lesions. This paper proposes to combine the kinetic analysis (KA) of contrast agent uptake/washout process and the dual-energy (DE) contrast enhancement together to formulate a hybrid contrast enhanced breast-imaging framework. The quantitative characteristics of materials and imaging components in the x-ray imaging chain, including x-ray tube (tungsten) spectrum, filter, breast tissues/lesions, contrast agents (non-ionized iodine solution), and selenium detector, were systematically modeled. The contrast-noise-ration (CNR) of iodinated lesions and mean absorbed glandular dose were estimated mathematically. The x-ray techniques optimization was conducted through a series of computer simulations to find the optimal tube voltage, filter thickness, and exposure levels for various breast thicknesses, breast density, and detectable contrast agent concentration levels in terms of detection efficiency (CNR2/dose). A phantom study was performed on a modified Selenia full field digital mammography system to verify the simulated results. The dose level was comparable to the dose in diagnostic mode (less than 4 mGy for an average 4.2 cm compressed breast). The results from the computer simulations and phantom study are being used to optimize an ongoing clinical study.

  18. Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2013-01-01

    A software method has been developed that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography (CT). This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2D sheets (or flattened onion skins ) in addition to a series of top view slices and 3D volume rendering. The advantages of viewing the data in this fashion are as follows: (1) the use of standard and specialized image processing and analysis methods is facilitated having 2D array data versus a volume rendering; (2) accurate lateral dimensional analysis of flaws is possible in the unwrapped sheets versus volume rendering; (3) flaws in the part jump out at the inspector with the proper contrast expansion settings in the unwrapped sheets; and (4) it is much easier for the inspector to locate flaws in the unwrapped sheets versus top view slices for very thin cylinders. The method is fully automated and requires no input from the user except proper voxel dimension from the CT experiment and wall thickness of the part. The software is available in 32-bit and 64-bit versions, and can be used with binary data (8- and 16-bit) and BMP type CT image sets. The software has memory (RAM) and hard-drive based modes. The advantage of the (64-bit) RAM-based mode is speed (and is very practical for users of 64-bit Windows operating systems and computers having 16 GB or more RAM). The advantage of the hard-drive based analysis is one can work with essentially unlimited-sized data sets. Separate windows are spawned for the unwrapped/re-sliced data view and any image processing interactive capability. Individual unwrapped images and un -wrapped image series can be saved in common image formats. More information is available at http://www.grc.nasa.gov/WWW/OptInstr/ NDE_CT_CylinderUnwrapper.html.

  19. Computer-assisted image processing to detect spores from the fungus Pandora neoaphidis.

    PubMed

    Korsnes, Reinert; Westrum, Karin; Fløistad, Erling; Klingen, Ingeborg

    2016-01-01

    This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared on microscope slides derived from trapping. The application is to monitor aerial spore counts of the entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids. Automatic detection of such spores can therefore play a role in plant protection. The present approach for such detection is a modification of traditional manual microscopy of prepared slides, where autonomous image recording precedes computerised image analysis. The purpose of the present image analysis is to support human visual inspection of imagery data - not to replace it. The workflow has three components:•Preparation of slides for microscopy.•Image recording.•Computerised image processing where the initial part is, as usual, segmentation depending on the actual data product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and projection on a three parameter egg shape space.

  20. 3D Texture Features Mining for MRI Brain Tumor Identification

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra

    2014-03-01

    Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.

Top