Artificial intelligence in medicine.
Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.
2004-01-01
INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167
Artificial intelligence in medicine.
Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J
2004-09-01
Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.
Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.
ERIC Educational Resources Information Center
Elsom-Cook, Mark
The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…
The Successive Contributions of Computers to Education: A Survey.
ERIC Educational Resources Information Center
Lelouche, Ruddy
1998-01-01
Shows how education has successively benefited from traditional information processing through programmed instruction and computer-assisted instruction (CAI), artificial intelligence, intelligent CAI, intelligent tutoring systems, and hypermedia techniques. Contains 29 references. (DDR)
Antecedent Knowledge and Intelligent Computer Assisted Instruction.
ERIC Educational Resources Information Center
Woodward, John P.; Carnine, Douglas W.
1988-01-01
The article reviews Intelligent Computer Assisted Instruction (ICAI), an area of artificial intelligence and notes its shortcomings for learning disabled students. It is suggested that emphasis on antecedent knowledge (important facts, concepts, rules, and/or strategies for the content area) and content analysis and design techniques would make…
1988-06-01
Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Computer Assisted Instruction; Artificial Intelligence 194...while he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been...he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been used
Naval Computer-Based Instruction: Cost, Implementation and Effectiveness Issues.
1988-03-01
logical follow on to MITIPAC and are an attempt to use some artificial intelligence (AI) techniques with computer-based training. A good intelligent ...principles of steam plant operation and maintenance. Steamer was written in LISP on a LISP machine in an attempt to use artificial intelligence . "What... Artificial Intelligence and Speech Technology", Electronic Learning, September 1987. Montague, William. E., code 5, Navy Personnel Research and
A Survey of Computational Intelligence Techniques in Protein Function Prediction
Tiwari, Arvind Kumar; Srivastava, Rajeev
2014-01-01
During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395
Planning and Scheduling of Software Manufacturing Projects
1991-03-01
based on the previous results in social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing...planning and scheduling, and the traditional approaches to planning in artificial intelligence, and extends the techniques that have been developed by them...social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing planning and scheduling, and the
The role of soft computing in intelligent machines.
de Silva, Clarence W
2003-08-15
An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.
Traffic Simulations on Parallel Computers Using Domain Decomposition Techniques
DOT National Transportation Integrated Search
1995-01-01
Large scale simulations of Intelligent Transportation Systems (ITS) can only be acheived by using the computing resources offered by parallel computing architectures. Domain decomposition techniques are proposed which allow the performance of traffic...
Computing Nash equilibria through computational intelligence methods
NASA Astrophysics Data System (ADS)
Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.
2005-03-01
Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.
Hybrid soft computing systems for electromyographic signals analysis: a review.
Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates
2014-02-03
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.
Hybrid soft computing systems for electromyographic signals analysis: a review
2014-01-01
Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979
Intelligent Computer-Aided Instruction for Medical Diagnosis
Clancey, William J.; Shortliffe, Edward H.; Buchanan, Bruce G.
1979-01-01
An intelligent computer-aided instruction (ICAI) program, named GUIDON, has been developed for teaching infectious disease diagnosis.* ICAI programs use artificial intelligence techniques for representing both subject material and teaching strategies. This paper briefly outlines the difference between traditional instructional programs and ICAI. We then illustrate how GUIDON makes contributions in areas important to medical CAI: interacting with the student in a mixed-initiative dialogue (including the problems of feedback and realism), teaching problem-solving strategies, and assembling a computer-based curriculum.
An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study
Maddox, Brian G.; Swadley, Casey L.
2002-01-01
Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.
A Model for Intelligent Computer-Aided Education Systems.
ERIC Educational Resources Information Center
Du Plessis, Johan P.; And Others
1995-01-01
Proposes a model for intelligent computer-aided education systems that is based on cooperative learning, constructive problem-solving, object-oriented programming, interactive user interfaces, and expert system techniques. Future research is discussed, and a prototype for teaching mathematics to 10- to 12-year-old students is appended. (LRW)
Great Computational Intelligence in the Formal Sciences via Analogical Reasoning
2017-05-08
computational harnessing of traditional mathematical statistics (as e.g. covered in Hogg, Craig & McKean 2005) is used to power statistical learning techniques...AFRL-AFOSR-VA-TR-2017-0099 Great Computational Intelligence in the Formal Sciences via Analogical Reasoning Selmer Bringsjord RENSSELAER POLYTECHNIC...08-05-2017 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Oct 2011 to 31 Dec 2016 4. TITLE AND SUBTITLE Great Computational
Investigation of a Neural Network Implementation of a TCP Packet Anomaly Detection System
2004-05-01
reconnatre les nouvelles variantes d’attaque. Les réseaux de neurones artificiels (ANN) ont les capacités d’apprendre à partir de schémas et de...Computational Intelligence Techniques in Intrusion Detection Systems. In IASTED International Conference on Neural Networks and Computational Intelligence , pp...Neural Network Training: Overfitting May be Harder than Expected. In Proceedings of the Fourteenth National Conference on Artificial Intelligence , AAAI-97
ERIC Educational Resources Information Center
Shotsberger, Paul G.
The National Council of Teachers of Mathematics (1991) has identified the use of computers as a necessary teaching tool for enhancing mathematical discourse in schools. One possible vehicle of technological change in mathematics classrooms is the Intelligent Tutoring System (ITS), an artificially intelligent computer-based tutor. This paper…
An Intelligent Computer Assisted Language Learning System for Arabic Learners
ERIC Educational Resources Information Center
Shaalan, Khaled F.
2005-01-01
This paper describes the development of an intelligent computer-assisted language learning (ICALL) system for learning Arabic. This system could be used for learning Arabic by students at primary schools or by learners of Arabic as a second or foreign language. It explores the use of Natural Language Processing (NLP) techniques for learning…
Prediction of Scour below Flip Bucket using Soft Computing Techniques
NASA Astrophysics Data System (ADS)
Azamathulla, H. Md.; Ab Ghani, Aminuddin; Azazi Zakaria, Nor
2010-05-01
The accurate prediction of the depth of scour around hydraulic structure (trajectory spillways) has been based on the experimental studies and the equations developed are mainly empirical in nature. This paper evaluates the performance of the soft computing (intelligence) techiques, Adaptive Neuro-Fuzzy System (ANFIS) and Genetic expression Programming (GEP) approach, in prediction of scour below a flip bucket spillway. The results are very promising, which support the use of these intelligent techniques in prediction of highly non-linear scour parameters.
Mayne, Richard; Adamatzky, Andrew; Jones, Jeff
2015-01-01
The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently 'intelligent' behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton-a ubiquitous cellular protein scaffold whose functions are manifold and essential to life-and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness.
Integrated Artificial Intelligence Approaches for Disease Diagnostics.
Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh
2018-06-01
Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.
Arranging computer architectures to create higher-performance controllers
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
1988-01-01
Techniques for integrating microprocessors, array processors, and other intelligent devices in control systems are reviewed, with an emphasis on the (re)arrangement of components to form distributed or parallel processing systems. Consideration is given to the selection of the host microprocessor, increasing the power and/or memory capacity of the host, multitasking software for the host, array processors to reduce computation time, the allocation of real-time and non-real-time events to different computer subsystems, intelligent devices to share the computational burden for real-time events, and intelligent interfaces to increase communication speeds. The case of a helicopter vibration-suppression and stabilization controller is analyzed as an example, and significant improvements in computation and throughput rates are demonstrated.
ERIC Educational Resources Information Center
Holland, Simon
This paper forms part of a preliminary survey for work on the application of artificial intelligence theories and techniques to the learning of music composition skills. The paper deals with present day applications of computers to the teaching of music and speculations about how artificial intelligence might be used to foster music composition in…
Coupling artificial intelligence and numerical computation for engineering design (Invited paper)
NASA Astrophysics Data System (ADS)
Tong, S. S.
1986-01-01
The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.
"Intelligent" Computer Assisted Instruction (CAI) Applications. Interim Report.
ERIC Educational Resources Information Center
Brown, John Seely; And Others
Interim work is documented describing efforts to modify computer techniques used to recognize and process English language requests to an instructional simulator. The conversion from a hand-coded to a table driven technique are described in detail. Other modifications to a simulation based computer assisted instruction program to allow a gaming…
Simulation of intelligent object behavior in a virtual reality system
NASA Astrophysics Data System (ADS)
Mironov, Sergey F.
1998-01-01
This article presents a technique for computer control of a power boat movement in real-time marine trainers or arcade games. The author developed and successfully implemented a general technique allowing intellectual navigation of computer controlled moving objects that proved to be appropriate for real-time applications. This technique covers significant part of necessary behavioral tasks that appear in such titles. At the same time the technique forms a part of a more general system that involves control of less complicated characters of another nature. The system being an open one can be easily used by an action or arcade programming to improve the overall quality of characters artificial intelligence style.
Training Software in Artificial-Intelligence Computing Techniques
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene
2005-01-01
The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.
Vipsita, Swati; Rath, Santanu Kumar
2015-01-01
Protein superfamily classification deals with the problem of predicting the family membership of newly discovered amino acid sequence. Although many trivial alignment methods are already developed by previous researchers, but the present trend demands the application of computational intelligent techniques. As there is an exponential growth in size of biological database, retrieval and inference of essential knowledge in the biological domain become a very cumbersome task. This problem can be easily handled using intelligent techniques due to their ability of tolerance for imprecision, uncertainty, approximate reasoning, and partial truth. This paper discusses the various global and local features extracted from full length protein sequence which are used for the approximation and generalisation of the classifier. The various parameters used for evaluating the performance of the classifiers are also discussed. Therefore, this review article can show right directions to the present researchers to make an improvement over the existing methods.
Mayne, Richard; Adamatzky, Andrew; Jones, Jeff
2015-01-01
The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently ‘intelligent’ behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton—a ubiquitous cellular protein scaffold whose functions are manifold and essential to life—and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness. PMID:26478782
Breast tumor malignancy modelling using evolutionary neural logic networks.
Tsakonas, Athanasios; Dounias, Georgios; Panagi, Georgia; Panourgias, Evangelia
2006-01-01
The present work proposes a computer assisted methodology for the effective modelling of the diagnostic decision for breast tumor malignancy. The suggested approach is based on innovative hybrid computational intelligence algorithms properly applied in related cytological data contained in past medical records. The experimental data used in this study were gathered in the early 1990s in the University of Wisconsin, based in post diagnostic cytological observations performed by expert medical staff. Data were properly encoded in a computer database and accordingly, various alternative modelling techniques were applied on them, in an attempt to form diagnostic models. Previous methods included standard optimisation techniques, as well as artificial intelligence approaches, in a way that a variety of related publications exists in modern literature on the subject. In this report, a hybrid computational intelligence approach is suggested, which effectively combines modern mathematical logic principles, neural computation and genetic programming in an effective manner. The approach proves promising either in terms of diagnostic accuracy and generalization capabilities, or in terms of comprehensibility and practical importance for the related medical staff.
PRO-Elicere: A Study for Create a New Process of Dependability Analysis of Space Computer Systems
NASA Astrophysics Data System (ADS)
da Silva, Glauco; Netto Lahoz, Carlos Henrique
2013-09-01
This paper presents the new approach to the computer system dependability analysis, called PRO-ELICERE, which introduces data mining concepts and intelligent mechanisms to decision support to analyze the potential hazards and failures of a critical computer system. Also, are presented some techniques and tools that support the traditional dependability analysis and briefly discusses the concept of knowledge discovery and intelligent databases for critical computer systems. After that, introduces the PRO-ELICERE process, an intelligent approach to automate the ELICERE, a process created to extract non-functional requirements for critical computer systems. The PRO-ELICERE can be used in the V&V activities in the projects of Institute of Aeronautics and Space, such as the Brazilian Satellite Launcher (VLS-1).
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
Assessing Mission Impact of Cyberattacks: Report of the NATO IST-128 Workshop
2015-12-01
simulation) perspective. This would be natural, considering that the cybersecurity problem is highly adversarial in nature. Because it involves intelligent ...be formulated as a partial information game; artificial intelligence techniques might help here. Yet another style of problem formulation that...computational information processing for weapons, intelligence , communication, and logistics systems continues to increase the vulnerability of
Computational intelligence techniques in bioinformatics.
Hassanien, Aboul Ella; Al-Shammari, Eiman Tamah; Ghali, Neveen I
2013-12-01
Computational intelligence (CI) is a well-established paradigm with current systems having many of the characteristics of biological computers and capable of performing a variety of tasks that are difficult to do using conventional techniques. It is a methodology involving adaptive mechanisms and/or an ability to learn that facilitate intelligent behavior in complex and changing environments, such that the system is perceived to possess one or more attributes of reason, such as generalization, discovery, association and abstraction. The objective of this article is to present to the CI and bioinformatics research communities some of the state-of-the-art in CI applications to bioinformatics and motivate research in new trend-setting directions. In this article, we present an overview of the CI techniques in bioinformatics. We will show how CI techniques including neural networks, restricted Boltzmann machine, deep belief network, fuzzy logic, rough sets, evolutionary algorithms (EA), genetic algorithms (GA), swarm intelligence, artificial immune systems and support vector machines, could be successfully employed to tackle various problems such as gene expression clustering and classification, protein sequence classification, gene selection, DNA fragment assembly, multiple sequence alignment, and protein function prediction and its structure. We discuss some representative methods to provide inspiring examples to illustrate how CI can be utilized to address these problems and how bioinformatics data can be characterized by CI. Challenges to be addressed and future directions of research are also presented and an extensive bibliography is included. Copyright © 2013 Elsevier Ltd. All rights reserved.
Applications of artificial intelligence to scientific research
NASA Technical Reports Server (NTRS)
Prince, Mary Ellen
1986-01-01
Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.
Computer system performance measurement techniques for ARTS III computer systems.
DOT National Transportation Integrated Search
1973-12-01
Direct measurement of computer systems is of vital importance in: a) developing an intelligent grasp of the variables which affect overall performance; b)tuning the system for optimum benefit; c)determining under what conditions saturation thresholds...
A Microworld Approach to the Formalization of Musical Knowledge.
ERIC Educational Resources Information Center
Honing, Henkjan
1993-01-01
Discusses the importance of applying computational modeling and artificial intelligence techniques to music cognition and computer music research. Recommends three uses of microworlds to trim computational theories to their bare minimum, allowing for better and easier comparison. (CFR)
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
Artificial Intelligence: Applications in Education.
ERIC Educational Resources Information Center
Thorkildsen, Ron J.; And Others
1986-01-01
Artificial intelligence techniques are used in computer programs to search out rapidly and retrieve information from very large databases. Programing advances have also led to the development of systems that provide expert consultation (expert systems). These systems, as applied to education, are the primary emphasis of this article. (LMO)
Seismic activity prediction using computational intelligence techniques in northern Pakistan
NASA Astrophysics Data System (ADS)
Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat
2017-10-01
Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.
Nontrivial, Nonintelligent, Computer-Based Learning.
ERIC Educational Resources Information Center
Bork, Alfred
1987-01-01
This paper describes three interactive computer programs used with personal computers to present science learning modules for all ages. Developed by groups of teachers at the Educational Technology Center at the University of California, Irvine, these instructional materials do not use the techniques of contemporary artificial intelligence. (GDC)
Artificial intelligence techniques used in respiratory sound analysis--a systematic review.
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian
2014-02-01
Artificial intelligence (AI) has recently been established as an alternative method to many conventional methods. The implementation of AI techniques for respiratory sound analysis can assist medical professionals in the diagnosis of lung pathologies. This article highlights the importance of AI techniques in the implementation of computer-based respiratory sound analysis. Articles on computer-based respiratory sound analysis using AI techniques were identified by searches conducted on various electronic resources, such as the IEEE, Springer, Elsevier, PubMed, and ACM digital library databases. Brief descriptions of the types of respiratory sounds and their respective characteristics are provided. We then analyzed each of the previous studies to determine the specific respiratory sounds/pathology analyzed, the number of subjects, the signal processing method used, the AI techniques used, and the performance of the AI technique used in the analysis of respiratory sounds. A detailed description of each of these studies is provided. In conclusion, this article provides recommendations for further advancements in respiratory sound analysis.
A Computational Intelligence (CI) Approach to the Precision Mars Lander Problem
NASA Technical Reports Server (NTRS)
Birge, Brian; Walberg, Gerald
2002-01-01
A Mars precision landing requires a landed footprint of no more than 100 meters. Obstacles to reducing the landed footprint include trajectory dispersions due to initial atmospheric entry conditions such as entry angle, parachute deployment height, environment parameters such as wind, atmospheric density, parachute deployment dynamics, unavoidable injection error or propagated error from launch, etc. Computational Intelligence (CI) techniques such as Artificial Neural Nets and Particle Swarm Optimization have been shown to have great success with other control problems. The research period extended previous work on investigating applicability of the computational intelligent approaches. The focus of this investigation was on Particle Swarm Optimization and basic Neural Net architectures. The research investigating these issues was performed for the grant cycle from 5/15/01 to 5/15/02. Matlab 5.1 and 6.0 along with NASA's POST were the primary computational tools.
Efficient computational methods to study new and innovative signal detection techniques in SETI
NASA Technical Reports Server (NTRS)
Deans, Stanley R.
1991-01-01
The purpose of the research reported here is to provide a rapid computational method for computing various statistical parameters associated with overlapped Hann spectra. These results are important for the Targeted Search part of the Search for ExtraTerrestrial Intelligence (SETI) Microwave Observing Project.
Evolutionary and biological metaphors for engineering design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakiela, M.
1994-12-31
Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.
Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013
Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.
A novel modification of the Turing test for artificial intelligence and robotics in healthcare.
Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos
2015-03-01
The increasing demands of delivering higher quality global healthcare has resulted in a corresponding expansion in the development of computer-based and robotic healthcare tools that rely on artificially intelligent technologies. The Turing test was designed to assess artificial intelligence (AI) in computer technology. It remains an important qualitative tool for testing the next generation of medical diagnostics and medical robotics. Development of quantifiable diagnostic accuracy meta-analytical evaluative techniques for the Turing test paradigm. Modification of the Turing test to offer quantifiable diagnostic precision and statistical effect-size robustness in the assessment of AI for computer-based and robotic healthcare technologies. Modification of the Turing test to offer robust diagnostic scores for AI can contribute to enhancing and refining the next generation of digital diagnostic technologies and healthcare robotics. Copyright © 2014 John Wiley & Sons, Ltd.
PILOT-SPION: A Computer Game for German Students.
ERIC Educational Resources Information Center
Sanders, Ruth H.
1984-01-01
Describes a computer game designed for students of German, which uses techniques of artificial intelligence to create a model of language understanding by computer in an adventure game set in Berlin. In addition to providing a concrete means for testing students' language understanding, the game is a useful, highly motivating, learning mode. (SL)
A review on economic emission dispatch problems using quantum computational intelligence
NASA Astrophysics Data System (ADS)
Mahdi, Fahad Parvez; Vasant, Pandian; Kallimani, Vish; Abdullah-Al-Wadud, M.
2016-11-01
Economic emission dispatch (EED) problems are one of the most crucial problems in power systems. Growing energy demand, limitation of natural resources and global warming make this topic into the center of discussion and research. This paper reviews the use of Quantum Computational Intelligence (QCI) in solving Economic Emission Dispatch problems. QCI techniques like Quantum Genetic Algorithm (QGA) and Quantum Particle Swarm Optimization (QPSO) algorithm are discussed here. This paper will encourage the researcher to use more QCI based algorithm to get better optimal result for solving EED problems.
Automated Explanation for Educational Applications.
ERIC Educational Resources Information Center
Suthers, Daniel D.
1991-01-01
Artificial intelligence techniques available for generating explanations for teaching purposes are surveyed, and the way in which they are combined in a computer program that provides explanations is described. The program responds to questions in the physical sciences. Potential contributions of this technology to computer-based education are…
Abstracts of Research, July 1973 through June 1974.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Computer and Information Science Research Center.
Abstracts of research papers in the fields of computer and information science are given; 72 papers are abstracted in the areas of information storage and retrieval, information processing, linguistic analysis, artificial intelligence, mathematical techniques, systems programing, and computer networks. In addition, the Ohio State University…
ERIC Educational Resources Information Center
Sayre, Scott Alan
The ultimate goal of the science of artificial intelligence (AI) is to establish programs that will use algorithmic computer techniques to imitate the heuristic thought processes of humans. Most AI programs, especially expert systems, organize their knowledge into three specific areas: data storage, a rule set, and a control structure. Limitations…
A Simulation of AI Programming Techniques in BASIC.
ERIC Educational Resources Information Center
Mandell, Alan
1986-01-01
Explains the functions of and the techniques employed in expert systems. Offers the program "The Periodic Table Expert," as a model for using artificial intelligence techniques in BASIC. Includes the program listing and directions for its use on: Tandy 1000, 1200, and 2000; IBM PC; PC Jr; TRS-80; and Apple computers. (ML)
Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara
2017-01-01
Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.
NASA Technical Reports Server (NTRS)
Savely, Robert T.; Loftin, R. Bowen
1990-01-01
Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.
The application of artificial intelligence techniques to large distributed networks
NASA Technical Reports Server (NTRS)
Dubyah, R.; Smith, T. R.; Star, J. L.
1985-01-01
Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.
Computational Intelligence Techniques for Tactile Sensing Systems
Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo
2014-01-01
Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646
Computational intelligence techniques for tactile sensing systems.
Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo
2014-06-19
Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.
Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula
NASA Astrophysics Data System (ADS)
Güereque, M.; Pennington, D. D.; Pierce, S. A.
2017-12-01
High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.
Artificial Intelligence and Virology - quo vadis
Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T.
2017-01-01
Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology. PMID:29379259
Programming model for distributed intelligent systems
NASA Technical Reports Server (NTRS)
Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.
1988-01-01
A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.
Artificial Intelligence and Virology - quo vadis.
Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T
2017-01-01
Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology.
DOT National Transportation Integrated Search
2014-04-01
Risk management techniques are used to analyze fluctuations in uncontrollable variables and keep those fluctuations from impeding : the core function of a system or business. Examples of this are making sure that volatility in copper and aluminum pri...
Modeling User Behavior in Computer Learning Tasks.
ERIC Educational Resources Information Center
Mantei, Marilyn M.
Model building techniques from Artifical Intelligence and Information-Processing Psychology are applied to human-computer interface tasks to evaluate existing interfaces and suggest new and better ones. The model is in the form of an augmented transition network (ATN) grammar which is built by applying grammar induction heuristics on a sequential…
Artificial Intelligence and the Education of the Learning Disabled.
ERIC Educational Resources Information Center
Halpern, Noemi
1984-01-01
Computer logic is advised for teaching learning disabled children because the computer reduces complicated problems to series of subproblems, then combines solutions of subproblems to solve the initial problem. Seven examples for using the technique are given, including solving verbal math problems. Encourages teachers to learn computer…
A new modelling approach for zooplankton behaviour
NASA Astrophysics Data System (ADS)
Keiyu, A. Y.; Yamazaki, H.; Strickler, J. R.
