Sample records for computational image processing

  1. System design and implementation of digital-image processing using computational grids

    NASA Astrophysics Data System (ADS)

    Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping

    2005-06-01

    As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.

  2. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  3. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  4. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  5. Image-Processing Software For A Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.

    1992-01-01

    Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.

  6. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  7. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  8. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  9. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  10. Image Processing Using a Parallel Architecture.

    DTIC Science & Technology

    1987-12-01

    ENG/87D-25 Abstract This study developed a set o± low level image processing tools on a parallel computer that allows concurrent processing of images...environment, the set of tools offers a significant reduction in the time required to perform some commonly used image processing operations. vI IMAGE...step toward developing these systems, a structured set of image processing tools was implemented using a parallel computer. More important than

  11. SU-D-BRD-02: A Web-Based Image Processing and Plan Evaluation Platform (WIPPEP) for Future Cloud-Based Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, X; Liu, L; Xing, L

    Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform through a web browser and exhibited potential for future cloud based radiotherapy.« less

  12. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  13. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.

  14. Computers in Public Schools: Changing the Image with Image Processing.

    ERIC Educational Resources Information Center

    Raphael, Jacqueline; Greenberg, Richard

    1995-01-01

    The kinds of educational technologies selected can make the difference between uninspired, rote computer use and challenging learning experiences. University of Arizona's Image Processing for Teaching Project has worked with over 1,000 teachers to develop image-processing techniques that provide students with exciting, open-ended opportunities for…

  15. Fast Image Subtraction Using Multi-cores and GPUs

    NASA Astrophysics Data System (ADS)

    Hartung, Steven; Shukla, H.

    2013-01-01

    Many important image processing techniques in astronomy require a massive number of computations per pixel. Among them is an image differencing technique known as Optimal Image Subtraction (OIS), which is very useful for detecting and characterizing transient phenomena. Like many image processing routines, OIS computations increase proportionally with the number of pixels being processed, and the number of pixels in need of processing is increasing rapidly. Utilizing many-core graphical processing unit (GPU) technology in a hybrid conjunction with multi-core CPU and computer clustering technologies, this work presents a new astronomy image processing pipeline architecture. The chosen OIS implementation focuses on the 2nd order spatially-varying kernel with the Dirac delta function basis, a powerful image differencing method that has seen limited deployment in part because of the heavy computational burden. This tool can process standard image calibration and OIS differencing in a fashion that is scalable with the increasing data volume. It employs several parallel processing technologies in a hierarchical fashion in order to best utilize each of their strengths. The Linux/Unix based application can operate on a single computer, or on an MPI configured cluster, with or without GPU hardware. With GPU hardware available, even low-cost commercial video cards, the OIS convolution and subtraction times for large images can be accelerated by up to three orders of magnitude.

  16. Computer measurement of particle sizes in electron microscope images

    NASA Technical Reports Server (NTRS)

    Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.

    1976-01-01

    Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.

  17. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  18. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  19. Analyses of requirements for computer control and data processing experiment subsystems. Volume 2: ATM experiment S-056 image data processing system software development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The IDAPS (Image Data Processing System) is a user-oriented, computer-based, language and control system, which provides a framework or standard for implementing image data processing applications, simplifies set-up of image processing runs so that the system may be used without a working knowledge of computer programming or operation, streamlines operation of the image processing facility, and allows multiple applications to be run in sequence without operator interaction. The control system loads the operators, interprets the input, constructs the necessary parameters for each application, and cells the application. The overlay feature of the IBSYS loader (IBLDR) provides the means of running multiple operators which would otherwise overflow core storage.

  20. Advances in medical image computing.

    PubMed

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  1. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    PubMed

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.

  2. Image processing and pattern recognition with CVIPtools MATLAB toolbox: automatic creation of masks for veterinary thermographic images

    NASA Astrophysics Data System (ADS)

    Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph

    2016-09-01

    CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.

  3. Anniversary Paper: Image processing and manipulation through the pages of Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armato, Samuel G. III; Ginneken, Bram van; Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q0S.459, 3584 CX Utrecht

    The language of radiology has gradually evolved from ''the film'' (the foundation of radiology since Wilhelm Roentgen's 1895 discovery of x-rays) to ''the image,'' an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist's ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatialmore » alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the ''image'' as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of Medical Physics.« less

  4. Analyses of requirements for computer control and data processing experiment subsystems. Volume 1: ATM experiment S-056 image data processing system techniques development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.

  5. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  6. New opportunities for quality enhancing of images captured by passive THz camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2014-10-01

    As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.

  7. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  8. A low-cost vector processor boosting compute-intensive image processing operations

    NASA Technical Reports Server (NTRS)

    Adorf, Hans-Martin

    1992-01-01

    Low-cost vector processing (VP) is within reach of everyone seriously engaged in scientific computing. The advent of affordable add-on VP-boards for standard workstations complemented by mathematical/statistical libraries is beginning to impact compute-intensive tasks such as image processing. A case in point in the restoration of distorted images from the Hubble Space Telescope. A low-cost implementation is presented of the standard Tarasko-Richardson-Lucy restoration algorithm on an Intel i860-based VP-board which is seamlessly interfaced to a commercial, interactive image processing system. First experience is reported (including some benchmarks for standalone FFT's) and some conclusions are drawn.

  9. High-performance computing in image registration

    NASA Astrophysics Data System (ADS)

    Zanin, Michele; Remondino, Fabio; Dalla Mura, Mauro

    2012-10-01

    Thanks to the recent technological advances, a large variety of image data is at our disposal with variable geometric, radiometric and temporal resolution. In many applications the processing of such images needs high performance computing techniques in order to deliver timely responses e.g. for rapid decisions or real-time actions. Thus, parallel or distributed computing methods, Digital Signal Processor (DSP) architectures, Graphical Processing Unit (GPU) programming and Field-Programmable Gate Array (FPGA) devices have become essential tools for the challenging issue of processing large amount of geo-data. The article focuses on the processing and registration of large datasets of terrestrial and aerial images for 3D reconstruction, diagnostic purposes and monitoring of the environment. For the image alignment procedure, sets of corresponding feature points need to be automatically extracted in order to successively compute the geometric transformation that aligns the data. The feature extraction and matching are ones of the most computationally demanding operations in the processing chain thus, a great degree of automation and speed is mandatory. The details of the implemented operations (named LARES) exploiting parallel architectures and GPU are thus presented. The innovative aspects of the implementation are (i) the effectiveness on a large variety of unorganized and complex datasets, (ii) capability to work with high-resolution images and (iii) the speed of the computations. Examples and comparisons with standard CPU processing are also reported and commented.

  10. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  11. Massively parallel information processing systems for space applications

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1979-01-01

    NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.

  12. The vectorization of a ray tracing program for image generation

    NASA Technical Reports Server (NTRS)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  13. Informatics in radiology (infoRAD): free DICOM image viewing and processing software for the Macintosh computer: what's available and what it can do for you.

    PubMed

    Escott, Edward J; Rubinstein, David

    2004-01-01

    It is often necessary for radiologists to use digital images in presentations and conferences. Most imaging modalities produce images in the Digital Imaging and Communications in Medicine (DICOM) format. The image files tend to be large and thus cannot be directly imported into most presentation software, such as Microsoft PowerPoint; the large files also consume storage space. There are many free programs that allow viewing and processing of these files on a personal computer, including conversion to more common file formats such as the Joint Photographic Experts Group (JPEG) format. Free DICOM image viewing and processing software for computers running on the Microsoft Windows operating system has already been evaluated. However, many people use the Macintosh (Apple Computer) platform, and a number of programs are available for these users. The World Wide Web was searched for free DICOM image viewing or processing software that was designed for the Macintosh platform or is written in Java and is therefore platform independent. The features of these programs and their usability were evaluated. There are many free programs for the Macintosh platform that enable viewing and processing of DICOM images. (c) RSNA, 2004.

  14. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  15. Concept Learning through Image Processing.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Yi-Chuan, Jane Hsieh

    This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…

  16. Image processing of aerodynamic data

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1985-01-01

    The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.

  17. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  18. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    ERIC Educational Resources Information Center

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  19. Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors

    PubMed Central

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena

    2013-01-01

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804

  20. Computational burden resulting from image recognition of high resolution radar sensors.

    PubMed

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena

    2013-04-22

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.

  1. Realization of the FPGA-based reconfigurable computing environment by the example of morphological processing of a grayscale image

    NASA Astrophysics Data System (ADS)

    Shatravin, V.; Shashev, D. V.

    2018-05-01

    Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.

  2. Image detection and compression for memory efficient system analysis

    NASA Astrophysics Data System (ADS)

    Bayraktar, Mustafa

    2015-02-01

    The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.

  3. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  4. Digital image processing using parallel computing based on CUDA technology

    NASA Astrophysics Data System (ADS)

    Skirnevskiy, I. P.; Pustovit, A. V.; Abdrashitova, M. O.

    2017-01-01

    This article describes expediency of using a graphics processing unit (GPU) in big data processing in the context of digital images processing. It provides a short description of a parallel computing technology and its usage in different areas, definition of the image noise and a brief overview of some noise removal algorithms. It also describes some basic requirements that should be met by certain noise removal algorithm in the projection to computer tomography. It provides comparison of the performance with and without using GPU as well as with different percentage of using CPU and GPU.

  5. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  6. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    NASA Astrophysics Data System (ADS)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  7. Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.

    PubMed

    Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A

    2016-01-01

    The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. GPU computing in medical physics: a review.

    PubMed

    Pratx, Guillem; Xing, Lei

    2011-05-01

    The graphics processing unit (GPU) has emerged as a competitive platform for computing massively parallel problems. Many computing applications in medical physics can be formulated as data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The authors review the basic principles of GPU computing as well as the main performance optimization techniques, and survey existing applications in three areas of medical physics, namely image reconstruction, dose calculation and treatment plan optimization, and image processing.

  9. Photo-reconnaissance applications of computer processing of images.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1972-01-01

    Discussion of imaging processing techniques for enhancement and calibration of Jet Propulsion Laboratory imaging experiment pictures returned from NASA space vehicles such as Ranger, Mariner and Surveyor. Particular attention is given to data transmission, resolution vs recognition, and color aspects of digital data processing. The effectiveness of these techniques in applications to images from a wide variety of sources is noted. It is anticipated that the use of computer processing for enhancement of imagery will increase with the improvement and cost reduction of these techniques in the future.

  10. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  11. Computer system for definition of the quantitative geometry of musculature from CT images.

    PubMed

    Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava

    2005-02-01

    The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.

  12. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

    2011-09-01

    The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

  13. Development of a Simple Image Processing Application that Makes Abdominopelvic Tumor Visible on Positron Emission Tomography/Computed Tomography Image.

    PubMed

    Pandey, Anil Kumar; Saroha, Kartik; Sharma, Param Dev; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    In this study, we have developed a simple image processing application in MATLAB that uses suprathreshold stochastic resonance (SSR) and helps the user to visualize abdominopelvic tumor on the exported prediuretic positron emission tomography/computed tomography (PET/CT) images. A brainstorming session was conducted for requirement analysis for the program. It was decided that program should load the screen captured PET/CT images and then produces output images in a window with a slider control that should enable the user to view the best image that visualizes the tumor, if present. The program was implemented on personal computer using Microsoft Windows and MATLAB R2013b. The program has option for the user to select the input image. For the selected image, it displays output images generated using SSR in a separate window having a slider control. The slider control enables the user to view images and select one which seems to provide the best visualization of the area(s) of interest. The developed application enables the user to select, process, and view output images in the process of utilizing SSR to detect the presence of abdominopelvic tumor on prediuretic PET/CT image.

  14. Woods Hole Image Processing System Software implementation; using NetCDF as a software interface for image processing

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.

  15. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  16. TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.

    PubMed

    Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan

    2017-01-01

    Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.

  17. Near Real-Time Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Denker, C.; Yang, G.; Wang, H.

    2001-08-01

    In recent years, post-facto image-processing algorithms have been developed to achieve diffraction-limited observations of the solar surface. We present a combination of frame selection, speckle-masking imaging, and parallel computing which provides real-time, diffraction-limited, 256×256 pixel images at a 1-minute cadence. Our approach to achieve diffraction limited observations is complementary to adaptive optics (AO). At the moment, AO is limited by the fact that it corrects wavefront abberations only for a field of view comparable to the isoplanatic patch. This limitation does not apply to speckle-masking imaging. However, speckle-masking imaging relies on short-exposure images which limits its spectroscopic applications. The parallel processing of the data is performed on a Beowulf-class computer which utilizes off-the-shelf, mass-market technologies to provide high computational performance for scientific calculations and applications at low cost. Beowulf computers have a great potential, not only for image reconstruction, but for any kind of complex data reduction. Immediate access to high-level data products and direct visualization of dynamic processes on the Sun are two of the advantages to be gained.

  18. GPU Accelerated Ultrasonic Tomography Using Propagation and Back Propagation Method

    DTIC Science & Technology

    2015-09-28

    the medical imaging field using GPUs has been done for many years. In [1], Copeland et al. used 2D images , obtained by X - ray projections, to...Index Terms— Medical Imaging , Ultrasonic Tomography, GPU, CUDA, Parallel Computing I. INTRODUCTION GRAPHIC Processing Units (GPUs) are computation... Imaging Algorithm The process of reconstructing images from ultrasonic infor- mation starts with the following acoustical wave equation: ∂2 ∂t2 u ( x

  19. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  20. Human Expertise Helps Computer Classify Images

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.

    1991-01-01

    Two-domain method of computational classification of images requires less computation than other methods for computational recognition, matching, or classification of images or patterns. Does not require explicit computational matching of features, and incorporates human expertise without requiring translation of mental processes of classification into language comprehensible to computer. Conceived to "train" computer to analyze photomicrographs of microscope-slide specimens of leucocytes from human peripheral blood to distinguish between specimens from healthy and specimens from traumatized patients.

  1. APPLEPIPS /Apple Personal Image Processing System/ - An interactive digital image processing system for the Apple II microcomputer

    NASA Technical Reports Server (NTRS)

    Masuoka, E.; Rose, J.; Quattromani, M.

    1981-01-01

    Recent developments related to microprocessor-based personal computers have made low-cost digital image processing systems a reality. Image analysis systems built around these microcomputers provide color image displays for images as large as 256 by 240 pixels in sixteen colors. Descriptive statistics can be computed for portions of an image, and supervised image classification can be obtained. The systems support Basic, Fortran, Pascal, and assembler language. A description is provided of a system which is representative of the new microprocessor-based image processing systems currently on the market. While small systems may never be truly independent of larger mainframes, because they lack 9-track tape drives, the independent processing power of the microcomputers will help alleviate some of the turn-around time problems associated with image analysis and display on the larger multiuser systems.

  2. Quantitative 3-D Imaging, Segmentation and Feature Extraction of the Respiratory System in Small Mammals for Computational Biophysics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Lynn L.; Trease, Harold E.; Fowler, John

    2007-03-15

    One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less

  3. Hyperspectral image processing methods

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  4. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics.

    PubMed

    Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K; Oguz, Ipek

    2013-01-01

    Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations.

  5. Script identification from images using cluster-based templates

    DOEpatents

    Hochberg, J.G.; Kelly, P.M.; Thomas, T.R.

    1998-12-01

    A computer-implemented method identifies a script used to create a document. A set of training documents for each script to be identified is scanned into the computer to store a series of exemplary images representing each script. Pixels forming the exemplary images are electronically processed to define a set of textual symbols corresponding to the exemplary images. Each textual symbol is assigned to a cluster of textual symbols that most closely represents the textual symbol. The cluster of textual symbols is processed to form a representative electronic template for each cluster. A document having a script to be identified is scanned into the computer to form one or more document images representing the script to be identified. Pixels forming the document images are electronically processed to define a set of document textual symbols corresponding to the document images. The set of document textual symbols is compared to the electronic templates to identify the script. 17 figs.

  6. Script identification from images using cluster-based templates

    DOEpatents

    Hochberg, Judith G.; Kelly, Patrick M.; Thomas, Timothy R.

    1998-01-01

    A computer-implemented method identifies a script used to create a document. A set of training documents for each script to be identified is scanned into the computer to store a series of exemplary images representing each script. Pixels forming the exemplary images are electronically processed to define a set of textual symbols corresponding to the exemplary images. Each textual symbol is assigned to a cluster of textual symbols that most closely represents the textual symbol. The cluster of textual symbols is processed to form a representative electronic template for each cluster. A document having a script to be identified is scanned into the computer to form one or more document images representing the script to be identified. Pixels forming the document images are electronically processed to define a set of document textual symbols corresponding to the document images. The set of document textual symbols is compared to the electronic templates to identify the script.

  7. Real time display Fourier-domain OCT using multi-thread parallel computing with data vectorization

    NASA Astrophysics Data System (ADS)

    Eom, Tae Joong; Kim, Hoon Seop; Kim, Chul Min; Lee, Yeung Lak; Choi, Eun-Seo

    2011-03-01

    We demonstrate a real-time display of processed OCT images using multi-thread parallel computing with a quad-core CPU of a personal computer. The data of each A-line are treated as one vector to maximize the data translation rate between the cores of the CPU and RAM stored image data. A display rate of 29.9 frames/sec for processed OCT data (4096 FFT-size x 500 A-scans) is achieved in our system using a wavelength swept source with 52-kHz swept frequency. The data processing times of the OCT image and a Doppler OCT image with a 4-time average are 23.8 msec and 91.4 msec.

  8. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    NASA Astrophysics Data System (ADS)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  9. Associative architecture for image processing

    NASA Astrophysics Data System (ADS)

    Adar, Rutie; Akerib, Avidan

    1997-09-01

    This article presents a new generation in parallel processing architecture for real-time image processing. The approach is implemented in a real time image processor chip, called the XiumTM-2, based on combining a fully associative array which provides the parallel engine with a serial RISC core on the same die. The architecture is fully programmable and can be programmed to implement a wide range of color image processing, computer vision and media processing functions in real time. The associative part of the chip is based on patented pending methodology of Associative Computing Ltd. (ACL), which condenses 2048 associative processors, each of 128 'intelligent' bits. Each bit can be a processing bit or a memory bit. At only 33 MHz and 0.6 micron manufacturing technology process, the chip has a computational power of 3 billion ALU operations per second and 66 billion string search operations per second. The fully programmable nature of the XiumTM-2 chip enables developers to use ACL tools to write their own proprietary algorithms combined with existing image processing and analysis functions from ACL's extended set of libraries.

  10. Low-cost digital image processing at the University of Oklahoma

    NASA Technical Reports Server (NTRS)

    Harrington, J. A., Jr.

    1981-01-01

    Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.

  11. Tchebichef moment transform on image dithering for mobile applications

    NASA Astrophysics Data System (ADS)

    Ernawan, Ferda; Abu, Nur Azman; Rahmalan, Hidayah

    2012-04-01

    Currently, mobile image applications spend a lot of computing process to display images. A true color raw image contains billions of colors and it consumes high computational power in most mobile image applications. At the same time, mobile devices are only expected to be equipped with lower computing process and minimum storage space. Image dithering is a popular technique to reduce the numbers of bit per pixel at the expense of lower quality image displays. This paper proposes a novel approach on image dithering using 2x2 Tchebichef moment transform (TMT). TMT integrates a simple mathematical framework technique using matrices. TMT coefficients consist of real rational numbers. An image dithering based on TMT has the potential to provide better efficiency and simplicity. The preliminary experiment shows a promising result in term of error reconstructions and image visual textures.

  12. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  13. Bio-inspired approach to multistage image processing

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid I.; Pavlov, Sergii V.; Kokryatskaya, Natalia I.; Poplavska, Anna A.; Kobylyanska, Iryna M.; Burdenyuk, Iryna I.; Wójcik, Waldemar; Uvaysova, Svetlana; Orazbekov, Zhassulan; Kashaganova, Gulzhan

    2017-08-01

    Multistage integration of visual information in the brain allows people to respond quickly to most significant stimuli while preserving the ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing, described in this paper, comprises main types of cortical multistage convergence. One of these types occurs within each visual pathway and the other between the pathways. This approach maps input images into a flexible hierarchy which reflects the complexity of the image data. The procedures of temporal image decomposition and hierarchy formation are described in mathematical terms. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image which encapsulates, in a computer manner, structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a very quick response from the system. The result is represented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match.

  14. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2017-03-07

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  15. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Bohn, Shawn J.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2015-12-22

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  16. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  17. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  18. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  20. Self-Calibrated In-Process Photogrammetry for Large Raw Part Measurement and Alignment before Machining

    PubMed Central

    Mendikute, Alberto; Zatarain, Mikel; Bertelsen, Álvaro; Leizea, Ibai

    2017-01-01

    Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and re-processing procedures until an adequate set of images is taken, limiting its potential for fast, easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10,000 (e.g., 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras. PMID:28891946

  1. Self-Calibrated In-Process Photogrammetry for Large Raw Part Measurement and Alignment before Machining.

    PubMed

    Mendikute, Alberto; Yagüe-Fabra, José A; Zatarain, Mikel; Bertelsen, Álvaro; Leizea, Ibai

    2017-09-09

    Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and re-processing procedures until an adequate set of images is taken, limiting its potential for fast, easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10,000 (e.g. 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras.

  2. Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.

    PubMed

    Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A

    2003-07-01

    Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.

  3. Parallel Processing of Images in Mobile Devices using BOINC

    NASA Astrophysics Data System (ADS)

    Curiel, Mariela; Calle, David F.; Santamaría, Alfredo S.; Suarez, David F.; Flórez, Leonardo

    2018-04-01

    Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a) the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b) the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.

  4. Numerical image manipulation and display in solar astronomy

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Flagg, J. C.

    1977-01-01

    The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.

  5. Medical image processing on the GPU - past, present and future.

    PubMed

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    PubMed

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  7. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    PubMed Central

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  8. JIP: Java image processing on the Internet

    NASA Astrophysics Data System (ADS)

    Wang, Dongyan; Lin, Bo; Zhang, Jun

    1998-12-01

    In this paper, we present JIP - Java Image Processing on the Internet, a new Internet based application for remote education and software presentation. JIP offers an integrate learning environment on the Internet where remote users not only can share static HTML documents and lectures notes, but also can run and reuse dynamic distributed software components, without having the source code or any extra work of software compilation, installation and configuration. By implementing a platform-independent distributed computational model, local computational resources are consumed instead of the resources on a central server. As an extended Java applet, JIP allows users to selected local image files on their computers or specify any image on the Internet using an URL as input. Multimedia lectures such as streaming video/audio and digital images are integrated into JIP and intelligently associated with specific image processing functions. Watching demonstrations an practicing the functions with user-selected input data dramatically encourages leaning interest, while promoting the understanding of image processing theory. The JIP framework can be easily applied to other subjects in education or software presentation, such as digital signal processing, business, mathematics, physics, or other areas such as employee training and charged software consumption.

  9. Theoretical and Empirical Comparison of Big Data Image Processing with Apache Hadoop and Sun Grid Engine.

    PubMed

    Bao, Shunxing; Weitendorf, Frederick D; Plassard, Andrew J; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A

    2017-02-11

    The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and non-relevant for medical imaging.

  10. Theoretical and empirical comparison of big data image processing with Apache Hadoop and Sun Grid Engine

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Weitendorf, Frederick D.; Plassard, Andrew J.; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A.

    2017-03-01

    The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and nonrelevant for medical imaging.

  11. Impact of remote sensing upon the planning, management and development of water resources. Summary of computers and computer growth trends for hydrologic modeling and the input of ERTS image data processing load

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.

    1975-01-01

    An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.

  12. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  13. TRIIG - Time-lapse reproduction of images through interactive graphics. [digital processing of quality hard copy

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.

  14. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Computer vision applications for coronagraphic optical alignment and image processing.

    PubMed

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  16. Research and implementation of the algorithm for unwrapped and distortion correction basing on CORDIC for panoramic image

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang

    2008-03-01

    The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.

  17. Patch-based models and algorithms for image processing: a review of the basic principles and methods, and their application in computed tomography.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-10-01

    Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.

  18. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    PubMed Central

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  19. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    PubMed

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  20. STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.

    PubMed

    Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X

    2009-08-01

    This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.

  1. A review of GPU-based medical image reconstruction.

    PubMed

    Després, Philippe; Jia, Xun

    2017-10-01

    Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Shortcomings of low-cost imaging systems for viewing computed radiographs.

    PubMed

    Ricke, J; Hänninen, E L; Zielinski, C; Amthauer, H; Stroszczynski, C; Liebig, T; Wolf, M; Hosten, N

    2000-01-01

    To assess potential advantages of a new PC-based viewing tool featuring image post-processing for viewing computed radiographs on low-cost hardware (PC) with a common display card and color monitor, and to evaluate the effect of using color versus monochrome monitors. Computed radiographs of a statistical phantom were viewed on a PC, with and without post-processing (spatial frequency and contrast processing), employing a monochrome or a color monitor. Findings were compared with the viewing on a radiological Workstation and evaluated with ROC analysis. Image post-processing improved the perception of low-contrast details significantly irrespective of the monitor used. No significant difference in perception was observed between monochrome and color monitors. The review at the radiological Workstation was superior to the review done using the PC with image processing. Lower quality hardware (graphic card and monitor) used in low cost PCs negatively affects perception of low-contrast details in computed radiographs. In this situation, it is highly recommended to use spatial frequency and contrast processing. No significant quality gain has been observed for the high-end monochrome monitor compared to the color display. However, the color monitor was affected stronger by high ambient illumination.