We have developed a new simulation technique to model zooplankton behaviour. The approach utilizes neither the conventional artificial intelligence nor neural network methods. We have designed an adaptive behaviour network, which is similar to BEER [(1990) Intelligence as an adaptive behaviour: an experiment in computational neuroethology, Academic Press], based on observational studies of zooplankton behaviour. The proposed method is compared with non- "intelligent" models—random walk and correlated walk models—as well as observed behaviour in a laboratory tank. Although the network is simple, the model exhibits rich behavioural patterns similar to live copepods.
Mihailidis, Alex; Carmichael, Brent; Boger, Jennifer
2004-09-01
This paper discusses the use of computer vision in pervasive healthcare systems, specifically in the design of a sensing agent for an intelligent environment that assists older adults with dementia during an activity of daily living. An overview of the techniques applied in this particular example is provided, along with results from preliminary trials completed using the new sensing agent. A discussion of the results obtained to date is presented, including technical and social issues that remain for the advancement and acceptance of this type of technology within pervasive healthcare.
Constraint-based component-modeling for knowledge-based design
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1992-01-01
The paper describes the application of various advanced programming techniques derived from artificial intelligence research to the development of flexible design tools for conceptual design. Special attention is given to two techniques which appear to be readily applicable to such design tools: the constraint propagation technique and the object-oriented programming. The implementation of these techniques in a prototype computer tool, Rubber Airplane, is described.
Intelligent robot trends and predictions for the new millennium
NASA Astrophysics Data System (ADS)
Hall, Ernest L.; Mundhenk, Terrell N.
1999-08-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor but little funding. In factory automation such robotics machines can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. In honor of the new millennium, this paper will present a discussion of futuristic trends and predictions. However, in keeping with technical tradition, a new technique for 'Follow the Leader' will also be presented in the hope of it becoming a new, useful and non-obvious technique.
Deep into the Brain: Artificial Intelligence in Stroke Imaging
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-01-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives. PMID:29037014
Deep into the Brain: Artificial Intelligence in Stroke Imaging.
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-09-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.
An efficient representation of spatial information for expert reasoning in robotic vehicles
NASA Technical Reports Server (NTRS)
Scott, Steven; Interrante, Mark
1987-01-01
The previous generation of robotic vehicles and drones was designed for a specific task, with limited flexibility in executing their mission. This limited flexibility arises because the robotic vehicles do not possess the intelligence and knowledge upon which to make significant tactical decisions. Current development of robotic vehicles is toward increased intelligence and capabilities, adapting to a changing environment and altering mission objectives. The latest techniques in artificial intelligence (AI) are being employed to increase the robotic vehicle's intelligent decision-making capabilities. This document describes the design of the SARA spatial database tool, which is composed of request parser, reasoning, computations, and database modules that collectively manage and derive information useful for robotic vehicles.
Integrated Speech and Language Technology for Intelligence, Surveillance, and Reconnaissance (ISR)
2017-07-01
applying submodularity techniques to address computing challenges posed by large datasets in speech and language processing. MT and speech tools were...aforementioned research-oriented activities, the IT system administration team provided necessary support to laboratory computing and network operations...operations of SCREAM Lab computer systems and networks. Other miscellaneous activities in relation to Task Order 29 are presented in an additional fourth
An Initial Look at Alternative Computing Technologies for the Intelligence Community
2014-01-01
Recommendation (N-1): Guide hardware development with lessons from machine learning and neuroscience . Neuro-inspired computing suffers from a lack...not new to either the government or industry. We have described Google’s approach. The government—most notably The National Security Agency ( NSA ) and...increasing accumulation of knowledge in neuroscience and bio-molecular methods, new computational techniques may become available in the near future
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem
Akutsah, Francis; Olusanya, Micheal O.; Adewumi, Aderemi O.
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems. PMID:29554662
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.
Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.
Intelligence and cortical thickness in children with complex partial seizures.
Tosun, Duygu; Caplan, Rochelle; Siddarth, Prabha; Seidenberg, Michael; Gurbani, Suresh; Toga, Arthur W; Hermann, Bruce
2011-07-15
Prior studies on healthy children have demonstrated regional variations and a complex and dynamic relationship between intelligence and cerebral tissue. Yet, there is little information regarding the neuroanatomical correlates of general intelligence in children with epilepsy compared to healthy controls. In vivo imaging techniques, combined with methods for advanced image processing and analysis, offer the potential to examine quantitative mapping of brain development and its abnormalities in childhood epilepsy. A surface-based, computational high resolution 3-D magnetic resonance image analytic technique was used to compare the relationship of cortical thickness with age and intelligence quotient (IQ) in 65 children and adolescents with complex partial seizures (CPS) and 58 healthy controls, aged 6-18 years. Children were grouped according to health status (epilepsy; controls) and IQ level (average and above; below average) and compared on age-related patterns of cortical thickness. Our cross-sectional findings suggest that disruption in normal age-related cortical thickness expression is associated with intelligence in pediatric CPS patients both with average and below average IQ scores. Copyright © 2011 Elsevier Inc. All rights reserved.
The computer integrated documentation project: A merge of hypermedia and AI techniques
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Boy, Guy
1993-01-01
To generate intelligent indexing that allows context-sensitive information retrieval, a system must be able to acquire knowledge directly through interaction with users. In this paper, we present the architecture for CID (Computer Integrated Documentation). CID is a system that enables integration of various technical documents in a hypertext framework and includes an intelligent browsing system that incorporates indexing in context. CID's knowledge-based indexing mechanism allows case based knowledge acquisition by experimentation. It utilizes on-line user information requirements and suggestions either to reinforce current indexing in case of success or to generate new knowledge in case of failure. This allows CID's intelligent interface system to provide helpful responses, based on previous experience (user feedback). We describe CID's current capabilities and provide an overview of our plans for extending the system.
Progress on Intelligent Guidance and Control for Wind Shear Encounter
NASA Technical Reports Server (NTRS)
Stratton, D. Alexander
1990-01-01
Low altitude wind shear poses a serious threat to air safety. Avoiding severe wind shear challenges the ability of flight crews, as it involves assessing risk from uncertain evidence. A computerized intelligent cockpit aid can increase flight crew awareness of wind shear, improving avoidance decisions. The primary functions of a cockpit advisory expert system for wind shear avoidance are discussed. Also introduced are computational techniques being implemented to enable these primary functions.
Adaptive Fuzzy Systems in Computational Intelligence
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.
An Intelligent Computer-Based System for Sign Language Tutoring
ERIC Educational Resources Information Center
Ritchings, Tim; Khadragi, Ahmed; Saeb, Magdy
2012-01-01
A computer-based system for sign language tutoring has been developed using a low-cost data glove and a software application that processes the movement signals for signs in real-time and uses Pattern Matching techniques to decide if a trainee has closely replicated a teacher's recorded movements. The data glove provides 17 movement signals from…
Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor
2012-01-01
A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371
A systematic mapping study of process mining
NASA Astrophysics Data System (ADS)
Maita, Ana Rocío Cárdenas; Martins, Lucas Corrêa; López Paz, Carlos Ramón; Rafferty, Laura; Hung, Patrick C. K.; Peres, Sarajane Marques; Fantinato, Marcelo
2018-05-01
This study systematically assesses the process mining scenario from 2005 to 2014. The analysis of 705 papers evidenced 'discovery' (71%) as the main type of process mining addressed and 'categorical prediction' (25%) as the main mining task solved. The most applied traditional technique is the 'graph structure-based' ones (38%). Specifically concerning computational intelligence and machine learning techniques, we concluded that little relevance has been given to them. The most applied are 'evolutionary computation' (9%) and 'decision tree' (6%), respectively. Process mining challenges, such as balancing among robustness, simplicity, accuracy and generalization, could benefit from a larger use of such techniques.
Intelligent computer-aided training authoring environment
NASA Technical Reports Server (NTRS)
Way, Robert D.
1994-01-01
Although there has been much research into intelligent tutoring systems (ITS), there are few authoring systems available that support ITS metaphors. Instructional developers are generally obliged to use tools designed for creating on-line books. We are currently developing an authoring environment derived from NASA's research on intelligent computer-aided training (ICAT). The ICAT metaphor, currently in use at NASA has proven effective in disciplines from satellite deployment to high school physics. This technique provides a personal trainer (PT) who instructs the student using a simulated work environment (SWE). The PT acts as a tutor, providing individualized instruction and assistance to each student. Teaching in an SWE allows the student to learn tasks by doing them, rather than by reading about them. This authoring environment will expedite ICAT development by providing a tool set that guides the trainer modeling process. Additionally, this environment provides a vehicle for distributing NASA's ICAT technology to the private sector.
A supportive architecture for CFD-based design optimisation
NASA Astrophysics Data System (ADS)
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture and developed algorithms have performed successfully and efficiently in dealing with the design optimisation with over 200 design variables.
Artificial Intelligence and Information Management
NASA Astrophysics Data System (ADS)
Fukumura, Teruo
After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.
Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers
NASA Astrophysics Data System (ADS)
Kapoor, Neha; Ohri, Jyoti
2017-02-01
Inspite of so much research, key technical problem, naming chattering of conventional, simple and robust SMC is still a challenge to the researchers and hence limits its practical application. However, newly developed soft computing based techniques can provide solution. In order to have advantages of conventional and heuristic soft computing based control techniques, in this paper various commonly used intelligent techniques, neural network, fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) have been combined with sliding mode controller (SMC). For validation, proposed hybrid control schemes have been implemented for tracking a predefined trajectory by robotic manipulator, incorporating structured and unstructured uncertainties in the system. After reviewing numerous papers, all the commonly occurring uncertainties like continuous disturbance, uniform random white noise, static friction like coulomb friction and viscous friction, dynamic friction like Dhal friction and LuGre friction have been inserted in the system. Various performance indices like norm of tracking error, chattering in control input, norm of input torque, disturbance rejection, chattering rejection have been used. Comparative results show that with almost eliminated chattering the intelligent SMC controllers are found to be more efficient over simple SMC. It has also been observed from results that ANFIS based controller has the best tracking performance with the reduced burden on the system. No paper in the literature has found to have all these structured and unstructured uncertainties together for motion control of robotic manipulator.
Practical advantages of evolutionary computation
NASA Astrophysics Data System (ADS)
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
Chen, Yi; Huang, Weina; Peng, Bei
2014-01-01
Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.
Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.
Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu
2017-05-23
This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.
Abstracts of Research. July 1974-June 1975.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Computer and Information Science Research Center.
Abstracts of research papers in computer and information science are given for 68 papers in the areas of information storage and retrieval; human information processing; information analysis; linguistic analysis; artificial intelligence; information processes in physical, biological, and social systems; mathematical techniques; systems…
1991-06-01
Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent
Artificial intelligence - New tools for aerospace project managers
NASA Technical Reports Server (NTRS)
Moja, D. C.
1985-01-01
Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.
Granular computing with multiple granular layers for brain big data processing.
Wang, Guoyin; Xu, Ji
2014-12-01
Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.
A review of intelligent systems for heart sound signal analysis.
Nabih-Ali, Mohammed; El-Dahshan, El-Sayed A; Yahia, Ashraf S
2017-10-01
Intelligent computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. CAD systems could provide physicians with a suggestion about the diagnostic of heart diseases. The objective of this paper is to review the recent published preprocessing, feature extraction and classification techniques and their state of the art of phonocardiogram (PCG) signal analysis. Published literature reviewed in this paper shows the potential of machine learning techniques as a design tool in PCG CAD systems and reveals that the CAD systems for PCG signal analysis are still an open problem. Related studies are compared to their datasets, feature extraction techniques and the classifiers they used. Current achievements and limitations in developing CAD systems for PCG signal analysis using machine learning techniques are presented and discussed. In the light of this review, a number of future research directions for PCG signal analysis are provided.
The report discusses an EPA investigation of techniques to improve methods for estimating volatile organic compound (VOC) emissions from area sources. Using the automobile refinishing industry for a detailed area source case study, an emission estimation method is being developed...
Selecting Appropriate Functionality and Technologies for EPSS.
ERIC Educational Resources Information Center
McGraw, Karen L.
1995-01-01
Presents background information that describes the major components of an embedded performance support system, compares levels of functionality, and discusses some of the required technologies. Highlights include the human-computer interface; online help; advisors; training and tutoring; hypermedia; and artificial intelligence techniques. (LRW)
Machine Translation in Post-Contemporary Era
ERIC Educational Resources Information Center
Lin, Grace Hui Chin
2010-01-01
This article focusing on translating techniques via personal computer or laptop reports updated artificial intelligence progresses before 2010. Based on interpretations and information for field of MT [Machine Translation] by Yorick Wilks' book, "Machine Translation, Its scope and limits," this paper displays understandable theoretical frameworks…
NASA Astrophysics Data System (ADS)
Ibrahim, Wael Refaat Anis
The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an alarm is instigated predicting the advent of system abnormal operation. The incoming data could be compared to previous trends as well as matched to trends developed through computer simulations and stored using fuzzy learning.
Fuzzy logic, neural networks, and soft computing
NASA Technical Reports Server (NTRS)
Zadeh, Lofti A.
1994-01-01
The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial intelligence. In the years ahead, this may well become a widely held position.
Development of an Intelligent Videogrammetric Wind Tunnel Measurement System
NASA Technical Reports Server (NTRS)
Graves, Sharon S.; Burner, Alpheus W.
2004-01-01
A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models. These include high-speed research and transport models tested over a wide range of aerodynamic conditions including subsonic, transonic, and supersonic regimes. The technique, based on digital photogrammetry, has been used to measure model attitude, deformation, and sting bending. In addition, the technique has been used to study model injection rate effects and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models. An effort is currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in large production wind tunnels while providing accurate data in a robust and timely manner. Designed to encode a higher degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that was used in a recent test at a large transonic wind tunnel.
Visualization of suspicious lesions in breast MRI based on intelligent neural systems
NASA Astrophysics Data System (ADS)
Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke
2006-05-01
Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.
Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro
2016-01-01
The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.
Gestal, Marcos; Munteanu, Cristian R.; Dorado, Julian; Pazos, Alejandro
2016-01-01
The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable. PMID:27920952
Intelligent computer-aided training and tutoring
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Savely, Robert T.
1991-01-01
Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed.
ISMB Conference Funding to Support Attendance of Early Researchers and Students
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaasterland, Terry
ISMB Conference Funding for Students and Young Scientists Historical Description The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 22 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on “intelligent systems” and actual biological data makes ISMB a unique and highly important meeting.more » 21 years of experience in holding the conference has resulted in a consistently well-organized, well attended, and highly respected annual conference. "Intelligent systems" include any software which goes beyond straightforward, closed-form algorithms or standard database technologies, and encompasses those that view data in a symbolic fashion, learn from examples, consolidate multiple levels of abstraction, or synthesize results to be cognitively tractable to a human, including the development and application of advanced computational methods for biological problems. Relevant computational techniques include, but are not limited to: machine learning, pattern recognition, knowledge representation, databases, combinatorics, stochastic modeling, string and graph algorithms, linguistic methods, robotics, constraint satisfaction, and parallel computation. Biological areas of interest include molecular structure, genomics, molecular sequence analysis, evolution and phylogenetics, molecular interactions, metabolic pathways, regulatory networks, developmental control, and molecular biology generally. Emphasis is placed on the validation of methods using real data sets, on practical applications in the biological sciences, and on development of novel computational techniques. The ISMB conferences are distinguished from many other conferences in computational biology or artificial intelligence by an insistence that the researchers work with real molecular biology data, not theoretical or toy examples; and from many other biological conferences by providing a forum for technical advances as they occur, which otherwise may be shunned until a firm experimental result is published. The resulting intellectual richness and cross-disciplinary diversity provides an important opportunity for both students and senior researchers. ISMB has become the premier conference series in this field with refereed, published proceedings, establishing an infrastructure to promote the growing body of research.« less
Knowledge Representation: A Brief Review.
ERIC Educational Resources Information Center
Vickery, B. C.
1986-01-01
Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…
Chen, Yi; Huang, Weina; Peng, Bei
2014-01-01
Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761
Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Margari, Niki; Kyrgiou, Maria; Spathis, Aris; Pappas, Asimakis; Panayiotides, Ioannis; Paraskevaidis, Evangelos A; Karakitsos, Petros; Koutsouris, Dimitrios-Dionyssios
2014-01-01
Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions.
Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Margari, Niki; Kyrgiou, Maria; Spathis, Aris; Pappas, Asimakis; Panayiotides, Ioannis; Paraskevaidis, Evangelos A.; Karakitsos, Petros; Koutsouris, Dimitrios-Dionyssios
2014-01-01
Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions. PMID:24812614
The Evolution of Instructional Design Principles for Intelligent Computer-Assisted Instruction.
ERIC Educational Resources Information Center
Dede, Christopher; Swigger, Kathleen
1988-01-01
Discusses and compares the design and development of computer assisted instruction (CAI) and intelligent computer assisted instruction (ICAI). Topics discussed include instructional systems design (ISD), artificial intelligence, authoring languages, intelligent tutoring systems (ITS), qualitative models, and emerging issues in instructional…
Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)
NASA Technical Reports Server (NTRS)
Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.
1992-01-01
A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.
An advanced artificial intelligence tool for menu design.
Khan, Abdus Salam; Hoffmann, Achim
2003-01-01
The computer-assisted menu design still remains a difficult task. Usually knowledge that aids in menu design by a computer is hard-coded and because of that a computerised menu planner cannot handle the menu design problem for an unanticipated client. To address this problem we developed a menu design tool, MIKAS (menu construction using incremental knowledge acquisition system), an artificial intelligence system that allows the incremental development of a knowledge-base for menu design. We allow an incremental knowledge acquisition process in which the expert is only required to provide hints to the system in the context of actual problem instances during menu design using menus stored in a so-called Case Base. Our system incorporates Case-Based Reasoning (CBR), an Artificial Intelligence (AI) technique developed to mimic human problem solving behaviour. Ripple Down Rules (RDR) are a proven technique for the acquisition of classification knowledge from expert directly while they are using the system, which complement CBR in a very fruitful way. This combination allows the incremental improvement of the menu design system while it is already in routine use. We believe MIKAS allows better dietary practice by leveraging a dietitian's skills and expertise. As such MIKAS has the potential to be helpful for any institution where dietary advice is practised.
Applications of artificial intelligence to mission planning
NASA Technical Reports Server (NTRS)
Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.
1990-01-01
The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.
NASA Astrophysics Data System (ADS)
Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.
2014-10-01
Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.
Trends in Human-Computer Interaction to Support Future Intelligence Analysis Capabilities
2011-06-01
that allows data to be moved between different computing systems and displays. Figure 4- G-Speak gesture interaction (Oblong, 2011) 5.2 Multitouch ... Multitouch refers to a touchscreen interaction technique in which multiple simultaneous touchpoints and movements can be detected and used to...much of the style of interaction (such as rotate, pinch, zoom and flick movements) found in multitouch devices but can typically recognize more than
Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.
2009-04-01
Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.
NASA Astrophysics Data System (ADS)
Bow, Sing T.; Wang, Xia-Fang
1989-05-01
In this paper the concepts of pattern recognition, image processing and artificial intelligence are applied to the development of an intelligent cytoscreening system to differentiate the abnormal cytological objects from the normal ones in vaginal smears. To achieve this goal,work listed below are involved: 1. Enhancement of the microscopic images of the smears; 2. Elevation of the qualitative differentiation under the microscope by cytologists to a quantitative differentiation plateau on the epithelial cells, ciliated cells, vacuolated cells, foreign-body-giant cells, plasma cells, lymph cells, white blood cells, red blood cells, etc. These knowledges are to be inputted into our intelligent cyto-screening system to ameliorate machine differentiation; 3. Selection of a set of effective features to characterize the cytological objects onto various regions of the multiclustered by computer algorithms; and 4. Systematical summarization of the knowledge that a gynecologist has and the way he/she follows when dealing with a case.
The role of networks and artificial intelligence in nanotechnology design and analysis.
Hudson, D L; Cohen, M E
2004-05-01
Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.
Survey of 25 years of observations with the aim of detecting intelligent extraterrestrial beings
NASA Astrophysics Data System (ADS)
Vallee, J. P.
1985-02-01
Observational programs intended to detect the presence of intelligent extraterrestrial life or to locate stars with potentially life-supporting planets are surveyed for the period 1960-1985. The astrometric, spectroscopic, photometric, and linear-polarimetric techniques employed are explained; the 45 programs undertaken are listed in tables; a typical observation at Algonquin Radioastronomy Observatory is described; theoretical computations of the number of life-supporting planets are summarized; and hypotheses advanced to explain the fact that no contact appears to have been made are discussed.
Computer vision in roadway transportation systems: a survey
NASA Astrophysics Data System (ADS)
Loce, Robert P.; Bernal, Edgar A.; Wu, Wencheng; Bala, Raja
2013-10-01
There is a worldwide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This paper presents a survey of computer vision techniques related to three key problems in the transportation domain: safety, efficiency, and security and law enforcement. A broad review of the literature is complemented by detailed treatment of a few selected algorithms and systems that the authors believe represent the state-of-the-art.
An Automated Approach to Instructional Design Guidance.
ERIC Educational Resources Information Center
Spector, J. Michael; And Others
This paper describes the Guided Approach to Instructional Design Advising (GAIDA), an automated instructional design tool that incorporates techniques of artificial intelligence. GAIDA was developed by the U.S. Air Force Armstrong Laboratory to facilitate the planning and production of interactive courseware and computer-based training materials.…
Emerging Approach of Natural Language Processing in Opinion Mining: A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
Natural language processing (NLP) is a subfield of artificial intelligence and computational linguistics. It studies the problems of automated generation and understanding of natural human languages. This paper outlines a framework to use computer and natural language techniques for various levels of learners to learn foreign languages in Computer-based Learning environment. We propose some ideas for using the computer as a practical tool for learning foreign language where the most of courseware is generated automatically. We then describe how to build Computer Based Learning tools, discuss its effectiveness, and conclude with some possibilities using on-line resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semrau, P.
The purpose of this study was to analyze selected cognitive theories in the areas of artificial intelligence (A.I.) and psychology to determine the role of emotions in the cognitive or intellectual processes. Understanding the relationship of emotions to processes of intelligence has implications for constructing theories of aesthetic response and A.I. systems in art. Psychological theories were examined that demonstrated the changing nature of the research in emotion related to cognition. The basic techniques in A.I. were reviewed and the A.I. research was analyzed to determine the process of cognition and the role of emotion. The A.I. research emphasized themore » digital, quantifiable character of the computer and associated cognitive models and programs. In conclusion, the cognitive-emotive research in psychology and the cognitive research in A.I. emphasized quantification methods over analog and qualitative characteristics required for a holistic explanation of cognition. Further A.I. research needs to examine the qualitative aspects of values, attitudes, and beliefs on influencing the creative thinking processes. Inclusion of research related to qualitative problem solving in art provides a more comprehensive base of study for examining the area of intelligence in computers.« less
2018-01-01
This paper measures the adhesion/cohesion force among asphalt molecules at nanoscale level using an Atomic Force Microscopy (AFM) and models the moisture damage by applying state-of-the-art Computational Intelligence (CI) techniques (e.g., artificial neural network (ANN), support vector regression (SVR), and an Adaptive Neuro Fuzzy Inference System (ANFIS)). Various combinations of lime and chemicals as well as dry and wet environments are used to produce different asphalt samples. The parameters that were varied to generate different asphalt samples and measure the corresponding adhesion/cohesion forces are percentage of antistripping agents (e.g., Lime and Unichem), AFM tips K values, and AFM tip types. The CI methods are trained to model the adhesion/cohesion forces given the variation in values of the above parameters. To achieve enhanced performance, the statistical methods such as average, weighted average, and regression of the outputs generated by the CI techniques are used. The experimental results show that, of the three individual CI methods, ANN can model moisture damage to lime- and chemically modified asphalt better than the other two CI techniques for both wet and dry conditions. Moreover, the ensemble of CI along with statistical measurement provides better accuracy than any of the individual CI techniques. PMID:29849551
Solving Fractional Programming Problems based on Swarm Intelligence
NASA Astrophysics Data System (ADS)
Raouf, Osama Abdel; Hezam, Ibrahim M.
2014-04-01
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
NASA Astrophysics Data System (ADS)
Bell, Peter M.
Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Kavi, Srinu
1984-01-01
This Working Paper Series entry presents a detailed survey of knowledge based systems. After being in a relatively dormant state for many years, only recently is Artificial Intelligence (AI) - that branch of computer science that attempts to have machines emulate intelligent behavior - accomplishing practical results. Most of these results can be attributed to the design and use of Knowledge-Based Systems, KBSs (or ecpert systems) - problem solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. These systems can act as a consultant for various requirements like medical diagnosis, military threat analysis, project risk assessment, etc. These systems possess knowledge to enable them to make intelligent desisions. They are, however, not meant to replace the human specialists in any particular domain. A critical survey of recent work in interactive KBSs is reported. A case study (MYCIN) of a KBS, a list of existing KBSs, and an introduction to the Japanese Fifth Generation Computer Project are provided as appendices. Finally, an extensive set of KBS-related references is provided at the end of the report.
Contemporary cybernetics and its facets of cognitive informatics and computational intelligence.
Wang, Yingxu; Kinsner, Witold; Zhang, Du
2009-08-01
This paper explores the architecture, theoretical foundations, and paradigms of contemporary cybernetics from perspectives of cognitive informatics (CI) and computational intelligence. The modern domain and the hierarchical behavioral model of cybernetics are elaborated at the imperative, autonomic, and cognitive layers. The CI facet of cybernetics is presented, which explains how the brain may be mimicked in cybernetics via CI and neural informatics. The computational intelligence facet is described with a generic intelligence model of cybernetics. The compatibility between natural and cybernetic intelligence is analyzed. A coherent framework of contemporary cybernetics is presented toward the development of transdisciplinary theories and applications in cybernetics, CI, and computational intelligence.
The Teaching and Learning Environment SAIDA: Some Features and Lessons.
ERIC Educational Resources Information Center
Grandbastien, Monique; Morinet-Lambert, Josette
Written in ADA language, SAIDA, a Help System for Data Implementation, is an experimental teaching and learning environment which uses artificial intelligence techniques to teach a computer science course on abstract data representations. The application domain is teaching advanced programming concepts which have not received much attention from…
Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique
ERIC Educational Resources Information Center
Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao
2014-01-01
During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…
An Intelligent CAI Monitor and Generative Tutor. Interim Report.
ERIC Educational Resources Information Center
Koffman, Elliot B.; And Others
Design techniques for generative computer-assisted-instructional (CAI) systems are described in this report. These are systems capable of generating problems for students and of deriving and monitoring solutions; problem difficulty, instructional pace, and depth of monitoring are all individually tailored and parts of the solution algorithms can…
Automatic Summary Assessment for Intelligent Tutoring Systems
ERIC Educational Resources Information Center
He, Yulan; Hui, Siu Cheung; Quan, Tho Thanh
2009-01-01
Summary writing is an important part of many English Language Examinations. As grading students' summary writings is a very time-consuming task, computer-assisted assessment will help teachers carry out the grading more effectively. Several techniques such as latent semantic analysis (LSA), n-gram co-occurrence and BLEU have been proposed to…
Pedagogical Strategies for Human and Computer Tutoring.
ERIC Educational Resources Information Center
Reiser, Brian J.
The pedagogical strategies of human tutors in problem solving domains are described and the possibility of incorporating these techniques into computerized tutors is examined. GIL (Graphical Instruction in LISP), an intelligent tutoring system for LISP programming, is compared to human tutors teaching the same material in order to identify how the…
An Intelligent Semantic E-Learning Framework Using Context-Aware Semantic Web Technologies
ERIC Educational Resources Information Center
Huang, Weihong; Webster, David; Wood, Dawn; Ishaya, Tanko
2006-01-01
Recent developments of e-learning specifications such as Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Learning Design and other pedagogy research in semantic e-learning have shown a trend of applying innovative computational techniques, especially Semantic Web technologies, to promote existing content-focused…
Artificial intelligence support for scientific model-building
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1992-01-01
Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.
Intelligent supercomputers: the Japanese computer sputnik
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, G.
1983-11-01
Japan's government-supported fifth-generation computer project has had a pronounced effect on the American computer and information systems industry. The US firms are intensifying their research on and production of intelligent supercomputers, a combination of computer architecture and artificial intelligence software programs. While the present generation of computers is built for the processing of numbers, the new supercomputers will be designed specifically for the solution of symbolic problems and the use of artificial intelligence software. This article discusses new and exciting developments that will increase computer capabilities in the 1990s. 4 references.
Intelligent Computer-Assisted Language Learning.
ERIC Educational Resources Information Center
Harrington, Michael
1996-01-01
Introduces the field of intelligent computer assisted language learning (ICALL) and relates them to current practice in computer assisted language learning (CALL) and second language learning. Points out that ICALL applies expertise from artificial intelligence and the computer and cognitive sciences to the development of language learning…
A Boltzmann machine for the organization of intelligent machines
NASA Technical Reports Server (NTRS)
Moed, Michael C.; Saridis, George N.
1989-01-01
In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved to converge to the minimum of a cost function. Finally, simulations will show the effectiveness of a variety of search techniques for the intelligent machine.
Vision Guided Intelligent Robot Design And Experiments
NASA Astrophysics Data System (ADS)
Slutzky, G. D.; Hall, E. L.
1988-02-01
The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.
An intelligent interactive simulator of clinical reasoning in general surgery.
Wang, S.; el Ayeb, B.; Echavé, V.; Preiss, B.
1993-01-01
We introduce an interactive computer environment for teaching in general surgery and for diagnostic assistance. The environment consists of a knowledge-based system coupled with an intelligent interface that allows users to acquire conceptual knowledge and clinical reasoning techniques. Knowledge is represented internally within a probabilistic framework and externally through a interface inspired by Concept Graphics. Given a set of symptoms, the internal knowledge framework computes the most probable set of diseases as well as best alternatives. The interface displays CGs illustrating the results and prompting essential facts of a medical situation or a process. The system is then ready to receive additional information or to suggest further investigation. Based on the new information, the system will narrow the solutions with increased belief coefficients. PMID:8130508
Bentsen, Thomas; May, Tobias; Kressner, Abigail A; Dau, Torsten
2018-01-01
Computational speech segregation attempts to automatically separate speech from noise. This is challenging in conditions with interfering talkers and low signal-to-noise ratios. Recent approaches have adopted deep neural networks and successfully demonstrated speech intelligibility improvements. A selection of components may be responsible for the success with these state-of-the-art approaches: the system architecture, a time frame concatenation technique and the learning objective. The aim of this study was to explore the roles and the relative contributions of these components by measuring speech intelligibility in normal-hearing listeners. A substantial improvement of 25.4 percentage points in speech intelligibility scores was found going from a subband-based architecture, in which a Gaussian Mixture Model-based classifier predicts the distributions of speech and noise for each frequency channel, to a state-of-the-art deep neural network-based architecture. Another improvement of 13.9 percentage points was obtained by changing the learning objective from the ideal binary mask, in which individual time-frequency units are labeled as either speech- or noise-dominated, to the ideal ratio mask, where the units are assigned a continuous value between zero and one. Therefore, both components play significant roles and by combining them, speech intelligibility improvements were obtained in a six-talker condition at a low signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.
1990-09-01
The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.
Airborne Intelligent Display (AID) Phase I Software Description,
1983-10-24
Board Computer Characteristics 10 3.0 SOFTWARE GENERAL DESCRIPTION 13 3.1 Overview 13 3.2 System Software 14 3.2.1 System Startup 14 3.2.1.1 Initial...3 A-2 Task States A-4 A-3 Task Program Structure A-6 A-4 Task States and State Change Mechanisms A-7 A-5 Computing Return Addresses: RUNADR, SLPADR A...techniques. 2.2 Design Approach The stated objectives were met by: 1. distributing the processing load among multiple Z80 single-board computers (SBC’s). This
Computational intelligence and neuromorphic computing potential for cybersecurity applications
NASA Astrophysics Data System (ADS)
Pino, Robinson E.; Shevenell, Michael J.; Cam, Hasan; Mouallem, Pierre; Shumaker, Justin L.; Edwards, Arthur H.
2013-05-01
In today's highly mobile, networked, and interconnected internet world, the flow and volume of information is overwhelming and continuously increasing. Therefore, it is believed that the next frontier in technological evolution and development will rely in our ability to develop intelligent systems that can help us process, analyze, and make-sense of information autonomously just as a well-trained and educated human expert. In computational intelligence, neuromorphic computing promises to allow for the development of computing systems able to imitate natural neurobiological processes and form the foundation for intelligent system architectures.
Computer Simulated Visual and Tactile Feedback as an Aid to Manipulator and Vehicle Control,
1981-05-08
STATEMENT ........................ 8 Artificial Intellegence Versus Supervisory Control ....... 8 Computer Generation of Operator Feedback...operator. Artificial Intelligence Versus Supervisory Control The use of computers to aid human operators can be divided into two catagories: artificial ...operator. Artificial intelligence ( A. I. ) attempts to give the computer maximum intelligence and to replace all operator functions by the computer
NASA Technical Reports Server (NTRS)
Wild, Christian; Eckhardt, Dave
1987-01-01
The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.
MENO-II: An AI-Based Programming Tutor.
ERIC Educational Resources Information Center
Soloway, Elliot; And Others
This report examines the features and performance of the BUG-FINDing component of MENO-II, a computer-based tutor for beginning PASCAL programming students. A discussion of the use of artificial intelligence techniques is followed by a summary of the system status and objectives. The two main components of MENO-II are described, beginning with the…
NASA Technical Reports Server (NTRS)
Raphael, B.; Fikes, R.; Waldinger, R.
1973-01-01
The results are summarised of a project aimed at the design and implementation of computer languages to aid in expressing problem solving procedures in several areas of artificial intelligence including automatic programming, theorem proving, and robot planning. The principal results of the project were the design and implementation of two complete systems, QA4 and QLISP, and their preliminary experimental use. The various applications of both QA4 and QLISP are given.
Ubiquitous computing in sports: A review and analysis.
Baca, Arnold; Dabnichki, Peter; Heller, Mario; Kornfeind, Philipp
2009-10-01
Ubiquitous (pervasive) computing is a term for a synergetic use of sensing, communication and computing. Pervasive use of computing has seen a rapid increase in the current decade. This development has propagated in applied sport science and everyday life. The work presents a survey of recent developments in sport and leisure with emphasis on technology and computational techniques. A detailed analysis on new technological developments is performed. Sensors for position and motion detection, and such for equipment and physiological monitoring are discussed. Aspects of novel trends in communication technologies and data processing are outlined. Computational advancements have started a new trend - development of smart and intelligent systems for a wide range of applications - from model-based posture recognition to context awareness algorithms for nutrition monitoring. Examples particular to coaching and training are discussed. Selected tools for monitoring rules' compliance and automatic decision-making are outlined. Finally, applications in leisure and entertainment are presented, from systems supporting physical activity to systems providing motivation. It is concluded that the emphasis in future will shift from technologies to intelligent systems that allow for enhanced social interaction as efforts need to be made to improve user-friendliness and standardisation of measurement and transmission protocols.
Curricular Design for Intelligent Systems in Geosciences Using Urban Groundwater Studies.
NASA Astrophysics Data System (ADS)
Cabral-Cano, E.; Pierce, S. A.; Fuentes-Pineda, G.; Arora, R.
2016-12-01
Geosciences research frequently focuses on process-centered phenomena, studying combinations of physical, geological, chemical, biological, ecological, and anthropogenic factors. These interconnected Earth systems can be best understood through the use of digital tools that should be documented as workflows. To develop intelligent systems, it is important that geoscientists and computing and information sciences experts collaborate to: (1) develop a basic understanding of the geosciences and computing and information sciences disciplines so that the problem and solution approach are clear to all stakeholders, and (2) implement the desired intelligent system with a short turnaround time. However, these interactions and techniques are seldom covered in traditional Earth Sciences curricula. We have developed an exchange course on Intelligent Systems for Geosciences to support workforce development and build capacity to facilitate skill-development at the undergraduate student-level. The first version of this course was offered jointly by the University of Texas at Austin and the Universidad Nacional Autónoma de México as an intensive, study-abroad summer course. Content included: basic Linux introduction, shell scripting and high performance computing, data management, experts systems, field data collection exercises and basics of machine learning. Additionally, student teams were tasked to develop a term projects that centered on applications of Intelligent Systems applied to urban and karst groundwater systems. Projects included expert system and reusable workflow development for subsidence hazard analysis in Celaya, Mexico, a classification model to analyze land use change over a 30 Year Period in Austin, Texas, big data processing and decision support for central Texas groundwater case studies and 3D mapping with point cloud processing at three Texas field sites. We will share experiences and pedagogical insights to improve future versions of this course.
Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E
2012-01-01
In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis.
NASA Astrophysics Data System (ADS)
Anderson, John R.; Boyle, C. Franklin; Reiser, Brian J.
1985-04-01
Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.
Anderson, J R; Boyle, C F; Reiser, B J
1985-04-26
Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.
ERIC Educational Resources Information Center
Ginsberg, Ralph B.
Most of the now commonplace computer-assisted instruction (CAI) uses computers to increase the capacity to perform logical, numerical, and symbolic computations. However, computers are an interactive and potentially intelligent medium. The implications of artificial intelligence (AI) for learning are more radical than those for traditional CAI. AI…
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
Gold rush - A swarm dynamics in games
NASA Astrophysics Data System (ADS)
Zelinka, Ivan; Bukacek, Michal
2017-07-01
This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.
Shen, Hong-Bin; Yi, Dong-Liang; Yao, Li-Xiu; Yang, Jie; Chou, Kuo-Chen
2008-10-01
In the postgenomic age, with the avalanche of protein sequences generated and relatively slow progress in determining their structures by experiments, it is important to develop automated methods to predict the structure of a protein from its sequence. The membrane proteins are a special group in the protein family that accounts for approximately 30% of all proteins; however, solved membrane protein structures only represent less than 1% of known protein structures to date. Although a great success has been achieved for developing computational intelligence techniques to predict secondary structures in both globular and membrane proteins, there is still much challenging work in this regard. In this review article, we firstly summarize the recent progress of automation methodology development in predicting protein secondary structures, especially in membrane proteins; we will then give some future directions in this research field.
Artificial Intelligence Support for Computational Chemistry
NASA Astrophysics Data System (ADS)
Duch, Wlodzislaw
Possible forms of artificial intelligence (AI) support for quantum chemistry are discussed. Questions addressed include: what kind of support is desirable, what kind of support is feasible, what can we expect in the coming years. Advantages and disadvantages of current AI techniques are presented and it is argued that at present the memory-based systems are the most effective for large scale applications. Such systems may be used to predict the accuracy of calculations and to select the least expensive methods and basis sets belonging to the same accuracy class. Advantages of the Feature Space Mapping as an improvement on the memory based systems are outlined and some results obtained in classification problems given. Relevance of such classification systems to computational chemistry is illustrated with two examples showing similarity of results obtained by different methods that take electron correlation into account.
Instructional Applications of Artificial Intelligence.
ERIC Educational Resources Information Center
Halff, Henry M.
1986-01-01
Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…
Connectionist Models for Intelligent Computation
1989-07-26
Intelligent Canputation 12. PERSONAL AUTHOR(S) H.H. Chen and Y.C. Lee 13a. o R,POT Cal 13b TIME lVD/rED 14 DATE OF REPORT (Year, Month, Day) JS PAGE...fied Project Title: Connectionist Models-for Intelligent Computation Contract/Grant No.: AFOSR-87-0388 Contract/Grant Period of Performance: Sept. 1...underlying principles, architectures and appilications of artificial neural networks for intelligent computations.o, Approach: -) We use both numerical
Actors: A Model of Concurrent Computation in Distributed Systems.
1985-06-01
Artificial Intelligence Labora- tory of the Massachusetts Institute of Technology. Support for the labora- tory’s aritificial intelligence research is...RD-A157 917 ACTORS: A MODEL OF CONCURRENT COMPUTATION IN 1/3- DISTRIBUTED SYTEMS(U) MASSACHUSETTS INST OF TECH CRMBRIDGE ARTIFICIAL INTELLIGENCE ...Computation In Distributed Systems Gui A. Aghai MIT Artificial Intelligence Laboratory Thsdocument ha. been cipp-oved I= pblicrelease and sale; itsI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S
We propose an intelligent decision support system based on sensor and computer networks that incorporates various component techniques for sensor deployment, data routing, distributed computing, and information fusion. The integrated system is deployed in a distributed environment composed of both wireless sensor networks for data collection and wired computer networks for data processing in support of homeland security defense. We present the system framework and formulate the analytical problems and develop approximate or exact solutions for the subtasks: (i) sensor deployment strategy based on a two-dimensional genetic algorithm to achieve maximum coverage with cost constraints; (ii) data routing scheme tomore » achieve maximum signal strength with minimum path loss, high energy efficiency, and effective fault tolerance; (iii) network mapping method to assign computing modules to network nodes for high-performance distributed data processing; and (iv) binary decision fusion rule that derive threshold bounds to improve system hit rate and false alarm rate. These component solutions are implemented and evaluated through either experiments or simulations in various application scenarios. The extensive results demonstrate that these component solutions imbue the integrated system with the desirable and useful quality of intelligence in decision making.« less
1983-10-28
Computing. By seizing an opportunity to leverage recent advances in artificial intelligence, computer science, and microelectronics, the Agency plans...occurred in many separated areas of artificial intelligence, computer science, and microelectronics. Advances in "expert system" technology now...and expert knowledge o Advances in Artificial Intelligence: Mechanization of speech recognition, vision, and natural language understanding. o
NASA Astrophysics Data System (ADS)
Pierce, S. A.
2017-12-01
Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.
Integrating Human and Computer Intelligence. Technical Report No. 32.
ERIC Educational Resources Information Center
Pea, Roy D.
This paper explores the thesis that advances in computer applications and artificial intelligence have important implications for the study of development and learning in psychology. Current approaches to the use of computers as devices for problem solving, reasoning, and thinking--i.e., expert systems and intelligent tutoring systems--are…
ERIC Educational Resources Information Center
Detterman, Douglas K.
2011-01-01
Watson's Jeopardy victory raises the question of the similarity of artificial intelligence and human intelligence. Those of us who study human intelligence issue a challenge to the artificial intelligence community. We will construct a unique battery of tests for any computer that would provide an actual IQ score for the computer. This is the same…
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.
Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval.
Woźniak, Marcin; Połap, Dawid
2017-09-01
Simulation and positioning are very important aspects of computer aided engineering. To process these two, we can apply traditional methods or intelligent techniques. The difference between them is in the way they process information. In the first case, to simulate an object in a particular state of action, we need to perform an entire process to read values of parameters. It is not very convenient for objects for which simulation takes a long time, i.e. when mathematical calculations are complicated. In the second case, an intelligent solution can efficiently help on devoted way of simulation, which enables us to simulate the object only in a situation that is necessary for a development process. We would like to present research results on developed intelligent simulation and control model of electric drive engine vehicle. For a dedicated simulation method based on intelligent computation, where evolutionary strategy is simulating the states of the dynamic model, an intelligent system based on devoted neural network is introduced to control co-working modules while motion is in time interval. Presented experimental results show implemented solution in situation when a vehicle transports things over area with many obstacles, what provokes sudden changes in stability that may lead to destruction of load. Therefore, applied neural network controller prevents the load from destruction by positioning characteristics like pressure, acceleration, and stiffness voltage to absorb the adverse changes of the ground. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development and Evaluation of an Adaptive Computerized Training System (ACTS). R&D Report 78-1.
ERIC Educational Resources Information Center
Knerr, Bruce W.; Nawrocki, Leon H.
This report describes the development of a computer based system designed to train electronic troubleshooting procedures. The ACTS uses artificial intelligence techniques to develop models of student and expert troubleshooting behavior as they solve a series of troubleshooting problems on the system. Comparisons of the student and expert models…
A High Resolution Graphic Input System for Interactive Graphic Display Terminals. Appendix B.
ERIC Educational Resources Information Center
Van Arsdall, Paul Jon
The search for a satisfactory computer graphics input system led to this version of an analog sheet encoder which is transparent and requires no special probes. The goal of the research was to provide high resolution touch input capabilities for an experimental minicomputer based intelligent terminal system. The technique explored is compatible…
Methods for Identifying Object Class, Type, and Orientation in the Presence of Uncertainty
1990-08-01
on Range Finding Techniques for Computer Vision," IEEE Trans. on Pattern Analysis and Machine Intellegence PAMI-5 (2), pp 129-139 March 1983. 15. Yang... Artificial Intelligence Applications, pp 199-205, December 1984. 16. Flynn, P.J. and Jain, A.K.," On Reliable Curvature Estimation, " Proceedings of the
Chinellato, Eris; Del Pobil, Angel P
2009-06-01
The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.
The Role of Anticipation in Intelligent Systems
NASA Astrophysics Data System (ADS)
Klir, George J.
2002-09-01
The paper explores the relationship between the area of anticipatory systems and the area of intelligent systems. After an overview of these areas, the role of anticipation in intelligent systems is discussed and it is argued that the area of intelligent systems can greatly benefit by importing the various results developed within the area of anticipatory systems. Distinctions between hard and soft systems and between hard and soft computing are then discussed. It is explained why intelligent systems are by necessity soft and why soft computing is essential for their construction. It is finally argued that the area of anticipatory systems can enlarge its scope by importing knowledge regarding soft systems and soft computing from the area of intelligent systems.
Evolution of an Intelligent Deductive Logic Tutor Using Data-Driven Elements
ERIC Educational Resources Information Center
Mostafavi, Behrooz; Barnes, Tiffany
2017-01-01
Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…
NASA Astrophysics Data System (ADS)
Pal, Siddharth; Basak, Aniruddha; Das, Swagatam
In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.
Artificial intelligence applied to process signal analysis
NASA Technical Reports Server (NTRS)
Corsberg, Dan
1988-01-01
Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.
Artificial intelligence for optimal anemia management in end-stage renal disease.