  3. A web-based computer aided system for liver surgery planning: initial implementation on RayPlus

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Yuan, Rong; Sun, Zhi; Li, Tianhong; Xie, Qingguo

    2016-03-01

    At present, computer aided systems for liver surgery design and risk evaluation are widely used in clinical all over the world. However, most systems are local applications that run on high-performance workstations, and the images have to processed offline. Compared with local applications, a web-based system is accessible anywhere and for a range of regardless of relative processing power or operating system. RayPlus (http://rayplus.life.hust.edu.cn), a B/S platform for medical image processing, was developed to give a jump start on web-based medical image processing. In this paper, we implement a computer aided system for liver surgery planning on the architecture of RayPlus. The system consists of a series of processing to CT images including filtering, segmentation, visualization and analyzing. Each processing is packaged into an executable program and runs on the server side. CT images in DICOM format are processed step by to interactive modeling on browser with zero-installation and server-side computing. The system supports users to semi-automatically segment the liver, intrahepatic vessel and tumor from the pre-processed images. Then, surface and volume models are built to analyze the vessel structure and the relative position between adjacent organs. The results show that the initial implementation meets satisfactorily its first-order objectives and provide an accurate 3D delineation of the liver anatomy. Vessel labeling and resection simulation are planned to add in the future. The system is available on Internet at the link mentioned above and an open username for testing is offered.

  4. An image-processing software package: UU and Fig for optical metrology applications

    NASA Astrophysics Data System (ADS)

    Chen, Lujie

    2013-06-01

    Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.

  5. Fundamental Concepts of Digital Image Processing

    DOE R&D Accomplishments Database

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  6. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  7. Synthesizing parallel imaging applications using the CAP (computer-aided parallelization) tool

    NASA Astrophysics Data System (ADS)

    Gennart, Benoit A.; Mazzariol, Marc; Messerli, Vincent; Hersch, Roger D.

    1997-12-01

    Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task: writing and debugging the application is difficult (deadlocks), programs may not be portable from one parallel architecture to the other, and performance often comes short of expectations. In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipelined-parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. This paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. This paper's contribution is (1) to show how such implementations can be compactly specified in CAP, and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurements.

  8. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  9. Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast

    DTIC Science & Technology

    2007-03-01

    TERMS breast imaging, breast CT, scatter compensation, denoising, CAD , Cone-beam CT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...clinical projection images. The CAD tool based on signal known exactly (SKE) scenario is under development. Task 6: Test and compare the...performances of the CAD developed in Task 5 applied to processed projection data from Task 1 with the CAD performance on the projection data without Bayesian

  10. Photo-reconnaissance applications of computer processing of images.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1971-01-01

    An imaging processing technique is developed for enhancement and calibration of imaging experiments. The technique is shown to be useful not only for the original application but also when applied to images from a wide variety of sources.

  11. Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry

    NASA Technical Reports Server (NTRS)

    Hong, Yie-Ming

    1973-01-01

    Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.

  12. FAST: framework for heterogeneous medical image computing and visualization.

    PubMed

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  13. Exploitation of realistic computational anthropomorphic phantoms for the optimization of nuclear imaging acquisition and processing protocols.

    PubMed

    Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C

    2014-01-01

    Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies.

  14. Novel Image Encryption based on Quantum Walks

    PubMed Central

    Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng

    2015-01-01

    Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing. PMID:25586889

  15. Theoretical and Empirical Comparison of Big Data Image Processing with Apache Hadoop and Sun Grid Engine

    PubMed Central

    Bao, Shunxing; Weitendorf, Frederick D.; Plassard, Andrew J.; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A.

    2016-01-01

    The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., “short” processing times and/or “large” datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply “large scale” processing transitions into “big data” and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and non-relevant for medical imaging. PMID:28736473

  16. Computer measurement of arterial disease

    NASA Technical Reports Server (NTRS)

    Armstrong, J.; Selzer, R. H.; Barndt, R.; Blankenhorn, D. H.; Brooks, S.

    1980-01-01

    Image processing technique quantifies human atherosclerosis by computer analysis of arterial angiograms. X-ray film images are scanned and digitized, arterial shadow is tracked, and several quantitative measures of lumen irregularity are computed. In other tests, excellent agreement was found between computer evaluation of femoral angiograms on living subjects and evaluation by teams of trained angiographers.

  17. Optimized Laplacian image sharpening algorithm based on graphic processing unit

    NASA Astrophysics Data System (ADS)

    Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah

    2014-12-01

    In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.

  18. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  19. Image processing for navigation on a mobile embedded platform

    NASA Astrophysics Data System (ADS)

    Preuss, Thomas; Gentsch, Lars; Rambow, Mark

    2006-02-01

    Mobile computing devices such as PDAs or cellular phones may act as "Personal Multimedia Exchanges", but they are limited in their processing power as well as in their connectivity. Sensors as well as cellular phones and PDAs are able to gather multimedia data, e. g. images, but leak computing power to process that data on their own. Therefore, it is necessary, that these devices connect to devices with more performance, which provide e.g. image processing services. In this paper, a generic approach is presented that connects different kinds of clients with each other and allows them to interact with more powerful devices. This architecture, called BOSPORUS, represents a communication framework for dynamic peer-to-peer computing. Each peer offers and uses services in this network and communicates loosely coupled and asynchronously with the others. These features make BOSPORUS a service oriented network architecture (SONA). A mobile embedded system, which uses external services for image processing based on the BOSPORUS Framework is shown as an application of the BOSPORUS framework.

  20. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  1. Computer image processing - The Viking experience. [digital enhancement techniques

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.

  2. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    PubMed

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  3. The development of a specialized processor for a space-based multispectral earth imager

    NASA Astrophysics Data System (ADS)

    Khedr, Mostafa E.

    2008-10-01

    This work was done in the Department of Computer Engineering, Lvov Polytechnic National University, Lvov, Ukraine, as a thesis entitled "Space Imager Computer System for Raw Video Data Processing" [1]. This work describes the synthesis and practical implementation of a specialized computer system for raw data control and processing onboard a satellite MultiSpectral earth imager. This computer system is intended for satellites with resolution in the range of one meter with 12-bit precession. The design is based mostly on general off-the-shelf components such as (FPGAs) plus custom designed software for interfacing with PC and test equipment. The designed system was successfully manufactured and now fully functioning in orbit.

  4. Computer imaging and workflow systems in the business office.

    PubMed

    Adams, W T; Veale, F H; Helmick, P M

    1999-05-01

    Computer imaging and workflow technology automates many business processes that currently are performed using paper processes. Documents are scanned into the imaging system and placed in electronic patient account folders. Authorized users throughout the organization, including preadmission, verification, admission, billing, cash posting, customer service, and financial counseling staff, have online access to the information they need when they need it. Such streamlining of business functions can increase collections and customer satisfaction while reducing labor, supply, and storage costs. Because the costs of a comprehensive computer imaging and workflow system can be considerable, healthcare organizations should consider implementing parts of such systems that can be cost-justified or include implementation as part of a larger strategic technology initiative.

  5. Application of near-infrared image processing in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hong; Zhang, Guo-ping; Xia, Hongxing

    2009-07-01

    Recently, with development of computer technology, the application field of near-infrared image processing becomes much wider. In this paper the technical characteristic and development of modern NIR imaging and NIR spectroscopy analysis were introduced. It is concluded application and studying of the NIR imaging processing technique in the agricultural engineering in recent years, base on the application principle and developing characteristic of near-infrared image. The NIR imaging would be very useful in the nondestructive external and internal quality inspecting of agricultural products. It is important to detect stored-grain insects by the application of near-infrared spectroscopy. Computer vision detection base on the NIR imaging would be help to manage food logistics. Application of NIR imaging promoted quality management of agricultural products. In the further application research fields of NIR image in the agricultural engineering, Some advices and prospect were put forward.

  6. Video image processing

    NASA Technical Reports Server (NTRS)

    Murray, N. D.

    1985-01-01

    Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.

  7. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  8. A software to digital image processing to be used in the voxel phantom development.

    PubMed

    Vieira, J W; Lima, F R A

    2009-11-15

    Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image, this is saved as a JPEG file in the Windows default; when it involves an image stack, the output binary file is denominated SGI (Simulações Gráficas Interativas (Interactive Graphic Simulations), an acronym already used in other publications of the GDN/CNPq.

  9. Vision-sensing image analysis for GTAW process control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, D.D.

    1994-11-01

    Image analysis of a gas tungsten arc welding (GTAW) process was completed using video images from a charge coupled device (CCD) camera inside a specially designed coaxial (GTAW) electrode holder. Video data was obtained from filtered and unfiltered images, with and without the GTAW arc present, showing weld joint features and locations. Data Translation image processing boards, installed in an IBM PC AT 386 compatible computer, and Media Cybernetics image processing software were used to investigate edge flange weld joint geometry for image analysis.

  10. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    PubMed

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  11. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  12. Real-time orthorectification by FPGA-based hardware acceleration

    NASA Astrophysics Data System (ADS)

    Kuo, David; Gordon, Don

    2010-10-01

    Orthorectification that corrects the perspective distortion of remote sensing imagery, providing accurate geolocation and ease of correlation to other images is a valuable first-step in image processing for information extraction. However, the large amount of metadata and the floating-point matrix transformations required to operate on each pixel make this a computation and I/O (Input/Output) intensive process. As result much imagery is either left unprocessed or loses timesensitive value in the long processing cycle. However, the computation on each pixel can be reduced substantially by using computational results of the neighboring pixels and accelerated by special pipelined hardware architecture in one to two orders of magnitude. A specialized coprocessor that is implemented inside an FPGA (Field Programmable Gate Array) chip and surrounded by vendorsupported hardware IP (Intellectual Property) shares the computation workload with CPU through PCI-Express interface. The ultimate speed of one pixel per clock (125 MHz) is achieved by the pipelined systolic array architecture. The optimal partition between software and hardware, the timing profile among image I/O and computation, and the highly automated GUI (Graphical User Interface) that fully exploits this speed increase to maximize overall image production throughput will also be discussed. The software that runs on a workstation with the acceleration hardware orthorectifies 16 Megapixels per second, which is 16 times faster than without the hardware. It turns the production time from months to days. A real-life successful story of an imaging satellite company that adopted such workstations for their orthorectified imagery production will be presented. The potential candidacy of the image processing computation that can be accelerated more efficiently by the same approach will also be analyzed.

  13. Image processing mini manual

    NASA Technical Reports Server (NTRS)

    Matthews, Christine G.; Posenau, Mary-Anne; Leonard, Desiree M.; Avis, Elizabeth L.; Debure, Kelly R.; Stacy, Kathryn; Vonofenheim, Bill

    1992-01-01

    The intent is to provide an introduction to the image processing capabilities available at the Langley Research Center (LaRC) Central Scientific Computing Complex (CSCC). Various image processing software components are described. Information is given concerning the use of these components in the Data Visualization and Animation Laboratory at LaRC.

  14. Teaching Effectively with Visual Effect in an Image-Processing Class.

    ERIC Educational Resources Information Center

    Ng, G. S.

    1997-01-01

    Describes a course teaching the use of computers in emulating human visual capability and image processing and proposes an interactive presentation using multimedia technology to capture and sustain student attention. Describes the three phase presentation: introduction of image processing equipment, presentation of lecture material, and…

  15. Tse computers. [ultrahigh speed optical processing for two dimensional binary image

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III

    1977-01-01

    An ultra-high-speed computer that utilizes binary images as its basic computational entity is being developed. The basic logic components perform thousands of operations simultaneously. Technologies of the fiber optics, display, thin film, and semiconductor industries are being utilized in the building of the hardware.

  16. High-performance image processing on the desktop

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen D.

    1996-04-01

    The suitability of computers to the task of medical image visualization for the purposes of primary diagnosis and treatment planning depends on three factors: speed, image quality, and price. To be widely accepted the technology must increase the efficiency of the diagnostic and planning processes. This requires processing and displaying medical images of various modalities in real-time, with accuracy and clarity, on an affordable system. Our approach to meeting this challenge began with market research to understand customer image processing needs. These needs were translated into system-level requirements, which in turn were used to determine which image processing functions should be implemented in hardware. The result is a computer architecture for 2D image processing that is both high-speed and cost-effective. The architectural solution is based on the high-performance PA-RISC workstation with an HCRX graphics accelerator. The image processing enhancements are incorporated into the image visualization accelerator (IVX) which attaches to the HCRX graphics subsystem. The IVX includes a custom VLSI chip which has a programmable convolver, a window/level mapper, and an interpolator supporting nearest-neighbor, bi-linear, and bi-cubic modes. This combination of features can be used to enable simultaneous convolution, pan, zoom, rotate, and window/level control into 1 k by 1 k by 16-bit medical images at 40 frames/second.

  17. Diagnostic Radiology--The Impact of New Technology.

    ERIC Educational Resources Information Center

    Harrison, R. M.

    1989-01-01

    Discussed are technological advances applying computer techniques for image acquisition and processing, including digital radiography, computed tomography, and nuclear magnetic resonance imaging. Several diagrams and pictures showing the use of each technique are presented. (YP)

  18. a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.

    2015-07-01

    Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.

  19. Optical computing.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  20. Susceptibility weighted imaging: differentiating between calcification and hemosiderin*

    PubMed Central

    Barbosa, Jeam Haroldo Oliveira; Santos, Antonio Carlos; Salmon, Carlos Ernesto Garrido

    2015-01-01

    Objective To present a detailed explanation on the processing of magnetic susceptibility weighted imaging (SWI), demonstrating the effects of echo time and sensitive mask on the differentiation between calcification and hemosiderin. Materials and Methods Computed tomography and magnetic resonance (magnitude and phase) images of six patients (age range 41– 54 years; four men) were retrospectively selected. The SWI images processing was performed using the Matlab’s own routine. Results Four out of the six patients showed calcifications at computed tomography images and their SWI images demonstrated hyperintense signal at the calcification regions. The other patients did not show any calcifications at computed tomography, and SWI revealed the presence of hemosiderin deposits with hypointense signal. Conclusion The selection of echo time and of the mask may change all the information on SWI images, and compromise the diagnostic reliability. Amongst the possible masks, the authors highlight that the sigmoid mask allows for contrasting calcifications and hemosiderin on a single SWI image. PMID:25987750

  1. Solar physics applications of computer graphics and image processing

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.

    1985-01-01

    Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.

  2. DREAMS and IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle Design of Complex Systems

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.

  3. Soft computing approach to 3D lung nodule segmentation in CT.

    PubMed

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  5. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  6. The microcomputer in the dental office: a new diagnostic aid.

    PubMed

    van der Stelt, P F

    1985-06-01

    The first computer applications in the dental office were based upon standard accountancy procedures. Recently, more and more computer applications have become available to meet the specific requirements of dental practice. This implies not only business procedures, but also facilities to store patient records in the system and retrieve them easily. Another development concerns the automatic calculation of diagnostic data such as those provided in cephalometric analysis. Furthermore, growth and surgical results in the craniofacial area can be predicted by computerized extrapolation. Computers have been useful in obtaining the patient's anamnestic data objectively and for the making of decisions based on such data. Computer-aided instruction systems have been developed for undergraduate students to bridge the gap between textbook and patient interaction without the risks inherent in the latter. Radiology will undergo substantial changes as a result of the application of electronic imaging devices instead of the conventional radiographic films. Computer-assisted electronic imaging will enable image processing, image enhancement, pattern recognition and data transmission for consultation and storage purposes. Image processing techniques will increase image quality whilst still allowing low-dose systems. Standardization of software and system configuration and the development of 'user friendly' programs is the major concern for the near future.

  7. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  8. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less

  9. A computer vision for animal ecology.

    PubMed

    Weinstein, Ben G

    2018-05-01

    A central goal of animal ecology is to observe species in the natural world. The cost and challenge of data collection often limit the breadth and scope of ecological study. Ecologists often use image capture to bolster data collection in time and space. However, the ability to process these images remains a bottleneck. Computer vision can greatly increase the efficiency, repeatability and accuracy of image review. Computer vision uses image features, such as colour, shape and texture to infer image content. I provide a brief primer on ecological computer vision to outline its goals, tools and applications to animal ecology. I reviewed 187 existing applications of computer vision and divided articles into ecological description, counting and identity tasks. I discuss recommendations for enhancing the collaboration between ecologists and computer scientists and highlight areas for future growth of automated image analysis. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  10. Demodulation Processes in Auditory Perception.

    DTIC Science & Technology

    1992-08-15

    not provide a fused image that the listener can process binaurally . 5 A type of dichotic profile has been developed for this study in which the stimulus...the component frequencies between the two ears may allow the i listener to develop a better fused image to be processed i binaurally than in the...listener was seated facing a 3 monitor and computer keyboard (Radio Shack Color Computer II). Signals were presented binaurally via Sennheiser HD414SL

  11. Computational models of human vision with applications

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.

  12. Data Processing Factory for the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Stoughton, Christopher; Adelman, Jennifer; Annis, James T.; Hendry, John; Inkmann, John; Jester, Sebastian; Kent, Steven M.; Kuropatkin, Nickolai; Lee, Brian; Lin, Huan; Peoples, John, Jr.; Sparks, Robert; Tucker, Douglas; Vanden Berk, Dan; Yanny, Brian; Yocum, Dan

    2002-12-01

    The Sloan Digital Sky Survey (SDSS) data handling presents two challenges: large data volume and timely production of spectroscopic plates from imaging data. A data processing factory, using technologies both old and new, handles this flow. Distribution to end users is via disk farms, to serve corrected images and calibrated spectra, and a database, to efficiently process catalog queries. For distribution of modest amounts of data from Apache Point Observatory to Fermilab, scripts use rsync to update files, while larger data transfers are accomplished by shipping magnetic tapes commercially. All data processing pipelines are wrapped in scripts to address consecutive phases: preparation, submission, checking, and quality control. We constructed the factory by chaining these pipelines together while using an operational database to hold processed imaging catalogs. The science database catalogs all imaging and spectroscopic object, with pointers to the various external files associated with them. Diverse computing systems address particular processing phases. UNIX computers handle tape reading and writing, as well as calibration steps that require access to a large amount of data with relatively modest computational demands. Commodity CPUs process steps that require access to a limited amount of data with more demanding computations requirements. Disk servers optimized for cost per Gbyte serve terabytes of processed data, while servers optimized for disk read speed run SQLServer software to process queries on the catalogs. This factory produced data for the SDSS Early Data Release in June 2001, and it is currently producing Data Release One, scheduled for January 2003.

  13. The semiotics of medical image Segmentation.

    PubMed

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Clinical and mathematical introduction to computer processing of scintigraphic images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goris, M.L.; Briandet, P.A.

    The authors state in their preface:''...we believe that there is no book yet available in which computing in nuclear medicine has been approached in a reasonable manner. This book is our attempt to correct the situation.'' The book is divided into four sections: (1) Clinical Applications of Quantitative Scintigraphic Analysis; (2) Mathematical Derivations; (3) Processing Methods of Scintigraphic Images; and (4) The (Computer) System. Section 1 has chapters on quantitative approaches to congenital and acquired heart diseases, nephrology and urology, and pulmonary medicine.

  15. Retinal imaging analysis based on vessel detection.

    PubMed

    Jamal, Arshad; Hazim Alkawaz, Mohammed; Rehman, Amjad; Saba, Tanzila

    2017-07-01

    With an increase in the advancement of digital imaging and computing power, computationally intelligent technologies are in high demand to be used in ophthalmology cure and treatment. In current research, Retina Image Analysis (RIA) is developed for optometrist at Eye Care Center in Management and Science University. This research aims to analyze the retina through vessel detection. The RIA assists in the analysis of the retinal images and specialists are served with various options like saving, processing and analyzing retinal images through its advanced interface layout. Additionally, RIA assists in the selection process of vessel segment; processing these vessels by calculating its diameter, standard deviation, length, and displaying detected vessel on the retina. The Agile Unified Process is adopted as the methodology in developing this research. To conclude, Retina Image Analysis might help the optometrist to get better understanding in analyzing the patient's retina. Finally, the Retina Image Analysis procedure is developed using MATLAB (R2011b). Promising results are attained that are comparable in the state of art. © 2017 Wiley Periodicals, Inc.

  16. Halftoning processing on a JPEG-compressed image

    NASA Astrophysics Data System (ADS)

    Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent

    2003-12-01

    Digital image processing algorithms are usually designed for the raw format, that is on an uncompressed representation of the image. Therefore prior to transforming or processing a compressed format, decompression is applied; then, the result of the processing application is finally re-compressed for further transfer or storage. The change of data representation is resource-consuming in terms of computation, time and memory usage. In the wide format printing industry, this problem becomes an important issue: e.g. a 1 m2 input color image, scanned at 600 dpi exceeds 1.6 GB in its raw representation. However, some image processing algorithms can be performed in the compressed-domain, by applying an equivalent operation on the compressed format. This paper is presenting an innovative application of the halftoning processing operation by screening, to be applied on JPEG-compressed image. This compressed-domain transform is performed by computing the threshold operation of the screening algorithm in the DCT domain. This algorithm is illustrated by examples for different halftone masks. A pre-sharpening operation, applied on a JPEG-compressed low quality image is also described; it allows to de-noise and to enhance the contours of this image.

  17. Granular computing with multiple granular layers for brain big data processing.

    PubMed

    Wang, Guoyin; Xu, Ji

    2014-12-01

    Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.

  18. SIP: A Web-Based Astronomical Image Processing Program

    NASA Astrophysics Data System (ADS)

    Simonetti, J. H.

    1999-12-01

    I have written an astronomical image processing and analysis program designed to run over the internet in a Java-compatible web browser. The program, Sky Image Processor (SIP), is accessible at the SIP webpage (http://www.phys.vt.edu/SIP). Since nothing is installed on the user's machine, there is no need to download upgrades; the latest version of the program is always instantly available. Furthermore, the Java programming language is designed to work on any computer platform (any machine and operating system). The program could be used with students in web-based instruction or in a computer laboratory setting; it may also be of use in some research or outreach applications. While SIP is similar to other image processing programs, it is unique in some important respects. For example, SIP can load images from the user's machine or from the Web. An instructor can put images on a web server for students to load and analyze on their own personal computer. Or, the instructor can inform the students of images to load from any other web server. Furthermore, since SIP was written with students in mind, the philosophy is to present the user with the most basic tools necessary to process and analyze astronomical images. Images can be combined (by addition, subtraction, multiplication, or division), multiplied by a constant, smoothed, cropped, flipped, rotated, and so on. Statistics can be gathered for pixels within a box drawn by the user. Basic tools are available for gathering data from an image which can be used for performing simple differential photometry, or astrometry. Therefore, students can learn how astronomical image processing works. Since SIP is not part of a commercial CCD camera package, the program is written to handle the most common denominator image file, the FITS format.

  19. SPARX, a new environment for Cryo-EM image processing.

    PubMed

    Hohn, Michael; Tang, Grant; Goodyear, Grant; Baldwin, P R; Huang, Zhong; Penczek, Pawel A; Yang, Chao; Glaeser, Robert M; Adams, Paul D; Ludtke, Steven J

    2007-01-01

    SPARX (single particle analysis for resolution extension) is a new image processing environment with a particular emphasis on transmission electron microscopy (TEM) structure determination. It includes a graphical user interface that provides a complete graphical programming environment with a novel data/process-flow infrastructure, an extensive library of Python scripts that perform specific TEM-related computational tasks, and a core library of fundamental C++ image processing functions. In addition, SPARX relies on the EMAN2 library and cctbx, the open-source computational crystallography library from PHENIX. The design of the system is such that future inclusion of other image processing libraries is a straightforward task. The SPARX infrastructure intelligently handles retention of intermediate values, even those inside programming structures such as loops and function calls. SPARX and all dependencies are free for academic use and available with complete source.

  20. Image Algebra Matlab language version 2.3 for image processing and compression research

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric

    2010-08-01

    Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.

  1. Sharp-Focus Composite Microscope Imaging by Computer

    NASA Technical Reports Server (NTRS)

    Wall, R. J.

    1983-01-01

    Enhanced depth of focus aids medical analysis. Computer image-processing system synthesizes sharply-focused composite picture from series of photomicrographs of same object taken at different depths. Computer rejects blured parts of each photomicrograph. Remaining in focus portions form focused composite. System used to study alveolar lung tissue and has applications in medicine and physical sciences.

  2. Computer analysis of arteriograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Armstrong, J. H.; Beckenbach, E. B.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.; Sanmarco, M. E.

    1977-01-01

    A computer system has been developed to quantify the degree of atherosclerosis in the human femoral artery. The analysis involves first scanning and digitizing angiographic film, then tracking the outline of the arterial image and finally computing the relative amount of roughness or irregularity in the vessel wall. The image processing system and method are described.

  3. Automated Analysis of Composition and Style of Photographs and Paintings

    ERIC Educational Resources Information Center

    Yao, Lei

    2013-01-01

    Computational aesthetics is a newly emerging cross-disciplinary field with its core situated in traditional research areas such as image processing and computer vision. Using a computer to interpret aesthetic terms for images is very challenging. In this dissertation, I focus on solving specific problems about analyzing the composition and style…

  4. Image improvement and three-dimensional reconstruction using holographic image processing

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.

    1977-01-01

    Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.

  5. cisTEM, user-friendly software for single-particle image processing.

    PubMed

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  6. cisTEM, user-friendly software for single-particle image processing

    PubMed Central

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  7. Medical imaging and registration in computer assisted surgery.