Brier, Michael E; Gaweda, Adam E
2016-08-01
Computational intelligence for the prediction of hemoglobin to guide the selection of erythropoiesis-stimulating agent dose results in improved anemia management. The models used for the prediction result from the use of individual patient data and help to increase the number of hemoglobin observations within the target range. The benefits of using these modeling techniques appear to be a decrease in erythropoiesis-stimulating agent use and a decrease in the number of transfusions. This study confirms the results of previous smaller studies and suggests that additional beneficial results may be achieved. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
HyperForest: A high performance multi-processor architecture for real-time intelligent systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, P. Jr.; Rebeil, J.P.; Pollard, H.
1997-04-01
Intelligent Systems are characterized by the intensive use of computer power. The computer revolution of the last few years is what has made possible the development of the first generation of Intelligent Systems. Software for second generation Intelligent Systems will be more complex and will require more powerful computing engines in order to meet real-time constraints imposed by new robots, sensors, and applications. A multiprocessor architecture was developed that merges the advantages of message-passing and shared-memory structures: expendability and real-time compliance. The HyperForest architecture will provide an expandable real-time computing platform for computationally intensive Intelligent Systems and open the doorsmore » for the application of these systems to more complex tasks in environmental restoration and cleanup projects, flexible manufacturing systems, and DOE`s own production and disassembly activities.« less
Intelligence-Augmented Rat Cyborgs in Maze Solving.
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.
Intelligence-Augmented Rat Cyborgs in Maze Solving
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains. PMID:26859299
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Intelligent tutoring systems research in the training systems division: Space applications
NASA Technical Reports Server (NTRS)
Regian, J. Wesley
1988-01-01
Computer-Aided Instruction (CAI) is a mature technology used to teach students in a wide variety of domains. The introduction of Artificial Intelligence (AI) technology of the field of CAI has prompted research and development efforts in an area known as Intelligent Computer-Aided Instruction (ICAI). In some cases, ICAI has been touted as a revolutionary alternative to traditional CAI. With the advent of powerful, inexpensive school computers, ICAI is emerging as a potential rival to CAI. In contrast to this, one may conceive of Computer-Based Training (CBT) systems as lying along a continuum which runs from CAI to ICAI. Although the key difference between the two is intelligence, there is not commonly accepted definition of what constitutes an intelligent instructional system.
Integration of language and sensor information
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Weijers, Bertus
2003-04-01
The talk describes the development of basic technologies of intelligent systems fusing data from multiple domains and leading to automated computational techniques for understanding data contents. Understanding involves inferring appropriate decisions and recommending proper actions, which in turn requires fusion of data and knowledge about objects, situations, and actions. Data might include sensory data, verbal reports, intelligence intercepts, or public records, whereas knowledge ought to encompass the whole range of objects, situations, people and their behavior, and knowledge of languages. In the past, a fundamental difficulty in combining knowledge with data was the combinatorial complexity of computations, too many combinations of data and knowledge pieces had to be evaluated. Recent progress in understanding of natural intelligent systems, including the human mind, leads to the development of neurophysiologically motivated architectures for solving these challenging problems, in particular the role of emotional neural signals in overcoming combinatorial complexity of old logic-based approaches. Whereas past approaches based on logic tended to identify logic with language and thinking, recent studies in cognitive linguistics have led to appreciation of more complicated nature of linguistic models. Little is known about the details of the brain mechanisms integrating language and thinking. Understanding and fusion of linguistic information with sensory data represent a novel challenging aspect of the development of integrated fusion systems. The presentation will describe a non-combinatorial approach to this problem and outline techniques that can be used for fusing diverse and uncertain knowledge with sensory and linguistic data.
CATO: a CAD tool for intelligent design of optical networks and interconnects
NASA Astrophysics Data System (ADS)
Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse
1997-10-01
Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.
Variable Generation Power Forecasting as a Big Data Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Szczur, Martha R. (Technical Monitor)
2000-01-01
The newer types of space systems, which are planned for the future, are placing challenging demands for newer autonomy concepts and techniques. Motivating these challenges are resource constraints. Even though onboard computing power will surely increase in the coming years, the resource constraints associated with space-based processes will continue to be a major factor that needs to be considered when dealing with, for example, agent-based spacecraft autonomy. To realize "economical intelligence", i.e., constrained computational intelligence that can reside within a process under severe resource constraints (time, power, space, etc.), is a major goal for such space systems as the Nanosat constellations. To begin to address the new challenges, we are developing approaches to constellation autonomy with constraints in mind. Within the Agent Concepts Testbed (ACT) at the Goddard Space Flight Center we are currently developing a Nanosat-related prototype for the first of the two-step program.
Variable Generation Power Forecasting as a Big Data Problem
Haupt, Sue Ellen; Kosovic, Branko
2016-10-10
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
Selection of examples in case-based computer-aided decision systems
Mazurowski, Maciej A.; Zurada, Jacek M.; Tourassi, Georgia D.
2013-01-01
Case-based computer-aided decision (CB-CAD) systems rely on a database of previously stored, known examples when classifying new, incoming queries. Such systems can be particularly useful since they do not need retraining every time a new example is deposited in the case base. The adaptive nature of case-based systems is well suited to the current trend of continuously expanding digital databases in the medical domain. To maintain efficiency, however, such systems need sophisticated strategies to effectively manage the available evidence database. In this paper, we discuss the general problem of building an evidence database by selecting the most useful examples to store while satisfying existing storage requirements. We evaluate three intelligent techniques for this purpose: genetic algorithm-based selection, greedy selection and random mutation hill climbing. These techniques are compared to a random selection strategy used as the baseline. The study is performed with a previously presented CB-CAD system applied for false positive reduction in screening mammograms. The experimental evaluation shows that when the development goal is to maximize the system’s diagnostic performance, the intelligent techniques are able to reduce the size of the evidence database to 37% of the original database by eliminating superfluous and/or detrimental examples while at the same time significantly improving the CAD system’s performance. Furthermore, if the case-base size is a main concern, the total number of examples stored in the system can be reduced to only 2–4% of the original database without a decrease in the diagnostic performance. Comparison of the techniques shows that random mutation hill climbing provides the best balance between the diagnostic performance and computational efficiency when building the evidence database of the CB-CAD system. PMID:18854606
Expert Systems: Tutors, Tools, and Tutees.
ERIC Educational Resources Information Center
Lippert, Renate C.
1989-01-01
Discusses the current status, research, and practical implications of artificial intelligence and expert systems in education. Topics discussed include computer-assisted instruction; intelligent computer-assisted instruction; intelligent tutoring systems; instructional strategies involving the creation of knowledge bases; decision aids;…
The Convergence of Intelligences
NASA Astrophysics Data System (ADS)
Diederich, Joachim
Minsky (1985) argued an extraterrestrial intelligence may be similar to ours despite very different origins. ``Problem- solving'' offers evolutionary advantages and individuals who are part of a technical civilisation should have this capacity. On earth, the principles of problem-solving are the same for humans, some primates and machines based on Artificial Intelligence (AI) techniques. Intelligent systems use ``goals'' and ``sub-goals'' for problem-solving, with memories and representations of ``objects'' and ``sub-objects'' as well as knowledge of relations such as ``cause'' or ``difference.'' Some of these objects are generic and cannot easily be divided into parts. We must, therefore, assume that these objects and relations are universal, and a general property of intelligence. Minsky's arguments from 1985 are extended here. The last decade has seen the development of a general learning theory (``computational learning theory'' (CLT) or ``statistical learning theory'') which equally applies to humans, animals and machines. It is argued that basic learning laws will also apply to an evolved alien intelligence, and this includes limitations of what can be learned efficiently. An example from CLT is that the general learning problem for neural networks is intractable, i.e. it cannot be solved efficiently for all instances (it is ``NP-complete''). It is the objective of this paper to show that evolved intelligences will be constrained by general learning laws and will use task-decomposition for problem-solving. Since learning and problem-solving are core features of intelligence, it can be said that intelligences converge despite very different origins.
Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur
2012-01-01
This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956
Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur
2012-01-01
This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.
A novel and reliable computational intelligence system for breast cancer detection.
Zadeh Shirazi, Amin; Seyyed Mahdavi Chabok, Seyyed Javad; Mohammadi, Zahra
2018-05-01
Cancer is the second important morbidity and mortality factor among women and the most incident type is breast cancer. This paper suggests a hybrid computational intelligence model based on unsupervised and supervised learning techniques, i.e., self-organizing map (SOM) and complex-valued neural network (CVNN), for reliable detection of breast cancer. The dataset used in this paper consists of 822 patients with five features (patient's breast mass shape, margin, density, patient's age, and Breast Imaging Reporting and Data System assessment). The proposed model was used for the first time and can be categorized in two stages. In the first stage, considering the input features, SOM technique was used to cluster the patients with the most similarity. Then, in the second stage, for each cluster, the patient's features were applied to complex-valued neural network and dealt with to classify breast cancer severity (benign or malign). The obtained results corresponding to each patient were compared to the medical diagnosis results using receiver operating characteristic analyses and confusion matrix. In the testing phase, health and disease detection ratios were 94 and 95%, respectively. Accordingly, the superiority of the proposed model was proved and can be used for reliable and robust detection of breast cancer.
Artificial intelligence in sports biomechanics: new dawn or false hope?
Bartlett, Roger
2006-12-15
This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.
Artificial intelligence within the chemical laboratory.
Winkel, P
1994-01-01
Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Pant, Naveen; Srivastava, S K
2017-11-30
The present study is conducted on 300 PG-level college students in Haridwar, Uttarakhand (India). The aim of the present study is to examine the level of spiritual intelligence and mental health, to observe relationship between these two variables and also to identify the difference in spiritual intelligence and mental health across gender and educational background (arts and science). The purposive sampling technique is used to select 300 college students of both disciplines of arts and science from the four different government degree colleges/campuses in Haridwar. Integrated Spiritual Intelligence Scale and Mithila Mental Health Status Inventory are used to observe the level of these variables among college students. In the present study, correlational design is employed. All the statistical analyses are done with the help of computer software SPSS. To observe relationship Pearson correlation and to identify the difference t test are used. Findings of the study revealed that spiritual intelligence and mental health relate significantly among arts students, and male and female arts students separately have significant relationship between spiritual intelligence and mental health. Spiritual intelligence and mental health relate significantly among science students, and male and female science students separately have significant relationship between spiritual intelligence and mental health. No significant difference is found between male and female students in terms of spiritual intelligence. No significant difference is found between arts and science students in terms of spiritual intelligence. No significant difference is found between male and female students in terms of mental health. No significant difference is found between arts and science students in terms of mental health.
NASA Technical Reports Server (NTRS)
Freitas, R. A., Jr. (Editor); Carlson, P. A. (Editor)
1983-01-01
Adoption of an aggressive computer science research and technology program within NASA will: (1) enable new mission capabilities such as autonomous spacecraft, reliability and self-repair, and low-bandwidth intelligent Earth sensing; (2) lower manpower requirements, especially in the areas of Space Shuttle operations, by making fuller use of control center automation, technical support, and internal utilization of state-of-the-art computer techniques; (3) reduce project costs via improved software verification, software engineering, enhanced scientist/engineer productivity, and increased managerial effectiveness; and (4) significantly improve internal operations within NASA with electronic mail, managerial computer aids, an automated bureaucracy and uniform program operating plans.
Computational Foundations of Natural Intelligence
van Gerven, Marcel
2017-01-01
New developments in AI and neuroscience are revitalizing the quest to understanding natural intelligence, offering insight about how to equip machines with human-like capabilities. This paper reviews some of the computational principles relevant for understanding natural intelligence and, ultimately, achieving strong AI. After reviewing basic principles, a variety of computational modeling approaches is discussed. Subsequently, I concentrate on the use of artificial neural networks as a framework for modeling cognitive processes. This paper ends by outlining some of the challenges that remain to fulfill the promise of machines that show human-like intelligence. PMID:29375355
Alsmadi, Othman M K; Abo-Hammour, Zaer S
2015-01-01
A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.
Intelligent judgements over health risks in a spatial agent-based model.
Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana
2018-03-20
Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of several macro metrics of interest: an epidemic curve, a risk perception curve, and a distribution of different types of coping strategies over time. Our results emphasize the importance of integrating behavioral aspects of decision making under risk into spatial disease ABMs using machine learning algorithms. This is especially relevant when studying cumulative impacts of behavioral changes and possible intervention strategies.
A Review of Computational Methods for Finding Non-Coding RNA Genes
Abbas, Qaisar; Raza, Syed Mansoor; Biyabani, Azizuddin Ahmed; Jaffar, Muhammad Arfan
2016-01-01
Finding non-coding RNA (ncRNA) genes has emerged over the past few years as a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge in CI techniques. Moreover, there are many classes predicted yet not experimentally verified by researchers. Recently, researchers have applied many CI methods to predict the classes of ncRNAs. However, the diverse CI approaches lack a definitive classification framework to take advantage of past studies. A few review papers have attempted to summarize CI approaches, but focused on the particular methodological viewpoints. Accordingly, in this article, we summarize in greater detail than previously available, the CI techniques for finding ncRNAs genes. We differentiate from the existing bodies of research and discuss concisely the technical merits of various techniques. Lastly, we review the limitations of ncRNA gene-finding CI methods with a point-of-view towards the development of new computational tools. PMID:27918472
Word aligned bitmap compression method, data structure, and apparatus
Wu, Kesheng; Shoshani, Arie; Otoo, Ekow
2004-12-14
The Word-Aligned Hybrid (WAH) bitmap compression method and data structure is a relatively efficient method for searching and performing logical, counting, and pattern location operations upon large datasets. The technique is comprised of a data structure and methods that are optimized for computational efficiency by using the WAH compression method, which typically takes advantage of the target computing system's native word length. WAH is particularly apropos to infrequently varying databases, including those found in the on-line analytical processing (OLAP) industry, due to the increased computational efficiency of the WAH compressed bitmap index. Some commercial database products already include some version of a bitmap index, which could possibly be replaced by the WAH bitmap compression techniques for potentially increased operation speed, as well as increased efficiencies in constructing compressed bitmaps. Combined together, this technique may be particularly useful for real-time business intelligence. Additional WAH applications may include scientific modeling, such as climate and combustion simulations, to minimize search time for analysis and subsequent data visualization.
Making intelligent systems team players: Additional case studies
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.
1993-01-01
Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.
A knowledge-based system with learning for computer communication network design
NASA Technical Reports Server (NTRS)
Pierre, Samuel; Hoang, Hai Hoc; Tropper-Hausen, Evelyne
1990-01-01
Computer communication network design is well-known as complex and hard. For that reason, the most effective methods used to solve it are heuristic. Weaknesses of these techniques are listed and a new approach based on artificial intelligence for solving this problem is presented. This approach is particularly recommended for large packet switched communication networks, in the sense that it permits a high degree of reliability and offers a very flexible environment dealing with many relevant design parameters such as link cost, link capacity, and message delay.
Intelligent Systems For Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.
2003-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
Intelligent Systems for Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje
2002-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Faith in the algorithm, part 1: beyond the turing test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Marko A; Pepe, Alberto
2009-01-01
Since the Turing test was first proposed by Alan Turing in 1950, the goal of artificial intelligence has been predicated on the ability for computers to imitate human intelligence. However, the majority of uses for the computer can be said to fall outside the domain of human abilities and it is exactly outside of this domain where computers have demonstrated their greatest contribution. Another definition for artificial intelligence is one that is not predicated on human mimicry, but instead, on human amplification, where the algorithms that are best at accomplishing this are deemed the most intelligent. This article surveys variousmore » systems that augment human and social intelligence.« less
Computer Assisted Instructional Design for Computer-Based Instruction. Final Report. Working Papers.
ERIC Educational Resources Information Center
Russell, Daniel M.; Pirolli, Peter
Recent advances in artificial intelligence and the cognitive sciences have made it possible to develop successful intelligent computer-aided instructional systems for technical and scientific training. In addition, computer-aided design (CAD) environments that support the rapid development of such computer-based instruction have also been recently…
Detection of nicotine content impact in tobacco manufacturing using computational intelligence.
Begic Fazlic, Lejla; Avdagic, Zikrija
2011-01-01
A study is presented for the detection of nicotine impact in different cigarette type, using recorded data and Computational Intelligence techniques. Recorded puffs are processed using Continuous Wavelet Transform and used to extract time-frequency features for normal and abnormal puffs conditions. The wavelet energy distributions are used as inputs to classifiers based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Genetic Algorithms (GAs). The number and the parameters of Membership Functions are used in ANFIS along with the features from wavelet energy distributionare selected using GAs, maximising the diagnosis success. GA with ANFIS (GANFIS) are trained with a subset of data with known nicotine conditions. The trained GANFIS are tested using the other set of data (testing data). A classical method by High-Performance Liquid Chromatography is also introduced to solve this problem, respectively. The results as well as the performances of these two approaches are compared. A combination of these two algorithms is also suggested to improve the efficiency of this solution procedure. Computational results show that this combined algorithm is promising.
Computer Intelligence: Unlimited and Untapped.
ERIC Educational Resources Information Center
Staples, Betsy
1983-01-01
Herbert Simon (Nobel prize-winning economist/professor) expresses his views on human and artificial intelligence, problem solving, inventing concepts, and the future. Includes comments on expert systems, state of the art in artificial intelligence, robotics, and "Bacon," a computer program that finds scientific laws hidden in raw data.…
Computer Software for Intelligent Systems.
ERIC Educational Resources Information Center
Lenat, Douglas B.
1984-01-01
Discusses the development and nature of computer software for intelligent systems, indicating that the key to intelligent problem-solving lies in reducing the random search for solutions. Formal reasoning methods, expert systems, and sources of power in problem-solving are among the areas considered. Specific examples of such software are…
Hu, Yu-Chen
2018-01-01
The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved by 13.97%. PMID:29702607
Fast Computation and Assessment Methods in Power System Analysis
NASA Astrophysics Data System (ADS)
Nagata, Masaki
Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.
ERIC Educational Resources Information Center
Behnke, Carl; Greenan, James P.
2011-01-01
This study examined the relationship between postsecondary students' emotional-social intelligence and attitudes toward computer-based instructional materials. Research indicated that emotions and emotional intelligence directly impact motivation, while instructional design has been shown to impact student attitudes and subsequent engagement with…
ERIC Educational Resources Information Center
Behnke, Carl Alan
2009-01-01
The purpose of this study was to examine the relationship between postsecondary students' emotional-social intelligence and attitudes toward computer-based instructional materials. Research indicated that emotions and emotional intelligence directly impact motivation, while instructional design has been shown to impact student attitudes and…
Individual Differences in Learning from an Intelligent Discovery World: Smithtown.
ERIC Educational Resources Information Center
Shute, Valerie J.
"Smithtown" is an intelligent computer program designed to enhance an individual's scientific inquiry skills as well as to provide an environment for learning principles of basic microeconomics. It was hypothesized that intelligent computer instruction on applying effective interrogative skills (e.g., changing one variable at a time…
Development of an Intelligent Instruction System for Mathematical Computation
ERIC Educational Resources Information Center
Kim, Du Gyu; Lee, Jaemu
2013-01-01
In this paper, we propose the development of a web-based, intelligent instruction system to help elementary school students for mathematical computation. We concentrate on the intelligence facilities which support diagnosis and advice. The existing web-based instruction systems merely give information on whether the learners' replies are…
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1991-01-01
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS
Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L.; Moya, Jose M.; Risco-Martín, José L.
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time. PMID:23112621
Ubiquitous green computing techniques for high demand applications in Smart environments.
Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L
2012-01-01
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Mukunthan, B; Nagaveni, N
2014-01-01
In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.
Artificial Intelligence and the Teaching of Reading and Writing by Computers.
ERIC Educational Resources Information Center
Balajthy, Ernest
1985-01-01
Discusses how computers can "converse" with students for teaching purposes, demonstrates how these interactions are becoming more complex, and explains how the computer's role is becoming more "human" in giving intelligent responses to students. (HOD)
NASA Technical Reports Server (NTRS)
Hyde, Patricia R.; Loftin, R. Bowen
1993-01-01
The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications.
The Interactive Effects of Computer Conferencing and Multiple Intelligences on Expository Writing.
ERIC Educational Resources Information Center
Cifuentes, Lauren; Hughey, Jane
2003-01-01
Investigates the differential effects of computer conferencing on expository writing for students of seven intelligence types. Students were assigned to treatment groups that provided controlled exposure to a topic: unstructured exposure; computer conferencing; face-to-face discussion; and computer conferencing and face-to-face discussion.…
Development of Moire machine vision
NASA Technical Reports Server (NTRS)
Harding, Kevin G.
1987-01-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
Development of Moire machine vision
NASA Astrophysics Data System (ADS)
Harding, Kevin G.
1987-10-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
Computational Intelligence and Its Impact on Future High-Performance Engineering Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1996-01-01
This document contains presentations from the joint UVA/NASA Workshop on Computational Intelligence held at the Virginia Consortium of Engineering and Science Universities, Hampton, Virginia, June 27-28, 1995. The presentations addressed activities in the areas of fuzzy logic, neural networks, and evolutionary computations. Workshop attendees represented NASA, the National Science Foundation, the Department of Energy, National Institute of Standards and Technology (NIST), the Jet Propulsion Laboratory, industry, and academia. The workshop objectives were to assess the state of technology in the Computational intelligence area and to provide guidelines for future research.
ERIC Educational Resources Information Center
Orey, Michael A.; Nelson, Wayne A.
Arguing that the evolution of intelligent tutoring systems better reflects the recent theoretical developments of cognitive science than traditional computer-based instruction (CBI), this paper describes a general model for an intelligent tutoring system and suggests ways to improve CBI using design principles derived from research in cognitive…
Organising geometric computations for space telerobotics
NASA Technical Reports Server (NTRS)
Cameron, Stephen
1989-01-01
A truly intelligent system that interacts with the physical world must be endowed with the ability the compute with shapes: despite this, spatial reasoning is rarely regarded as part of mainstream artificial intelligence. Here, researchers argue that the study of intelligent spatial algorithms is a worthwhile activity, and give opinions and suggestions for the way forward.
Maze learning by a hybrid brain-computer system
NASA Astrophysics Data System (ADS)
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-09-01
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.
Maze learning by a hybrid brain-computer system.
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-09-13
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.
Maze learning by a hybrid brain-computer system
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-01-01
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation. PMID:27619326
Perceptual organization in computer vision - A review and a proposal for a classificatory structure
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1993-01-01
The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.
NASA Astrophysics Data System (ADS)
Poehlman, W. F. S.; Garland, Wm. J.; Stark, J. W.
1993-06-01
In an era of downsizing and a limited pool of skilled accelerator personnel from which to draw replacements for an aging workforce, the impetus to integrate intelligent computer automation into the accelerator operator's repertoire is strong. However, successful deployment of an "Operator's Companion" is not trivial. Both graphical and human factors need to be recognized as critical areas that require extra care when formulating the Companion. They include interactive graphical user's interface that mimics, for the operator, familiar accelerator controls; knowledge of acquisition phases during development must acknowledge the expert's mental model of machine operation; and automated operations must be seen as improvements to the operator's environment rather than threats of ultimate replacement. Experiences with the PACES Accelerator Operator Companion developed at two sites over the past three years are related and graphical examples are given. The scale of the work involves multi-computer control of various start-up/shutdown and tuning procedures for Model FN and KN Van de Graaff accelerators. The response from licensing agencies has been encouraging.
Microfabricated Microwave-Integrated Surface Ion Trap
NASA Astrophysics Data System (ADS)
Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter
2017-04-01
Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).
Bengali-English Relevant Cross Lingual Information Access Using Finite Automata
NASA Astrophysics Data System (ADS)
Banerjee, Avishek; Bhattacharyya, Swapan; Hazra, Simanta; Mondal, Shatabdi
2010-10-01
CLIR techniques searches unrestricted texts and typically extract term and relationships from bilingual electronic dictionaries or bilingual text collections and use them to translate query and/or document representations into a compatible set of representations with a common feature set. In this paper, we focus on dictionary-based approach by using a bilingual data dictionary with a combination to statistics-based methods to avoid the problem of ambiguity also the development of human computer interface aspects of NLP (Natural Language processing) is the approach of this paper. The intelligent web search with regional language like Bengali is depending upon two major aspect that is CLIA (Cross language information access) and NLP. In our previous work with IIT, KGP we already developed content based CLIA where content based searching in trained on Bengali Corpora with the help of Bengali data dictionary. Here we want to introduce intelligent search because to recognize the sense of meaning of a sentence and it has a better real life approach towards human computer interactions.
Applications of Deep Learning and Reinforcement Learning to Biological Data.
Mahmud, Mufti; Kaiser, Mohammed Shamim; Hussain, Amir; Vassanelli, Stefano
2018-06-01
Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.
An overview of computer-based natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Computer based Natural Language Processing (NLP) is the key to enabling humans and their computer based creations to interact with machines in natural language (like English, Japanese, German, etc., in contrast to formal computer languages). The doors that such an achievement can open have made this a major research area in Artificial Intelligence and Computational Linguistics. Commercial natural language interfaces to computers have recently entered the market and future looks bright for other applications as well. This report reviews the basic approaches to such systems, the techniques utilized, applications, the state of the art of the technology, issues and research requirements, the major participants and finally, future trends and expectations. It is anticipated that this report will prove useful to engineering and research managers, potential users, and others who will be affected by this field as it unfolds.
Intelligence in Scientific Computing.
1993-12-31
simulation) a high-performance controller for a magnetic levitation system - the German Transrapid system. The new control system can stabilize maglev ...techniques. A paper by Feng Zhao and Richard Thornton about the maglev controller designed by his program was presented at the 31st IEEE conference on...Massachusetts Insti- tute of Technology, 1991. Also availible as MIT AITR 1385. Zhao, F. and Thornton, R. "Automatic Design of a Maglev Controller in
Nahar, Jesmin; Imam, Tasadduq; Tickle, Kevin S; Garcia-Alonso, Debora
2013-01-01
This chapter is a review of data mining techniques used in medical research. It will cover the existing applications of these techniques in the identification of diseases, and also present the authors' research experiences in medical disease diagnosis and analysis. A computational diagnosis approach can have a significant impact on accurate diagnosis and result in time and cost effective solutions. The chapter will begin with an overview of computational intelligence concepts, followed by details on different classification algorithms. Use of association learning, a well recognised data mining procedure, will also be discussed. Many of the datasets considered in existing medical data mining research are imbalanced, and the chapter focuses on this issue as well. Lastly, the chapter outlines the need of data governance in this research domain.
Knowledge based systems: A preliminary survey of selected issues and techniques
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Kavi, Srinu
1984-01-01
It is only recently that research in Artificial Intelligence (AI) is accomplishing practical results. Most of these results can be attributed to the design and use of expert systems (or Knowledge-Based Systems, KBS) - problem-solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. But many computer systems designed to see images, hear sounds, and recognize speech are still in a fairly early stage of development. In this report, a preliminary survey of recent work in the KBS is reported, explaining KBS concepts and issues and techniques used to construct them. Application considerations to construct the KBS and potential KBS research areas are identified. A case study (MYCIN) of a KBS is also provided.
Improving Simulated Annealing by Recasting it as a Non-Cooperative Game
NASA Technical Reports Server (NTRS)
Wolpert, David; Bandari, Esfandiar; Tumer, Kagan
2001-01-01
The game-theoretic field of COllective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved "as a side-effect". Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed game-theory-motivated algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting improves simulated annealing by several orders of magnitude for spin glass relaxation and bin-packing.
NASA Astrophysics Data System (ADS)
Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil
2018-04-01
Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.
Moreno-Díaz, Roberto; Moreno-Díaz, Arminda
2013-06-01
This paper explores the origins and content of neurocybernetics and its links to artificial intelligence, computer science and knowledge engineering. Starting with three remarkable pieces of work, we center attention on a number of events that initiated and developed basic topics that are still nowadays a matter of research and inquire, from goal directed activity theories to circular causality and to reverberations and learning. Within this context, we pay tribute to the memory of Prof. Ricciardi documenting the importance of his contributions in the mathematics of brain, neural nets and neurophysiological models, computational simulations and techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Use of symbolic computation in robotics education
NASA Technical Reports Server (NTRS)
Vira, Naren; Tunstel, Edward
1992-01-01
An application of symbolic computation in robotics education is described. A software package is presented which combines generality, user interaction, and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. The software utilizes MACSYMA, a LISP-based symbolic algebra language, to automatically generate closed-form expressions representing forward and inverse kinematics solutions, the Jacobian transformation matrices, robot pose error-compensation models equations, and Lagrange dynamics formulation for N degree-of-freedom, open chain robotic manipulators. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. The software package has been successfully tested for its accuracy using commercially available robots.
Metal surface corrosion grade estimation from single image
NASA Astrophysics Data System (ADS)
Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu
2018-04-01
Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.
A Computational Behaviorist Takes Turing's Test
NASA Astrophysics Data System (ADS)
Whalen, Thomas E.
Behaviorism is a school of thought in experimental psychology that has given rise to powerful techniques for managing behavior. Because the Turing Test is a test of linguistic behavior rather than mental processes, approaching the test from a behavioristic perspective is worth examining. A behavioral approach begins by observing the kinds of questions that judges ask, then links the invariant features of those questions to pre-written answers. Because this approach is simple and powerful, it has been more successful in Turing competitions than the more ambitious linguistic approaches. Computational behaviorism may prove successful in other areas of Artificial Intelligence.
An intelligent interface for satellite operations: Your Orbit Determination Assistant (YODA)
NASA Technical Reports Server (NTRS)
Schur, Anne
1988-01-01
An intelligent interface is often characterized by the ability to adapt evaluation criteria as the environment and user goals change. Some factors that impact these adaptations are redefinition of task goals and, hence, user requirements; time criticality; and system status. To implement adaptations affected by these factors, a new set of capabilities must be incorporated into the human-computer interface design. These capabilities include: (1) dynamic update and removal of control states based on user inputs, (2) generation and removal of logical dependencies as change occurs, (3) uniform and smooth interfacing to numerous processes, databases, and expert systems, and (4) unobtrusive on-line assistance to users of concepts were applied and incorporated into a human-computer interface using artificial intelligence techniques to create a prototype expert system, Your Orbit Determination Assistant (YODA). YODA is a smart interface that supports, in real teime, orbit analysts who must determine the location of a satellite during the station acquisition phase of a mission. Also described is the integration of four knowledge sources required to support the orbit determination assistant: orbital mechanics, spacecraft specifications, characteristics of the mission support software, and orbit analyst experience. This initial effort is continuing with expansion of YODA's capabilities, including evaluation of results of the orbit determination task.
Artificial Intelligence for Diabetes Management and Decision Support: Literature Review
Contreras, Ivan
2018-01-01
Background Artificial intelligence methods in combination with the latest technologies, including medical devices, mobile computing, and sensor technologies, have the potential to enable the creation and delivery of better management services to deal with chronic diseases. One of the most lethal and prevalent chronic diseases is diabetes mellitus, which is characterized by dysfunction of glucose homeostasis. Objective The objective of this paper is to review recent efforts to use artificial intelligence techniques to assist in the management of diabetes, along with the associated challenges. Methods A review of the literature was conducted using PubMed and related bibliographic resources. Analyses of the literature from 2010 to 2018 yielded 1849 pertinent articles, of which we selected 141 for detailed review. Results We propose a functional taxonomy for diabetes management and artificial intelligence. Additionally, a detailed analysis of each subject category was performed using related key outcomes. This approach revealed that the experiments and studies reviewed yielded encouraging results. Conclusions We obtained evidence of an acceleration of research activity aimed at developing artificial intelligence-powered tools for prediction and prevention of complications associated with diabetes. Our results indicate that artificial intelligence methods are being progressively established as suitable for use in clinical daily practice, as well as for the self-management of diabetes. Consequently, these methods provide powerful tools for improving patients’ quality of life. PMID:29848472
Techniques and potential capabilities of multi-resolutional information (knowledge) processing
NASA Technical Reports Server (NTRS)
Meystel, A.
1989-01-01
A concept of nested hierarchical (multi-resolutional, pyramidal) information (knowledge) processing is introduced for a variety of systems including data and/or knowledge bases, vision, control, and manufacturing systems, industrial automated robots, and (self-programmed) autonomous intelligent machines. A set of practical recommendations is presented using a case study of a multiresolutional object representation. It is demonstrated here that any intelligent module transforms (sometimes, irreversibly) the knowledge it deals with, and this tranformation affects the subsequent computation processes, e.g., those of decision and control. Several types of knowledge transformation are reviewed. Definite conditions are analyzed, satisfaction of which is required for organization and processing of redundant information (knowledge) in the multi-resolutional systems. Providing a definite degree of redundancy is one of these conditions.
Developing an intelligence analysis process through social network analysis
NASA Astrophysics Data System (ADS)
Waskiewicz, Todd; LaMonica, Peter
2008-04-01
Intelligence analysts are tasked with making sense of enormous amounts of data and gaining an awareness of a situation that can be acted upon. This process can be extremely difficult and time consuming. Trying to differentiate between important pieces of information and extraneous data only complicates the problem. When dealing with data containing entities and relationships, social network analysis (SNA) techniques can be employed to make this job easier. Applying network measures to social network graphs can identify the most significant nodes (entities) and edges (relationships) and help the analyst further focus on key areas of concern. Strange developed a model that identifies high value targets such as centers of gravity and critical vulnerabilities. SNA lends itself to the discovery of these high value targets and the Air Force Research Laboratory (AFRL) has investigated several network measures such as centrality, betweenness, and grouping to identify centers of gravity and critical vulnerabilities. Using these network measures, a process for the intelligence analyst has been developed to aid analysts in identifying points of tactical emphasis. Organizational Risk Analyzer (ORA) and Terrorist Modus Operandi Discovery System (TMODS) are the two applications used to compute the network measures and identify the points to be acted upon. Therefore, the result of leveraging social network analysis techniques and applications will provide the analyst and the intelligence community with more focused and concentrated analysis results allowing them to more easily exploit key attributes of a network, thus saving time, money, and manpower.
A State Cyber Hub Operations Framework
2016-06-01
to communicate and sense or interact with their internal states or the external environment. Machine Learning: A type of artificial intelligence that... artificial intelligence , and computational linguistics concerned with the interactions between computers and human (natural) languages. Patching: A piece...formalizing a proof of concept for cyber initiatives and developed frameworks for operationalizing the data and intelligence produced across state
ERIC Educational Resources Information Center
Baker, Eva L.
Some special problems associated with evaluating intelligent computer-assisted instruction (ICAI) programs are addressed. This paper intends to describe alternative approaches to the assessment and improvement of such applications and to provide examples of efforts undertaken and shortfalls. Issues discussed stem chiefly from the technical demands…
1987-10-01
include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen
Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope?
Bartlett, Roger
2006-01-01
This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements (‘techniques’) and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key Points Expert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis. Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear. Other AI applications, including Evolutionary Computation, have received little attention. PMID:24357939
[INVITED] Computational intelligence for smart laser materials processing
NASA Astrophysics Data System (ADS)
Casalino, Giuseppe
2018-03-01
Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
NASA Technical Reports Server (NTRS)
Parnell, Gregory S.; Rowell, William F.; Valusek, John R.
1987-01-01
In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.
Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle
Barriuso, Alberto L.; De Paz, Juan F.; Lozano, Álvaro
2018-01-01
Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed. PMID:29301310
Macrocell path loss prediction using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.
2014-04-01
The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.
Artificial Intelligence in Precision Cardiovascular Medicine.
Krittanawong, Chayakrit; Zhang, HongJu; Wang, Zhen; Aydar, Mehmet; Kitai, Takeshi
2017-05-30
Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI's application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle.
Barriuso, Alberto L; Villarrubia González, Gabriel; De Paz, Juan F; Lozano, Álvaro; Bajo, Javier
2018-01-02
Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed.
Knowledge-based computer systems for radiotherapy planning.
Kalet, I J; Paluszynski, W
1990-08-01
Radiation therapy is one of the first areas of clinical medicine to utilize computers in support of routine clinical decision making. The role of the computer has evolved from simple dose calculations to elaborate interactive graphic three-dimensional simulations. These simulations can combine external irradiation from megavoltage photons, electrons, and particle beams with interstitial and intracavitary sources. With the flexibility and power of modern radiotherapy equipment and the ability of computer programs that simulate anything the machinery can do, we now face a challenge to utilize this capability to design more effective radiation treatments. How can we manage the increased complexity of sophisticated treatment planning? A promising approach will be to use artificial intelligence techniques to systematize our present knowledge about design of treatment plans, and to provide a framework for developing new treatment strategies. Far from replacing the physician, physicist, or dosimetrist, artificial intelligence-based software tools can assist the treatment planning team in producing more powerful and effective treatment plans. Research in progress using knowledge-based (AI) programming in treatment planning already has indicated the usefulness of such concepts as rule-based reasoning, hierarchical organization of knowledge, and reasoning from prototypes. Problems to be solved include how to handle continuously varying parameters and how to evaluate plans in order to direct improvements.
The development of an intelligent interface to a computational fluid dynamics flow-solver code
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
The development of an intelligent interface to a computational fluid dynamics flow-solver code
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
Lin, Yu-Hsiu; Hu, Yu-Chen
2018-04-27
The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved by 13.97%.
Deploying an Intelligent Pairing Assistant for Air Operation Centers
2016-06-23
primary contributions of this case study are applying artificial intelligence techniques to a novel domain and discussing the software evaluation...their standard workflows. The primary contributions of this case study are applying artificial intelligence techniques to a novel domain and...users for more efficient and accurate pairing? Participants Participants in the evaluation consisted of three SMEs employed at Intelligent Software
Intelligent user interface concept for space station
NASA Technical Reports Server (NTRS)
Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen
1986-01-01
The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.
Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel
2016-04-01
Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments.
ICCE/ICCAI 2000 Full & Short Papers (Artificial Intelligence in Education).
ERIC Educational Resources Information Center
2000
This document contains the full and short papers on artificial intelligence in education from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a computational model for learners' motivation states in individualized tutoring system; a…
Conversational Simulation in Computer-Assisted Language Learning: Potential and Reality.
ERIC Educational Resources Information Center
Coleman, D. Wells
1988-01-01
Addresses the potential of conversational simulations for computer-assisted language learning (CALL) and reasons why this potential is largely untapped. Topics discussed include artificial intelligence; microworlds; parsing; realism versus reality in computer software; intelligent tutoring systems; and criteria to clarify what kinds of CALL…
Janofsky, Jeffrey S
2006-01-01
Police interrogators routinely use deceptive techniques to obtain confessions from criminal suspects. The United States Executive Branch has attempted to justify coercive interrogation techniques in which physical or mental pain and suffering may be used during intelligence interrogations of persons labeled unlawful combatants. It may be appropriate for law enforcement, military, or intelligence personnel who are not physicians to use such techniques. However, forensic psychiatry ethical practice requires honesty, striving for objectivity, and respect for persons. Deceptive and coercive interrogation techniques violate these moral values. When a psychiatrist directly uses, works with others who use, or trains others to use deceptive or coercive techniques to obtain information in police, military, or intelligence interrogations, the psychiatrist breaches basic principles of ethics.
Metagram Software - A New Perspective on the Art of Computation.
1981-10-01
numober) Computer Programming Information and Analysis Metagramming Philosophy Intelligence Information Systefs Abstraction & Metasystems Metagranmming...control would also serve well in the analysis of military and political intelligence, and in other areas where highly abstract methods of thought serve...needed in intelligence because several levels of abstraction are involved in a political or military system, because analysis entails a complex interplay
Framework for Intelligent Teaching and Training Systems -- A Study of Systems
ERIC Educational Resources Information Center
Graf von Malotky, Nikolaj Troels; Martens, Alke
2016-01-01
Intelligent Tutoring System are state of the art in eLearning since the late 1980s. The earliest system have been developed in teams of psychologists and computer scientists, with the goal to investigate learning processes and, later on with the goal to intelligently support teaching and training with computers. Over the years, the eLearning hype…
Problem solving as intelligent retrieval from distributed knowledge sources
NASA Technical Reports Server (NTRS)
Chen, Zhengxin
1987-01-01
Distributed computing in intelligent systems is investigated from a different perspective. From the viewpoint that problem solving can be viewed as intelligent knowledge retrieval, the use of distributed knowledge sources in intelligent systems is proposed.
Advanced Software V&V for Civil Aviation and Autonomy
NASA Technical Reports Server (NTRS)
Brat, Guillaume P.
2017-01-01
With the advances in high-computing platform (e.g., advanced graphical processing units or multi-core processors), computationally-intensive software techniques such as the ones used in artificial intelligence or formal methods have provided us with an opportunity to further increase safety in the aviation industry. Some of these techniques have facilitated building safety at design time, like in aircraft engines or software verification and validation, and others can introduce safety benefits during operations as long as we adapt our processes. In this talk, I will present how NASA is taking advantage of these new software techniques to build in safety at design time through advanced software verification and validation, which can be applied earlier and earlier in the design life cycle and thus help also reduce the cost of aviation assurance. I will then show how run-time techniques (such as runtime assurance or data analytics) offer us a chance to catch even more complex problems, even in the face of changing and unpredictable environments. These new techniques will be extremely useful as our aviation systems become more complex and more autonomous.
NASA Astrophysics Data System (ADS)
Patankar, Manoj Shashikant
Federal Aviation Regulations require Aviation Maintenance Technicians (AMTs) to refer to approved maintenance manuals when performing maintenance on airworthy aircraft. Because these manuals are paper-based, larger the size of the aircraft, more cumbersome are the manuals. Federal Aviation Administration (FAA) recognized the difficulties associated with the use of large manuals and conducted studies on the use of electronic media as an alternative to the traditional paper format. However, these techniques do not employ any artificial intelligence technologies and the user interface is limited to either a keyboard or a stylus pen. The primary emphasis of this research was to design a generic framework that would allow future development of voice-activated, intelligent, and hypermedia-based aircraft maintenance manuals. A prototype (VIHAMS-Voice-activated, Intelligent, and Hypermedia-based Aircraft Maintenance System) was developed, as a secondary emphasis, using the design and development techniques that evolved from this research. An evolutionary software design approach was used to design the proposed framework and the structured rapid prototyping technique was used to produce the VIHAMS prototype. VoiceAssist by Creative Labs was used to provide the voice interface so that the users (AMTs) could keep their hands free to work on the aircraft while maintaining complete control over the computer through discrete voice commands. KnowledgePro for Windows sp{TM}, an expert system shell, provided "intelligence" to the prototype. As a result of this intelligence, the system provided expert guidance to the user. The core information contained in conventional manuals was available in a hypermedia format. The prototype's operating hardware included a notebook computer with a fully functional audio system. An external microphone and the built-in speaker served as the input and output devices (along with the color monitor), respectively. Federal Aviation Administration estimates the United States air carriers to operate 3,991 large jet aircraft in the year 1996 (FAA Aviation Forecasts, 1987-1998). With an estimate of seventy manuals per such aircraft, the development of intelligent manuals is expected to impact 279,370 manuals in this country. Soon, over 55 thousand maintenance technicians will be able to carry the seven pound system to an aircraft, use voice commands to access the aircraft's files on the system, seek assistance from the expert system to diagnose the fault, and obtain instructions on how to rectify the fault. The evolutionary design approach and the rapid prototyping techniques were very well suited for the spiral testing strategy. Therefore, this strategy was used to test the structural and functional validity of this research. Professors Darrell Anderson and Brian Stout (Aviation faculty at San Jose State University) and Mr. Gregory Shea (a United Airlines mechanic and SJSU student) are representatives of the real-world users of the final product. Therefore, they conducted the alpha test of this prototype. Mr. Daniel Neal and Mr. Stephen Harms have been actively involved in light aircraft maintenance for more than ten years. They evaluated the prototype's usability. All the above evaluators used standard testing tools and evaluated the prototype under field conditions. The evaluators concluded that the VIHAMS prototype used a valid fault diagnosis strategy, the system architecture could be used to develop similar systems using off-the-shelf tools, and the voice input system could be refined to improve its usability.
Simulation Framework for Intelligent Transportation Systems
DOT National Transportation Integrated Search
1996-10-01
A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System. The simulator is designed for running on parellel computers and distributed (networked) computer systems, but ca...
Recent developments of artificial intelligence in drying of fresh food: A review.
Sun, Qing; Zhang, Min; Mujumdar, Arun S
2018-03-01
Intellectualization is an important direction of drying development and artificial intelligence (AI) technologies have been widely used to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in different food drying technologies due to the advantages of self-learning ability, adaptive ability, strong fault tolerance and high degree robustness to map the nonlinear structures of arbitrarily complex and dynamic phenomena. This article presents a comprehensive review on intelligent drying technologies and their applications. The paper starts with the introduction of basic theoretical knowledge of ANN, fuzzy logic and expert system. Then, we summarize the AI application of modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products in artificial biomimetic technology (electronic nose, computer vision) and different conventional drying technologies. Furthermore, opportunities and limitations of AI technique in drying are also outlined to provide more ideas for researchers in this area.
Creativity in Education: A Standard for Computer-Based Teaching.
ERIC Educational Resources Information Center
Schank, Roger C.; Farrell, Robert
1988-01-01
Discussion of the potential of computers in education focuses on the need for experiential learning and developing creativity in students. Learning processes are explained in light of artificial intelligence research, problems with current uses of computers in education are discussed, and possible solutions using intelligent simulation software…
Intelligence Fusion Modeling. A Proposed Approach.
1983-09-16
based techniques developed by artificial intelligence researchers. This paper describes the application of these techniques in the modeling of an... intelligence requirements, although the methods presented are applicable . We treat PIR/IR as given. -7- -- -W V"W v* 1.- . :71.,v It k*~ ~-- Movement...items from the PIR/IR/HVT decomposition are received from the CMDS. Formatted tactical intelligence reports are received from sensors of like types
A design philosophy for multi-layer neural networks with applications to robot control
NASA Technical Reports Server (NTRS)
Vadiee, Nader; Jamshidi, MO
1989-01-01
A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.
Design of a robotic vehicle with self-contained intelligent wheels
NASA Astrophysics Data System (ADS)
Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.
1998-08-01
The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.