    PubMed

    Simon, D A; Lavallée, S

    1998-09-01

    Imaging, sensing, and computing technologies that are being introduced to aid in the planning and execution of surgical procedures are providing orthopaedic surgeons with a powerful new set of tools for improving clinical accuracy, reliability, and patient outcomes while reducing costs and operating times. Current computer assisted surgery systems typically include a measurement process for collecting patient specific medical data, a decision making process for generating a surgical plan, a registration process for aligning the surgical plan to the patient, and an action process for accurately achieving the goals specified in the plan. Some of the key concepts in computer assisted surgery applied to orthopaedics with a focus on the basic framework and underlying technologies is outlined. In addition, technical challenges and future trends in the field are discussed.

  8. Processing the image gradient field using a topographic primal sketch approach.

    PubMed

    Gambaruto, A M

    2015-03-01

    The spatial derivatives of the image intensity provide topographic information that may be used to identify and segment objects. The accurate computation of the derivatives is often hampered in medical images by the presence of noise and a limited resolution. This paper focuses on accurate computation of spatial derivatives and their subsequent use to process an image gradient field directly, from which an image with improved characteristics can be reconstructed. The improvements include noise reduction, contrast enhancement, thinning object contours and the preservation of edges. Processing the gradient field directly instead of the image is shown to have numerous benefits. The approach is developed such that the steps are modular, allowing the overall method to be improved and possibly tailored to different applications. As presented, the approach relies on a topographic representation and primal sketch of an image. Comparisons with existing image processing methods on a synthetic image and different medical images show improved results and accuracy in segmentation. Here, the focus is on objects with low spatial resolution, which is often the case in medical images. The methods developed show the importance of improved accuracy in derivative calculation and the potential in processing the image gradient field directly. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. SU-E-J-91: FFT Based Medical Image Registration Using a Graphics Processing Unit (GPU).

    PubMed

    Luce, J; Hoggarth, M; Lin, J; Block, A; Roeske, J

    2012-06-01

    To evaluate the efficiency gains obtained from using a Graphics Processing Unit (GPU) to perform a Fourier Transform (FT) based image registration. Fourier-based image registration involves obtaining the FT of the component images, and analyzing them in Fourier space to determine the translations and rotations of one image set relative to another. An important property of FT registration is that by enlarging the images (adding additional pixels), one can obtain translations and rotations with sub-pixel resolution. The expense, however, is an increased computational time. GPUs may decrease the computational time associated with FT image registration by taking advantage of their parallel architecture to perform matrix computations much more efficiently than a Central Processor Unit (CPU). In order to evaluate the computational gains produced by a GPU, images with known translational shifts were utilized. A program was written in the Interactive Data Language (IDL; Exelis, Boulder, CO) to performCPU-based calculations. Subsequently, the program was modified using GPU bindings (Tech-X, Boulder, CO) to perform GPU-based computation on the same system. Multiple image sizes were used, ranging from 256×256 to 2304×2304. The time required to complete the full algorithm by the CPU and GPU were benchmarked and the speed increase was defined as the ratio of the CPU-to-GPU computational time. The ratio of the CPU-to- GPU time was greater than 1.0 for all images, which indicates the GPU is performing the algorithm faster than the CPU. The smallest improvement, a 1.21 ratio, was found with the smallest image size of 256×256, and the largest speedup, a 4.25 ratio, was observed with the largest image size of 2304×2304. GPU programming resulted in a significant decrease in computational time associated with a FT image registration algorithm. The inclusion of the GPU may provide near real-time, sub-pixel registration capability. © 2012 American Association of Physicists in Medicine.

  10. A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.

    2014-01-01

    Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.

  11. Instant Grainification: Real-Time Grain-Size Analysis from Digital Images in the Field

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.; Chezar, H.

    2007-12-01

    Over the past few years, digital cameras and underwater microscopes have been developed to collect in-situ images of sand-sized bed sediment, and software has been developed to measure grain size from those digital images (Chezar and Rubin, 2004; Rubin, 2004; Rubin et al., 2006). Until now, all image processing and grain- size analysis was done back in the office where images were uploaded from cameras and processed on desktop computers. Computer hardware has become small and rugged enough to process images in the field, which for the first time allows real-time grain-size analysis of sand-sized bed sediment. We present such a system consisting of weatherproof tablet computer, open source image-processing software (autocorrelation code of Rubin, 2004, running under Octave and Cygwin), and digital camera with macro lens. Chezar, H., and Rubin, D., 2004, Underwater microscope system: U.S. Patent and Trademark Office, patent number 6,680,795, January 20, 2004. Rubin, D.M., 2004, A simple autocorrelation algorithm for determining grain size from digital images of sediment: Journal of Sedimentary Research, v. 74, p. 160-165. Rubin, D.M., Chezar, H., Harney, J.N., Topping, D.J., Melis, T.S., and Sherwood, C.R., 2006, Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size: USGS Open-File Report 2006-1360.

  12. Processing, Cataloguing and Distribution of Uas Images in Near Real Time

    NASA Astrophysics Data System (ADS)

    Runkel, I.

    2013-08-01

    Why are UAS such a hype? UAS make the data capture flexible, fast and easy. For many applications this is more important than a perfect photogrammetric aerial image block. To ensure, that the advantage of a fast data capturing will be valid up to the end of the processing chain, all intermediate steps like data processing and data dissemination to the customer need to be flexible and fast as well. GEOSYSTEMS has established the whole processing workflow as server/client solution. This is the focus of the presentation. Depending on the image acquisition system the image data can be down linked during the flight to the data processing computer or it is stored on a mobile device and hooked up to the data processing computer after the flight campaign. The image project manager reads the data from the device and georeferences the images according to the position data. The meta data is converted into an ISO conform format and subsequently all georeferenced images are catalogued in the raster data management System ERDAS APOLLO. APOLLO provides the data, respectively the images as an OGC-conform services to the customer. Within seconds the UAV-images are ready to use for GIS application, image processing or direct interpretation via web applications - where ever you want. The whole processing chain is built in a generic manner. It can be adapted to a magnitude of applications. The UAV imageries can be processed and catalogued as single ortho imges or as image mosaic. Furthermore, image data of various cameras can be fusioned. By using WPS (web processing services) image enhancement, image analysis workflows like change detection layers can be calculated and provided to the image analysts. The processing of the WPS runs direct on the raster data management server. The image analyst has no data and no software on his local computer. This workflow is proven to be fast, stable and accurate. It is designed to support time critical applications for security demands - the images can be checked and interpreted in near real-time. For sensible areas it gives you the possibility to inform remote decision makers or interpretation experts in order to provide them situations awareness, wherever they are. For monitoring and inspection tasks it speeds up the process of data capture and data interpretation. The fully automated workflow of data pre-processing, data georeferencing, data cataloguing and data dissemination in near real time was developed based on the Intergraph products ERDAS IMAGINE, ERDAS APOLLO and GEOSYSTEMS METAmorph!IT. It is offered as adaptable solution by GEOSYSTEMS GmbH.

  13. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Suh, T; Yoon, D

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less

  14. Information granules in image histogram analysis.

    PubMed

    Wieclawek, Wojciech

    2018-04-01

    A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Software for Acquiring Image Data for PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Cheung, H. M.; Kressler, Brian

    2003-01-01

    PIV Acquisition (PIVACQ) is a computer program for acquisition of data for particle-image velocimetry (PIV). In the PIV system for which PIVACQ was developed, small particles entrained in a flow are illuminated with a sheet of light from a pulsed laser. The illuminated region is monitored by a charge-coupled-device camera that operates in conjunction with a data-acquisition system that includes a frame grabber and a counter-timer board, both installed in a single computer. The camera operates in "frame-straddle" mode where a pair of images can be obtained closely spaced in time (on the order of microseconds). The frame grabber acquires image data from the camera and stores the data in the computer memory. The counter/timer board triggers the camera and synchronizes the pulsing of the laser with acquisition of data from the camera. PIVPROC coordinates all of these functions and provides a graphical user interface, through which the user can control the PIV data-acquisition system. PIVACQ enables the user to acquire a sequence of single-exposure images, display the images, process the images, and then save the images to the computer hard drive. PIVACQ works in conjunction with the PIVPROC program which processes the images of particles into the velocity field in the illuminated plane.

  16. A novel structured dictionary for fast processing of 3D medical images, with application to computed tomography restoration and denoising

    NASA Astrophysics Data System (ADS)

    Karimi, Davood; Ward, Rabab K.

    2016-03-01

    Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.

  17. Visual Motion Perception and Visual Attentive Processes.

    DTIC Science & Technology

    1988-04-01

    88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical

  18. Semivariogram Analysis of Bone Images Implemented on FPGA Architectures.

    PubMed

    Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang

    2017-03-01

    Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ ( h ), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h . Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O ( n 2 ) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor.

  19. Semivariogram Analysis of Bone Images Implemented on FPGA Architectures

    PubMed Central

    Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang

    2016-01-01

    Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O (n2) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor. PMID:28428829

  20. Astronomical Image Processing with Hadoop

    NASA Astrophysics Data System (ADS)

    Wiley, K.; Connolly, A.; Krughoff, S.; Gardner, J.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-07-01

    In the coming decade astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. With a requirement that these images be analyzed in real time to identify moving sources such as potentially hazardous asteroids or transient objects such as supernovae, these data streams present many computational challenges. In the commercial world, new techniques that utilize cloud computing have been developed to handle massive data streams. In this paper we describe how cloud computing, and in particular the map-reduce paradigm, can be used in astronomical data processing. We will focus on our experience implementing a scalable image-processing pipeline for the SDSS database using Hadoop (http://hadoop.apache.org). This multi-terabyte imaging dataset approximates future surveys such as those which will be conducted with the LSST. Our pipeline performs image coaddition in which multiple partially overlapping images are registered, integrated and stitched into a single overarching image. We will first present our initial implementation, then describe several critical optimizations that have enabled us to achieve high performance, and finally describe how we are incorporating a large in-house existing image processing library into our Hadoop system. The optimizations involve prefiltering of the input to remove irrelevant images from consideration, grouping individual FITS files into larger, more efficient indexed files, and a hybrid system in which a relational database is used to determine the input images relevant to the task. The incorporation of an existing image processing library, written in C++, presented difficult challenges since Hadoop is programmed primarily in Java. We will describe how we achieved this integration and the sophisticated image processing routines that were made feasible as a result. We will end by briefly describing the longer term goals of our work, namely detection and classification of transient objects and automated object classification.

  1. Application of off-line image processing for optimization in chest computed radiography using a low cost system.

    PubMed

    Muhogora, Wilbroad E; Msaki, Peter; Padovani, Renato

    2015-03-08

     The objective of this study was to improve the visibility of anatomical details by applying off-line postimage processing in chest computed radiography (CR). Four spatial domain-based external image processing techniques were developed by using MATLAB software version 7.0.0.19920 (R14) and image processing tools. The developed techniques were implemented to sample images and their visual appearances confirmed by two consultant radiologists to be clinically adequate. The techniques were then applied to 200 chest clinical images and randomized with other 100 images previously processed online. These 300 images were presented to three experienced radiologists for image quality assessment using standard quality criteria. The mean and ranges of the average scores for three radiologists were characterized for each of the developed technique and imaging system. The Mann-Whitney U-test was used to test the difference of details visibility between the images processed using each of the developed techniques and the corresponding images processed using default algorithms. The results show that the visibility of anatomical features improved significantly (0.005 ≤ p ≤ 0.02) with combinations of intensity values adjustment and/or spatial linear filtering techniques for images acquired using 60 ≤ kVp ≤ 70. However, there was no improvement for images acquired using 102 ≤ kVp ≤ 107 (0.127 ≤ p ≤ 0.48). In conclusion, the use of external image processing for optimization can be effective in chest CR, but should be implemented in consultations with the radiologists.

  2. Application of off‐line image processing for optimization in chest computed radiography using a low cost system

    PubMed Central

    Msaki, Peter; Padovani, Renato

    2015-01-01

    The objective of this study was to improve the visibility of anatomical details by applying off‐line postimage processing in chest computed radiography (CR). Four spatial domain‐based external image processing techniques were developed by using MATLAB software version 7.0.0.19920 (R14) and image processing tools. The developed techniques were implemented to sample images and their visual appearances confirmed by two consultant radiologists to be clinically adequate. The techniques were then applied to 200 chest clinical images and randomized with other 100 images previously processed online. These 300 images were presented to three experienced radiologists for image quality assessment using standard quality criteria. The mean and ranges of the average scores for three radiologists were characterized for each of the developed technique and imaging system. The Mann‐Whitney U‐test was used to test the difference of details visibility between the images processed using each of the developed techniques and the corresponding images processed using default algorithms. The results show that the visibility of anatomical features improved significantly (0.005≤p≤0.02) with combinations of intensity values adjustment and/or spatial linear filtering techniques for images acquired using 60≤kVp≤70. However, there was no improvement for images acquired using 102≤kVp≤107 (0.127≤p≤0.48). In conclusion, the use of external image processing for optimization can be effective in chest CR, but should be implemented in consultations with the radiologists. PACS number: 87.59.−e, 87.59.−B, 87.59.−bd PMID:26103165

  3. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  4. High-performance floating-point image computing workstation for medical applications

    NASA Astrophysics Data System (ADS)

    Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin

    1990-07-01

    The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.

  5. DYI digital holography

    NASA Astrophysics Data System (ADS)

    Zacharovas, Stanislovas; Nikolskij, Andrej; Kuchin, Jevgenij

    2011-02-01

    We have created a programming tool which uses image data provided by webcam connected to personal computer and gives user an ability to see the future digital hologram preview on his computer screen, before sending video data to holographic printing companies. In order to print digital hologram, one needs to have a sequence of images of the same scene taken from different angles and nowadays web cameras - stand-alone or incorporated into mobile computer, can be an acceptable source of such image sequences. In this article we are describing this DIY holographic imaging process in details.

  6. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    PubMed

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  7. Digital techniques for processing Landsat imagery

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1978-01-01

    An overview of the basic techniques used to process Landsat images with a digital computer, and the VICAR image processing software developed at JPL and available to users through the NASA sponsored COSMIC computer program distribution center is presented. Examples of subjective processing performed to improve the information display for the human observer, such as contrast enhancement, pseudocolor display and band rationing, and of quantitative processing using mathematical models, such as classification based on multispectral signatures of different areas within a given scene and geometric transformation of imagery into standard mapping projections are given. Examples are illustrated by Landsat scenes of the Andes mountains and Altyn-Tagh fault zone in China before and after contrast enhancement and classification of land use in Portland, Oregon. The VICAR image processing software system which consists of a language translator that simplifies execution of image processing programs and provides a general purpose format so that imagery from a variety of sources can be processed by the same basic set of general applications programs is described.

  8. Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region.

    PubMed

    Dong, Jian; Hayakawa, Yoshihiko; Kannenberg, Sven; Kober, Cornelia

    2013-02-01

    The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms. Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance. Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects. Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Computer analysis of three-dimensional morphological characteristics of the bile duct

    NASA Astrophysics Data System (ADS)

    Ma, Jinyuan; Chen, Houjin; Peng, Yahui; Shang, Hua

    2017-01-01

    In this paper, a computer image-processing algorithm for analyzing the morphological characteristics of bile ducts in Magnetic Resonance Cholangiopancreatography (MRCP) images was proposed. The algorithm consisted of mathematical morphology methods including erosion, closing and skeletonization, and a spline curve fitting method to obtain the length and curvature of the center line of the bile duct. Of 10 cases, the average length of the bile duct was 14.56 cm. The maximum curvature was in the range of 0.111 2.339. These experimental results show that using the computer image-processing algorithm to assess the morphological characteristics of the bile duct is feasible and further research is needed to evaluate its potential clinical values.

  10. Software for Verifying Image-Correlation Tie Points

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Yagi, Gary

    2008-01-01

    A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.

  11. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  12. A midas plugin to enable construction of reproducible web-based image processing pipelines

    PubMed Central

    Grauer, Michael; Reynolds, Patrick; Hoogstoel, Marion; Budin, Francois; Styner, Martin A.; Oguz, Ipek

    2013-01-01

    Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline. PMID:24416016

  13. A midas plugin to enable construction of reproducible web-based image processing pipelines.

    PubMed

    Grauer, Michael; Reynolds, Patrick; Hoogstoel, Marion; Budin, Francois; Styner, Martin A; Oguz, Ipek

    2013-01-01

    Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline.

  14. ScipionCloud: An integrative and interactive gateway for large scale cryo electron microscopy image processing on commercial and academic clouds.

    PubMed

    Cuenca-Alba, Jesús; Del Cano, Laura; Gómez Blanco, Josué; de la Rosa Trevín, José Miguel; Conesa Mingo, Pablo; Marabini, Roberto; S Sorzano, Carlos Oscar; Carazo, Jose María

    2017-10-01

    New instrumentation for cryo electron microscopy (cryoEM) has significantly increased data collection rate as well as data quality, creating bottlenecks at the image processing level. Current image processing model of moving the acquired images from the data source (electron microscope) to desktops or local clusters for processing is encountering many practical limitations. However, computing may also take place in distributed and decentralized environments. In this way, cloud is a new form of accessing computing and storage resources on demand. Here, we evaluate on how this new computational paradigm can be effectively used by extending our current integrative framework for image processing, creating ScipionCloud. This new development has resulted in a full installation of Scipion both in public and private clouds, accessible as public "images", with all the required preinstalled cryoEM software, just requiring a Web browser to access all Graphical User Interfaces. We have profiled the performance of different configurations on Amazon Web Services and the European Federated Cloud, always on architectures incorporating GPU's, and compared them with a local facility. We have also analyzed the economical convenience of different scenarios, so cryoEM scientists have a clearer picture of the setup that is best suited for their needs and budgets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Phase in Optical Image Processing

    NASA Astrophysics Data System (ADS)

    Naughton, Thomas J.

    2010-04-01

    The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.

  16. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    PubMed

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  17. Real-time simulation of the retina allowing visualization of each processing stage

    NASA Astrophysics Data System (ADS)

    Teeters, Jeffrey L.; Werblin, Frank S.

    1991-08-01

    The retina computes to let us see, but can we see the retina compute? Until now, the answer has been no, because the unconscious nature of the processing hides it from our view. Here the authors describe a method of seeing computations performed throughout the retina. This is achieved by using neurophysiological data to construct a model of the retina, and using a special-purpose image processing computer (PIPE) to implement the model in real time. Processing in the model is organized into stages corresponding to computations performed by each retinal cell type. The final stage is the transient (change detecting) ganglion cell. A CCD camera forms the input image, and the activity of a selected retinal cell type is the output which is displayed on a TV monitor. By changing the retina cell driving the monitor, the progressive transformations of the image by the retina can be observed. These simulations demonstrate the ubiquitous presence of temporal and spatial variations in the patterns of activity generated by the retina which are fed into the brain. The dynamical aspects make these patterns very different from those generated by the common DOG (Difference of Gaussian) model of receptive field. Because the retina is so successful in biological vision systems, the processing described here may be useful in machine vision.

  18. Smartphones as image processing systems for prosthetic vision.

    PubMed

    Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J

    2013-01-01

    The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.

  19. Emerging Computer Media: On Image Interaction

    NASA Astrophysics Data System (ADS)

    Lippman, Andrew B.

    1982-01-01

    Emerging technologies such as inexpensive, powerful local computing, optical digital videodiscs, and the technologies of human-machine interaction are initiating a revolution in both image storage systems and image interaction systems. This paper will present a review of new approaches to computer media predicated upon three dimensional position sensing, speech recognition, and high density image storage. Examples will be shown such as the Spatial Data Management Systems wherein the free use of place results in intuitively clear retrieval systems and potentials for image association; the Movie-Map, wherein inherently static media generate dynamic views of data, and conferencing work-in-progress wherein joint processing is stressed. Application to medical imaging will be suggested, but the primary emphasis is on the general direction of imaging and reference systems. We are passing the age of simple possibility of computer graphics and image porcessing and entering the age of ready usability.

  20. Data Visualization and Animation Lab (DVAL) overview

    NASA Technical Reports Server (NTRS)

    Stacy, Kathy; Vonofenheim, Bill

    1994-01-01

    The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.

  1. Multifaceted free-space image distributor for optical interconnects in massively parrallel processing

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Frietman, Edward E. E.; Han, Zhong; Chen, Ray T.

    1999-04-01

    A characteristic feature of a conventional von Neumann computer is that computing power is delivered by a single processing unit. Although increasing the clock frequency improves the performance of the computer, the switching speed of the semiconductor devices and the finite speed at which electrical signals propagate along the bus set the boundaries. Architectures containing large numbers of nodes can solve this performance dilemma, with the comment that main obstacles in designing such systems are caused by difficulties to come up with solutions that guarantee efficient communications among the nodes. Exchanging data becomes really a bottleneck should al nodes be connected by a shared resource. Only optics, due to its inherent parallelism, could solve that bottleneck. Here, we explore a multi-faceted free space image distributor to be used in optical interconnects in massively parallel processing. In this paper, physical and optical models of the image distributor are focused on from diffraction theory of light wave to optical simulations. the general features and the performance of the image distributor are also described. The new structure of an image distributor and the simulations for it are discussed. From the digital simulation and experiment, it is found that the multi-faceted free space image distributing technique is quite suitable for free space optical interconnection in massively parallel processing and new structure of the multifaceted free space image distributor would perform better.

  2. Calibration-free quantification of interior properties of porous media with x-ray computed tomography.

    PubMed

    Hussein, Esam M A; Agbogun, H M D; Al, Tom A

    2015-03-01

    A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. AutoCNet: A Python library for sparse multi-image correspondence identification for planetary data

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Rodriguez, Kelvin; Paquette, Adam C.; Dunn, Evin

    2018-01-01

    In this work we describe the AutoCNet library, written in Python, to support the application of computer vision techniques for n-image correspondence identification in remotely sensed planetary images and subsequent bundle adjustment. The library is designed to support exploratory data analysis, algorithm and processing pipeline development, and application at scale in High Performance Computing (HPC) environments for processing large data sets and generating foundational data products. We also present a brief case study illustrating high level usage for the Apollo 15 Metric camera.

  4. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    PubMed Central

    Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576

  5. PlantCV v2: Image analysis software for high-throughput plant phenotyping.

    PubMed

    Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

  6. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  7. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE PAGES

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...

    2017-12-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  8. Planetary image conversion task

    NASA Technical Reports Server (NTRS)

    Martin, M. D.; Stanley, C. L.; Laughlin, G.

    1985-01-01

    The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.

  9. Accessible high performance computing solutions for near real-time image processing for time critical applications

    NASA Astrophysics Data System (ADS)

    Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek

    2009-09-01

    High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.

  10. Software designs of image processing tasks with incremental refinement of computation.

    PubMed

    Anastasia, Davide; Andreopoulos, Yiannis

    2010-08-01

    Software realizations of computationally-demanding image processing tasks (e.g., image transforms and convolution) do not currently provide graceful degradation when their clock-cycles budgets are reduced, e.g., when delay deadlines are imposed in a multitasking environment to meet throughput requirements. This is an important obstacle in the quest for full utilization of modern programmable platforms' capabilities since worst-case considerations must be in place for reasonable quality of results. In this paper, we propose (and make available online) platform-independent software designs performing bitplane-based computation combined with an incremental packing framework in order to realize block transforms, 2-D convolution and frame-by-frame block matching. The proposed framework realizes incremental computation: progressive processing of input-source increments improves the output quality monotonically. Comparisons with the equivalent nonincremental software realization of each algorithm reveal that, for the same precision of the result, the proposed approach can lead to comparable or faster execution, while it can be arbitrarily terminated and provide the result up to the computed precision. Application examples with region-of-interest based incremental computation, task scheduling per frame, and energy-distortion scalability verify that our proposal provides significant performance scalability with graceful degradation.

  11. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.

  12. Apple Image Processing Educator

    NASA Technical Reports Server (NTRS)

    Gunther, F. J.

    1981-01-01

    A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.

  13. Image sensor for testing refractive error of eyes

    NASA Astrophysics Data System (ADS)

    Li, Xiangning; Chen, Jiabi; Xu, Longyun

    2000-05-01

    It is difficult to detect ametropia and anisometropia for children. Image sensor for testing refractive error of eyes does not need the cooperation of children and can be used to do the general survey of ametropia and anisometropia for children. In our study, photographs are recorded by a CCD element in a digital form which can be directly processed by a computer. In order to process the image accurately by digital technique, formula considering the effect of extended light source and the size of lens aperture has been deduced, which is more reliable in practice. Computer simulation of the image sensing is made to verify the fineness of the results.

  14. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    PubMed

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  15. A survey of GPU-based acceleration techniques in MRI reconstructions

    PubMed Central

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou

    2018-01-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community. PMID:29675361

  16. A survey of GPU-based acceleration techniques in MRI reconstructions.

    PubMed

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou; Liang, Dong

    2018-03-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community.

  17. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  18. [Applicability of non-invasive imaging methods in forensic medicine and forensic anthropology in particular].