A Workshop on the Gathering of Information for Problem Formulation
1991-06-01
the Al specialists is to design "artificially intelligent" computer environments that tutor students in much the same way that a human teacher might...tuning the interface betweeen student and machine, and are using a technique of in situ development to tune the system towaid realistic user needs. 141...of transferability to new domains, while the latter suffers from extreme fragility: the inability to cope with any input not strictly conforming with
NASA Astrophysics Data System (ADS)
Gross, John E.; Minato, Rick; Smith, David M.; Loftin, R. B.; Savely, Robert T.
1991-10-01
AI techniques are shown to have been useful in such aerospace industry tasks as vehicle configuration layouts, process planning, tool design, numerically-controlled programming of tools, production scheduling, and equipment testing and diagnosis. Accounts are given of illustrative experiences at the production facilities of three major aerospace defense contractors. Also discussed is NASA's autonomous Intelligent Computer-Aided Training System, for such ambitious manned programs as Space Station Freedom, which employs five different modules to constitute its job-independent training architecture.
Sniecinski, Irena; Seghatchian, Jerard
2018-05-09
Artificial Intelligence (AI) reflects the intelligence exhibited by machines and software. It is a highly desirable academic field of many current fields of studies. Leading AI researchers describe the field as "the study and design of intelligent agents". McCarthy invented this term in 1955 and defined it as "the science and engineering of making intelligent machines". The central goals of AI research are reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. In fact the multidisplinary AI field is considered to be rather interdisciplinary covering numerous number of sciences and professions, including computer science, psychology, linguistics, philosophy and neurosciences. The field was founded on the claim that a central intellectual property of humans, intelligence-the sapience of Homo Sapiens "can be so precisely described that a machine can be made to simulate it". This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence. Artificial Intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. The goal of this narrative is to review the potential use of AI approaches and their integration into pediatric cellular therapies and regenerative medicine. Emphasis is placed on recognition and application of AI techniques in the development of predictive models for personalized treatments with engineered stem cells, immune cells and regenerated tissues in adults and children. These intelligent machines could dissect the whole genome and isolate the immune particularities of individual patient's disease in a matter of minutes and create the treatment that is customized to patient's genetic specificity and immune system capability. AI techniques could be used for optimization of clinical trials of innovative stem cell and gene therapies in pediatric patients by precise planning of treatments, predicting clinical outcomes, simplifying recruitment and retention of patients, learning from input data and applying to new data, thus lowering their complexity and costs. Complementing human intelligence with machine intelligence could have an exponentially high impact on continual progress in many fields of pediatrics. However how long before we could see the real impact still remains the big question. The most pertinent question that remains to be answered therefore, is can AI effectively and accurately predict properties of newer DDR strategies? The goal of this article is to review the use of AI method for cellular therapy and regenerative medicine and emphasize its potential to further the progress in these fields of medicine. Copyright © 2018. Published by Elsevier Ltd.
Computing architecture for autonomous microgrids
Goldsmith, Steven Y.
2015-09-29
A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .
The coming technological singularity: How to survive in the post-human era
NASA Technical Reports Server (NTRS)
Vinge, Vernor
1993-01-01
The acceleration of technological progress has been the central feature of this century. I argue in this paper that we are on the edge of change comparable to the rise of human life on Earth. The precise cause of this change is the imminent creation by technology of entities with greater than human intelligence. There are several means by which science may achieve this breakthrough (and this is another reason for having confidence that the event will occur): (1) the development of computers that are 'awake' and superhumanly intelligent (to date, most controversy in the area of AI relates to whether we can create human equivalence in a machine. But if the answer is 'yes, we can', then there is little doubt that beings more intelligent can be constructed shortly thereafter); (2) large computer networks (and their associated users) may 'wake up' as a superhumanly intelligent entity; (3) computer/human interfaces may become so intimate that users may reasonably be considered superhumanly intelligent; and (4) biological science may find ways to improve upon the natural human intellect. The first three possibilities depend in large part on improvements in computer hardware. Progress in computer hardware has followed an amazingly steady curve in the last few decades. Based largely on this trend, I believe that the creation of greater than human intelligence will occur during the next thirty years.
77 FR 27202 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... includes: Electronic Warfare Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and Identifications (C4I/CNI), Autonomic Logistics Global Support System (ALGS... Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and...
Investigating AI with Basic and Logo. Teaching Your Computer to Be Intelligent.
ERIC Educational Resources Information Center
Mandell, Alan; Lucking, Robert
1988-01-01
Discusses artificial intelligence, its definitions, and potential applications. Provides listings of Logo and BASIC versions for programs along with REM statements needed to make modifications for use with Apple computers. (RT)
ERIC Educational Resources Information Center
Barrett, John, Ed.; Hedberg, John, Ed.
The 63 papers in this collection include two keynote addresses: "Patient Simulation Using Interactive Video: An Application" (Joseph V. Henderson), and "Intelligent Tutoring Systems: Practice Opportunities and Explanatory Models" (Alan Lesgold). The remaining papers are grouped under five topics: (1) Artificial Intelligence,…
1983-09-01
Report Al-TR-346. Artifcial Intelligence Laboratory, Mamachusetts Institute of Tech- niugy. Cambridge, Mmeh mett. June 19 [G.usmn@ A. Gaman-Arenas...Testbed Coordinator, 415/859-4395 Artificial Intelligence Center Computer Science and Technology Division Prepared for: Defense Advanced Research...to support processing of aerial photographs for such military applications as cartography, Intelligence , weapon guidance, and targeting. A key
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
Cloud Computing Boosts Business Intelligence of Telecommunication Industry
NASA Astrophysics Data System (ADS)
Xu, Meng; Gao, Dan; Deng, Chao; Luo, Zhiguo; Sun, Shaoling
Business Intelligence becomes an attracting topic in today's data intensive applications, especially in telecommunication industry. Meanwhile, Cloud Computing providing IT supporting Infrastructure with excellent scalability, large scale storage, and high performance becomes an effective way to implement parallel data processing and data mining algorithms. BC-PDM (Big Cloud based Parallel Data Miner) is a new MapReduce based parallel data mining platform developed by CMRI (China Mobile Research Institute) to fit the urgent requirements of business intelligence in telecommunication industry. In this paper, the architecture, functionality and performance of BC-PDM are presented, together with the experimental evaluation and case studies of its applications. The evaluation result demonstrates both the usability and the cost-effectiveness of Cloud Computing based Business Intelligence system in applications of telecommunication industry.
Sousa, F S; Hummel, A D; Maciel, R F; Cohrs, F M; Falcão, A E J; Teixeira, F; Baptista, R; Mancini, F; da Costa, T M; Alves, D; Pisa, I T
2011-05-01
The replacement of defective organs with healthy ones is an old problem, but only a few years ago was this issue put into practice. Improvements in the whole transplantation process have been increasingly important in clinical practice. In this context are clinical decision support systems (CDSSs), which have reflected a significant amount of work to use mathematical and intelligent techniques. The aim of this article was to present consideration of intelligent techniques used in recent years (2009 and 2010) to analyze organ transplant databases. To this end, we performed a search of the PubMed and Institute for Scientific Information (ISI) Web of Knowledge databases to find articles published in 2009 and 2010 about intelligent techniques applied to transplantation databases. Among 69 retrieved articles, we chose according to inclusion and exclusion criteria. The main techniques were: Artificial Neural Networks (ANN), Logistic Regression (LR), Decision Trees (DT), Markov Models (MM), and Bayesian Networks (BN). Most articles used ANN. Some publications described comparisons between techniques or the use of various techniques together. The use of intelligent techniques to extract knowledge from databases of healthcare is increasingly common. Although authors preferred to use ANN, statistical techniques were equally effective for this enterprise. Copyright © 2011 Elsevier Inc. All rights reserved.
Decision making and problem solving with computer assistance
NASA Technical Reports Server (NTRS)
Kraiss, F.
1980-01-01
In modern guidance and control systems, the human as manager, supervisor, decision maker, problem solver and trouble shooter, often has to cope with a marginal mental workload. To improve this situation, computers should be used to reduce the operator from mental stress. This should not solely be done by increased automation, but by a reasonable sharing of tasks in a human-computer team, where the computer supports the human intelligence. Recent developments in this area are summarized. It is shown that interactive support of operator by intelligent computer is feasible during information evaluation, decision making and problem solving. The applied artificial intelligence algorithms comprehend pattern recognition and classification, adaptation and machine learning as well as dynamic and heuristic programming. Elementary examples are presented to explain basic principles.
Prospective EFL Teachers' Emotional Intelligence and Tablet Computer Use and Literacy
ERIC Educational Resources Information Center
Herguner, Sinem
2017-01-01
The aim of this study was to investigate whether there is a relationship between tablet computer use and literacy, and emotional intelligence of prospective English language teachers. The study used a survey approach. In the study, "Prospective Teachers Tablet Computer Use and Literacy Scale" and an adapted and translated version into…
ERIC Educational Resources Information Center
Dede, Christopher J.; And Others
The first of five sections in this report places intelligent computer-assisted instruction (ICAI) in its historical context through discussions of traditional computer-assisted instruction (CAI) linear and branching programs; TICCIT and PLATO IV, two CAI demonstration projects funded by the National Science Foundation; generative programs, the…
Employing Textual and Facial Emotion Recognition to Design an Affective Tutoring System
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Wang, Cheng-Hung; Chao, Ching-Ju; Chien, Ming-Kuan
2012-01-01
Emotional expression in Artificial Intelligence has gained lots of attention in recent years, people applied its affective computing not only in enhancing and realizing the interaction between computers and human, it also makes computer more humane. In this study, emotional expressions were applied into intelligent tutoring system, where learners'…
Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)
NASA Astrophysics Data System (ADS)
Blasch, Erik
2015-06-01
Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.
Design of on-board parallel computer on nano-satellite
NASA Astrophysics Data System (ADS)
You, Zheng; Tian, Hexiang; Yu, Shijie; Meng, Li
2007-11-01
This paper provides one scheme of the on-board parallel computer system designed for the Nano-satellite. Based on the development request that the Nano-satellite should have a small volume, low weight, low power cost, and intelligence, this scheme gets rid of the traditional one-computer system and dual-computer system with endeavor to improve the dependability, capability and intelligence simultaneously. According to the method of integration design, it employs the parallel computer system with shared memory as the main structure, connects the telemetric system, attitude control system, and the payload system by the intelligent bus, designs the management which can deal with the static tasks and dynamic task-scheduling, protect and recover the on-site status and so forth in light of the parallel algorithms, and establishes the fault diagnosis, restoration and system restructure mechanism. It accomplishes an on-board parallel computer system with high dependability, capability and intelligence, a flexible management on hardware resources, an excellent software system, and a high ability in extension, which satisfies with the conception and the tendency of the integration electronic design sufficiently.
NASA Astrophysics Data System (ADS)
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-07-01
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology. Electronic supplementary information (ESI) available: Additional figures (Table S1, Fig. S1-S5). See DOI: 10.1039/c4nr01676a
Spike: Artificial intelligence scheduling for Hubble space telescope
NASA Technical Reports Server (NTRS)
Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert
1990-01-01
Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.
A Decade of Neural Networks: Practical Applications and Prospects
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.
1994-01-01
The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization.
Solving subsurface structural problems using a computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.M.
1987-02-01
Until recently, the solution of subsurface structural problems has required a combination of graphical construction, trigonometry, time, and patience. Recent advances in software available for both mainframe and microcomputers now reduce the time and potential error of these calculations by an order of magnitude. Software for analysis of deviated wells, three point problems, apparent dip, apparent thickness, and the intersection of two planes, as well as the plotting and interpretation of these data can be used to allow timely and accurate exploration or operational decisions. The available computer software provides a set of utilities, or tools, rather than a comprehensive,more » intelligent system. The burden for selection of appropriate techniques, computation methods, and interpretations still lies with the explorationist user.« less
A path-oriented matrix-based knowledge representation system
NASA Technical Reports Server (NTRS)
Feyock, Stefan; Karamouzis, Stamos T.
1993-01-01
Experience has shown that designing a good representation is often the key to turning hard problems into simple ones. Most AI (Artificial Intelligence) search/representation techniques are oriented toward an infinite domain of objects and arbitrary relations among them. In reality much of what needs to be represented in AI can be expressed using a finite domain and unary or binary predicates. Well-known vector- and matrix-based representations can efficiently represent finite domains and unary/binary predicates, and allow effective extraction of path information by generalized transitive closure/path matrix computations. In order to avoid space limitations a set of abstract sparse matrix data types was developed along with a set of operations on them. This representation forms the basis of an intelligent information system for representing and manipulating relational data.
Artificial intelligence for multi-mission planetary operations
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Lawson, Denise L.; James, Mark L.
1990-01-01
A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.
Cooperative analysis expert situation assessment research
NASA Technical Reports Server (NTRS)
Mccown, Michael G.
1987-01-01
For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.
An Intelligent Pictorial Information System
NASA Astrophysics Data System (ADS)
Lee, Edward T.; Chang, B.
1987-05-01
In examining the history of computer application, we discover that early computer systems were developed primarily for applications related to scientific computation, as in weather prediction, aerospace applications, and nuclear physics applications. At this stage, the computer system served as a big calculator to perform, in the main, manipulation of numbers. Then it was found that computer systems could also be used for business applications, information storage and retrieval, word processing, and report generation. The history of computer application is summarized in Table I. The complexity of pictures makes picture processing much more difficult than number and alphanumerical processing. Therefore, new techniques, new algorithms, and above all, new pictorial knowledge, [1] are needed to overcome the limitatins of existing computer systems. New frontiers in designing computer systems are the ways to handle the representation,[2,3] classification, manipulation, processing, storage, and retrieval of pictures. Especially, the ways to deal with similarity measures and the meaning of the word "approximate" and the phrase "approximate reasoning" are an important and an indispensable part of an intelligent pictorial information system. [4,5] The main objective of this paper is to investigate the mathematical foundation for the effective organization and efficient retrieval of pictures in similarity-directed pictorial databases, [6] based on similarity retrieval techniques [7] and fuzzy languages [8]. The main advantage of this approach is that similar pictures are stored logically close to each other by using quantitative similarity measures. Thus, for answering queries, the amount of picture data needed to be searched can be reduced and the retrieval time can be improved. In addition, in a pictorial database, very often it is desired to find pictures (or feature vectors, histograms, etc.) that are most similar to or most dissimilar [9] to a test picture (or feature vector). Using similarity measures, one can not only store similar pictures logically or physically close to each other in order to improve retrieval or updating efficiency, one can also use such similarity measures to answer fuzzy queries involving nonexact retrieval conditions. In this paper, similarity directed pictorial databases involving geometric figures, chromosome images, [10] leukocyte images, cardiomyopathy images, and satellite images [11] are presented as illustrative examples.
Special Issue on Expert Systems for Department of Defense Training.
ERIC Educational Resources Information Center
Ahlers, Robert H., Ed.; And Others
1986-01-01
Features articles on topics related to use of expert systems for training: machine intelligence effectiveness in military systems applications; automated maneuvering board training system; intelligent tutoring system for electronic troubleshooting; technology development for intelligent maintenance advisors; design of intelligent computer assisted…
Artificial Intelligence--Applications in Education.
ERIC Educational Resources Information Center
Poirot, James L.; Norris, Cathleen A.
1987-01-01
This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…
A comparison of algorithms for inference and learning in probabilistic graphical models.
Frey, Brendan J; Jojic, Nebojsa
2005-09-01
Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Artificial Intelligence for Diabetes Management and Decision Support: Literature Review.
Contreras, Ivan; Vehi, Josep
2018-05-30
Artificial intelligence methods in combination with the latest technologies, including medical devices, mobile computing, and sensor technologies, have the potential to enable the creation and delivery of better management services to deal with chronic diseases. One of the most lethal and prevalent chronic diseases is diabetes mellitus, which is characterized by dysfunction of glucose homeostasis. The objective of this paper is to review recent efforts to use artificial intelligence techniques to assist in the management of diabetes, along with the associated challenges. A review of the literature was conducted using PubMed and related bibliographic resources. Analyses of the literature from 2010 to 2018 yielded 1849 pertinent articles, of which we selected 141 for detailed review. We propose a functional taxonomy for diabetes management and artificial intelligence. Additionally, a detailed analysis of each subject category was performed using related key outcomes. This approach revealed that the experiments and studies reviewed yielded encouraging results. We obtained evidence of an acceleration of research activity aimed at developing artificial intelligence-powered tools for prediction and prevention of complications associated with diabetes. Our results indicate that artificial intelligence methods are being progressively established as suitable for use in clinical daily practice, as well as for the self-management of diabetes. Consequently, these methods provide powerful tools for improving patients' quality of life. ©Ivan Contreras, Josep Vehi. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.05.2018.
Computer-Controlled System for Plasma Ion Energy Auto-Analyzer
NASA Astrophysics Data System (ADS)
Wu, Xian-qiu; Chen, Jun-fang; Jiang, Zhen-mei; Zhong, Qing-hua; Xiong, Yu-ying; Wu, Kai-hua
2003-02-01
A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by Lab VIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provides important parameters of plasma process techniques based on semiconductor devices and microelectronics.
Computer aided system for parametric design of combination die
NASA Astrophysics Data System (ADS)
Naranje, Vishal G.; Hussein, H. M. A.; Kumar, S.
2017-09-01
In this paper, a computer aided system for parametric design of combination dies is presented. The system is developed using knowledge based system technique of artificial intelligence. The system is capable to design combination dies for production of sheet metal parts having punching and cupping operations. The system is coded in Visual Basic and interfaced with AutoCAD software. The low cost of the proposed system will help die designers of small and medium scale sheet metal industries for design of combination dies for similar type of products. The proposed system is capable to reduce design time and efforts of die designers for design of combination dies.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.
1991-01-01
Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.
Plan Recognition and Discourse Analysis: An Integrated Approach for Understanding Dialogues.
1985-01-01
S~ 11 The data analysis also indicates what kinds of knowledge an intelligent computer system will need to understand such dialogues. As Grosz [371...Abbreviations: AAAI: Proceedings of the National Conference on Artifcial Intelligence ACL: Proceedings of the Annual Meeting of the Association for Computational...for Default Reasoning, Artifcial Intelligence 13. (1980). 81-132. 79. E. D, Sacerdod. Planning in a Hierarchy of Abstraction Spaces. Artificial
Computational intelligence techniques for biological data mining: An overview
NASA Astrophysics Data System (ADS)
Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari
2014-10-01
Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.
What Does Neuroscience and Cognitive Psychology Tell Us about Multiple Intelligence
ERIC Educational Resources Information Center
Bauer, Richard H.
2009-01-01
Studies that have used noninvasive brain imaging techniques to record neocortical activity while individuals were performing cognitive intelligence tests (traditional intelligence) and social intelligence tests were reviewed. In cognitive intelligence tests 16 neocortical areas were active, whereas in social intelligence 10 areas were active.…
Wolff, J Gerard
2014-01-01
The SP theory of intelligence aims to simplify and integrate concepts in computing and cognition, with information compression as a unifying theme. This article is about how the SP theory may, with advantage, be applied to the understanding of natural vision and the development of computer vision. Potential benefits include an overall simplification of concepts in a universal framework for knowledge and seamless integration of vision with other sensory modalities and other aspects of intelligence. Low level perceptual features such as edges or corners may be identified by the extraction of redundancy in uniform areas in the manner of the run-length encoding technique for information compression. The concept of multiple alignment in the SP theory may be applied to the recognition of objects, and to scene analysis, with a hierarchy of parts and sub-parts, at multiple levels of abstraction, and with family-resemblance or polythetic categories. The theory has potential for the unsupervised learning of visual objects and classes of objects, and suggests how coherent concepts may be derived from fragments. As in natural vision, both recognition and learning in the SP system are robust in the face of errors of omission, commission and substitution. The theory suggests how, via vision, we may piece together a knowledge of the three-dimensional structure of objects and of our environment, it provides an account of how we may see things that are not objectively present in an image, how we may recognise something despite variations in the size of its retinal image, and how raster graphics and vector graphics may be unified. And it has things to say about the phenomena of lightness constancy and colour constancy, the role of context in recognition, ambiguities in visual perception, and the integration of vision with other senses and other aspects of intelligence.
Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.
2008-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616
Artificial Intelligence Applications to High-Technology Training.
ERIC Educational Resources Information Center
Dede, Christopher
1987-01-01
Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…
NASA Technical Reports Server (NTRS)
Heath, Bruce E.
2007-01-01
One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot perfolmance similar to that of a CFI. The 'intelligent' flight sinlulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the sinlulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reposts on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight sinlulator and the robustness and accuracy of calculated perfornlance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.
Artificial Intelligence and Its Importance in Education.
ERIC Educational Resources Information Center
Tilmann, Martha J.
Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…
Velocity and Structure Estimation of a Moving Object Using a Moving Monocular Camera
2006-01-01
map the Euclidean position of static landmarks or visual features in the environment . Recent applications of this technique include aerial...From Motion in a Piecewise Planar Environment ,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, No. 3, pp. 485-508...1988. [9] J. M. Ferryman, S. J. Maybank , and A. D. Worrall, “Visual Surveil- lance for Moving Vehicles,” Intl. Journal of Computer Vision, Vol. 37, No
'Designing Ambient Interactions - Pervasive Ergonomic Interfaces for Ageing Well' (DAI'10)
NASA Astrophysics Data System (ADS)
Geven, Arjan; Prost, Sebastian; Tscheligi, Manfred; Soldatos, John; Gonzalez, Mari Feli
The workshop will focus on novel computer based interaction mechanisms and interfaces, which boost natural interactivity and obviate the need for conventional tedious interfaces. Such interfaces are increasingly used in ambient intelligence environments and related applications, including application boosting elderly cognitive support, cognitive rehabilitation and Ambient Assisted Living (AAL). The aim of the workshop is to provide insights on the technological underpinnings of such interfaces, along with tools and techniques for their design and evaluation.
First Trimester Noninvasive Prenatal Diagnosis: A Computational Intelligence Approach.
Neocleous, Andreas C; Nicolaides, Kypros H; Schizas, Christos N
2016-09-01
The objective of this study is to examine the potential value of using machine learning techniques such as artificial neural network (ANN) schemes for the noninvasive estimation, at 11-13 weeks of gestation, the risk for euploidy, trisomy 21 (T21), and other chromosomal aneuploidies (O.C.A.), from suitable sonographic, biochemical markers, and other relevant data. A database(1) (1)The dataset can become available for academic purposes by communicating directly with the authors.
Intelligent Scene Analysis and Recognition
2010-03-30
Database, 1998, pp. 42–51. [9] I. Biederman , Aspects and extension of a theory of human image understanding, Z. Pylyshyn, Ed. Ablex Publishing Corporation...geometry in the visual system,” Biological Cybernetics, vol. 55, no. 6, pp. 367–375, 1987 . [30] W. T. Freeman and E. H. Adelson, “The design and use of...Computer Vision and Pattern Recognition, 2009, pp. 1980– 1987 . [47] M. Leordeanu and M. Hebert, “A spectral technique for correspondence problems using
MESA: An Interactive Modeling and Simulation Environment for Intelligent Systems Automation
NASA Technical Reports Server (NTRS)
Charest, Leonard
1994-01-01
This report describes MESA, a software environment for creating applications that automate NASA mission opterations. MESA enables intelligent automation by utilizing model-based reasoning techniques developed in the field of Artificial Intelligence. Model-based reasoning techniques are realized in Mesa through native support of causal modeling and discrete event simulation.