    PubMed

    Marcinková, Mária; Straka, Ľubomír; Novomeský, František; Janík, Martin; Štuller, František; Krajčovič, Jozef

    2018-01-01

    Massive progress in developing even more precise imaging modalities influenced all medical branches including the forensic medicine. In forensic anthropology, an inevitable part of forensic medicine itself, the use of all imaging modalities becomes even more important. Despite of acquiring more accurate informations about the deceased, all of them can be used in the process of identification and/or age estimation. X - ray imaging is most commonly used in detecting foreign bodies or various pathological changes of the deceased. Computed tomography, on the other hand, can be very helpful in the process of identification, whereas outcomes of this examination can be used for virtual reconstruction of living objects. Magnetic resonance imaging offers new opportunities in detecting cardiovascular pathological processes or develompental anomalies. Ultrasonography provides promising results in age estimation of living subjects without excessive doses of radiation. Processing the latest information sources available, authors introduce the application examples of X - ray imaging, computed tomography, magnetic resonance imaging and ultrasonography in everyday forensic medicine routine, with particular focusing on forensic anthropology.

  19. Grid Computing Application for Brain Magnetic Resonance Image Processing

    NASA Astrophysics Data System (ADS)

    Valdivia, F.; Crépeault, B.; Duchesne, S.

    2012-02-01

    This work emphasizes the use of grid computing and web technology for automatic post-processing of brain magnetic resonance images (MRI) in the context of neuropsychiatric (Alzheimer's disease) research. Post-acquisition image processing is achieved through the interconnection of several individual processes into pipelines. Each process has input and output data ports, options and execution parameters, and performs single tasks such as: a) extracting individual image attributes (e.g. dimensions, orientation, center of mass), b) performing image transformations (e.g. scaling, rotation, skewing, intensity standardization, linear and non-linear registration), c) performing image statistical analyses, and d) producing the necessary quality control images and/or files for user review. The pipelines are built to perform specific sequences of tasks on the alphanumeric data and MRIs contained in our database. The web application is coded in PHP and allows the creation of scripts to create, store and execute pipelines and their instances either on our local cluster or on high-performance computing platforms. To run an instance on an external cluster, the web application opens a communication tunnel through which it copies the necessary files, submits the execution commands and collects the results. We present result on system tests for the processing of a set of 821 brain MRIs from the Alzheimer's Disease Neuroimaging Initiative study via a nonlinear registration pipeline composed of 10 processes. Our results show successful execution on both local and external clusters, and a 4-fold increase in performance if using the external cluster. However, the latter's performance does not scale linearly as queue waiting times and execution overhead increase with the number of tasks to be executed.

  20. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  1. Radiology image orientation processing for workstation display

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Fu; Hu, Kermit; Wilson, Dennis L.

    1998-06-01

    Radiology images are acquired electronically using phosphor plates that are read in Computed Radiology (CR) readers. An automated radiology image orientation processor (RIOP) for determining the orientation for chest images and for abdomen images has been devised. In addition, the chest images are differentiated as front (AP or PA) or side (Lateral). Using the processing scheme outlined, hospitals will improve the efficiency of quality assurance (QA) technicians who orient images and prepare the images for presentation to the radiologists.

  2. A novel computer algorithm for modeling and treating mandibular fractures: A pilot study.

    PubMed

    Rizzi, Christopher J; Ortlip, Timothy; Greywoode, Jewel D; Vakharia, Kavita T; Vakharia, Kalpesh T

    2017-02-01

    To describe a novel computer algorithm that can model mandibular fracture repair. To evaluate the algorithm as a tool to model mandibular fracture reduction and hardware selection. Retrospective pilot study combined with cross-sectional survey. A computer algorithm utilizing Aquarius Net (TeraRecon, Inc, Foster City, CA) and Adobe Photoshop CS6 (Adobe Systems, Inc, San Jose, CA) was developed to model mandibular fracture repair. Ten different fracture patterns were selected from nine patients who had already undergone mandibular fracture repair. The preoperative computed tomography (CT) images were processed with the computer algorithm to create virtual images that matched the actual postoperative three-dimensional CT images. A survey comparing the true postoperative image with the virtual postoperative images was created and administered to otolaryngology resident and attending physicians. They were asked to rate on a scale from 0 to 10 (0 = completely different; 10 = identical) the similarity between the two images in terms of the fracture reduction and fixation hardware. Ten mandible fracture cases were analyzed and processed. There were 15 survey respondents. The mean score for overall similarity between the images was 8.41 ± 0.91; the mean score for similarity of fracture reduction was 8.61 ± 0.98; and the mean score for hardware appearance was 8.27 ± 0.97. There were no significant differences between attending and resident responses. There were no significant differences based on fracture location. This computer algorithm can accurately model mandibular fracture repair. Images created by the algorithm are highly similar to true postoperative images. The algorithm can potentially assist a surgeon planning mandibular fracture repair. 4. Laryngoscope, 2016 127:331-336, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Image processing via VLSI: A concept paper

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1982-01-01

    Implementing specific image processing algorithms via very large scale integrated systems offers a potent solution to the problem of handling high data rates. Two algorithms stand out as being particularly critical -- geometric map transformation and filtering or correlation. These two functions form the basis for data calibration, registration and mosaicking. VLSI presents itself as an inexpensive ancillary function to be added to almost any general purpose computer and if the geometry and filter algorithms are implemented in VLSI, the processing rate bottleneck would be significantly relieved. A set of image processing functions that limit present systems to deal with future throughput needs, translates these functions to algorithms, implements via VLSI technology and interfaces the hardware to a general purpose digital computer is developed.

  4. Manual on characteristics of Landsat computer-compatible tapes produced by the EROS Data Center digital image processing system

    USGS Publications Warehouse

    Holkenbrink, Patrick F.

    1978-01-01

    Landsat data are received by National Aeronautics and Space Administration (NASA) tracking stations and converted into digital form on high-density tapes (HDTs) by the Image Processing Facility (IPF) at the Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The HDTs are shipped to the EROS Data Center (EDC) where they are converted into customer products by the EROS Data Center digital image processing system (EDIPS). This document describes in detail one of these products: the computer-compatible tape (CCT) produced from Landsat-1, -2, and -3 multispectral scanner (MSS) data and Landsat-3 only return-beam vidicon (RBV) data. Landsat-1 and -2 RBV data will not be processed by IPF/EDIPS to CCT format.

  5. DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.

    2010-03-01

    Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.

  6. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.

    PubMed

    Samant, Sanjiv S; Xia, Junyi; Muyan-Ozcelik, Pinar; Owens, John D

    2008-08-01

    The advent of readily available temporal imaging or time series volumetric (4D) imaging has become an indispensable component of treatment planning and adaptive radiotherapy (ART) at many radiotherapy centers. Deformable image registration (DIR) is also used in other areas of medical imaging, including motion corrected image reconstruction. Due to long computation time, clinical applications of DIR in radiation therapy and elsewhere have been limited and consequently relegated to offline analysis. With the recent advances in hardware and software, graphics processing unit (GPU) based computing is an emerging technology for general purpose computation, including DIR, and is suitable for highly parallelized computing. However, traditional general purpose computation on the GPU is limited because the constraints of the available programming platforms. As well, compared to CPU programming, the GPU currently has reduced dedicated processor memory, which can limit the useful working data set for parallelized processing. We present an implementation of the demons algorithm using the NVIDIA 8800 GTX GPU and the new CUDA programming language. The GPU performance will be compared with single threading and multithreading CPU implementations on an Intel dual core 2.4 GHz CPU using the C programming language. CUDA provides a C-like language programming interface, and allows for direct access to the highly parallel compute units in the GPU. Comparisons for volumetric clinical lung images acquired using 4DCT were carried out. Computation time for 100 iterations in the range of 1.8-13.5 s was observed for the GPU with image size ranging from 2.0 x 10(6) to 14.2 x 10(6) pixels. The GPU registration was 55-61 times faster than the CPU for the single threading implementation, and 34-39 times faster for the multithreading implementation. For CPU based computing, the computational time generally has a linear dependence on image size for medical imaging data. Computational efficiency is characterized in terms of time per megapixels per iteration (TPMI) with units of seconds per megapixels per iteration (or spmi). For the demons algorithm, our CPU implementation yielded largely invariant values of TPMI. The mean TPMIs were 0.527 spmi and 0.335 spmi for the single threading and multithreading cases, respectively, with <2% variation over the considered image data range. For GPU computing, we achieved TPMI =0.00916 spmi with 3.7% variation, indicating optimized memory handling under CUDA. The paradigm of GPU based real-time DIR opens up a host of clinical applications for medical imaging.

  7. A Freeware Path to Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Craft, Aaron E.

    Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.

  8. Parallel Algorithms for Image Analysis.

    DTIC Science & Technology

    1982-06-01

    8217 _ _ _ _ _ _ _ 4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED PARALLEL ALGORITHMS FOR IMAGE ANALYSIS TECHNICAL 6. PERFORMING O4G. REPORT NUMBER TR-1180...Continue on reverse side it neceesary aid Identlfy by block number) Image processing; image analysis ; parallel processing; cellular computers. 20... IMAGE ANALYSIS TECHNICAL 6. PERFORMING ONG. REPORT NUMBER TR-1180 - 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s) Azriel Rosenfeld AFOSR-77-3271 9

  9. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    USDA-ARS?s Scientific Manuscript database

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing h...

  10. [A computer-aided image diagnosis and study system].

    PubMed

    Li, Zhangyong; Xie, Zhengxiang

    2004-08-01

    The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.

  11. IPL Processing of the Viking Orbiter Images of Mars

    NASA Technical Reports Server (NTRS)

    Ruiz, R. M.; Elliott, D. A.; Yagi, G. M.; Pomphrey, R. B.; Power, M. A.; Farrell, W., Jr.; Lorre, J. J.; Benton, W. D.; Dewar, R. E.; Cullen, L. E.

    1977-01-01

    The Viking orbiter cameras returned over 9000 images of Mars during the 6-month nominal mission. Digital image processing was required to produce products suitable for quantitative and qualitative scientific interpretation. Processing included the production of surface elevation data using computer stereophotogrammetric techniques, crater classification based on geomorphological characteristics, and the generation of color products using multiple black-and-white images recorded through spectral filters. The Image Processing Laboratory of the Jet Propulsion Laboratory was responsible for the design, development, and application of the software required to produce these 'second-order' products.

  12. Decomposed multidimensional control grid interpolation for common consumer electronic image processing applications

    NASA Astrophysics Data System (ADS)

    Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.

    2012-10-01

    Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.

  13. Fast processing of microscopic images using object-based extended depth of field.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.

  14. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  15. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  16. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    NASA Astrophysics Data System (ADS)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  17. Combining multi-layered bitmap files using network specific hardware

    DOEpatents

    DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM

    2012-02-28

    Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.

  18. Evaluation of computed tomography post-processing images in postoperative assessment of Lisfranc injuries compared with plain radiographs.

    PubMed

    Li, Haobo; Chen, Yanxi; Qiang, Minfei; Zhang, Kun; Jiang, Yuchen; Zhang, Yijie; Jia, Xiaoyang

    2017-06-14

    The objective of this study is to evaluate the value of computed tomography (CT) post-processing images in postoperative assessment of Lisfranc injuries compared with plain radiographs. A total of 79 cases with closed Lisfranc injuries that were treated with conventional open reduction and internal fixation from January 2010 to June 2016 were analyzed. Postoperative assessment was performed by two independent orthopedic surgeons with both plain radiographs and CT post-processing images. Inter- and intra-observer agreement were analyzed by kappa statistics while the differences between the two postoperative imaging assessments were assessed using the χ 2 test (McNemar's test). Significance was assumed when p < 0.05. Inter- and intra-observer agreement of CT post-processing images was much higher than that of plain radiographs. Non-anatomic reduction was more easily identified in patients with injuries of Myerson classifications A, B1, B2, and C1 using CT post-processing images with overall groups (p < 0.05), and poor internal fixation was also more easily detected in patients with injuries of Myerson classifications A, B1, B2, and C2 using CT post-processing images with overall groups (p < 0.05). CT post-processing images can be more reliable than plain radiographs in the postoperative assessment of reduction and implant placement for Lisfranc injuries.

  19. The application of digital techniques to the analysis of metallurgical experiments

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1977-01-01

    The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. The basic hardware and software components of the Image Data Processing System are presented. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.

  20. RayPlus: a Web-Based Platform for Medical Image Processing.

    PubMed

    Yuan, Rong; Luo, Ming; Sun, Zhi; Shi, Shuyue; Xiao, Peng; Xie, Qingguo

    2017-04-01

    Medical image can provide valuable information for preclinical research, clinical diagnosis, and treatment. As the widespread use of digital medical imaging, many researchers are currently developing medical image processing algorithms and systems in order to accommodate a better result to clinical community, including accurate clinical parameters or processed images from the original images. In this paper, we propose a web-based platform to present and process medical images. By using Internet and novel database technologies, authorized users can easily access to medical images and facilitate their workflows of processing with server-side powerful computing performance without any installation. We implement a series of algorithms of image processing and visualization in the initial version of Rayplus. Integration of our system allows much flexibility and convenience for both research and clinical communities.

  1. The Application of Special Computing Techniques to Speed-Up Image Feature Extraction and Processing Techniques.

    DTIC Science & Technology

    1981-12-01

    ocessors has led to the possibility of implementing a large number of image processing functions in near real time . ~CC~ jnro _ j:% UNLSSFE (b-.YC ASIIAINO...to the possibility of implementing a large number of image processing functions in near " real - time ," a result which is essential to establishing a...for example, and S) rapid image handling for near real - time in- teraction by a user at a display. For example, for a large resolution image, say

  2. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  3. Brain's tumor image processing using shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  4. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  5. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    PubMed

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  6. Image/Time Series Mining Algorithms: Applications to Developmental Biology, Document Processing and Data Streams

    ERIC Educational Resources Information Center

    Tataw, Oben Moses

    2013-01-01

    Interdisciplinary research in computer science requires the development of computational techniques for practical application in different domains. This usually requires careful integration of different areas of technical expertise. This dissertation presents image and time series analysis algorithms, with practical interdisciplinary applications…

  7. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  8. Development of alternative data analysis techniques for improving the accuracy and specificity of natural resource inventories made with digital remote sensing data

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Meisner, D. E. (Principal Investigator)

    1980-01-01

    An investigation was conducted into ways to improve the involvement of state and local user personnel in the digital image analysis process by isolating those elements of the analysis process which require extensive involvement by field personnel and providing means for performing those activities apart from a computer facility. In this way, the analysis procedure can be converted from a centralized activity focused on a computer facility to a distributed activity in which users can interact with the data at the field office level or in the field itself. A general image processing software was developed on the University of Minnesota computer system (Control Data Cyber models 172 and 74). The use of color hardcopy image data as a primary medium in supervised training procedures was investigated and digital display equipment and a coordinate digitizer were procured.

  9. Small Interactive Image Processing System (SMIPS) users manual

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    The Small Interactive Image Processing System (SMIP) is designed to facilitate the acquisition, digital processing and recording of image data as well as pattern recognition in an interactive mode. Objectives of the system are ease of communication with the computer by personnel who are not expert programmers, fast response to requests for information on pictures, complete error recovery as well as simplification of future programming efforts for extension of the system. The SMIP system is intended for operation under OS/MVT on an IBM 360/75 or 91 computer equipped with the IBM-2250 Model 1 display unit. This terminal is used as an interface between user and main computer. It has an alphanumeric keyboard, a programmed function keyboard and a light pen which are used for specification of input to the system. Output from the system is displayed on the screen as messages and pictures.

  10. Developing an undergraduate geography course on digital image processing of remotely sensed data

    NASA Technical Reports Server (NTRS)

    Baumann, P. R.

    1981-01-01

    Problems relating to the development of a digital image processing course in an undergraduate geography environment is discussed. Computer resource requirements, course prerequisites, and the size of the study area are addressed.

  11. The microcomputer workstation - An alternate hardware architecture for remotely sensed image analysis

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.; Hofman, L. B.; Donovan, W. E.

    1984-01-01

    Difficulties regarding the digital image analysis of remotely sensed imagery can arise in connection with the extensive calculations required. In the past, an expensive large to medium mainframe computer system was needed for performing these calculations. For image-processing applications smaller minicomputer-based systems are now used by many organizations. The costs for such systems are still in the range from $100K to $300K. Recently, as a result of new developments, the use of low-cost microcomputers for image processing and display systems appeared to have become feasible. These developments are related to the advent of the 16-bit microprocessor and the concept of the microcomputer workstation. Earlier 8-bit microcomputer-based image processing systems are briefly examined, and a computer workstation architecture is discussed. Attention is given to a microcomputer workstation developed by Stanford University, and the design and implementation of a workstation network.

  12. Frequency domain zero padding for accurate autofocusing based on digital holography

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Kim, Ju Wan; Eom, Tae Joong; Lee, Byeong Ha

    2018-01-01

    The numerical refocusing feature of digital holography enables the reconstruction of a well-focused image from a digital hologram captured at an arbitrary out-of-focus plane without the supervision of end users. However, in general, the autofocusing process for getting a highly focused image requires a considerable computational cost. In this study, to reconstruct a better-focused image, we propose the zero padding technique implemented in the frequency domain. Zero padding in the frequency domain enhances the visibility or numerical resolution of the image, which allows one to measure the degree of focus with more accuracy. A coarse-to-fine search algorithm is used to reduce the computing load, and a graphics processing unit (GPU) is employed to accelerate the process. The performance of the proposed scheme is evaluated with simulation and experiment, and the possibility of obtaining a well-refocused image with an enhanced accuracy and speed are presented.

  13. Light-Field Imaging Toolkit

    NASA Astrophysics Data System (ADS)

    Bolan, Jeffrey; Hall, Elise; Clifford, Chris; Thurow, Brian

    The Light-Field Imaging Toolkit (LFIT) is a collection of MATLAB functions designed to facilitate the rapid processing of raw light field images captured by a plenoptic camera. An included graphical user interface streamlines the necessary post-processing steps associated with plenoptic images. The generation of perspective shifted views and computationally refocused images is supported, in both single image and animated formats. LFIT performs necessary calibration, interpolation, and structuring steps to enable future applications of this technology.

  14. Matrix decomposition graphics processing unit solver for Poisson image editing

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Wei, Li

    2012-10-01

    In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.

  15. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO.

    PubMed

    Hernandez-Vicen, Juan; Martinez, Santiago; Garcia-Haro, Juan Miguel; Balaguer, Carlos

    2018-03-25

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

  16. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    PubMed Central

    2018-01-01

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid. PMID:29587392

  17. Raster Metafile And Raster Metafile Translator Programs

    NASA Technical Reports Server (NTRS)

    Randall, Donald P.; Gates, Raymond L.; Skeens, Kristi M.

    1994-01-01

    Raster Metafile (RM) computer program is generic raster-image-format program, and Raster Metafile Translator (RMT) program is assortment of software tools for processing images prepared in this format. Processing includes reading, writing, and displaying RM images. Such other image-manipulation features as minimal compositing operator and resizing option available under RMT command structure. RMT written in FORTRAN 77 and C language.

  18. Architecture of the parallel hierarchical network for fast image recognition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule

    2016-09-01

    Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.

  19. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.

  20. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  1. Development of a Reference Image Collection Library for Histopathology Image Processing, Analysis and Decision Support Systems Research.

    PubMed

    Kostopoulos, Spiros; Ravazoula, Panagiota; Asvestas, Pantelis; Kalatzis, Ioannis; Xenogiannopoulos, George; Cavouras, Dionisis; Glotsos, Dimitris

    2017-06-01

    Histopathology image processing, analysis and computer-aided diagnosis have been shown as effective assisting tools towards reliable and intra-/inter-observer invariant decisions in traditional pathology. Especially for cancer patients, decisions need to be as accurate as possible in order to increase the probability of optimal treatment planning. In this study, we propose a new image collection library (HICL-Histology Image Collection Library) comprising 3831 histological images of three different diseases, for fostering research in histopathology image processing, analysis and computer-aided diagnosis. Raw data comprised 93, 116 and 55 cases of brain, breast and laryngeal cancer respectively collected from the archives of the University Hospital of Patras, Greece. The 3831 images were generated from the most representative regions of the pathology, specified by an experienced histopathologist. The HICL Image Collection is free for access under an academic license at http://medisp.bme.teiath.gr/hicl/ . Potential exploitations of the proposed library may span over a board spectrum, such as in image processing to improve visualization, in segmentation for nuclei detection, in decision support systems for second opinion consultations, in statistical analysis for investigation of potential correlations between clinical annotations and imaging findings and, generally, in fostering research on histopathology image processing and analysis. To the best of our knowledge, the HICL constitutes the first attempt towards creation of a reference image collection library in the field of traditional histopathology, publicly and freely available to the scientific community.

  2. Platform-independent software for medical image processing on the Internet

    NASA Astrophysics Data System (ADS)

    Mancuso, Michael E.; Pathak, Sayan D.; Kim, Yongmin

    1997-05-01

    We have developed a software tool for image processing over the Internet. The tool is a general purpose, easy to use, flexible, platform independent image processing software package with functions most commonly used in medical image processing.It provides for processing of medical images located wither remotely on the Internet or locally. The software was written in Java - the new programming language developed by Sun Microsystems. It was compiled and tested using Microsoft's Visual Java 1.0 and Microsoft's Just in Time Compiler 1.00.6211. The software is simple and easy to use. In order to use the tool, the user needs to download the software from our site before he/she runs it using any Java interpreter, such as those supplied by Sun, Symantec, Borland or Microsoft. Future versions of the operating systems supplied by Sun, Microsoft, Apple, IBM, and others will include Java interpreters. The software is then able to access and process any image on the iNternet or on the local computer. Using a 512 X 512 X 8-bit image, a 3 X 3 convolution took 0.88 seconds on an Intel Pentium Pro PC running at 200 MHz with 64 Mbytes of memory. A window/level operation took 0.38 seconds while a 3 X 3 median filter took 0.71 seconds. These performance numbers demonstrate the feasibility of using this software interactively on desktop computes. Our software tool supports various image processing techniques commonly used in medical image processing and can run without the need of any specialized hardware. It can become an easily accessible resource over the Internet to promote the learning and of understanding image processing algorithms. Also, it could facilitate sharing of medical image databases and collaboration amongst researchers and clinicians, regardless of location.

  3. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.

    PubMed

    Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J

    2005-01-01

    We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.

  4. Award-Winning Animation Helps Scientists See Nature at Work | News | NREL

    Science.gov Websites

    Scientists See Nature at Work August 8, 2008 A computer-aided image combines a photo of a man with a three -dimensional, computer-generated image. The man has long brown hair and a long beard. He is wearing a blue - simultaneously. "It is very difficult to parallelize the process to run even on a huge computer,"

  5. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.

  6. 76 FR 7868 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Special Emphasis Panel, Small Business: Computational Biology, Image Processing and Data Mining. Date... for Scientific Review Special Emphasis Panel, Quick Trial on Imaging and Image-Guided Intervention...

  7. The Role of Visualization in Computer Science Education

    ERIC Educational Resources Information Center

    Fouh, Eric; Akbar, Monika; Shaffer, Clifford A.

    2012-01-01

    Computer science core instruction attempts to provide a detailed understanding of dynamic processes such as the working of an algorithm or the flow of information between computing entities. Such dynamic processes are not well explained by static media such as text and images, and are difficult to convey in lecture. The authors survey the history…

  8. A FPGA-based architecture for real-time image matching

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Zhong, Sheng; Xu, Wenhui; Zhang, Weijun; Cao, Zhiguo

    2013-10-01

    Image matching is a fundamental task in computer vision. It is used to establish correspondence between two images taken at different viewpoint or different time from the same scene. However, its large computational complexity has been a challenge to most embedded systems. This paper proposes a single FPGA-based image matching system, which consists of SIFT feature detection, BRIEF descriptor extraction and BRIEF matching. It optimizes the FPGA architecture for the SIFT feature detection to reduce the FPGA resources utilization. Moreover, we implement BRIEF description and matching on FPGA also. The proposed system can implement image matching at 30fps (frame per second) for 1280x720 images. Its processing speed can meet the demand of most real-life computer vision applications.

  9. MIDAS - ESO's new image processing system

    NASA Astrophysics Data System (ADS)

    Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.

    1983-03-01

    The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.

  10. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services.

    PubMed

    Bao, Shunxing; Damon, Stephen M; Landman, Bennett A; Gokhale, Aniruddha

    2016-02-27

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  11. Performance management of high performance computing for medical image processing in Amazon Web Services

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-03-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical- Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for- use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  12. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services

    PubMed Central

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-01-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline. PMID:27127335

  13. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    NASA Technical Reports Server (NTRS)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  14. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  15. Cloud Computing for radiologists

    PubMed Central

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  16. Quantitative Enzymatic and Immunologic Histophotometry of Diseased Human Kid-Ney Tissues Using Tv-Camera and Computer Assisted Image Processing Systems.

    NASA Astrophysics Data System (ADS)

    Heinert, G.; Mondorf, W.

    1982-11-01

    High speed image processing was used to analyse morphologic and metabolic characteristics of clinically relevant kidney tissue alterations.Qualitative computer-assisted histophotometry was performed to measure alterations in levels of the enzymes alkaline phosphatase (Ap),alanine aminopeptidase (AAP),g-glutamyltranspepti-dase (GGTP) and A-glucuronidase (B-G1) and AAP and GGTP immunologically determined in prepared renal and cancer tissue sections. A "Mioro-Videomat 2" image analysis system with a "Tessovar" macroscope,a computer-assisted "Axiomat" photomicroscope and an "Interactive Image Analysis System (IBAS)" were employed for analysing changes in enzyme activities determined by changes in absorbance or transmission.Diseased kidney as well as renal neoplastic tissues could be distinguished by significantly (wilcoxon test,p<0,05) decreased enzyme concentrations as compared to those found in normal human kidney tissues.This image analysis techniques might be of potential use in diagnostic and prognostic evaluation of renal cancer and diseased kidney tissues.

  17. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  18. Color engineering in the age of digital convergence

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    1998-09-01

    Digital color imaging has developed over the past twenty years from specialized scientific applications into the mainstream of computing. In addition to the phenomenal growth of computer processing power and storage capacity, great advances have been made in the capabilities and cost-effectiveness of color imaging peripherals. The majority of imaging applications, including the graphic arts, video and film have made the transition from analogue to digital production methods. Digital convergence of computing, communications and television now heralds new possibilities for multimedia publishing and mobile lifestyles. Color engineering, the application of color science to the design of imaging products, is an emerging discipline that poses exciting challenges to the international color imaging community for training, research and standards.

  19. Image preprocessing for improving computational efficiency in implementation of restoration and superresolution algorithms.

    PubMed

    Sundareshan, Malur K; Bhattacharjee, Supratik; Inampudi, Radhika; Pang, Ho-Yuen

    2002-12-10

    Computational complexity is a major impediment to the real-time implementation of image restoration and superresolution algorithms in many applications. Although powerful restoration algorithms have been developed within the past few years utilizing sophisticated mathematical machinery (based on statistical optimization and convex set theory), these algorithms are typically iterative in nature and require a sufficient number of iterations to be executed to achieve the desired resolution improvement that may be needed to meaningfully perform postprocessing image exploitation tasks in practice. Additionally, recent technological breakthroughs have facilitated novel sensor designs (focal plane arrays, for instance) that make it possible to capture megapixel imagery data at video frame rates. A major challenge in the processing of these large-format images is to complete the execution of the image processing steps within the frame capture times and to keep up with the output rate of the sensor so that all data captured by the sensor can be efficiently utilized. Consequently, development of novel methods that facilitate real-time implementation of image restoration and superresolution algorithms is of significant practical interest and is the primary focus of this study. The key to designing computationally efficient processing schemes lies in strategically introducing appropriate preprocessing steps together with the superresolution iterations to tailor optimized overall processing sequences for imagery data of specific formats. For substantiating this assertion, three distinct methods for tailoring a preprocessing filter and integrating it with the superresolution processing steps are outlined. These methods consist of a region-of-interest extraction scheme, a background-detail separation procedure, and a scene-derived information extraction step for implementing a set-theoretic restoration of the image that is less demanding in computation compared with the superresolution iterations. A quantitative evaluation of the performance of these algorithms for restoring and superresolving various imagery data captured by diffraction-limited sensing operations are also presented.

  20. Integration of a neuroimaging processing pipeline into a pan-canadian computing grid

    NASA Astrophysics Data System (ADS)

    Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.

    2012-02-01

    The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.

  1. Pc-Based Floating Point Imaging Workstation

    NASA Astrophysics Data System (ADS)

    Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin

    1989-07-01

    The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.

  2. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. [Basic concept in computer assisted surgery].

    PubMed

    Merloz, Philippe; Wu, Hao

    2006-03-01

    To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

  4. Map of Pluto Surface

    NASA Image and Video Library

    1998-03-28

    This image-based surface map of Pluto was assembled by computer image processing software from four separate images of Pluto disk taken with the European Space Agency Faint Object Camera aboard NASA Hubble Space Telescope.

  5. We get the algorithms of our ground truths: Designing referential databases in digital image processing

    PubMed Central

    Jaton, Florian

    2017-01-01

    This article documents the practical efforts of a group of scientists designing an image-processing algorithm for saliency detection. By following the actors of this computer science project, the article shows that the problems often considered to be the starting points of computational models are in fact provisional results of time-consuming, collective and highly material processes that engage habits, desires, skills and values. In the project being studied, problematization processes lead to the constitution of referential databases called ‘ground truths’ that enable both the effective shaping of algorithms and the evaluation of their performances. Working as important common touchstones for research communities in image processing, the ground truths are inherited from prior problematization processes and may be imparted to subsequent ones. The ethnographic results of this study suggest two complementary analytical perspectives on algorithms: (1) an ‘axiomatic’ perspective that understands algorithms as sets of instructions designed to solve given problems computationally in the best possible way, and (2) a ‘problem-oriented’ perspective that understands algorithms as sets of instructions designed to computationally retrieve outputs designed and designated during specific problematization processes. If the axiomatic perspective on algorithms puts the emphasis on the numerical transformations of inputs into outputs, the problem-oriented perspective puts the emphasis on the definition of both inputs and outputs. PMID:28950802

  6. Biomedical image analysis and processing in clouds

    NASA Astrophysics Data System (ADS)

    Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John

    2013-10-01

    Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.

  7. [Digital thoracic radiology: devices, image processing, limits].

    PubMed

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  8. [Computer-assisted image processing for quantifying histopathologic variables in the healing of colonic anastomosis in dogs].

    PubMed

    Novelli, M D; Barreto, E; Matos, D; Saad, S S; Borra, R C

    1997-01-01

    The authors present the experimental results of the computerized quantifying of tissular structures involved in the reparative process of colonic anastomosis performed by manual suture and biofragmentable ring. The quantified variables in this study were: oedema fluid, myofiber tissue, blood vessel and cellular nuclei. An image processing software developed at Laboratório de Informática Dedicado à Odontologia (LIDO) was utilized to quantifying the pathognomonic alterations in the inflammatory process in colonic anastomosis performed in 14 dogs. The results were compared to those obtained through traditional way diagnosis by two pathologists in view of counterproof measures. The criteria for these diagnoses were defined in levels represented by absent, light, moderate and intensive which were compared to analysis performed by the computer. There was significant statistical difference between two techniques: the biofragmentable ring technique exhibited low oedema fluid, organized myofiber tissue and higher number of alongated cellular nuclei in relation to manual suture technique. The analysis of histometric variables through computational image processing was considered efficient and powerful to quantify the main tissular inflammatory and reparative changing.

  9. Hardware Implementation of a Bilateral Subtraction Filter

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven

    2009-01-01

    A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for its position in the window as well as the pixel value for the central pixel of the window. The absolute difference between these two pixel values is calculated and used as an address in a lookup table. Each processing element has a lookup table, unique for its position in the window, containing the weight coefficients for the Gaussian function for that position. The pixel value is multiplied by the weight, and the outputs of the processing element are the weight and pixel-value weight product. The products and weights are fed to the adder tree. The sum of the products and the sum of the weights are fed to the divider, which computes the sum of products the sum of weights. The output of the divider is denoted the bilateral smoothed image. The smoothing function is a simple weighted average computed over a 3 3 subwindow centered in the 9 9 window. After smoothing, the image is delayed by an additional amount of time needed to match the processing time for computing the bilateral smoothed image. The bilateral smoothed image is then subtracted from the 3 3 smoothed image to produce the final output. The prototype filter as implemented in a commercially available FPGA processes one pixel per clock cycle. Operation at a clock speed of 66 MHz has been demonstrated, and results of a static timing analysis have been interpreted as suggesting that the clock speed could be increased to as much as 100 MHz.

  10. Addressing the coming radiology crisis-the Society for Computer Applications in Radiology transforming the radiological interpretation process (TRIP) initiative.

    PubMed

    Andriole, Katherine P; Morin, Richard L; Arenson, Ronald L; Carrino, John A; Erickson, Bradley J; Horii, Steven C; Piraino, David W; Reiner, Bruce I; Seibert, J Anthony; Siegel, Eliot

    2004-12-01

    The Society for Computer Applications in Radiology (SCAR) Transforming the Radiological Interpretation Process (TRIP) Initiative aims to spearhead research, education, and discovery of innovative solutions to address the problem of information and image data overload. The initiative will foster interdisciplinary research on technological, environmental and human factors to better manage and exploit the massive amounts of data. TRIP will focus on the following basic objectives: improving the efficiency of interpretation of large data sets, improving the timeliness and effectiveness of communication, and decreasing medical errors. The ultimate goal of the initiative is to improve the quality and safety of patient care. Interdisciplinary research into several broad areas will be necessary to make progress in managing the ever-increasing volume of data. The six concepts involved are human perception, image processing and computer-aided detection (CAD), visualization, navigation and usability, databases and integration, and evaluation and validation of methods and performance. The result of this transformation will affect several key processes in radiology, including image interpretation; communication of imaging results; workflow and efficiency within the health care enterprise; diagnostic accuracy and a reduction in medical errors; and, ultimately, the overall quality of care.

  11. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.; Beckenbach, E. S.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    A computer image processing technique was developed to estimate the degree of atherosclerosis in the human femoral artery. With an angiographic film of the vessel as input, the computer was programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements were combined into an atherosclerosis index, which was found to correlate well with both visual and chemical estimates of atherosclerotic disease.

  12. Viewpoints on Medical Image Processing: From Science to Application

    PubMed Central

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  13. Viewpoints on Medical Image Processing: From Science to Application.

    PubMed

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  14. Technical Note: scuda: A software platform for cumulative dose assessment.

    PubMed

    Park, Seyoun; McNutt, Todd; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2016-10-01

    Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow. scuda consists of deformable image registration (DIR), segmentation, dose computation modules, and a graphical user interface. It is connected to our image PACS and radiotherapy informatics databases from which it automatically queries/retrieves patient images, radiotherapy plan, beam data, and daily treatment information, thus providing an efficient and unified workflow. For accurate registration of the planning CT and daily CBCTs, the authors iteratively correct CBCT intensities by matching local intensity histograms during the DIR process. Contours of the target tumor and critical structures are then propagated from the planning CT to daily CBCTs using the computed deformations. The actual delivered daily dose is computed using the registered CT and patient setup information by a superposition/convolution algorithm, and accumulated using the computed deformation fields. Both DIR and dose computation modules are accelerated by a graphics processing unit. The cumulative dose computation process has been validated on 30 head and neck (HN) cancer cases, showing 3.5 ± 5.0 Gy (mean±STD) absolute mean dose differences between the planned and the actually delivered doses in the parotid glands. On average, DIR, dose computation, and segmentation take 20 s/fraction and 17 min for a 35-fraction treatment including additional computation for dose accumulation. The authors developed a unified software platform that provides accurate and efficient monitoring of anatomical changes and computation of actually delivered dose to the patient, thus realizing an efficient cumulative dose computation workflow. Evaluation on HN cases demonstrated the utility of our platform for monitoring the treatment quality and detecting significant dosimetric variations that are keys to successful ART.

  15. Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers

    PubMed Central

    Filipovic, Nenad D.

    2017-01-01

    Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration. PMID:28611851

  16. Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers.

    PubMed

    Milankovic, Ivan L; Mijailovic, Nikola V; Filipovic, Nenad D; Peulic, Aleksandar S

    2017-01-01

    Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.

  17. Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernández, José Jesús

    2012-01-01

    Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based solutions thus far. PMID:23139768

  18. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  19. UWGSP7: a real-time optical imaging workstation

    NASA Astrophysics Data System (ADS)

    Bush, John E.; Kim, Yongmin; Pennington, Stan D.; Alleman, Andrew P.

    1995-04-01

    With the development of UWGSP7, the University of Washington Image Computing Systems Laboratory has a real-time workstation for continuous-wave (cw) optical reflectance imaging. Recent discoveries in optical science and imaging research have suggested potential practical use of the technology as a medical imaging modality and identified the need for a machine to support these applications in real time. The UWGSP7 system was developed to provide researchers with a high-performance, versatile tool for use in optical imaging experiments with the eventual goal of bringing the technology into clinical use. One of several major applications of cw optical reflectance imaging is tumor imaging which uses a light-absorbing dye that preferentially sequesters in tumor tissue. This property could be used to locate tumors and to identify tumor margins intraoperatively. Cw optical reflectance imaging consists of illumination of a target with a band-limited light source and monitoring the light transmitted by or reflected from the target. While continuously illuminating the target, a control image is acquired and stored. A dye is injected into a subject and a sequence of data images are acquired and processed. The data images are aligned with the control image and then subtracted to obtain a signal representing the change in optical reflectance over time. This signal can be enhanced by digital image processing and displayed in pseudo-color. This type of emerging imaging technique requires a computer system that is versatile and adaptable. The UWGSP7 utilizes a VESA local bus PC as a host computer running the Windows NT operating system and includes ICSL developed add-on boards for image acquisition and processing. The image acquisition board is used to digitize and format the analog signal from the input device into digital frames and to the average frames into images. To accommodate different input devices, the camera interface circuitry is designed in a small mezzanine board that supports the RS-170 standard. The image acquisition board is connected to the image- processing board using a direct connect port which provides a 66 Mbytes/s channel independent of the system bus. The image processing board utilizes the Texas Instruments TMS320C80 Multimedia Video Processor chip. This chip is capable of 2 billion operations per second providing the UWGSP7 with the capability to perform real-time image processing functions like median filtering, convolution and contrast enhancement. This processing power allows interactive analysis of the experiments as compared to current practice of off-line processing and analysis. Due to its flexibility and programmability, the UWGSP7 can be adapted into various research needs in intraoperative optical imaging.

  20. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.

  1. Experimental Optoelectronic Associative Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1992-01-01

    Optoelectronic associative memory responds to input image by displaying one of M remembered images. Which image to display determined by optoelectronic analog computation of resemblance between input image and each remembered image. Does not rely on precomputation and storage of outer-product synapse matrix. Size of memory needed to store and process images reduced.

  2. Novel wavelength diversity technique for high-speed atmospheric turbulence compensation

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.; Sullivan, Sean F.

    2010-04-01

    The defense, intelligence, and homeland security communities are driving a need for software dominant, real-time or near-real time atmospheric turbulence compensated imagery. The development of parallel processing capabilities are finding application in diverse areas including image processing, target tracking, pattern recognition, and image fusion to name a few. A novel approach to the computationally intensive case of software dominant optical and near infrared imaging through atmospheric turbulence is addressed in this paper. Previously, the somewhat conventional wavelength diversity method has been used to compensate for atmospheric turbulence with great success. We apply a new correlation based approach to the wavelength diversity methodology using a parallel processing architecture enabling high speed atmospheric turbulence compensation. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented, and computational and performance assessments are provided.

  3. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    PubMed

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  4. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo

    PubMed Central

    Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.

    2016-01-01

    Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341

  5. Parallel Processing Systems for Passive Ranging During Helicopter Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.

  6. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  7. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  8. What Is A Picture Archiving And Communication System (PACS)?

    NASA Astrophysics Data System (ADS)

    Marceau, Carla

    1982-01-01

    A PACS is a digital system for acquiring, storing, moving and displaying picture or image information. It is an alternative to film jackets that has been made possible by recent breakthroughs in computer technology: telecommunications, local area nets and optical disks. The fundamental concept of the digital representation of image information is introduced. It is shown that freeing images from a material representation on film or paper leads to a dramatic increase in flexibility in our use of the images. The ultimate goal of a medical PACS system is a radiology department without film jackets. The inherent nature of digital images and the power of the computer allow instant free "copies" of images to be made and thrown away. These copies can be transmitted to distant sites in seconds, without the "original" ever leaving the archives of the radiology department. The result is a radiology department with much freer access to patient images and greater protection against lost or misplaced image information. Finally, images in digital form can be treated as data for the computer in image processing, which includes enhancement, reconstruction and even computer-aided analysis.

  9. Optical image encryption via high-quality computational ghost imaging using iterative phase retrieval

    NASA Astrophysics Data System (ADS)

    Liansheng, Sui; Yin, Cheng; Bing, Li; Ailing, Tian; Krishna Asundi, Anand

    2018-07-01

    A novel computational ghost imaging scheme based on specially designed phase-only masks, which can be efficiently applied to encrypt an original image into a series of measured intensities, is proposed in this paper. First, a Hadamard matrix with a certain order is generated, where the number of elements in each row is equal to the size of the original image to be encrypted. Each row of the matrix is rearranged into the corresponding 2D pattern. Then, each pattern is encoded into the phase-only masks by making use of an iterative phase retrieval algorithm. These specially designed masks can be wholly or partially used in the process of computational ghost imaging to reconstruct the original information with high quality. When a significantly small number of phase-only masks are used to record the measured intensities in a single-pixel bucket detector, the information can be authenticated without clear visualization by calculating the nonlinear correlation map between the original image and its reconstruction. The results illustrate the feasibility and effectiveness of the proposed computational ghost imaging mechanism, which will provide an effective alternative for enriching the related research on the computational ghost imaging technique.

  10. Architecture and data processing alternatives for the tse computer. Volume 4: Image rotation using tse operations

    NASA Technical Reports Server (NTRS)

    Kao, M. H.; Bodenheimer, R. E.

    1976-01-01

    The tse computer's capability of achieving image congruence between temporal and multiple images with misregistration due to rotational differences is reported. The coordinate transformations are obtained and a general algorithms is devised to perform image rotation using tse operations very efficiently. The details of this algorithm as well as its theoretical implications are presented. Step by step procedures of image registration are described in detail. Numerous examples are also employed to demonstrate the correctness and the effectiveness of the algorithms and conclusions and recommendations are made.

  11. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  12. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.

    PubMed

    Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).

  13. A Detailed Study of Sonar Tomographic Imaging

    DTIC Science & Technology

    2013-08-01

    BPA ) to form an object image. As the data is collected radially about the axis of rotation, one computation method computes an inverse Fourier...images are not quite as sharp. It is concluded UNCLASSIFIED iii DSTO–RR–0394 UNCLASSIFIED that polar BPA processing requires an appropriate choice of...attenuation factor to reduce the effect of the specular reflections, while for the 2DIFT BPA approach the degrading effect from these reflections is

  14. Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases.

    PubMed

    Singh, Anushikha; Dutta, Malay Kishore

    2017-12-01

    The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A service protocol for post-processing of medical images on the mobile device

    NASA Astrophysics Data System (ADS)

    He, Longjun; Ming, Xing; Xu, Lang; Liu, Qian

    2014-03-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. It is uneasy and time-consuming for transferring medical images with large data size from picture archiving and communication system to mobile client, since the wireless network is unstable and limited by bandwidth. Besides, limited by computing capability, memory and power endurance, it is hard to provide a satisfactory quality of experience for radiologists to handle some complex post-processing of medical images on the mobile device, such as real-time direct interactive three-dimensional visualization. In this work, remote rendering technology is employed to implement the post-processing of medical images instead of local rendering, and a service protocol is developed to standardize the communication between the render server and mobile client. In order to make mobile devices with different platforms be able to access post-processing of medical images, the Extensible Markup Language is taken to describe this protocol, which contains four main parts: user authentication, medical image query/ retrieval, 2D post-processing (e.g. window leveling, pixel values obtained) and 3D post-processing (e.g. maximum intensity projection, multi-planar reconstruction, curved planar reformation and direct volume rendering). And then an instance is implemented to verify the protocol. This instance can support the mobile device access post-processing of medical image services on the render server via a client application or on the web page.

  16. Image processing methods in two and three dimensions used to animate remotely sensed data. [cloud cover

    NASA Technical Reports Server (NTRS)

    Hussey, K. J.; Hall, J. R.; Mortensen, R. A.

    1986-01-01

    Image processing methods and software used to animate nonimaging remotely sensed data on cloud cover are described. Three FORTRAN programs were written in the VICAR2/TAE image processing domain to perform 3D perspective rendering, to interactively select parameters controlling the projection, and to interpolate parameter sets for animation images between key frames. Operation of the 3D programs and transferring the images to film is automated using executive control language and custom hardware to link the computer and camera.

  17. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms

    PubMed Central

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831

  18. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.

    PubMed

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.

  19. Analyses of requirements for computer control and data processing experiment subsystems: Image data processing system (IDAPS) software description (7094 version), volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description of each of the software modules of the Image Data Processing System (IDAPS) is presented. The changes in the software modules are the result of additions to the application software of the system and an upgrade of the IBM 7094 Mod(1) computer to a 1301 disk storage configuration. Necessary information about IDAPS sofware is supplied to the computer programmer who desires to make changes in the software system or who desires to use portions of the software outside of the IDAPS system. Each software module is documented with: module name, purpose, usage, common block(s) description, method (algorithm of subroutine) flow diagram (if needed), subroutines called, and storage requirements.

  20. Architecture and data processing alternatives for Tse computer. Volume 1: Tse logic design concepts and the development of image processing machine architectures

    NASA Technical Reports Server (NTRS)

    Rickard, D. A.; Bodenheimer, R. E.

    1976-01-01

    Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.

  1. The possibilities of improvement in the sensitivity of cancer fluorescence diagnostics by computer image processing

    NASA Astrophysics Data System (ADS)

    Ledwon, Aleksandra; Bieda, Robert; Kawczyk-Krupka, Aleksandra; Polanski, Andrzej; Wojciechowski, Konrad; Latos, Wojciech; Sieron-Stoltny, Karolina; Sieron, Aleksander

    2008-02-01

    Background: Fluorescence diagnostics uses the ability of tissues to fluoresce after exposition to a specific wavelength of light. The change in fluorescence between normal and progression to cancer allows to see early cancer and precancerous lesions often missed by white light. Aim: To improve by computer image processing the sensitivity of fluorescence images obtained during examination of skin, oral cavity, vulva and cervix lesions, during endoscopy, cystoscopy and bronchoscopy using Xillix ONCOLIFE. Methods: Function of image f(x,y):R2 --> R 3 was transformed from original color space RGB to space in which vector of 46 values refers to every point labeled by defined xy-coordinates- f(x,y):R2 --> R 46. By means of Fisher discriminator vector of attributes of concrete point analalyzed in the image was reduced according to two defined classes defined as pathologic areas (foreground) and healthy areas (background). As a result the highest four fisher's coefficients allowing the greatest separation between points of pathologic (foreground) and healthy (background) areas were chosen. In this way new function f(x,y):R2 --> R 4 was created in which point x,y corresponds with vector Y, H, a*, c II. In the second step using Gaussian Mixtures and Expectation-Maximisation appropriate classificator was constructed. This classificator enables determination of probability that the selected pixel of analyzed image is a pathologically changed point (foreground) or healthy one (background). Obtained map of probability distribution was presented by means of pseudocolors. Results: Image processing techniques improve the sensitivity, quality and sharpness of original fluorescence images. Conclusion: Computer image processing enables better visualization of suspected areas examined by means of fluorescence diagnostics.

  2. Distinction of Green Sweet Peppers by Using Various Color Space Models and Computation of 3 Dimensional Location Coordinates of Recognized Green Sweet Peppers Based on Parallel Stereovision System

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-06-01

    This paper presents the comparative study of various color space models to determine the suitable color space model for detection of green sweet peppers. The images were captured by using CCD cameras and infrared cameras and processed by using Halcon image processing software. The LED ring around the camera neck was used as an artificial lighting to enhance the feature parameters. For color images, CieLab, YIQ, YUV, HSI and HSV whereas for infrared images, grayscale color space models were selected for image processing. In case of color images, HSV color space model was found more significant with high percentage of green sweet pepper detection followed by HSI color space model as both provides information in terms of hue/lightness/chroma or hue/lightness/saturation which are often more relevant to discriminate the fruit from image at specific threshold value. The overlapped fruits or fruits covered by leaves can be detected in better way by using HSV color space model as the reflection feature from fruits had higher histogram than reflection feature from leaves. The IR 80 optical filter failed to distinguish fruits from images as filter blocks useful information on features. Computation of 3D coordinates of recognized green sweet peppers was also conducted in which Halcon image processing software provides location and orientation of the fruits accurately. The depth accuracy of Z axis was examined in which 500 to 600 mm distance between cameras and fruits was found significant to compute the depth distance precisely when distance between two cameras maintained to 100 mm.

  3. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    PubMed

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  4. A self-teaching image processing and voice-recognition-based, intelligent and interactive system to educate visually impaired children

    NASA Astrophysics Data System (ADS)

    Iqbal, Asim; Farooq, Umar; Mahmood, Hassan; Asad, Muhammad Usman; Khan, Akrama; Atiq, Hafiz Muhammad

    2010-02-01

    A self teaching image processing and voice recognition based system is developed to educate visually impaired children, chiefly in their primary education. System comprises of a computer, a vision camera, an ear speaker and a microphone. Camera, attached with the computer system is mounted on the ceiling opposite (on the required angle) to the desk on which the book is placed. Sample images and voices in the form of instructions and commands of English, Urdu alphabets, Numeric Digits, Operators and Shapes are already stored in the database. A blind child first reads the embossed character (object) with the help of fingers than he speaks the answer, name of the character, shape etc into the microphone. With the voice command of a blind child received by the microphone, image is taken by the camera which is processed by MATLAB® program developed with the help of Image Acquisition and Image processing toolbox and generates a response or required set of instructions to child via ear speaker, resulting in self education of a visually impaired child. Speech recognition program is also developed in MATLAB® with the help of Data Acquisition and Signal Processing toolbox which records and process the command of the blind child.

  5. Autonomous control systems: applications to remote sensing and image processing

    NASA Astrophysics Data System (ADS)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  6. Image Understanding Architecture

    DTIC Science & Technology

    1991-09-01

    architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers

  7. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  8. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  9. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  10. 21 CFR 876.1300 - Ingestible telemetric gastrointestinal capsule imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... images of the small bowel with a wireless camera contained in a capsule. This device includes an... receiving/recording unit, a data storage device, computer software to process the images, and accessories...

  11. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.

    1981-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.

  12. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  13. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  14. Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions

    NASA Astrophysics Data System (ADS)

    Ogiela, M. R.; Bodzioch, S.

    2011-06-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards automatic detection and interpretation of disease symptoms on processed US images. First, in this paper, there is presented a new heuristic method of filtering gallbladder contours from images. A major stage in this filtration is to segment and section off areas occupied by the said organ. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours, based on rank filtration, as well as on the analysis of line profile sections on tested organs. The second part concerns detecting the most important lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. The methodology of computer analysis of US gallbladder images presented here is clearly utilitarian in nature and after standardising can be used as a technique for supporting the diagnostics of selected gallbladder disorders using the images of this organ.

  15. GPU accelerated fuzzy connected image segmentation by using CUDA.

    PubMed

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  16. A review of automated image understanding within 3D baggage computed tomography security screening.

    PubMed

    Mouton, Andre; Breckon, Toby P

    2015-01-01

    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT.

  17. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  18. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  19. 3D shape recovery of smooth surfaces: dropping the fixed-viewpoint assumption.

    PubMed

    Moses, Yael; Shimshoni, Ilan

    2009-07-01

    We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and unconstrained illumination directions. The correspondence between such images is hard to compute and no other known method can handle this problem locally from a small number of images. Our method combines geometric and photometric information in order to recover dense correspondence between the images and accurately computes the 3D shape. Only a single pass starting at one point and local computation are used. This is in contrast to methods that use the occluding contours recovered from many images to initialize and constrain an optimization process. The output of our method can be used to initialize such processes. In the special case of fixed viewpoint, the proposed method becomes a new perspective photometric stereo algorithm. Nevertheless, the introduction of the multiview setup, self-occlusions, and regions close to the occluding boundaries are better handled, and the method is more robust to noise than photometric stereo. Experimental results are presented for simulated and real images.

  20. Image databases: Problems and perspectives

    NASA Technical Reports Server (NTRS)

    Gudivada, V. Naidu

    1989-01-01

    With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined.

  1. Markov Processes in Image Processing

    NASA Astrophysics Data System (ADS)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  2. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  3. GreenView and GreenLand Applications Development on SEE-GRID Infrastructure

    NASA Astrophysics Data System (ADS)

    Mihon, Danut; Bacu, Victor; Gorgan, Dorian; Mészáros, Róbert; Gelybó, Györgyi; Stefanut, Teodor

    2010-05-01

    The GreenView and GreenLand applications [1] have been developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) FP7 project co-funded by the European Commission [2]. The development of environment applications is a challenge for Grid technologies and software development methodologies. This presentation exemplifies the development of the GreenView and GreenLand applications over the SEE-GRID infrastructure by the Grid Application Development Methodology [3]. Today's environmental applications are used in vary domains of Earth Science such as meteorology, ground and atmospheric pollution, ground metal detection or weather prediction. These applications run on satellite images (e.g. Landsat, MERIS, MODIS, etc.) and the accuracy of output results depends mostly of the quality of these images. The main drawback of such environmental applications regards the need of computation power and storage power (some images are almost 1GB in size), in order to process such a large data volume. Actually, almost applications requiring high computation resources have approached the migration onto the Grid infrastructure. This infrastructure offers the computing power by running the atomic application components on different Grid nodes in sequential or parallel mode. The middleware used between the Grid infrastructure and client applications is ESIP (Environment Oriented Satellite Image Processing Platform), which is based on gProcess platform [4]. In its current format, gProcess is used for launching new processes on the Grid nodes, but also for monitoring the execution status of these processes. This presentation highlights two case studies of Grid based environmental applications, GreenView and GreenLand [5]. GreenView is used in correlation with MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images and meteorological datasets, in order to produce pseudo colored temperature and vegetation maps for different geographical CEE (Central Eastern Europe) regions. On the other hand, GreenLand is used for generating maps for different vegetation indexes (e.g. NDVI, EVI, SAVI, GEMI) based on Landsat satellite images. Both applications are using interpolation and random value generation algorithms, but also specific formulas for computing vegetation index values. The GreenView and GreenLand applications have been experimented over the SEE-GRID infrastructure and the performance evaluation is reported in [6]. The improvement of the execution time (obtained through a better parallelization of jobs), the extension of geographical areas to other parts of the Earth, and new user interaction techniques on spatial data and large set of satellite images are the goals of the future work. References [1] GreenView application on Wiki, http://wiki.egee-see.org/index.php/GreenView [2] SEE-GRID-SCI Project, http://www.see-grid-sci.eu/ [3] Gorgan D., Stefanut T., Bâcu V., Mihon D., Grid based Environment Application Development Methodology, SCICOM, 7th International Conference on "Large-Scale Scientific Computations", 4-8 June, 2009, Sozopol, Bulgaria, (To be published by Springer), (2009). [4] Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based Satellite Image Processing Platform for Earth Observation Applications Development. IDAACS'2009 - IEEE Fifth International Workshop on "Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications", 21-23 September, Cosenza, Italy, IEEE Published in Computer Press, 247-252 (2009). [5] Mihon D., Bacu V., Stefanut T., Gorgan D., "Grid Based Environment Application Development - GreenView Application". ICCP2009 - IEEE 5th International Conference on Intelligent Computer Communication and Processing, 27 Aug, 2009 Cluj-Napoca. Published by IEEE Computer Press, pp. 275-282 (2009). [6] Danut Mihon, Victor Bacu, Dorian Gorgan, Róbert Mészáros, Györgyi Gelybó, Teodor Stefanut, Practical Considerations on the GreenView Application Development and Execution over SEE-GRID. SEE-GRID-SCI User Forum, 9-10 Dec 2009, Bogazici University, Istanbul, Turkey, ISBN: 978-975-403-510-0, pp. 167-175 (2009).

  4. High speed three-dimensional laser scanner with real time processing

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph P. (Inventor); Schuet, Stefan R. (Inventor)

    2008-01-01

    A laser scanner computes a range from a laser line to an imaging sensor. The laser line illuminates a detail within an area covered by the imaging sensor, the area having a first dimension and a second dimension. The detail has a dimension perpendicular to the area. A traverse moves a laser emitter coupled to the imaging sensor, at a height above the area. The laser emitter is positioned at an offset along the scan direction with respect to the imaging sensor, and is oriented at a depression angle with respect to the area. The laser emitter projects the laser line along the second dimension of the area at a position where a image frame is acquired. The imaging sensor is sensitive to laser reflections from the detail produced by the laser line. The imaging sensor images the laser reflections from the detail to generate the image frame. A computer having a pipeline structure is connected to the imaging sensor for reception of the image frame, and for computing the range to the detail using height, depression angle and/or offset. The computer displays the range to the area and detail thereon covered by the image frame.

  5. Exploration of Mars by Mariner 9 - Television sensors and image processing.

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1973-01-01

    Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.

  6. Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance

    NASA Astrophysics Data System (ADS)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario

    2018-01-01

    Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.

  7. Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; Li, Jun; Zhang, Kechao; Lin, Xingcheng; Wang, Zhehui; Luo, Zhihuang; Zheng, Wenqiang; Li, Jianzhong; Zhao, Meisheng; Peng, Xinhua; Suter, Dieter

    2017-07-01

    Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission, and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.

  8. Computational efficiency improvements for image colorization

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Sharma, Gaurav; Aly, Hussein

    2013-03-01

    We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.

  9. Multimedia systems in ultrasound image boundary detection and measurements

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Chalana, Vikram; Kim, Yongmin

    1997-05-01

    Ultrasound as a medical imaging modality offers the clinician a real-time of the anatomy of the internal organs/tissues, their movement, and flow noninvasively. One of the applications of ultrasound is to monitor fetal growth by measuring biparietal diameter (BPD) and head circumference (HC). We have been working on automatic detection of fetal head boundaries in ultrasound images. These detected boundaries are used to measure BPD and HC. The boundary detection algorithm is based on active contour models and takes 32 seconds on an external high-end workstation, SUN SparcStation 20/71. Our goal has been to make this tool available within an ultrasound machine and at the same time significantly improve its performance utilizing multimedia technology. With the advent of high- performance programmable digital signal processors (DSP), the software solution within an ultrasound machine instead of the traditional hardwired approach or requiring an external computer is now possible. We have integrated our boundary detection algorithm into a programmable ultrasound image processor (PUIP) that fits into a commercial ultrasound machine. The PUIP provides both the high computing power and flexibility needed to support computationally-intensive image processing algorithms within an ultrasound machine. According to our data analysis, BPD/HC measurements made on PUIP lie within the interobserver variability. Hence, the errors in the automated BPD/HC measurements using the algorithm are on the same order as the average interobserver differences. On PUIP, it takes 360 ms to measure the values of BPD/HC on one head image. When processing multiple head images in sequence, it takes 185 ms per image, thus enabling 5.4 BPD/HC measurements per second. Reduction in the overall execution time from 32 seconds to a fraction of a second and making this multimedia system available within an ultrasound machine will help this image processing algorithm and other computer-intensive imaging applications become a practical tool for the sonographers in the feature.

  10. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  11. Traffic analysis and control using image processing

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Ellappan, Vijayan; Arun, A. R.

    2017-11-01

    This paper shows the work on traffic analysis and control till date. It shows an approach to regulate traffic the use of image processing and MATLAB systems. This concept uses computational images that are to be compared with original images of the street taken in order to determine the traffic level percentage and set the timing for the traffic signal accordingly which are used to reduce the traffic stoppage on traffic lights. They concept proposes to solve real life scenarios in the streets, thus enriching the traffic lights by adding image receivers like HD cameras and image processors. The input is then imported into MATLAB to be used. as a method for calculating the traffic on roads. Their results would be computed in order to adjust the traffic light timings on a particular street, and also with respect to other similar proposals but with the added value of solving a real, big instance.

  12. Interactive brain shift compensation using GPU based programming

    NASA Astrophysics Data System (ADS)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2009-02-01

    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  13. Personal Computer (PC) based image processing applied to fluid mechanics

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  14. Youpi: YOUr processing PIpeline

    NASA Astrophysics Data System (ADS)

    Monnerville, Mathias; Sémah, Gregory

    2012-03-01

    Youpi is a portable, easy to use web application providing high level functionalities to perform data reduction on scientific FITS images. Built on top of various open source reduction tools released to the community by TERAPIX (http://terapix.iap.fr), Youpi can help organize data, manage processing jobs on a computer cluster in real time (using Condor) and facilitate teamwork by allowing fine-grain sharing of results and data. Youpi is modular and comes with plugins which perform, from within a browser, various processing tasks such as evaluating the quality of incoming images (using the QualityFITS software package), computing astrometric and photometric solutions (using SCAMP), resampling and co-adding FITS images (using SWarp) and extracting sources and building source catalogues from astronomical images (using SExtractor). Youpi is useful for small to medium-sized data reduction projects; it is free and is published under the GNU General Public License.

  15. Computer image processing: Geologic applications

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1978-01-01

    Computer image processing of digital data was performed to support several geological studies. The specific goals were to: (1) relate the mineral content to the spectral reflectance of certain geologic materials, (2) determine the influence of environmental factors, such as atmosphere and vegetation, and (3) improve image processing techniques. For detection of spectral differences related to mineralogy, the technique of band ratioing was found to be the most useful. The influence of atmospheric scattering and methods to correct for the scattering were also studied. Two techniques were used to correct for atmospheric effects: (1) dark object subtraction, (2) normalization of use of ground spectral measurements. Of the two, the first technique proved to be the most successful for removing the effects of atmospheric scattering. A digital mosaic was produced from two side-lapping LANDSAT frames. The advantages were that the same enhancement algorithm can be applied to both frames, and there is no seam where the two images are joined.

  16. Real-time image dehazing using local adaptive neighborhoods and dark-channel-prior

    NASA Astrophysics Data System (ADS)

    Valderrama, Jesus A.; Díaz-Ramírez, Víctor H.; Kober, Vitaly; Hernandez, Enrique

    2015-09-01

    A real-time algorithm for single image dehazing is presented. The algorithm is based on calculation of local neighborhoods of a hazed image inside a moving window. The local neighborhoods are constructed by computing rank-order statistics. Next the dark-channel-prior approach is applied to the local neighborhoods to estimate the transmission function of the scene. By using the suggested approach there is no need for applying a refining algorithm to the estimated transmission such as the soft matting algorithm. To achieve high-rate signal processing the proposed algorithm is implemented exploiting massive parallelism on a graphics processing unit (GPU). Computer simulation results are carried out to test the performance of the proposed algorithm in terms of dehazing efficiency and speed of processing. These tests are performed using several synthetic and real images. The obtained results are analyzed and compared with those obtained with existing dehazing algorithms.

  17. Fast semivariogram computation using FPGA architectures

    NASA Astrophysics Data System (ADS)

    Lagadapati, Yamuna; Shirvaikar, Mukul; Dong, Xuanliang

    2015-02-01

    The semivariogram is a statistical measure of the spatial distribution of data and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. The semivariogram is a plot of semivariances for different lag distances between pixels. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O(n2). Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz, but they can perform tens of thousands of calculations per clock cycle while operating in the low range of power. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. The design consists of several modules dedicated to the constituent computational tasks. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. Anisotropic semivariogram implementation is anticipated to be an extension of the current architecture, ostensibly based on refinements to the current modules. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans are utilized for the experiments. Computational speedup is measured with respect to Matlab implementation on a personal computer with an Intel i7 multi-core processor. Preliminary simulation results indicate that a significant advantage in speed can be attained by the architectures, making the algorithm viable for implementation in medical devices

  18. Photogrammetry on glaciers: Old and new knowledge

    NASA Astrophysics Data System (ADS)

    Pfeffer, W. T.; Welty, E.; O'Neel, S.

    2014-12-01

    In the past few decades terrestrial photogrammetry has become a widely used tool for glaciological research, brought about in part by the proliferation of high-quality, low-cost digital cameras, dramatic increases in image-processing power of computers, and very innovative progress in image processing, much of which has come from computer vision research and from the computer gaming industry. At present, glaciologists have developed their capacity to gather images much further than their ability to process them. Many researchers have accumulated vast inventories of imagery, but have no efficient means to extract the data they desire from them. In many cases these are single-image time series where the processing limitation lies in the paucity of methods to obtain 3-dimension object space information from measurements in the 2-dimensional image space; in other cases camera pairs have been operated but no automated means is in hand for conventional stereometric analysis of many thousands of image pairs. Often the processing task is further complicated by weak camera geometry or ground control distribution, either of which will compromise the quality of 3-dimensional object space solutions. Solutions exist for many of these problems, found sometimes among the latest computer vision results, and sometimes buried in decades-old pre-digital terrestrial photogrammetric literature. Other problems, particularly those arising from poorly constrained or underdetermined camera and ground control geometry, may be unsolvable. Small-scale, ground-based photography and photogrammetry of glaciers has grown over the past few decades in an organic and disorganized fashion, with much duplication of effort and little coordination or sharing of knowledge among researchers. Given the utility of terrestrial photogrammetry, its low cost (if properly developed and implemented), and the substantial value of the information to be had from it, some further effort to share knowledge and methods would be a great benefit for the community. We consider some of the main problems to be solved, and aspects of how optimal knowledge sharing might be accomplished.

  19. Modeling human faces with multi-image photogrammetry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2002-03-01

    Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a color texture image can be draped over the model to achieve a photorealistic visualization. The advantage of the presented method over laser scanning and coded light range digitizers is the acquisition of the source data in a fraction of a second, allowing the measurement of human faces with higher accuracy and the possibility to measure dynamic events like the speech of a person.

  20. Personalized, relevance-based Multimodal Robotic Imaging and augmented reality for Computer Assisted Interventions.

    PubMed

    Navab, Nassir; Fellow, Miccai; Hennersperger, Christoph; Frisch, Benjamin; Fürst, Bernhard

    2016-10-01

    In the last decade, many researchers in medical image computing and computer assisted interventions across the world focused on the development of the Virtual Physiological Human (VPH), aiming at changing the practice of medicine from classification and treatment of diseases to that of modeling and treating patients. These projects resulted in major advancements in segmentation, registration, morphological, physiological and biomechanical modeling based on state of art medical imaging as well as other sensory data. However, a major issue which has not yet come into the focus is personalizing intra-operative imaging, allowing for optimal treatment. In this paper, we discuss the personalization of imaging and visualization process with particular focus on satisfying the challenging requirements of computer assisted interventions. We discuss such requirements and review a series of scientific contributions made by our research team to tackle some of these major challenges. Copyright © 2016. Published by Elsevier B.V.

  1. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    PubMed

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  2. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  3. Computer generated maps from digital satellite data - A case study in Florida

    NASA Technical Reports Server (NTRS)

    Arvanitis, L. G.; Reich, R. M.; Newburne, R.

    1981-01-01

    Ground cover maps are important tools to a wide array of users. Over the past three decades, much progress has been made in supplementing planimetric and topographic maps with ground cover details obtained from aerial photographs. The present investigation evaluates the feasibility of using computer maps of ground cover from satellite input tapes. Attention is given to the selection of test sites, a satellite data processing system, a multispectral image analyzer, general purpose computer-generated maps, the preliminary evaluation of computer maps, a test for areal correspondence, the preparation of overlays and acreage estimation of land cover types on the Landsat computer maps. There is every indication to suggest that digital multispectral image processing systems based on Landsat input data will play an increasingly important role in pattern recognition and mapping land cover in the years to come.

  4. USC orthogonal multiprocessor for image processing with neural networks

    NASA Astrophysics Data System (ADS)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  5. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  6. Application of ultrasound processed images in space: assessing diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  7. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  8. Image model: new perspective for image processing and computer vision

    NASA Astrophysics Data System (ADS)

    Ziou, Djemel; Allili, Madjid

    2004-05-01

    We propose a new image model in which the image support and image quantities are modeled using algebraic topology concepts. The image support is viewed as a collection of chains encoding combination of pixels grouped by dimension and linking different dimensions with the boundary operators. Image quantities are encoded using the notion of cochain which associates values for pixels of given dimension that can be scalar, vector, or tensor depending on the problem that is considered. This allows obtaining algebraic equations directly from the physical laws. The coboundary and codual operators, which are generic operations on cochains allow to formulate the classical differential operators as applied for field functions and differential forms in both global and local forms. This image model makes the association between the image support and the image quantities explicit which results in several advantages: it allows the derivation of efficient algorithms that operate in any dimension and the unification of mathematics and physics to solve classical problems in image processing and computer vision. We show the effectiveness of this model by considering the isotropic diffusion.

  9. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  10. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  11. Energy conservation using face detection

    NASA Astrophysics Data System (ADS)

    Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.

    2011-10-01

    Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.

  12. VIEW-Station software and its graphical user interface

    NASA Astrophysics Data System (ADS)

    Kawai, Tomoaki; Okazaki, Hiroshi; Tanaka, Koichiro; Tamura, Hideyuki

    1992-04-01

    VIEW-Station is a workstation-based image processing system which merges the state-of-the- art software environment of Unix with the computing power of a fast image processor. VIEW- Station has a hierarchical software architecture, which facilitates device independence when porting across various hardware configurations, and provides extensibility in the development of application systems. The core image computing language is V-Sugar. V-Sugar provides a set of image-processing datatypes and allows image processing algorithms to be simply expressed, using a functional notation. VIEW-Station provides a hardware independent window system extension called VIEW-Windows. In terms of GUI (Graphical User Interface) VIEW-Station has two notable aspects. One is to provide various types of GUI as visual environments for image processing execution. Three types of interpreters called (mu) V- Sugar, VS-Shell and VPL are provided. Users may choose whichever they prefer based on their experience and tasks. The other notable aspect is to provide facilities to create GUI for new applications on the VIEW-Station system. A set of widgets are available for construction of task-oriented GUI. A GUI builder called VIEW-Kid is developed for WYSIWYG interactive interface design.

  13. Variety and evolution of American endoscopic image management and recording systems.

    PubMed

    Korman, L Y

    1996-03-01

    The rapid evolution of computing technology has and will continue to alter the practice of gastroenterology and gastrointestinal endoscopy. Development of communication standards for text, images, and security systems will be necessary for medicine to take advantage of high-speed computing and communications. Professional societies can have an important role in guiding the development process.

  14. Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images

    NASA Astrophysics Data System (ADS)

    Michetti, Jérôme; Basarab, Adrian; Diemer, Franck; Kouame, Denis

    2018-01-01

    Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret’s diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.

  15. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  16. New method for identifying features of an image on a digital video display

    NASA Astrophysics Data System (ADS)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  17. Intelligent Vision On The SM9O Mini-Computer Basis And Applications

    NASA Astrophysics Data System (ADS)

    Hawryszkiw, J.

    1985-02-01

    Distinction has to be made between image processing and vision Image processing finds its roots in the strong tradition of linear signal processing and promotes geometrical transform techniques, such as fi I tering , compression, and restoration. Its purpose is to transform an image for a human observer to easily extract from that image information significant for him. For example edges after a gradient operator, or a specific direction after a directional filtering operation. Image processing consists in fact in a set of local or global space-time transforms. The interpretation of the final image is done by the human observer. The purpose of vision is to extract the semantic content of the image. The machine can then understand that content, and run a process of decision, which turns into an action. Thus, intel I i gent vision depends on - Image processing - Pattern recognition - Artificial intel I igence

  18. An Efficient Computational Framework for the Analysis of Whole Slide Images: Application to Follicular Lymphoma Immunohistochemistry

    PubMed Central

    Samsi, Siddharth; Krishnamurthy, Ashok K.; Gurcan, Metin N.

    2012-01-01

    Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist’s disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach. PMID:22962572

  19. Signal and image processing algorithm performance in a virtual and elastic computing environment

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  20. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palazzo, S.; Vagliasindi, G.; Arena, P.

    2010-08-15

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested inmore » an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496x560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN - unlike software CNN implementations.« less

  1. Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach

    NASA Astrophysics Data System (ADS)

    Jazaeri, Amin

    High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.

  2. A cost-effective line-based light-balancing technique using adaptive processing.

    PubMed

    Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min

    2006-09-01

    The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.

  3. Real-Time Symbol Extraction From Grey-Level Images

    NASA Astrophysics Data System (ADS)

    Massen, R.; Simnacher, M.; Rosch, J.; Herre, E.; Wuhrer, H. W.

    1988-04-01

    A VME-bus image pipeline processor for extracting vectorized contours from grey-level images in real-time is presented. This 3 Giga operation per second processor uses large kernel convolvers and new non-linear neighbourhood processing algorithms to compute true 1-pixel wide and noise-free contours without thresholding even from grey-level images with quite varying edge sharpness. The local edge orientation is used as an additional cue to compute a list of vectors describing the closed and open contours in real-time and to dump a CAD-like symbolic image description into a symbol memory at pixel clock rate.

  4. High-performance image processing architecture

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick C.

    1992-04-01

    The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.

  5. Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.

    PubMed

    Arganda-Carreras, Ignacio; Andrey, Philippe

    2017-01-01

    With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

  6. Parallel Computer System for 3D Visualization Stereo on GPU

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  7. 50 Years of Army Computing From ENIAC to MSRC

    DTIC Science & Technology

    2000-09-01

    processing capability. The scientifi c visualization program was started in 1984 to provide tools and expertise to help researchers graphically...and materials, forces modeling, nanoelectronics, electromagnetics and acoustics, signal image processing , and simulation and modeling. The ARL...mechanical and electrical calculating equipment, punch card data processing equipment, analog computers, and early digital machines. Before beginning, we

  8. Measurement of smaller colon polyp in CT colonography images using morphological image processing.

    PubMed

    Manjunath, K N; Siddalingaswamy, P C; Prabhu, G K

    2017-11-01

    Automated measurement of the size and shape of colon polyps is one of the challenges in Computed tomography colonography (CTC). The objective of this retrospective study was to improve the sensitivity and specificity of smaller polyp measurement in CTC using image processing techniques. A domain knowledge-based method has been implemented with hybrid method of colon segmentation, morphological image processing operators for detecting the colonic structures, and the decision-making system for delineating the smaller polyp-based on a priori knowledge. The method was applied on 45 CTC dataset. The key finding was that the smaller polyps were accurately measured. In addition to 6-9 mm range, polyps of even <5 mm were also detected. The results were validated qualitatively and quantitatively using both 2D MPR and 3D view. Implementation was done on a high-performance computer with parallel processing. It takes [Formula: see text] min for measuring the smaller polyp in a dataset of 500 CTC images. With this method, [Formula: see text] and [Formula: see text] were achieved. The domain-based approach with morphological image processing has given good results. The smaller polyps were measured accurately which helps in making right clinical decisions. Qualitatively and quantitatively the results were acceptable when compared to the ground truth at [Formula: see text].

  9. Almost equivalence of combinatorial and distance processes for discrimination in multielement images.

    PubMed

    Ferraro, M; Foster, D H

    1991-01-01

    Under certain experimental conditions, visual discrimination performance in multielement images is closely related to visual identification performance: elements of the image are distinguished only insofar as they appear to have distinct, discrete, internal characterizations. This report is concerned with the detailed relationship between such internal characterizations and observable discrimination performance. Two types of general processes that might underline discrimination are considered. The first is based on computing all possible internal image characterizations that could allow a correct decision, each characterization weighted by the probability of its occurrence and of a correct decision being made. The second process is based on computing the difference between the probabilities associated with the internal characterizations of the individual image elements, the difference quantified naturally with an l(p) norm. The relationship between the two processes was investigated analytically and by Monte Carlo simulations over a plausible range of numbers n of the internal characterizations of each of the m elements in the image. The predictions of the two processes were found to be closely similar. The relationship was precisely one-to-one, however, only for n = 2, m = 3, 4, 6, and for n greater than 2, m = 3, 4, p = 2. For all other cases tested, a one-to-one relationship was shown to be impossible.

  10. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    PubMed

    Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu

    2012-01-01

    Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  11. Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader

    2004-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing for control and for robotics missions using vision sensors. It presents a top-level description of technologies required for the design and construction of SVIP and EASI and to advance the spatial-spectral imaging and large-scale space interferometry science and engineering.

  12. Using deep learning in image hyper spectral segmentation, classification, and detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Su, Zhenyu

    2018-02-01

    Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.

  13. Fast ray-tracing of human eye optics on Graphics Processing Units.

    PubMed

    Wei, Qi; Patkar, Saket; Pai, Dinesh K

    2014-05-01

    We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  15. Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory

    NASA Astrophysics Data System (ADS)

    Dichter, W.; Doris, K.; Conkling, C.

    1982-06-01

    A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.

  16. Computer aided detection system for lung cancer using computer tomography scans

    NASA Astrophysics Data System (ADS)

    Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.

    2018-04-01

    Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.

  17. Comparison of magnetic resonance imaging and computed tomography in suspected lesions in the posterior cranial fossa.

    PubMed Central

    Teasdale, G. M.; Hadley, D. M.; Lawrence, A.; Bone, I.; Burton, H.; Grant, R.; Condon, B.; Macpherson, P.; Rowan, J.

    1989-01-01

    OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor's confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist's report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians' and radiologists' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the number of patients referred for magnetic resonance imaging after computed tomography increased but requests for computed tomography after magnetic resonance imaging decreased. The reason that clinicians gave most commonly for requesting further imaging by magnetic resonance was that the results of the initial computed tomography failed to exclude their suspected diagnosis (64 patients). This was less common in patients investigated initially by magnetic resonance imaging (eight patients). Management of 28 patients (6%) imaged initially with computed tomography and 12 patients (2%) imaged initially with magnetic resonance was changed on the basis of the results of the alternative imaging. CONCLUSIONS--Magnetic resonance imaging provided doctors with the information required to manage patients suspected of having a lesion in the posterior fossa more commonly than computed tomography, but computed tomography alone was satisfactory in 80% of cases... PMID:2506965

  18. Imaging of the meninges and the extra-axial spaces.

    PubMed

    Kirmi, Olga; Sheerin, Fintan; Patel, Neel

    2009-12-01

    The separate meningeal layers and extraaxial spaces are complex and can only be differentiated by pathologic processes on imaging. Differentiation of the location of such processes can be achieved using different imaging modalities. In this pictorial review we address the imaging techniques, enhancement and location patterns, and disease spread that will promote accurate localization of the pathology, thus improving accuracy of diagnosis. Typical and unusual magnetic resonance (MR), computed tomography (CT), and ultrasound imaging findings of many conditions affecting these layers and spaces are described.

  19. An Approach to Knowledge-Directed Image Analysis,

    DTIC Science & Technology

    1977-09-01

    34AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS D.H. Ballard, C.M.’Brown, J.A. Feldman Computer Science Department iThe University of Rochester...Rochester, New York 14627 DTII EECTE UTIC FILE COPY o n I, n 83 - ’ f t 8 11 28 19 1f.. AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS 5*., D.H...semantic network model and a distributed control structure to accomplish the image analysis process. The process of " understanding an image" leads to

  20. Building high-performance system for processing a daily large volume of Chinese satellites imagery

    NASA Astrophysics Data System (ADS)

    Deng, Huawu; Huang, Shicun; Wang, Qi; Pan, Zhiqiang; Xin, Yubin

    2014-10-01

    The number of Earth observation satellites from China increases dramatically recently and those satellites are acquiring a large volume of imagery daily. As the main portal of image processing and distribution from those Chinese satellites, the China Centre for Resources Satellite Data and Application (CRESDA) has been working with PCI Geomatics during the last three years to solve two issues in this regard: processing the large volume of data (about 1,500 scenes or 1 TB per day) in a timely manner and generating geometrically accurate orthorectified products. After three-year research and development, a high performance system has been built and successfully delivered. The high performance system has a service oriented architecture and can be deployed to a cluster of computers that may be configured with high end computing power. The high performance is gained through, first, making image processing algorithms into parallel computing by using high performance graphic processing unit (GPU) cards and multiple cores from multiple CPUs, and, second, distributing processing tasks to a cluster of computing nodes. While achieving up to thirty (and even more) times faster in performance compared with the traditional practice, a particular methodology was developed to improve the geometric accuracy of images acquired from Chinese satellites (including HJ-1 A/B, ZY-1-02C, ZY-3, GF-1, etc.). The methodology consists of fully automatic collection of dense ground control points (GCP) from various resources and then application of those points to improve the photogrammetric model of the images. The delivered system is up running at CRESDA for pre-operational production and has been and is generating good return on investment by eliminating a great amount of manual labor and increasing more than ten times of data throughput daily with fewer operators. Future work, such as development of more performance-optimized algorithms, robust image matching methods and application workflows, is identified to improve the system in the coming years.

  1. yourSky: Custom Sky-Image Mosaics via the Internet

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph

    2003-01-01

    yourSky (http://yourSky.jpl.nasa.gov) is a computer program that supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. [yourSky is an upgraded version of the software reported in Software for Generating Mosaics of Astronomical Images (NPO-21121), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 16a.] A requester no longer has to engage in the tedious process of determining what subset of images is needed, nor even to know how the images are indexed in image archives. Instead, in response to a requester s specification of the size and location of the sky area, (and optionally of the desired set and type of data, resolution, coordinate system, projection, and image format), yourSky automatically retrieves the component image data from archives totaling tens of terabytes stored on computer tape and disk drives at multiple sites and assembles the component images into a mosaic image by use of a high-performance parallel code. yourSky runs on the server computer where the mosaics are assembled. Because yourSky includes a Web-interface component, no special client software is needed: ordinary Web browser software is sufficient.

  2. Partitioning medical image databases for content-based queries on a Grid.

    PubMed

    Montagnat, J; Breton, V; E Magnin, I

    2005-01-01

    In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.

  3. Computational Imaging in Demanding Conditions

    DTIC Science & Technology

    2015-11-18

    spatiotemporal domain where such blur is not present.  Detailed Accomplishments:  ● Removing  Atmospheric   Turbulence  via Space-Invariant  Deconvolution:  ○ To...given image sequence distorted by  atmospheric   turbulence . This approach  reduces the space and time-varying deblurring problem to a shift invariant...SUBJECT TERMS Image processing, Computational imaging, turbulence , blur, enhancement 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  4. Artefacts found in computed radiography.

    PubMed

    Cesar, L J; Schueler, B A; Zink, F E; Daly, T R; Taubel, J P; Jorgenson, L L

    2001-02-01

    Artefacts on radiographic images are distracting and may compromise accurate diagnosis. Although most artefacts that occur in conventional radiography have become familiar, computed radiography (CR) systems produce artefacts that differ from those found in conventional radiography. We have encountered a variety of artefacts in CR images that were produced from four different models plate reader. These artefacts have been identified and traced to the imaging plate, plate reader, image processing software or laser printer or to operator error. Understanding the potential sources of CR artefacts will aid in identifying and resolving problems quickly and help prevent future occurrences.

  5. Validation of a computational knee joint model using an alignment method for the knee laxity test and computed tomography.

    PubMed

    Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Koh, Yong-Gon

    2017-01-01

    Computational models have been identified as efficient techniques in the clinical decision-making process. However, computational model was validated using published data in most previous studies, and the kinematic validation of such models still remains a challenge. Recently, studies using medical imaging have provided a more accurate visualization of knee joint kinematics. The purpose of the present study was to perform kinematic validation for the subject-specific computational knee joint model by comparison with subject's medical imaging under identical laxity condition. The laxity test was applied to the anterior-posterior drawer under 90° flexion and the varus-valgus under 20° flexion with a series of stress radiographs, a Telos device, and computed tomography. The loading condition in the computational subject-specific knee joint model was identical to the laxity test condition in the medical image. Our computational model showed knee laxity kinematic trends that were consistent with the computed tomography images, except for negligible differences because of the indirect application of the subject's in vivo material properties. Medical imaging based on computed tomography with the laxity test allowed us to measure not only the precise translation but also the rotation of the knee joint. This methodology will be beneficial in the validation of laxity tests for subject- or patient-specific computational models.

  6. The computer treatment of remotely sensed data: An introduction to techniques which have geologic applications. [image enhancement and thematic classification in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.

    1982-01-01

    Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.

  7. Quantum computation in the analysis of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gomez, Richard B.; Ghoshal, Debabrata; Jayanna, Anil

    2004-08-01

    Recent research on the topic of quantum computation provides us with some quantum algorithms with higher efficiency and speedup compared to their classical counterparts. In this paper, it is our intent to provide the results of our investigation of several applications of such quantum algorithms - especially the Grover's Search algorithm - in the analysis of Hyperspectral Data. We found many parallels with Grover's method in existing data processing work that make use of classical spectral matching algorithms. Our efforts also included the study of several methods dealing with hyperspectral image analysis work where classical computation methods involving large data sets could be replaced with quantum computation methods. The crux of the problem in computation involving a hyperspectral image data cube is to convert the large amount of data in high dimensional space to real information. Currently, using the classical model, different time consuming methods and steps are necessary to analyze these data including: Animation, Minimum Noise Fraction Transform, Pixel Purity Index algorithm, N-dimensional scatter plot, Identification of Endmember spectra - are such steps. If a quantum model of computation involving hyperspectral image data can be developed and formalized - it is highly likely that information retrieval from hyperspectral image data cubes would be a much easier process and the final information content would be much more meaningful and timely. In this case, dimensionality would not be a curse, but a blessing.

  8. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

    PubMed Central

    Wang, Yangping; Wang, Song

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653

  9. IEEE International Symposium on Biomedical Imaging.

    PubMed

    2017-01-01

    The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract submissions without subsequent archival publication.

  10. An imaging system for PLIF/Mie measurements for a combusting flow

    NASA Technical Reports Server (NTRS)

    Wey, C. C.; Ghorashi, B.; Marek, C. J.; Wey, C.

    1990-01-01

    The equipment required to establish an imaging system can be divided into four parts: (1) the light source and beam shaping optics; (2) camera and recording; (3) image acquisition and processing; and (4) computer and output systems. A pulsed, Nd:YAG-pummped, frequency-doubled dye laser which can freeze motion in the flowfield is used for an illumination source. A set of lenses is used to form the laser beam into a sheet. The induced fluorescence is collected by an UV-enhanced lens and passes through an UV-enhanced microchannel plate intensifier which is optically coupled to a gated solid state CCD camera. The output of the camera is simultaneously displayed on a monitor and recorded on either a laser videodisc set of a Super VHS VCR. This videodisc set is controlled by a minicomputer via a connection to the RS-232C interface terminals. The imaging system is connected to the host computer by a bus repeater and can be multiplexed between four video input sources. Sample images from a planar shear layer experiment are presented to show the processing capability of the imaging system with the host computer.

  11. Development of computational small animal models and their applications in preclinical imaging and therapy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less

  12. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.

    1984-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295

  13. Aortic annulus sizing using watershed transform and morphological approach for CT images

    NASA Astrophysics Data System (ADS)

    Mohammad, Norhasmira; Omar, Zaid; Sahrim, Mus'ab

    2018-02-01

    Aortic valve disease occurs due to calcification deposits on the area of leaflets within the human heart. It is progressive over time where it can affect the mechanism of the heart valve. To avoid the risk of surgery for vulnerable patients especially senior citizens, a new method has been introduced: Transcatheter Aortic Valve Implantation (TAVI), which places a synthetic catheter within the patient's valve. This entails a procedure of aortic annulus sizing, which requires manual measurement of the scanned images acquired from Computed Tomographic (CT) by experts. The step requires intensive efforts, though human error may still eventually lead to false measurement. In this research, image processing techniques are implemented onto cardiac CT images to achieve an automated and accurate measurement of the heart annulus. The image is first put through pre-processing for noise filtration and image enhancement. Then, a marker image is computed using the combination of opening and closing operations where the foreground image is marked as a feature while the background image is set to zero. Marker image is used to control the watershed transformation and also to prevent oversegmentation. This transformation has the advantage of fast computational and oversegmentation problems, which usually appear with the watershed transform can be solved with the introduction of marker image. Finally, the measurement of aortic annulus from the image data is obtained through morphological operations. Results affirm the approach's ability to achieve accurate annulus measurements compared to conventional techniques.

  14. BioImageXD: an open, general-purpose and high-throughput image-processing platform.

    PubMed

    Kankaanpää, Pasi; Paavolainen, Lassi; Tiitta, Silja; Karjalainen, Mikko; Päivärinne, Joacim; Nieminen, Jonna; Marjomäki, Varpu; Heino, Jyrki; White, Daniel J

    2012-06-28

    BioImageXD puts open-source computer science tools for three-dimensional visualization and analysis into the hands of all researchers, through a user-friendly graphical interface tuned to the needs of biologists. BioImageXD has no restrictive licenses or undisclosed algorithms and enables publication of precise, reproducible and modifiable workflows. It allows simple construction of processing pipelines and should enable biologists to perform challenging analyses of complex processes. We demonstrate its performance in a study of integrin clustering in response to selected inhibitors.

  15. Adaptive noise correction of dual-energy computed tomography images.

    PubMed

    Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Mitchell, J Ross

    2016-04-01

    Noise reduction in material density images is a necessary preprocessing step for the correct interpretation of dual-energy computed tomography (DECT) images. In this paper we describe a new method based on a local adaptive processing to reduce noise in DECT images An adaptive neighborhood Wiener (ANW) filter was implemented and customized to use local characteristics of material density images. The ANW filter employs a three-level wavelet approach, combined with the application of an anisotropic diffusion filter. Material density images and virtual monochromatic images are noise corrected with two resulting noise maps. The algorithm was applied and quantitatively evaluated in a set of 36 images. From that set of images, three are shown here, and nine more are shown in the online supplementary material. Processed images had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than the raw material density images. The average improvements in SNR and CNR for the material density images were 56.5 and 54.75%, respectively. We developed a new DECT noise reduction algorithm. We demonstrate throughout a series of quantitative analyses that the algorithm improves the quality of material density images and virtual monochromatic images.

  16. Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images.

    PubMed

    Echegaray, Sebastian; Bakr, Shaimaa; Rubin, Daniel L; Napel, Sandy

    2017-10-06

    The aim of this study was to develop an open-source, modular, locally run or server-based system for 3D radiomics feature computation that can be used on any computer system and included in existing workflows for understanding associations and building predictive models between image features and clinical data, such as survival. The QIFE exploits various levels of parallelization for use on multiprocessor systems. It consists of a managing framework and four stages: input, pre-processing, feature computation, and output. Each stage contains one or more swappable components, allowing run-time customization. We benchmarked the engine using various levels of parallelization on a cohort of CT scans presenting 108 lung tumors. Two versions of the QIFE have been released: (1) the open-source MATLAB code posted to Github, (2) a compiled version loaded in a Docker container, posted to DockerHub, which can be easily deployed on any computer. The QIFE processed 108 objects (tumors) in 2:12 (h/mm) using 1 core, and 1:04 (h/mm) hours using four cores with object-level parallelization. We developed the Quantitative Image Feature Engine (QIFE), an open-source feature-extraction framework that focuses on modularity, standards, parallelism, provenance, and integration. Researchers can easily integrate it with their existing segmentation and imaging workflows by creating input and output components that implement their existing interfaces. Computational efficiency can be improved by parallelizing execution at the cost of memory usage. Different parallelization levels provide different trade-offs, and the optimal setting will depend on the size and composition of the dataset to be processed.

  17. GEOMETRIC PROCESSING OF DIGITAL IMAGES OF THE PLANETS.

    USGS Publications Warehouse

    Edwards, Kathleen

    1987-01-01

    New procedures and software have been developed for geometric transformations of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases.

  18. System Matrix Analysis for Computed Tomography Imaging

    PubMed Central

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  19. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  20. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  1. Expanded opportunities of THz passive camera for the detection of concealed objects

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2013-10-01

    Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.

  2. Digital image processing: a primer for JVIR authors and readers: Part 3: Digital image editing.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-12-01

    This is the final installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first two articles of the series, the fundamentals of digital image architecture were reviewed and methods of importing images to the computer desktop were described. In this article, techniques are presented for editing images in preparation for online submission. A step-by-step guide to basic editing with use of Adobe Photoshop is provided and the ethical implications of this activity are explored.

  3. Real time 3D structural and Doppler OCT imaging on graphics processing units

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczyńska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr

    2013-03-01

    In this report the application of graphics processing unit (GPU) programming for real-time 3D Fourier domain Optical Coherence Tomography (FdOCT) imaging with implementation of Doppler algorithms for visualization of the flows in capillary vessels is presented. Generally, the time of the data processing of the FdOCT data on the main processor of the computer (CPU) constitute a main limitation for real-time imaging. Employing additional algorithms, such as Doppler OCT analysis, makes this processing even more time consuming. Lately developed GPUs, which offers a very high computational power, give a solution to this problem. Taking advantages of them for massively parallel data processing, allow for real-time imaging in FdOCT. The presented software for structural and Doppler OCT allow for the whole processing with visualization of 2D data consisting of 2000 A-scans generated from 2048 pixels spectra with frame rate about 120 fps. The 3D imaging in the same mode of the volume data build of 220 × 100 A-scans is performed at a rate of about 8 frames per second. In this paper a software architecture, organization of the threads and optimization applied is shown. For illustration the screen shots recorded during real time imaging of the phantom (homogeneous water solution of Intralipid in glass capillary) and the human eye in-vivo is presented.

  4. Differential morphology and image processing.

    PubMed

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  5. AstroCV: Astronomy computer vision library

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.

    2018-04-01

    AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.

  6. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  7. Computer-aided diagnosis and artificial intelligence in clinical imaging.

    PubMed

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio

    2011-11-01

    Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and communication systems and will become a standard of care for diagnostic examinations in daily clinical work. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.T.C.

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound,more » electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.« less

  9. Image2000: A Free, Innovative, Java Based Imaging Package

    NASA Technical Reports Server (NTRS)

    Pell, Nicholas; Wheeler, Phil; Cornwell, Carl; Matusow, David; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's (GSFC) Scientific and Educational Endeavors (SEE) and the Center for Image Processing in Education (CIPE) use satellite image processing as part of their science lessons developed for students and educators. The image processing products that they use, as part of these lessons, no longer fulfill the needs of SEE and CIPE because these products are either dependent on a particular computing platform, hard to customize and extend, or do not have enough functionality. SEE and CIPE began looking for what they considered the "perfect" image processing tool that was platform independent, rich in functionality and could easily be extended and customized for their purposes. At the request of SEE, NASA's GSFC, code 588 the Advanced Architectures and Automation Branch developed a powerful new Java based image processing endeavors.

  10. Land classification of south-central Iowa from computer enhanced images

    NASA Technical Reports Server (NTRS)

    Lucas, J. R.; Taranik, J. V.; Billingsley, F. C. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Enhanced LANDSAT imagery was most useful for land classification purposes, because these images could be photographically printed at large scales such as 1:63,360. The ability to see individual picture elements was no hindrance as long as general image patterns could be discerned. Low cost photographic processing systems for color printings have proved to be effective in the utilization of computer enhanced LANDSAT products for land classification purposes. The initial investment for this type of system was very low, ranging from $100 to $200 beyond a black and white photo lab. The technical expertise can be acquired from reading a color printing and processing manual.

  11. Image reproduction with interactive graphics

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Software application or development in optical image digital data processing requires a fast, good quality, yet inexpensive hard copy of processed images. To achieve this, a Cambo camera with an f 2.8/150-mm Xenotar lens in a Copal shutter having a Graflok back for 4 x 5 Polaroid type 57 pack-film has been interfaced to an existing Adage, AGT-30/Electro-Mechanical Research, EMR 6050 graphic computer system. Time-lapse photography in conjunction with a log to linear voltage transformation has resulted in an interactive system capable of producing a hard copy in 54 sec. The interactive aspect of the system lies in a Tektronix 4002 graphic computer terminal and its associated hard copy unit.

  12. The Mark III Hypercube-Ensemble Computers

    NASA Technical Reports Server (NTRS)

    Peterson, John C.; Tuazon, Jesus O.; Lieberman, Don; Pniel, Moshe

    1988-01-01

    Mark III Hypercube concept applied in development of series of increasingly powerful computers. Processor of each node of Mark III Hypercube ensemble is specialized computer containing three subprocessors and shared main memory. Solves problem quickly by simultaneously processing part of problem at each such node and passing combined results to host computer. Disciplines benefitting from speed and memory capacity include astrophysics, geophysics, chemistry, weather, high-energy physics, applied mechanics, image processing, oil exploration, aircraft design, and microcircuit design.

  13. Digital image processing for information extraction.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1973-01-01

    The modern digital computer has made practical image processing techniques for handling nonlinear operations in both the geometrical and the intensity domains, various types of nonuniform noise cleanup, and the numerical analysis of pictures. An initial requirement is that a number of anomalies caused by the camera (e.g., geometric distortion, MTF roll-off, vignetting, and nonuniform intensity response) must be taken into account or removed to avoid their interference with the information extraction process. Examples illustrating these operations are discussed along with computer techniques used to emphasize details, perform analyses, classify materials by multivariate analysis, detect temporal differences, and aid in human interpretation of photos.

  14. A fast discrete S-transform for biomedical signal processing.

    PubMed

    Brown, Robert A; Frayne, Richard

    2008-01-01

    Determining the frequency content of a signal is a basic operation in signal and image processing. The S-transform provides both the true frequency and globally referenced phase measurements characteristic of the Fourier transform and also generates local spectra, as does the wavelet transform. Due to this combination, the S-transform has been successfully demonstrated in a variety of biomedical signal and image processing tasks. However, the computational demands of the S-transform have limited its application in medicine to this point in time. This abstract introduces the fast S-transform, a more efficient discrete implementation of the classic S-transform with dramatically reduced computational requirements.

  15. A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft

    NASA Technical Reports Server (NTRS)

    Zolotukhin, V. G.; Kolosov, B. I.; Usikov, D. A.; Borisenko, V. I.; Mosin, S. T.; Gorokhov, V. N.

    1980-01-01

    A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed.

  16. Visual based laser speckle pattern recognition method for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Park, Kyeongtaek; Torbol, Marco

    2017-04-01

    This study performed the system identification of a target structure by analyzing the laser speckle pattern taken by a camera. The laser speckle pattern is generated by the diffuse reflection of the laser beam on a rough surface of the target structure. The camera, equipped with a red filter, records the scattered speckle particles of the laser light in real time and the raw speckle image of the pixel data is fed to the graphic processing unit (GPU) in the system. The algorithm for laser speckle contrast analysis (LASCA) computes: the laser speckle contrast images and the laser speckle flow images. The k-mean clustering algorithm is used to classify the pixels in each frame and the clusters' centroids, which function as virtual sensors, track the displacement between different frames in time domain. The fast Fourier transform (FFT) and the frequency domain decomposition (FDD) compute the modal properties of the structure: natural frequencies and damping ratios. This study takes advantage of the large scale computational capability of GPU. The algorithm is written in Compute Unifies Device Architecture (CUDA C) that allows the processing of speckle images in real time.

  17. Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes

    PubMed Central

    Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2013-01-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563

  18. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    PubMed

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  19. Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.

  20. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    PubMed Central

    Bayır, Şafak

    2016-01-01

    With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272

  1. Application of a digital high-speed camera and image processing system for investigations of short-term hypersonic fluids

    NASA Astrophysics Data System (ADS)

    Renken, Hartmut; Oelze, Holger W.; Rath, Hans J.

    1998-04-01

    The design and application of a digital high sped image data capturing system with a following image processing system applied to the Bremer Hochschul Hyperschallkanal BHHK is the content of this presentation. It is also the result of the cooperation between the departments aerodynamic and image processing at the ZARM-institute at the Drop Tower of Brennen. Similar systems are used by the combustion working group at ZARM and other external project partners. The BHHK, camera- and image storage system as well as the personal computer based image processing software are described next. Some examples of images taken at the BHHK are shown to illustrate the application. The new and very user-friendly Windows 32-bit system is capable to capture all camera data with a maximum pixel clock of 43 MHz and to process complete sequences of images in one step by using only one comfortable program.

  2. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  3. A Computer-Aided Distinction Method of Borderline Grades of Oral Cancer

    NASA Astrophysics Data System (ADS)

    Sami, Mustafa M.; Saito, Masahisa; Muramatsu, Shogo; Kikuchi, Hisakazu; Saku, Takashi

    We have developed a new computer-aided diagnostic system for differentiating oral borderline malignancies in hematoxylin-eosin stained microscopic images. Epithelial dysplasia and carcinoma in-situ (CIS) of oral mucosa are two different borderline grades similar to each other, and it is difficult to distinguish between them. A new image processing and analysis method has been applied to a variety of histopathological features and shows the possibility for differentiating the oral cancer borderline grades automatically. The method is based on comparing the drop-shape similarity level in a particular manually selected pair of neighboring rete ridges. It was found that the considered similarity level in dysplasia was higher than those in epithelial CIS, of which pathological diagnoses were conventionally made by pathologists. The developed image processing method showed a good promise for the computer-aided pathological assessment of oral borderline malignancy differentiation in clinical practice.

  4. Analysis of Variance in Statistical Image Processing

    NASA Astrophysics Data System (ADS)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  5. Easily Transported CCD Systems for Use in Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Meisel, D.

    1992-12-01

    Relatively inexpensive CCD cameras and portable computers are now easily obtained as commercially available products. I will describe a prototype system that can be used by introductory astronomy students, even urban enviroments, to obtain useful observations of the night sky. It is based on the ST-4 CCDs made by Santa Barbara Instruments Group and Macintosh Powerbook145 computers. Students take outdoor images directly from the college campus, bring the exposures back into the lab and download the images into our networked server. These stored images can then be processed (at a later time) using a variety of image processing programs including a new astronomical version of the popular "freeware" NIH Image package that is currently under development at Geneseo. The prototype of this system will be demonstrated and available for hands-on use during the meeting. This work is supported by NSF ILI Demonstration Grant USE9250493 and Grants from SUNY-GENESEO.

  6. Multisite two-photon imaging of neurons on multielectrode arrays

    NASA Astrophysics Data System (ADS)

    Potter, Steve M.; Lukina, Natalia; Longmuir, Kenneth J.; Wu, Yan

    2001-04-01

    We wish to understand how neural systems store, recall, and process information. We are using cultured networks of cortical neurons grown on microelectrode arrays as a model system for studying the emergent properties of ensembles of living neurons. We have developed a 2-way communication interface between the cultured network and a computer- generated animal, the Neurally Controlled Animat. Neural activity is used to control the behavior of the Animat, and 2- photon time-lapse imaging is carried out in order to observe the morphological changes that might underlie changes in neural processing. The 2-photon microscope is ideal for repeated imaging over hours or days, with submicron resolution and little photodamage. We have designed a computer-controlled microscope stage that allows imaging several locations in sequence, in order to collect more image data. For the latest progress, see: http://www.caltech.edu/~pinelab/PotterGroup.htm.

  7. A fast image registration approach of neural activities in light-sheet fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hui, Hui; Hu, Chaoen; Yang, Xin; Tian, Jie

    2017-03-01

    The ability of fast and single-neuron resolution imaging of neural activities enables light-sheet fluorescence microscopy (LSFM) as a powerful imaging technique in functional neural connection applications. The state-of-art LSFM imaging system can record the neuronal activities of entire brain for small animal, such as zebrafish or C. elegans at single-neuron resolution. However, the stimulated and spontaneous movements in animal brain result in inconsistent neuron positions during recording process. It is time consuming to register the acquired large-scale images with conventional method. In this work, we address the problem of fast registration of neural positions in stacks of LSFM images. This is necessary to register brain structures and activities. To achieve fast registration of neural activities, we present a rigid registration architecture by implementation of Graphics Processing Unit (GPU). In this approach, the image stacks were preprocessed on GPU by mean stretching to reduce the computation effort. The present image was registered to the previous image stack that considered as reference. A fast Fourier transform (FFT) algorithm was used for calculating the shift of the image stack. The calculations for image registration were performed in different threads while the preparation functionality was refactored and called only once by the master thread. We implemented our registration algorithm on NVIDIA Quadro K4200 GPU under Compute Unified Device Architecture (CUDA) programming environment. The experimental results showed that the registration computation can speed-up to 550ms for a full high-resolution brain image. Our approach also has potential to be used for other dynamic image registrations in biomedical applications.

  8. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  9. Coincident Extraction of Line Objects from Stereo Image Pairs.

    DTIC Science & Technology

    1983-09-01

    4.4.3 Reconstruction of intersections 4.5 Final result processing 5. Presentation of the results 5.1 FIM image processing system 5.2 Extraction results in...image. To achieve this goal, the existing software system had to be modified and extended considerably. The following sections of this report will give...8000 pixels of each image without explicit loading of subimages could not yet be performed due to computer system software problems. m m n m -4- The

  10. Quantitative Image Informatics for Cancer Research (QIICR) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets.

  11. Combining Image Processing with Signal Processing to Improve Transmitter Geolocation Estimation

    DTIC Science & Technology

    2014-03-27

    transmitter by searching a grid of possible transmitter locations within the image region. At each evaluated grid point, theoretical TDOA values are computed...requires converting the image to a grayscale intensity image. This allows efficient manipulation of data and ease of comparison among pixel values . The...cluster of redundant y values along the top edge of an ideal rectangle. The same is true for the bottom edge, as well as for the x values along the

  12. Image interpolation and denoising for division of focal plane sensors using Gaussian processes.

    PubMed

    Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor

    2014-06-16

    Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.

  13. An Intelligent Pictorial Information System

    NASA Astrophysics Data System (ADS)

    Lee, Edward T.; Chang, B.

    1987-05-01

    In examining the history of computer application, we discover that early computer systems were developed primarily for applications related to scientific computation, as in weather prediction, aerospace applications, and nuclear physics applications. At this stage, the computer system served as a big calculator to perform, in the main, manipulation of numbers. Then it was found that computer systems could also be used for business applications, information storage and retrieval, word processing, and report generation. The history of computer application is summarized in Table I. The complexity of pictures makes picture processing much more difficult than number and alphanumerical processing. Therefore, new techniques, new algorithms, and above all, new pictorial knowledge, [1] are needed to overcome the limitatins of existing computer systems. New frontiers in designing computer systems are the ways to handle the representation,[2,3] classification, manipulation, processing, storage, and retrieval of pictures. Especially, the ways to deal with similarity measures and the meaning of the word "approximate" and the phrase "approximate reasoning" are an important and an indispensable part of an intelligent pictorial information system. [4,5] The main objective of this paper is to investigate the mathematical foundation for the effective organization and efficient retrieval of pictures in similarity-directed pictorial databases, [6] based on similarity retrieval techniques [7] and fuzzy languages [8]. The main advantage of this approach is that similar pictures are stored logically close to each other by using quantitative similarity measures. Thus, for answering queries, the amount of picture data needed to be searched can be reduced and the retrieval time can be improved. In addition, in a pictorial database, very often it is desired to find pictures (or feature vectors, histograms, etc.) that are most similar to or most dissimilar [9] to a test picture (or feature vector). Using similarity measures, one can not only store similar pictures logically or physically close to each other in order to improve retrieval or updating efficiency, one can also use such similarity measures to answer fuzzy queries involving nonexact retrieval conditions. In this paper, similarity directed pictorial databases involving geometric figures, chromosome images, [10] leukocyte images, cardiomyopathy images, and satellite images [11] are presented as illustrative examples.

  14. A gallery of HCMM images

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A gallery of what might be called the ""Best of HCMM'' imagery is presented. These 100 images, consisting mainly of Day-VIS, Day-IR, and Night-IR scenes plus a few thermal inertia images, were selected from the collection accrued in the Missions Utilization Office (Code 902) at the Goddard Space Flight Center. They were selected because of both their pictorial quality and their information or interest content. Nearly all the images are the computer processed and contrast stretched products routinely produced by the image processing facility at GSFC. Several LANDSAT images, special HCMM images made by HCMM investigators, and maps round out the input.

  15. Binary video codec for data reduction in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias

    2013-02-01

    Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.

  16. Computer control of a scanning electron microscope for digital image processing of thermal-wave images

    NASA Technical Reports Server (NTRS)

    Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.

    1987-01-01

    Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.

  17. Accelerating image recognition on mobile devices using GPGPU

    NASA Astrophysics Data System (ADS)

    Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku

    2011-01-01

    The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.

  18. Spaceborne synthetic aperture radar signal processing using FPGAs

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yohei; Ozawa, Satoru; Inaba, Noriyasu

    2017-10-01

    Synthetic Aperture Radar (SAR) imagery requires image reproduction through successive signal processing of received data before browsing images and extracting information. The received signal data records of the ALOS-2/PALSAR-2 are stored in the onboard mission data storage and transmitted to the ground. In order to compensate the storage usage and the capacity of transmission data through the mission date communication networks, the operation duty of the PALSAR-2 is limited. This balance strongly relies on the network availability. The observation operations of the present spaceborne SAR systems are rigorously planned by simulating the mission data balance, given conflicting user demands. This problem should be solved such that we do not have to compromise the operations and the potential of the next-generation spaceborne SAR systems. One of the solutions is to compress the SAR data through onboard image reproduction and information extraction from the reproduced images. This is also beneficial for fast delivery of information products and event-driven observations by constellation. The Emergence Studio (Sōhatsu kōbō in Japanese) with Japan Aerospace Exploration Agency is developing evaluation models of FPGA-based signal processing system for onboard SAR image reproduction. The model, namely, "Fast L1 Processor (FLIP)" developed in 2016 can reproduce a 10m-resolution single look complex image (Level 1.1) from ALOS/PALSAR raw signal data (Level 1.0). The processing speed of the FLIP at 200 MHz results in twice faster than CPU-based computing at 3.7 GHz. The image processed by the FLIP is no way inferior to the image processed with 32-bit computing in MATLAB.

  19. Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast

    DTIC Science & Technology

    2007-10-01

    Brian Harrawood, Ronald Pedroni, Alexander Crowell, Robert Macri, Mathew Kiser, Richard Walter ,Werner 111 Tornow , Neutron Stimulated Emission...1( kkkk k nn kkk n k n k w PBbywbb σσσ += +−⋅+=+ , (2) MLE estimate is known to increase high frequency image noise. To overcome this, some...contrast to noise ratio results for the three images shown in Figure 5. With grid w /o grid w /o grid; scatter reduction RSF 11% 45% 10% CNR 7.04 6.99

  20. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-08

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  1. Embedded, real-time UAV control for improved, image-based 3D scene reconstruction

    Treesearch

    Jean Liénard; Andre Vogs; Demetrios Gatziolis; Nikolay Strigul

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) are already broadly employed for 3D modeling of large objects such as trees and monuments via photogrammetry. The usual workflow includes two distinct steps: image acquisition with UAV and computationally demanding postflight image processing. Insufficient feature overlaps across images is a common shortcoming in post-flight image...

  2. Astronomy In The Cloud: Using Mapreduce For Image Coaddition

    NASA Astrophysics Data System (ADS)

    Wiley, Keith; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-01-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computational challenges such as anomaly detection, classification, and moving object tracking. Since such studies require the highest quality data, methods such as image coaddition, i.e., registration, stacking, and mosaicing, will be critical to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources, e.g., asteroids, or transient objects, e.g., supernovae, these datastreams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this paper we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data is partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources, i.e., platforms where Hadoop is offered as a service. We report on our experience implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multi-terabyte imaging dataset provides a good testbed for algorithm development since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image coaddition to the MapReduce framework. Then we describe a number of optimizations to our basic approach and report experimental results compring their performance. This work is funded by the NSF and by NASA.

  3. Astronomy in the Cloud: Using MapReduce for Image Co-Addition

    NASA Astrophysics Data System (ADS)

    Wiley, K.; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-03-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computation challenges such as anomaly detection and classification and moving-object tracking. Since such studies benefit from the highest-quality data, methods such as image co-addition, i.e., astrometric registration followed by per-pixel summation, will be a critical preprocessing step prior to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources such as potentially hazardous asteroids or transient objects such as supernovae, these data streams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this article we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data are partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources: i.e., platforms where Hadoop is offered as a service. We report on our experience of implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multiterabyte imaging data set provides a good testbed for algorithm development, since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image co-addition to the MapReduce framework. Then we describe a number of optimizations to our basic approach and report experimental results comparing their performance.

  4. Quantum simulator review

    NASA Astrophysics Data System (ADS)

    Bednar, Earl; Drager, Steven L.

    2007-04-01

    Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.

  5. Pre-Hardware Optimization of Spacecraft Image Processing Algorithms and Hardware Implementation

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Petrick, David J.; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Day, John H. (Technical Monitor)

    2002-01-01

    Spacecraft telemetry rates and telemetry product complexity have steadily increased over the last decade presenting a problem for real-time processing by ground facilities. This paper proposes a solution to a related problem for the Geostationary Operational Environmental Spacecraft (GOES-8) image data processing and color picture generation application. Although large super-computer facilities are the obvious heritage solution, they are very costly, making it imperative to seek a feasible alternative engineering solution at a fraction of the cost. The proposed solution is based on a Personal Computer (PC) platform and synergy of optimized software algorithms, and reconfigurable computing hardware (RC) technologies, such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processors (DSP). It has been shown that this approach can provide superior inexpensive performance for a chosen application on the ground station or on-board a spacecraft.

  6. Plasmonic computing of spatial differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui

    2017-05-01

    Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

  7. An application of computer image-processing and filmy replica technique to the copper electroplating method of stress analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Seika, M.

    1994-02-01

    In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.

  8. Spline function approximation techniques for image geometric distortion representation. [for registration of multitemporal remote sensor imagery

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1975-01-01

    Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.

  9. Computer vision-based analysis of foods: a non-destructive colour measurement tool to monitor quality and safety.

    PubMed

    Mogol, Burçe Ataç; Gökmen, Vural

    2014-05-01

    Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed. © 2013 Society of Chemical Industry.

  10. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  11. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    PubMed

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  12. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary

  13. Applications of digital image processing techniques to problems of data registration and correlation

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1978-01-01

    An overview is presented of the evolution of the computer configuration at JPL's Image Processing Laboratory (IPL). The development of techniques for the geometric transformation of digital imagery is discussed and consideration is given to automated and semiautomated image registration, and the registration of imaging and nonimaging data. The increasing complexity of image processing tasks at IPL is illustrated with examples of various applications from the planetary program and earth resources activities. It is noted that the registration of existing geocoded data bases with Landsat imagery will continue to be important if the Landsat data is to be of genuine use to the user community.

  14. Recreation of three-dimensional objects in a real-time simulated environment by means of a panoramic single lens stereoscopic image-capturing device

    NASA Astrophysics Data System (ADS)

    Wong, Erwin

    2000-03-01

    Traditional methods of linear based imaging limits the viewer to a single fixed-point perspective. By means of a single lens multiple perspective mirror system, a 360-degree representation of the area around the camera is reconstructed. This reconstruction is used overcome the limitations of a traditional camera by providing the viewer with many different perspectives. By constructing the mirror into a hemispherical surface with multiple focal lengths at various diameters on the mirror, and by placing a parabolic mirror overhead, a stereoscopic image can be extracted from the image captured by a high-resolution camera placed beneath the mirror. Image extraction and correction is made by computer processing of the image obtained by camera; the image present up to five distinguishable different viewpoints that a computer can extrapolate pseudo- perspective data from. Geometric and depth for field can be extrapolated via comparison and isolation of objects within a virtual scene post processed by the computer. Combining data with scene rendering software provides the viewer with the ability to choose a desired viewing position, multiple dynamic perspectives, and virtually constructed perspectives based on minimal existing data. An examination into the workings of the mirror relay system is provided, including possible image extrapolation and correctional methods. Generation of data and virtual interpolated and constructed data is also mentioned.

  15. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  16. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  17. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  18. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    PubMed Central

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558

  19. Computer-aided classification of lung nodules on computed tomography images via deep learning technique.

    PubMed

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.

  20. Evaluating the Efficacy of the Cloud for Cluster Computation

    NASA Technical Reports Server (NTRS)

    Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom

    2012-01-01

    Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.

  1. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  2. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  3. Computer-Assisted Digital Image Analysis of Plus Disease in Retinopathy of Prematurity.

    PubMed

    Kemp, Pavlina S; VanderVeen, Deborah K

    2016-01-01

    The objective of this study is to review the current state and role of computer-assisted analysis in diagnosis of plus disease in retinopathy of prematurity. Diagnosis and documentation of retinopathy of prematurity are increasingly being supplemented by digital imaging. The incorporation of computer-aided techniques has the potential to add valuable information and standardization regarding the presence of plus disease, an important criterion in deciding the necessity of treatment of vision-threatening retinopathy of prematurity. A review of literature found that several techniques have been published examining the process and role of computer aided analysis of plus disease in retinopathy of prematurity. These techniques use semiautomated image analysis techniques to evaluate retinal vascular dilation and tortuosity, using calculated parameters to evaluate presence or absence of plus disease. These values are then compared with expert consensus. The study concludes that computer-aided image analysis has the potential to use quantitative and objective criteria to act as a supplemental tool in evaluating for plus disease in the setting of retinopathy of prematurity.

  4. Playback system designed for X-Band SAR

    NASA Astrophysics Data System (ADS)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  5. Parallel-Processing Software for Creating Mosaic Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; McCauley, Michael; DeJong, Eric

    2008-01-01

    A computer program implements parallel processing for nearly real-time creation of panoramic mosaics of images of terrain acquired by video cameras on an exploratory robotic vehicle (e.g., a Mars rover). Because the original images are typically acquired at various camera positions and orientations, it is necessary to warp the images into the reference frame of the mosaic before stitching them together to create the mosaic. [Also see "Parallel-Processing Software for Correlating Stereo Images," Software Supplement to NASA Tech Briefs, Vol. 31, No. 9 (September 2007) page 26.] The warping algorithm in this computer program reflects the considerations that (1) for every pixel in the desired final mosaic, a good corresponding point must be found in one or more of the original images and (2) for this purpose, one needs a good mathematical model of the cameras and a good correlation of individual pixels with respect to their positions in three dimensions. The desired mosaic is divided into slices, each of which is assigned to one of a number of central processing units (CPUs) operating simultaneously. The results from the CPUs are gathered and placed into the final mosaic. The time taken to create the mosaic depends upon the number of CPUs, the speed of each CPU, and whether a local or a remote data-staging mechanism is used.

  6. Computational photography with plenoptic camera and light field capture: tutorial.

    PubMed

    Lam, Edmund Y

    2015-11-01

    Photography is a cornerstone of imaging. Ever since cameras became consumer products more than a century ago, we have witnessed great technological progress in optics and recording mediums, with digital sensors replacing photographic films in most instances. The latest revolution is computational photography, which seeks to make image reconstruction computation an integral part of the image formation process; in this way, there can be new capabilities or better performance in the overall imaging system. A leading effort in this area is called the plenoptic camera, which aims at capturing the light field of an object; proper reconstruction algorithms can then adjust the focus after the image capture. In this tutorial paper, we first illustrate the concept of plenoptic function and light field from the perspective of geometric optics. This is followed by a discussion on early attempts and recent advances in the construction of the plenoptic camera. We will then describe the imaging model and computational algorithms that can reconstruct images at different focus points, using mathematical tools from ray optics and Fourier optics. Last, but not least, we will consider the trade-off in spatial resolution and highlight some research work to increase the spatial resolution of the resulting images.

  7. Image acquisitions, processing and analysis in the process of obtaining characteristics of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Włodarek, J.; Przybylak, A.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Boniecki, P.; Koszela, K.; Przybył, J.; Skwarcz, J.

    2015-07-01

    The aim of this study was investigate the possibility of using methods of computer image analysis for the assessment and classification of morphological variability and the state of health of horse navicular bone. Assumption was that the classification based on information contained in the graphical form two-dimensional digital images of navicular bone and information of horse health. The first step in the research was define the classes of analyzed bones, and then using methods of computer image analysis for obtaining characteristics from these images. This characteristics were correlated with data concerning the animal, such as: side of hooves, number of navicular syndrome (scale 0-3), type, sex, age, weight, information about lace, information about heel. This paper shows the introduction to the study of use the neural image analysis in the diagnosis of navicular bone syndrome. Prepared method can provide an introduction to the study of non-invasive way to assess the condition of the horse navicular bone.

  8. The infection algorithm: an artificial epidemic approach for dense stereo correspondence.

    PubMed

    Olague, Gustavo; Fernández, Francisco; Pérez, Cynthia B; Lutton, Evelyne

    2006-01-01

    We present a new bio-inspired approach applied to a problem of stereo image matching. This approach is based on an artificial epidemic process, which we call the infection algorithm. The problem at hand is a basic one in computer vision for 3D scene reconstruction. It has many complex aspects and is known as an extremely difficult one. The aim is to match the contents of two images in order to obtain 3D information that allows the generation of simulated projections from a viewpoint that is different from the ones of the initial photographs. This process is known as view synthesis. The algorithm we propose exploits the image contents in order to produce only the necessary 3D depth information, while saving computational time. It is based on a set of distributed rules, which propagate like an artificial epidemic over the images. Experiments on a pair of real images are presented, and realistic reprojected images have been generated.

  9. Missile signal processing common computer architecture for rapid technology upgrade

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.

  10. Short Project-Based Learning with MATLAB Applications to Support the Learning of Video-Image Processing

    ERIC Educational Resources Information Center

    Gil, Pablo

    2017-01-01

    University courses concerning Computer Vision and Image Processing are generally taught using a traditional methodology that is focused on the teacher rather than on the students. This approach is consequently not effective when teachers seek to attain cognitive objectives involving their students' critical thinking. This manuscript covers the…

  11. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  12. Benefit from NASA

    NASA Image and Video Library

    1985-01-01

    The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.

  13. The precision-processing subsystem for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  14. Mutual information-based template matching scheme for detection of breast masses: from mammography to digital breast tomosynthesis

    PubMed Central

    Mazurowski, Maciej A; Lo, Joseph Y; Harrawood, Brian P; Tourassi, Georgia D

    2011-01-01

    Development of a computational decision aid for a new medical imaging modality typically is a long and complicated process. It consists of collecting data in the form of images and annotations, development of image processing and pattern recognition algorithms for analysis of the new images and finally testing of the resulting system. Since new imaging modalities are developed more rapidly than ever before, any effort for decreasing the time and cost of this development process could result in maximizing the benefit of the new imaging modality to patients by making the computer aids quickly available to radiologists that interpret the images. In this paper, we make a step in this direction and investigate the possibility of translating the knowledge about the detection problem from one imaging modality to another. Specifically, we present a computer-aided detection (CAD) system for mammographic masses that uses a mutual information-based template matching scheme with intelligently selected templates. We presented principles of template matching with mutual information for mammography before. In this paper, we present an implementation of those principles in a complete computer-aided detection system. The proposed system, through an automatic optimization process, chooses the most useful templates (mammographic regions of interest) using a large database of previously collected and annotated mammograms. Through this process, the knowledge about the task of detecting masses in mammograms is incorporated in the system. Then we evaluate whether our system developed for screen-film mammograms can be successfully applied not only to other mammograms but also to digital breast tomosynthesis (DBT) reconstructed slices without adding any DBT cases for training. Our rationale is that since mutual information is known to be a robust intermodality image similarity measure, it has high potential of transferring knowledge between modalities in the context of the mass detection task. Experimental evaluation of the system on mammograms showed competitive performance compared to other mammography CAD systems recently published in the literature. When the system was applied “as-is” to DBT, its performance was notably worse than that for mammograms. However, with a simple additional preprocessing step, the performance of the system reached levels similar to that obtained for mammograms. In conclusion, the presented CAD system not only performed competitively on screen-film mammograms but it also performed robustly on DBT showing that direct transfer of knowledge across breast imaging modalities for mass detection is in fact possible. PMID:21554985

  15. Korean coastal water depth/sediment and land cover mapping (1:25,000) by computer analysis of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Park, K. Y.; Miller, L. D.

    1978-01-01

    Computer analysis was applied to single date LANDSAT MSS imagery of a sample coastal area near Seoul, Korea equivalent to a 1:50,000 topographic map. Supervised image processing yielded a test classification map from this sample image containing 12 classes: 5 water depth/sediment classes, 2 shoreline/tidal classes, and 5 coastal land cover classes at a scale of 1:25,000 and with a training set accuracy of 76%. Unsupervised image classification was applied to a subportion of the site analyzed and produced classification maps comparable in results in a spatial sense. The results of this test indicated that it is feasible to produce such quantitative maps for detailed study of dynamic coastal processes given a LANDSAT image data base at sufficiently frequent time intervals.

  16. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  17. High performance computing environment for multidimensional image analysis

    PubMed Central

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-01-01

    Background The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. Results We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup. Conclusion Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets. PMID:17634099

  18. High performance computing environment for multidimensional image analysis.

    PubMed

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-07-10

    The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.

  19. Detection of fuze defects by image-processing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, M.J.

    1988-03-01

    This paper describes experimental studies of the detection of mechanical defects by the application of computer-processing methods to real-time radiographic images of fuze assemblies. The experimental results confirm that a new algorithm developed at Materials Research Laboratory has potential for the automatic inspection of these assemblies and of others that contain discrete components. The algorithm was applied to images that contain a range of grey levels and has been found to be tolerant to image variations encountered under simulated production conditions.

  20. Data processing device test apparatus and method therefor

    DOEpatents

    Wilcox, Richard Jacob; Mulig, Jason D.; Eppes, David; Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Hawkins, Charles F.; Louie, Arnold Y.

    2003-04-08

    A method and apparatus mechanism for testing data processing devices are implemented. The test mechanism isolates critical paths by correlating a scanning microscope image with a selected speed path failure. A trigger signal having a preselected value is generated at the start of each pattern vector. The sweep of the scanning microscope is controlled by a computer, which also receives and processes the image signals returned from the microscope. The value of the trigger signal is correlated with a set of pattern lines being driven on the DUT. The trigger is either asserted or negated depending the detection of a pattern line failure and the particular line that failed. In response to the detection of the particular speed path failure being characterized, and the trigger signal, the control computer overlays a mask on the image of the device under test (DUT). The overlaid image provides a visual correlation of the failure with the structural elements of the DUT at the level of resolution of the microscope itself.

Top