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry
1991-01-01
A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.
Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Bandari, Esfandiar; Tumer, Kagan
2001-01-01
The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains.
Alexandre Teixeira, César; Direito, Bruno; Bandarabadi, Mojtaba; Le Van Quyen, Michel; Valderrama, Mario; Schelter, Bjoern; Schulze-Bonhage, Andreas; Navarro, Vincent; Sales, Francisco; Dourado, António
2014-05-01
The ability of computational intelligence methods to predict epileptic seizures is evaluated in long-term EEG recordings of 278 patients suffering from pharmaco-resistant partial epilepsy, also known as refractory epilepsy. This extensive study in seizure prediction considers the 278 patients from the European Epilepsy Database, collected in three epilepsy centres: Hôpital Pitié-là-Salpêtrière, Paris, France; Universitätsklinikum Freiburg, Germany; Centro Hospitalar e Universitário de Coimbra, Portugal. For a considerable number of patients it was possible to find a patient specific predictor with an acceptable performance, as for example predictors that anticipate at least half of the seizures with a rate of false alarms of no more than 1 in 6 h (0.15 h⁻¹). We observed that the epileptic focus localization, data sampling frequency, testing duration, number of seizures in testing, type of machine learning, and preictal time influence significantly the prediction performance. The results allow to face optimistically the feasibility of a patient specific prospective alarming system, based on machine learning techniques by considering the combination of several univariate (single-channel) electroencephalogram features. We envisage that this work will serve as benchmark data that will be of valuable importance for future studies based on the European Epilepsy Database. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Heift, Trude; Schulze, Mathias
2012-01-01
This book provides the first comprehensive overview of theoretical issues, historical developments and current trends in ICALL (Intelligent Computer-Assisted Language Learning). It assumes a basic familiarity with Second Language Acquisition (SLA) theory and teaching, CALL and linguistics. It is of interest to upper undergraduate and/or graduate…
Use of artificial intelligence in analytical systems for the clinical laboratory
Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul
1995-01-01
The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784
NASA Astrophysics Data System (ADS)
Clay, London; Menger, Karl; Rota, Gian-Carlo; Euclid, Alexandria; Siegel, Edward
P ≠NP MP proof is by computer-''science''/SEANCE(!!!)(CS) computational-''intelligence'' lingo jargonial-obfuscation(JO) NATURAL-Intelligence(NI) DISambiguation! CS P =(?) =NP MEANS (Deterministic)(PC) = (?) =(Non-D)(PC) i.e. D(P) =(?) = N(P). For inclusion(equality) vs. exclusion (inequality) irrelevant (P) simply cancels!!! (Equally any/all other CCs IF both sides identical). Crucial question left: (D) =(?) =(ND), i.e. D =(?) = N. Algorithmics[Sipser[Intro. Thy.Comp.(`97)-p.49Fig.1.15!!!
Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems
Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.
2014-01-01
The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545
Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad
2018-05-01
The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.
A prototype system for perinatal knowledge engineering using an artificial intelligence tool.
Sokol, R J; Chik, L
1988-01-01
Though several perinatal expert systems are extant, the use of artificial intelligence has, as yet, had minimal impact in medical computing. In this evaluation of the potential of AI techniques in the development of a computer based "Perinatal Consultant," a "top down" approach to the development of a perinatal knowledge base was taken, using as a source for such a knowledge base a 30-page manuscript of a chapter concerning high risk pregnancy. The UNIX utility "style" was used to parse sentences and obtain key words and phrases, both as part of a natural language interface and to identify key perinatal concepts. Compared with the "gold standard" of sentences containing key facts as chosen by the experts, a semiautomated method using a nonmedical speller to identify key words and phrases in context functioned with a sensitivity of 79%, i.e., approximately 8 in 10 key sentences were detected as the basis for PROLOG, rules and facts for the knowledge base. These encouraging results suggest that functional perinatal expert systems may well be expedited by using programming utilities in conjunction with AI tools and published literature.
Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft
NASA Technical Reports Server (NTRS)
McManus, John W.; Goodrich, Kenneth H.
1990-01-01
A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.
Artificial Intelligence Techniques: Applications for Courseware Development.
ERIC Educational Resources Information Center
Dear, Brian L.
1986-01-01
Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…
ERIC Educational Resources Information Center
Bergeron, Pierrette; Hiller, Christine A.
2002-01-01
Reviews the evolution of competitive intelligence since 1994, including terminology and definitions and analytical techniques. Addresses the issue of ethics; explores how information technology supports the competitive intelligence process; and discusses education and training opportunities for competitive intelligence, including core competencies…
Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.
ERIC Educational Resources Information Center
Haier, Richard J.; And Others
1992-01-01
A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)
ERIC Educational Resources Information Center
Yaratan, Huseyin
2003-01-01
An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…
Educational Assessment Using Intelligent Systems. Research Report. ETS RR-08-68
ERIC Educational Resources Information Center
Shute, Valerie J.; Zapata-Rivera, Diego
2008-01-01
Recent advances in educational assessment, cognitive science, and artificial intelligence have made it possible to integrate valid assessment and instruction in the form of modern computer-based intelligent systems. These intelligent systems leverage assessment information that is gathered from various sources (e.g., summative and formative). This…
ERIC Educational Resources Information Center
Hassani, Kaveh; Nahvi, Ali; Ahmadi, Ali
2016-01-01
In this paper, we present an intelligent architecture, called intelligent virtual environment for language learning, with embedded pedagogical agents for improving listening and speaking skills of non-native English language learners. The proposed architecture integrates virtual environments into the Intelligent Computer-Assisted Language…
ERIC Educational Resources Information Center
Leibbrandt, Richard; Yang, Dongqiang; Pfitzner, Darius; Powers, David; Mitchell, Pru; Hayman, Sarah; Eddy, Helen
2010-01-01
This paper reports on a joint proof of concept project undertaken by researchers from the Flinders University Artificial Intelligence Laboratory in partnership with information managers from the Education Network Australia (edna) team at Education Services Australia to address the question of whether artificial intelligence techniques could be…
An intelligent multi-media human-computer dialogue system
NASA Technical Reports Server (NTRS)
Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.
1988-01-01
Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.
The Modeling of Human Intelligence in the Computer as Demonstrated in the Game of DIPLOMAT.
ERIC Educational Resources Information Center
Collins, James Edward; Paulsen, Thomas Dean
An attempt was made to develop human-like behavior in the computer. A theory of the human learning process was described. A computer game was presented which simulated the human capabilities of reasoning and learning. The program was required to make intelligent decisions based on past experiences and critical analysis of the present situation.…
DISCRN: A Distributed Storytelling Framework for Intelligence Analysis.
Shukla, Manu; Dos Santos, Raimundo; Chen, Feng; Lu, Chang-Tien
2017-09-01
Storytelling connects entities (people, organizations) using their observed relationships to establish meaningful storylines. This can be extended to spatiotemporal storytelling that incorporates locations, time, and graph computations to enhance coherence and meaning. But when performed sequentially these computations become a bottleneck because the massive number of entities make space and time complexity untenable. This article presents DISCRN, or distributed spatiotemporal ConceptSearch-based storytelling, a distributed framework for performing spatiotemporal storytelling. The framework extracts entities from microblogs and event data, and links these entities using a novel ConceptSearch to derive storylines in a distributed fashion utilizing key-value pair paradigm. Performing these operations at scale allows deeper and broader analysis of storylines. The novel parallelization techniques speed up the generation and filtering of storylines on massive datasets. Experiments with microblog posts such as Twitter data and Global Database of Events, Language, and Tone events show the efficiency of the techniques in DISCRN.
Ni, Qin; Patterson, Timothy; Cleland, Ian; Nugent, Chris
2016-08-01
Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
The Society of Brains: How Alan Turing and Marvin Minsky Were Both Right
NASA Astrophysics Data System (ADS)
Struzik, Zbigniew R.
2015-04-01
In his well-known prediction, Alan Turing stated that computer intelligence would surpass human intelligence by the year 2000. Although the Turing Test, as it became known, was devised to be played by one human against one computer, this is not a fair setup. Every human is a part of a social network, and a fairer comparison would be a contest between one human at the console and a network of computers behind the console. Around the year 2000, the number of web pages on the WWW overtook the number of neurons in the human brain. But these websites would be of little use without the ability to search for knowledge. By the year 2000 Google Inc. had become the search engine of choice, and the WWW became an intelligent entity. This was not without good reason. The basis for the search engine was the analysis of the ’network of knowledge’. The PageRank algorithm, linking information on the web according to the hierarchy of ‘link popularity’, continues to provide the basis for all of Google's web search tools. While PageRank was developed by Larry Page and Sergey Brin in 1996 as part of a research project about a new kind of search engine, PageRank is in its essence the key to representing and using static knowledge in an emergent intelligent system. Here I argue that Alan Turing was right, as hybrid human-computer internet machines have already surpassed our individual intelligence - this was done around the year 2000 by the Internet - the socially-minded, human-computer hybrid Homo computabilis-socialis. Ironically, the Internet's intelligence also emerged to a large extent from ‘exploiting’ humans - the key to the emergence of machine intelligence has been discussed by Marvin Minsky in his work on the foundations of intelligence through interacting agents’ knowledge. As a consequence, a decade and a half decade into the 21st century, we appear to be much better equipped to tackle the problem of the social origins of humanity - in particular thanks to the power of the intelligent partner-in-the-quest machine, however, we should not wait too long...
Space communications scheduler: A rule-based approach to adaptive deadline scheduling
NASA Technical Reports Server (NTRS)
Straguzzi, Nicholas
1990-01-01
Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.
Potential of Cognitive Computing and Cognitive Systems
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2015-01-01
Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp
1983-09-01
AD-Ali33 592 ARTIFICIAL INTELLIGENCE: AN ANALYSIS OF POTENTIAL 1/1 APPLICATIONS TO TRAININ..(U) DENVER RESEARCH INST CO JRICHARDSON SEP 83 AFHRL-TP...83-28 b ’ 3 - 4. TITLE (aied Suhkie) 5. TYPE OF REPORT & PERIOD COVERED ARTIFICIAL INTEL11GENCE: AN ANALYSIS OF Interim POTENTIAL APPLICATIONS TO...8217 sde if neceseamy end ides*f by black naumber) artificial intelligence military research * computer-aided diagnosis performance tests computer
A framework for development of an intelligent system for design and manufacturing of stamping dies
NASA Astrophysics Data System (ADS)
Hussein, H. M. A.; Kumar, S.
2014-07-01
An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.
The Scharff-technique: eliciting intelligence from human sources.
Oleszkiewicz, Simon; Granhag, Pär Anders; Montecinos, Sebastian Cancino
2014-10-01
This study is on how to elicit intelligence from human sources. We compared the efficacy of two human intelligence gathering techniques: the Scharff-technique (conceptualized as four different tactics) and the Direct Approach (a combination of open and direct questions). Participants (N = 60) were asked to take on the role of "sources" and were given information about a planned terrorist attack. They were to reveal part of this information in an upcoming interview. Critically, the participants were instructed to strike a balance between not revealing too much or too little information. As predicted, the participants revealed significantly more, and more precise, new information when interviewed with the Scharff-technique (vs. the Direct Approach). Furthermore, and as predicted, the participants in the Scharff condition underestimated how much new information they revealed whereas the participants in the Direct Approach overestimated how much new information they revealed. The study provides rather strong support for the Scharff-technique as an effective human intelligence gathering technique. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Planning Complex Projects Automatically
NASA Technical Reports Server (NTRS)
Henke, Andrea L.; Stottler, Richard H.; Maher, Timothy P.
1995-01-01
Automated Manifest Planner (AMP) computer program applies combination of artificial-intelligence techniques to assist both expert and novice planners, reducing planning time by orders of magnitude. Gives planners flexibility to modify plans and constraints easily, without need for programming expertise. Developed specifically for planning space shuttle missions 5 to 10 years ahead, with modifications, applicable in general to planning other complex projects requiring scheduling of activities depending on other activities and/or timely allocation of resources. Adaptable to variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction.
NASA Astrophysics Data System (ADS)
Proux, Denys; Segond, Frédérique; Gerbier, Solweig; Metzger, Marie Hélène
Hospital Acquired Infections (HAI) is a real burden for doctors and risk surveillance experts. The impact on patients' health and related healthcare cost is very significant and a major concern even for rich countries. Furthermore required data to evaluate the threat is generally not available to experts and that prevents from fast reaction. However, recent advances in Computational Intelligence Techniques such as Information Extraction, Risk Patterns Detection in documents and Decision Support Systems allow now to address this problem.
Retail video analytics: an overview and survey
NASA Astrophysics Data System (ADS)
Connell, Jonathan; Fan, Quanfu; Gabbur, Prasad; Haas, Norman; Pankanti, Sharath; Trinh, Hoang
2013-03-01
Today retail video analytics has gone beyond the traditional domain of security and loss prevention by providing retailers insightful business intelligence such as store traffic statistics and queue data. Such information allows for enhanced customer experience, optimized store performance, reduced operational costs, and ultimately higher profitability. This paper gives an overview of various camera-based applications in retail as well as the state-ofthe- art computer vision techniques behind them. It also presents some of the promising technical directions for exploration in retail video analytics.
NASA Technical Reports Server (NTRS)
Nieten, Joseph; Burke, Roger
1993-01-01
Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.
Estimation of mechanical properties of nanomaterials using artificial intelligence methods
NASA Astrophysics Data System (ADS)
Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.
2014-09-01
Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.
Integrated Computational System for Aerodynamic Steering and Visualization
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus
1999-01-01
In February of 1994, an effort from the Fluid Dynamics and Information Sciences Divisions at NASA Ames Research Center with McDonnel Douglas Aerospace Company and Stanford University was initiated to develop, demonstrate, validate and disseminate automated software for numerical aerodynamic simulation. The goal of the initiative was to develop a tri-discipline approach encompassing CFD, Intelligent Systems, and Automated Flow Feature Recognition to improve the utility of CFD in the design cycle. This approach would then be represented through an intelligent computational system which could accept an engineer's definition of a problem and construct an optimal and reliable CFD solution. Stanford University's role focused on developing technologies that advance visualization capabilities for analysis of CFD data, extract specific flow features useful for the design process, and compare CFD data with experimental data. During the years 1995-1997, Stanford University focused on developing techniques in the area of tensor visualization and flow feature extraction. Software libraries were created enabling feature extraction and exploration of tensor fields. As a proof of concept, a prototype system called the Integrated Computational System (ICS) was developed to demonstrate CFD design cycle. The current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will (1) briefly review the technologies developed during 1995-1997 (2) describe current technologies in the area of comparison techniques, (4) describe the theory of our new method researched during the grant year (5) summarize a few of the results and finally (6) discuss work within the last 6 months that are direct extensions from the grant.
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Readily understandable overviews of search oriented problem solving, knowledge representation, and computational logic are provided. Mechanization, automation and artificial intelligence are discussed as well as how they interrelate.
The Problem of Defining Intelligence.
ERIC Educational Resources Information Center
Lubar, David
1981-01-01
The major philosophical issues surrounding the concept of intelligence are reviewed with respect to the problems surrounding the process of defining and developing artificial intelligence (AI) in computers. Various current definitions and problems with these definitions are presented. (MP)
Some Steps towards Intelligent Computer Tutoring Systems.
ERIC Educational Resources Information Center
Tchogovadze, Gotcha G.
1986-01-01
Describes one way of structuring an intelligent tutoring system (ITS) in light of developments in artificial intelligence. A specialized intelligent operating system (SIOS) is proposed for software for a network of microcomputers, and it is postulated that a general learning system must be used as a basic framework for the SIOS. (Author/LRW)
Jena, Manas Kumar; Samantaray, Subhransu Ranjan
2016-01-01
This paper presents a data-mining-based intelligent differential relaying scheme for transmission lines, including flexible ac transmission system device, such as unified power flow controller (UPFC) and wind farms. Initially, the current and voltage signals are processed through extended Kalman filter phasor measurement unit for phasor estimation, and 21 potential features are computed at both ends of the line. Once the features are extracted at both ends, the corresponding differential features are derived. These differential features are fed to a data-mining model known as decision tree (DT) to provide the final relaying decision. The proposed technique has been extensively tested for single-circuit transmission line, including UPFC and wind farms with in-feed, double-circuit line with UPFC on one line and wind farm as one of the substations with wide variations in operating parameters. The test results obtained from simulation as well as in real-time digital simulator testing indicate that the DT-based intelligent differential relaying scheme is highly reliable and accurate with a response time of 2.25 cycles from the fault inception.
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
New paradigms in telemedicine: ambient intelligence, wearable, pervasive and personalized.
Rubel, Paul; Fayn, Jocelyne; Simon-Chautemps, Lucas; Atoui, Hussein; Ohlsson, Mattias; Telisson, David; Adami, Stefano; Arod, Sébastien; Forlini, Marie Claire; Malossi, Cesare; Placide, Joël; Ziliani, Gian Luca; Assanelli, Deodato; Chevalier, Philippe
2004-01-01
After decades of development of information systems dedicated to health professionals, there is an increasing demand for personalized and non-hospital based care. An especially critical domain is cardiology: almost two third of cardiac deaths occur out of hospital, and victims do not survive long enough to benefit from in-hospital treatments. We need to reduce the time before treatment. But symptoms are often interpreted wrongly. The only immediate diagnostic tool to assess the possibility of a cardiac event is the electrocardiogram (ECG). Event and transtelephonic ECG recorders are used to improve decision making but require setting up new infrastructures. The European EPI-MEDICS project has developed an intelligent Personal ECG Monitor (PEM) for the early detection of cardiac events. The PEM embeds advanced decision making techniques, generates different alarm levels and forwards alarm messages to the relevant care providers by means of new generation wireless communication. It is cost saving, involving care provider only if necessary and requiring no specific infrastructure. This solution is a typical example of pervasive computing and ambient intelligence that demonstrates how personalized, wearable, ubiquitous devices could improve healthcare.
Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry
NASA Astrophysics Data System (ADS)
Chu, M. S.; Chance, M. S.; Okabayashi, M.
2000-10-01
The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.
An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution
NASA Astrophysics Data System (ADS)
Hossain, Md. Tofazzal
This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.
Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.
ERIC Educational Resources Information Center
Moore, Gwendolyn B.; And Others
1986-01-01
Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…
A Multidisciplinary Model for Development of Intelligent Computer-Assisted Instruction.
ERIC Educational Resources Information Center
Park, Ok-choon; Seidel, Robert J.
1989-01-01
Proposes a schematic multidisciplinary model to help developers of intelligent computer-assisted instruction (ICAI) identify the types of required expertise and integrate them into a system. Highlights include domain types and expertise; knowledge acquisition; task analysis; knowledge representation; student modeling; diagnosis of learning needs;…
IBM Cloud Computing Powering a Smarter Planet
NASA Astrophysics Data System (ADS)
Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu
With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.
Intelligent web agents for a 3D virtual community
NASA Astrophysics Data System (ADS)
Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar
2003-08-01
In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.
On introduction of artificial intelligence elements to heat power engineering
NASA Astrophysics Data System (ADS)
Dregalin, A. F.; Nazyrova, R. R.
1993-10-01
The basic problems of 'the thermodynamic intelligence' of personal computers have been outlined. The thermodynamic intellect of personal computers as a concept has been introduced to heat processes occurring in engines of flying vehicles. In particular, the thermodynamic intellect of computers is determined by the possibility of deriving formal relationships between thermodynamic functions. In chemical thermodynamics, a concept of a characteristic function has been introduced.
NASA Astrophysics Data System (ADS)
Li, Jing; Ma, Sujuan; Ma, Linqing
Firstly, in this article, we expound the theory of the educational games and multiple intelligence and analyze the relationship between them. Then, further, we elaborate educational games' effect on the development of students' multiple intelligence, taking logic-mathematics intelligence for example. Also, we discuss the strategies of using educational games to improve students' intelligence. In a word, we can use the computer games to develop the students' multi-intelligence.
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-08-07
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a "lab-on-a-nanoparticle", the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
The research of edge extraction and target recognition based on inherent feature of objects
NASA Astrophysics Data System (ADS)
Xie, Yu-chan; Lin, Yu-chi; Huang, Yin-guo
2008-03-01
Current research on computer vision often needs specific techniques for particular problems. Little use has been made of high-level aspects of computer vision, such as three-dimensional (3D) object recognition, that are appropriate for large classes of problems and situations. In particular, high-level vision often focuses mainly on the extraction of symbolic descriptions, and pays little attention to the speed of processing. In order to extract and recognize target intelligently and rapidly, in this paper we developed a new 3D target recognition method based on inherent feature of objects in which cuboid was taken as model. On the basis of analysis cuboid nature contour and greyhound distributing characteristics, overall fuzzy evaluating technique was utilized to recognize and segment the target. Then Hough transform was used to extract and match model's main edges, we reconstruct aim edges by stereo technology in the end. There are three major contributions in this paper. Firstly, the corresponding relations between the parameters of cuboid model's straight edges lines in an image field and in the transform field were summed up. By those, the aimless computations and searches in Hough transform processing can be reduced greatly and the efficiency is improved. Secondly, as the priori knowledge about cuboids contour's geometry character known already, the intersections of the component extracted edges are taken, and assess the geometry of candidate edges matches based on the intersections, rather than the extracted edges. Therefore the outlines are enhanced and the noise is depressed. Finally, a 3-D target recognition method is proposed. Compared with other recognition methods, this new method has a quick response time and can be achieved with high-level computer vision. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in object tracking, port AGV, robots fields. The results of simulation experiments and theory analyzing demonstrate that the proposed method could suppress noise effectively, extracted target edges robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.
Intelligent transportation systems data compression using wavelet decomposition technique.
DOT National Transportation Integrated Search
2009-12-01
Intelligent Transportation Systems (ITS) generates massive amounts of traffic data, which posts : challenges for data storage, transmission and retrieval. Data compression and reconstruction technique plays an : important role in ITS data procession....
Alonso-Silverio, Gustavo A; Pérez-Escamirosa, Fernando; Bruno-Sanchez, Raúl; Ortiz-Simon, José L; Muñoz-Guerrero, Roberto; Minor-Martinez, Arturo; Alarcón-Paredes, Antonio
2018-05-01
A trainer for online laparoscopic surgical skills assessment based on the performance of experts and nonexperts is presented. The system uses computer vision, augmented reality, and artificial intelligence algorithms, implemented into a Raspberry Pi board with Python programming language. Two training tasks were evaluated by the laparoscopic system: transferring and pattern cutting. Computer vision libraries were used to obtain the number of transferred points and simulated pattern cutting trace by means of tracking of the laparoscopic instrument. An artificial neural network (ANN) was trained to learn from experts and nonexperts' behavior for pattern cutting task, whereas the assessment of transferring task was performed using a preestablished threshold. Four expert surgeons in laparoscopic surgery, from hospital "Raymundo Abarca Alarcón," constituted the experienced class for the ANN. Sixteen trainees (10 medical students and 6 residents) without laparoscopic surgical skills and limited experience in minimal invasive techniques from School of Medicine at Universidad Autónoma de Guerrero constituted the nonexperienced class. Data from participants performing 5 daily repetitions for each task during 5 days were used to build the ANN. The participants tend to improve their learning curve and dexterity with this laparoscopic training system. The classifier shows mean accuracy and receiver operating characteristic curve of 90.98% and 0.93, respectively. Moreover, the ANN was able to evaluate the psychomotor skills of users into 2 classes: experienced or nonexperienced. We constructed and evaluated an affordable laparoscopic trainer system using computer vision, augmented reality, and an artificial intelligence algorithm. The proposed trainer has the potential to increase the self-confidence of trainees and to be applied to programs with limited resources.
Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.
Integrated IMA (Information Mission Areas) IC (Information Center) Guide
1989-06-01
COMPUTER AIDED DESIGN / COMPUTER AIDED MANUFACTURE 8-8 8.3.7 LIQUID CRYSTAL DISPLAY PANELS 8-8 8.3.8 ARTIFICIAL INTELLIGENCE APPLIED TO VI 8-9 8.4...2 10.3.1 DESKTOP PUBLISHING 10-3 10.3.2 INTELLIGENT COPIERS 10-5 10.3.3 ELECTRONIC ALTERNATIVES TO PRINTED DOCUMENTS 10-5 10.3.4 ELECTRONIC FORMS...Optical Disk LCD Units Storage Image Scanners Graphics Forms Output Generation Copiers Devices Software Optical Disk Intelligent Storage Copiers Work Group
1983-05-01
Parallel Computation that Assign Canonical Object-Based Frames of Refer- ence," Proc. 7th it. .nt. Onf. on Artifcial Intellig nce (IJCAI-81), Vol. 2...Perception of Linear Struc- ture in Imaged Data ." TN 276, Artiflci!.a Intelligence Center, SRI International, Feb. 1983. [Fram75] J.P. Frain and E.S...1983 May 1983 D C By: Martin A. Fischler, Program Director S ELECTE Principal Investigator, (415)859-5106 MAY 2 21990 Artificial Intelligence Center
Visualization Techniques in Space and Atmospheric Sciences
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)
1995-01-01
Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.
Rich Language Analysis for Counterterrorism
NASA Astrophysics Data System (ADS)
Guidère, Mathieu; Howard, Newton; Argamon, Shlomo
Accurate and relevant intelligence is critical for effective counterterrorism. Too much irrelevant information is as bad or worse than not enough information. Modern computational tools promise to provide better search and summarization capabilities to help analysts filter and select relevant and key information. However, to do this task effectively, such tools must have access to levels of meaning beyond the literal. Terrorists operating in context-rich cultures like fundamentalist Islam use messages with multiple levels of interpretation, which are easily misunderstood by non-insiders. This chapter discusses several kinds of such “encryption” used by terrorists and insurgents in the Arabic language, and how knowledge of such methods can be used to enhance computational text analysis techniques for use in counterterrorism.
ICCE/ICCAI 2000 Full & Short Papers (Intelligent Tutoring Systems).
ERIC Educational Resources Information Center
2000
This document contains the full and short papers on intelligent tutoring systems (ITS) from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a framework for Internet-based distributed learning; a fuzzy-based assessment for the Perl tutoring…
Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.
ERIC Educational Resources Information Center
Moore, Gwendolyn B.; And Others
The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…
"TIS": An Intelligent Gateway Computer for Information and Modeling Networks. Overview.
ERIC Educational Resources Information Center
Hampel, Viktor E.; And Others
TIS (Technology Information System) is being used at the Lawrence Livermore National Laboratory (LLNL) to develop software for Intelligent Gateway Computers (IGC) suitable for the prototyping of advanced, integrated information networks. Dedicated to information management, TIS leads the user to available information resources, on TIS or…
1991-05-01
Marine Corps Tiaining Systems (CBESS) memorization training Inteligence Center, Dam Neck Threat memorization training Commander Tactical Wings, Atlantic...News Shipbuilding Technical training AEGIS Training Center, Dare Artificial Intelligence (Al) Tools Computerized firm-end analysis tools NETSCPAC...Technology Department and provides computational and electronic mail support for research in areas of artificial intelligence, computer-assisted instruction
Artificial Intelligence and the High School Computer Curriculum.
ERIC Educational Resources Information Center
Dillon, Richard W.
1993-01-01
Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…
Educational Research and Theory Perspectives on Intelligent Computer-Assisted Instruction.
ERIC Educational Resources Information Center
Tennyson, Robert D.; Christensen, Dean L.
This paper defines the next generation of intelligent computer-assisted instructional systems (ICAI) by depicting the elaborations and extensions offered by educational research and theory perspectives to enhance the ICAI environment. The first section describes conventional ICAI systems, which use expert systems methods and have three modules: a…
Intelligent Instruction by Computer: Theory and Practice.
ERIC Educational Resources Information Center
Farr, Marshall J., Ed.; Psotka, Joseph, Ed.
The essays collected in this volume are concerned with the field of computer-based intelligent instruction. The papers are organized into four groups that address the following topics: particular theoretical approaches (3 titles); the development and improvement of tools and environments (3 titles); the power of well-engineered implementations and…
ERIC Educational Resources Information Center
Tennyson, Robert
1984-01-01
Reviews educational applications of artificial intelligence and presents empirically-based design variables for developing a computer-based instruction management system. Taken from a programmatic research effort based on the Minnesota Adaptive Instructional System, variables include amount and sequence of instruction, display time, advisement,…
Recent Developments in Interactive and Communicative CALL: Hypermedia and "Intelligent" Systems.
ERIC Educational Resources Information Center
Coughlin, Josette M.
Two recent developments in computer-assisted language learning (CALL), interactive video systems and "intelligent" games, are discussed. Under the first heading, systems combining the use of a computer and video disc player are described, and Compact Discs Interactive (CDI) and Digital Video Interactive (DVI) are reviewed. The…
Fault tolerance in computational grids: perspectives, challenges, and issues.
Haider, Sajjad; Nazir, Babar
2016-01-01
Computational grids are established with the intention of providing shared access to hardware and software based resources with special reference to increased computational capabilities. Fault tolerance is one of the most important issues faced by the computational grids. The main contribution of this survey is the creation of an extended classification of problems that incur in the computational grid environments. The proposed classification will help researchers, developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of problems, such as omission, interaction, and timing related have been identified that need to be handled on various layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be established when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault identification, and tolerance techniques can improve the dependability of grid working environments.
NASA Technical Reports Server (NTRS)
Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)
1991-01-01
The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.
Knowledge-based simulation using object-oriented programming
NASA Technical Reports Server (NTRS)
Sidoran, Karen M.
1993-01-01
Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.
Guidance and control for unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Bateman, Peter J.
1994-06-01
Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.
Artificial intelligence, expert systems, computer vision, and natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1984-01-01
An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.
ERIC Educational Resources Information Center
Duchastel, P.; And Others
1989-01-01
Discusses intelligent computer assisted instruction (ICAI) and presents various models of learning which have been proposed. Topics discussed include artificial intelligence; intelligent tutorial systems; tutorial strategies; learner control; system design; learning theory; and knowledge representation of proper and improper (i.e., incorrect)…
ERIC Educational Resources Information Center
Ross, Peter
1987-01-01
Discusses intelligent tutoring systems (ITS), one application of artificial intelligence to computers used in education. Basic designs of ITSs are described; examples are given including PROUST, GREATERP, and the use of simulation with ITSs; protocol analysis is discussed; and 38 prototype ITSs are listed. (LRW)
THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE
COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS
Current state and future direction of computer systems at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Rogers, James L. (Editor); Tucker, Jerry H. (Editor)
1992-01-01
Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.
Man-machine interface issues in space telerobotics: A JPL research and development program
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1987-01-01
Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.
Artificial intelligence and signal processing for infrastructure assessment
NASA Astrophysics Data System (ADS)
Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif
2015-04-01
The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.
2008-10-20
embedded intelligence and cultural adaptations to the onslaught of robots in society. This volume constitutes a key contribution to the body of... Robotics , CNRS/Toulouse University, France Nathalie COLINEAU, Language & Multi-modality, CSIRO, Australia Roberto CORDESCHI, Computation & Communication...Intelligence, SONY CSL Paris Nik KASABOV, Computer and Information Sciences, Auckland University, New Zealand Oussama KHATIB, Robotics & Artificial
Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation
Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin
2013-01-01
With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144
Videos | Argonne National Laboratory
science --Agent-based modeling --Applied mathematics --Artificial intelligence --Cloud computing management -Intelligence & counterterrorrism -Vulnerability assessment -Sensors & detectors Programs
Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP)
NASA Astrophysics Data System (ADS)
Mislan; Gaffar, A. F. O.; Haviluddin; Puspitasari, N.
2018-04-01
A natural hazard information and flood events are indispensable as a form of prevention and improvement. One of the causes is flooding in the areas around the lake. Therefore, forecasting the surface of Lake water level to anticipate flooding is required. The purpose of this paper is implemented computational intelligence method namely Adaptive Neural Network Backpropagation (ANNBP) to forecasting the Lake Cascade Mahakam. Based on experiment, performance of ANNBP indicated that Lake water level prediction have been accurate by using mean square error (MSE) and mean absolute percentage error (MAPE). In other words, computational intelligence method can produce good accuracy. A hybrid and optimization of computational intelligence are focus in the future work.
Analysis of the frontier technology of agricultural IoT and its predication research
NASA Astrophysics Data System (ADS)
Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Shen, Chen; Kong, Fantao
2017-09-01
Agricultural IoT (Internet of Things) develops rapidly. Nanotechnology, biotechnology and optoelectronic technology are successfully integrated into the agricultural sensor technology. Big data, cloud computing and artificial intelligence technology have also been successfully used in IoT. This paper carries out the research on integration of agricultural sensor technology, nanotechnology, biotechnology and optoelectronic technology and the application of big data, cloud computing and artificial intelligence technology in agricultural IoT. The advantages and development of the integration of nanotechnology, biotechnology and optoelectronic technology with agricultural sensor technology were discussed. The application of big data, cloud computing and artificial intelligence technology in IoT and their development trend were analysed.
NASA Astrophysics Data System (ADS)
Keen, Arthur A.
2006-04-01
This paper describes technology being developed at 21st Century Technologies to automate Computer Network Operations (CNO). CNO refers to DoD activities related to Attacking and Defending Computer Networks (CNA & CND). Next generation cyber threats are emerging in the form of powerful Internet services and tools that automate intelligence gathering, planning, testing, and surveillance. We will focus on "Search-Engine Hacks", queries that can retrieve lists of router/switch/server passwords, control panels, accessible cameras, software keys, VPN connection files, and vulnerable web applications. Examples include "Titan Rain" attacks against DoD facilities and the Santy worm, which identifies vulnerable sites by searching Google for URLs containing application-specific strings. This trend will result in increasingly sophisticated and automated intelligence-driven cyber attacks coordinated across multiple domains that are difficult to defeat or even understand with current technology. One traditional method of CNO relies on surveillance detection as an attack predictor. Unfortunately, surveillance detection is difficult because attackers can perform search engine-driven surveillance such as with Google Hacks, and avoid touching the target site. Therefore, attack observables represent only about 5% of the attacker's total attack time, and are inadequate to provide warning. In order to predict attacks and defend against them, CNO must also employ more sophisticated techniques and work to understand the attacker's Motives, Means and Opportunities (MMO). CNO must use automated reconnaissance tools, such as Google, to identify information vulnerabilities, and then utilize Internet tools to observe the intelligence gathering, planning, testing, and collaboration activities that represent 95% of the attacker's effort.
Can we make a carpet smart enough to detect falls?
Muheidat, Fadi; Tyrer, Harry W
2016-08-01
In this paper, we have enhanced smart carpet, which is a floor based personnel detector system, to detect falls using a faster but low cost processor. Our hardware front end reads 128 sensors, with sensors output a voltage due to a person walking or falling on the carpet. The processor is Jetson TK1, which provides more computing power than before. We generated a dataset with volunteers who walked and fell to test our algorithms. Data obtained allowed examining data frames (a frame is a single scan of the carpet sensors) read from the data acquisition system. We used different algorithms and techniques, and varied the windows size of number of frames (WS ≥ 1) and threshold (TH) to build our data set, which later used machine learning to help decide a fall or no fall. We then used the dataset obtained from applying a set of fall detection algorithms and the video recorded for the fall pattern experiments to train a set of classifiers using multiple test options using the Weka framework. We measured the sensitivity and specificity of the system and other metrics for intelligent detection of falls. Results showed that Computational Intelligence techniques detect falls with 96.2% accuracy and 81% sensitivity and 97.8% specificity. In addition to fall detection, we developed a database system and web applications to retain these data for years. We can display this data in realtime and for all activities in the carpet for extensive data analysis any time in the future.
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Chen, Alexander Y. K.
1991-01-01
Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.
A Spacelab Expert System for Remote Engineering and Science
NASA Technical Reports Server (NTRS)
Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)
1994-01-01
NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.
Challenges and solutions for realistic room simulation
NASA Astrophysics Data System (ADS)
Begault, Durand R.
2002-05-01
Virtual room acoustic simulation (auralization) techniques have traditionally focused on answering questions related to speech intelligibility or musical quality, typically in large volumetric spaces. More recently, auralization techniques have been found to be important for the externalization of headphone-reproduced virtual acoustic images. Although externalization can be accomplished using a minimal simulation, data indicate that realistic auralizations need to be responsive to head motion cues for accurate localization. Computational demands increase when providing for the simulation of coupled spaces, small rooms lacking meaningful reverberant decays, or reflective surfaces in outdoor environments. Auditory threshold data for both early reflections and late reverberant energy levels indicate that much of the information captured in acoustical measurements is inaudible, minimizing the intensive computational requirements of real-time auralization systems. Results are presented for early reflection thresholds as a function of azimuth angle, arrival time, and sound-source type, and reverberation thresholds as a function of reverberation time and level within 250-Hz-2-kHz octave bands. Good agreement is found between data obtained in virtual room simulations and those obtained in real rooms, allowing a strategy for minimizing computational requirements of real-time auralization systems.
Clustering molecular dynamics trajectories for optimizing docking experiments.
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.
Instructional Aspects of Intelligent Tutoring Systems.
ERIC Educational Resources Information Center
Pieters, Jules M., Ed.
This collection contains three papers addressing the instructional aspects of intelligent tutoring systems (ITS): (1) "Some Experiences with Two Intelligent Tutoring Systems for Teaching Computer Programming: Proust and the LISP-Tutor" (van den Berg, Merrienboer, and Maaswinkel); (2) "Some Issues on the Construction of Cooperative…
ERIC Educational Resources Information Center
Wash, Darrel Patrick
1989-01-01
Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)
Sense-making for intelligence analysis on social media data
NASA Astrophysics Data System (ADS)
Pritzkau, Albert
2016-05-01
Social networks, in particular online social networks as a subset, enable the analysis of social relationships which are represented by interaction, collaboration, or other sorts of influence between people. Any set of people and their internal social relationships can be modelled as a general social graph. These relationships are formed by exchanging emails, making phone calls, or carrying out a range of other activities that build up the network. This paper presents an overview of current approaches to utilizing social media as a ubiquitous sensor network in the context of national and global security. Exploitation of social media is usually an interdisciplinary endeavour, in which the relevant technologies and methods are identified and linked in order ultimately demonstrate selected applications. Effective and efficient intelligence is usually accomplished in a combined human and computer effort. Indeed, the intelligence process heavily depends on combining a human's flexibility, creativity, and cognitive ability with the bandwidth and processing power of today's computers. To improve the usability and accuracy of the intelligence analysis we will have to rely on data-processing tools at the level of natural language. Especially the collection and transformation of unstructured data into actionable, structured data requires scalable computational algorithms ranging from Artificial Intelligence, via Machine Learning, to Natural Language Processing (NLP). To support intelligence analysis on social media data, social media analytics is concerned with developing and evaluating computational tools and frameworks to collect, monitor, analyze, summarize, and visualize social media data. Analytics methods are employed to extract of significant patterns that might not be obvious. As a result, different data representations rendering distinct aspects of content and interactions serve as a means to adapt the focus of the intelligence analysis to specific information requests.
Defense Information Systems Program Automated CORDIVEM Design Requirements,
1984-02-28
for the Soviet military organization and equipment. Dr. John Spagnuolo incorporated artificial intelligence techniques in the discussion of functional...4-44 4.1.2.18.2 Artificial Intelligence ...... ........ 4-49 4.1.2.18.3 Types of A.I ................. 4-51 4.1.2.19 General Planning Requirements...described later. Further, some subprocesses may need one of the various techniques associated with the broad field of Artificial Intelligence (A.I.) in
Intelligent Computer-Aided Instruction Research at the Open University. CITE Report No. 10.
ERIC Educational Resources Information Center
Elsom-Cook, Mark
This document introduces the aims and activities of the Intelligent Computer Aided Instruction (ICAI) research community situated within the Centre for Information Technology in Education (CITE) at the Open University in Great Britain, outlines the nature of the problems which come under the auspices of ICAI, and describes the research…
Artificial Intelligence, Computational Thinking, and Mathematics Education
ERIC Educational Resources Information Center
Gadanidis, George
2017-01-01
Purpose: The purpose of this paper is to examine the intersection of artificial intelligence (AI), computational thinking (CT), and mathematics education (ME) for young students (K-8). Specifically, it focuses on three key elements that are common to AI, CT and ME: agency, modeling of phenomena and abstracting concepts beyond specific instances.…
Automated Management Of Documents
NASA Technical Reports Server (NTRS)
Boy, Guy
1995-01-01
Report presents main technical issues involved in computer-integrated documentation. Problems associated with automation of management and maintenance of documents analyzed from perspectives of artificial intelligence and human factors. Technologies that may prove useful in computer-integrated documentation reviewed: these include conventional approaches to indexing and retrieval of information, use of hypertext, and knowledge-based artificial-intelligence systems.
Generative Computer-Assisted Instruction and Artificial Intelligence. Report No. 5.
ERIC Educational Resources Information Center
Sinnott, Loraine T.
This paper reviews the state-of-the-art in generative computer-assisted instruction and artificial intelligence. It divides relevant research into three areas of instructional modeling: models of the subject matter; models of the learner's state of knowledge; and models of teaching strategies. Within these areas, work sponsored by Advanced…
ERIC Educational Resources Information Center
Ward, Monica
2017-01-01
The term Intelligent Computer Assisted Language Learning (ICALL) covers many different aspects of CALL that add something extra to a CALL resource. This could be with the use of computational linguistics or Artificial Intelligence (AI). ICALL tends to be not very well understood within the CALL community. There may also be the slight fear factor…
Experiments with microcomputer-based artificial intelligence environments
Summers, E.G.; MacDonald, R.A.
1988-01-01
The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.
1990-07-01
To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.
Digging deeper on "deep" learning: A computational ecology approach.
Buscema, Massimo; Sacco, Pier Luigi
2017-01-01
We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.
Machine listening intelligence
NASA Astrophysics Data System (ADS)
Cella, C. E.
2017-05-01
This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bing; Huang, Yufei; McDermott, Jason E.
The 2013 International Conference on Intelligent Biology and Medicine (ICIBM 2013) was held on August 11-13, 2013 in Nashville, Tennessee, USA. The conference included six scientific sessions, two tutorial sessions, one workshop, two poster sessions, and four keynote presentations that covered cutting-edge research topics in bioinformatics, systems biology, computational medicine, and intelligent computing. Here, we present a summary of the conference and an editorial report of the supplements to BMC Genomics and BMC Systems Biology that include 19 research papers selected from ICIBM 2013.
2013-01-01
The 2013 International Conference on Intelligent Biology and Medicine (ICIBM 2013) was held on August 11-13, 2013 in Nashville, Tennessee, USA. The conference included six scientific sessions, two tutorial sessions, one workshop, two poster sessions, and four keynote presentations that covered cutting-edge research topics in bioinformatics, systems biology, computational medicine, and intelligent computing. Here, we present a summary of the conference and an editorial report of the supplements to BMC Genomics and BMC Systems Biology that include 19 research papers selected from ICIBM 2013. PMID:24564388
When Is a Program Intelligent?
ERIC Educational Resources Information Center
Whaland, Norman
1981-01-01
The current status of creating artificial intelligence (AI) in computers is viewed in terms of what has been accomplished, what the current limitations are, and how vague the concept of intelligent behavior is in today's world. Progress is expected to accelerate once sufficient fundamental knowledge is available. (MP)
NASA Technical Reports Server (NTRS)
Edelson, R. E.
1977-01-01
Some aspects of signal extraction in a microwave search for evidence of extraterrestrial intelligence are examined. Parametric relations are summarized which are applicable to a microwave search of constrained duration that employs FFT spectrum-analyzer receivers, with sensitivity enhancement by spectrum accumulation and detection by a threshold criterion. Three types of natural and man-made false alarms are identified, the probability of false alarm in a single data channel is computed, and the implications of false alarms for a constant-beamwidth sky survey are considered. It is shown that the key to an efficient search is the prompt and unambiguous elimination of false alarms. An experimental protocol is suggested which eliminates spurious signals primarily through procedural techniques involving antenna repointing, delayed repeated observations, and storage of particular historical parameters for suspect signals.
Improved Bat Algorithm Applied to Multilevel Image Thresholding
2014-01-01
Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733
Radiation Tolerant Intelligent Memory Stack (RTIMS)
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong; Herath, Jeffrey A.
2006-01-01
The Radiation Tolerant Intelligent Memory Stack (RTIMS), suitable for both geostationary and low earth orbit missions, has been developed. The memory module is fully functional and undergoing environmental and radiation characterization. A self-contained flight-like module is expected to be completed in 2006. RTIMS provides reconfigurable circuitry and 2 gigabits of error corrected or 1 gigabit of triple redundant digital memory in a small package. RTIMS utilizes circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuitries are stacked into a module of 42.7mm x 42.7mm x 13.00mm. Triple module redundancy, current limiting, configuration scrubbing, and single event function interrupt detection are employed to mitigate radiation effects. The mitigation techniques significantly simplify system design. RTIMS is well suited for deployment in real-time data processing, reconfigurable computing, and memory intensive applications.
Counter Action Procedure Generation in an Emergency Situation of Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Gofuku, A.
2018-02-01
Lessons learned from the Fukushima Daiichi accident revealed various weak points in the design and operation of nuclear power plants at the time although there were many resilient activities made by the plant staff under difficult work environment. In order to reinforce the measures to make nuclear power plants more resilient, improvement of hardware and improvement of education and training of nuclear personnel are considered. In addition, considering the advancement of computer technology and artificial intelligence, it is a promising way to develop software tools to support the activities of plant staff.This paper focuses on the software tools to support the operations by human operators and introduces a concept of an intelligent operator support system that is called as co-operator. This paper also describes a counter operation generation technique the authors are studying as a core component of the co-operator.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Housner, J. M.
1983-01-01
The mechanics of materials and material characterization are considered, taking into account micromechanics, the behavior of steel structures at elevated temperatures, and an anisotropic plasticity model for inelastic multiaxial cyclic deformation. Other topics explored are related to advances and trends in finite element technology, classical analytical techniques and their computer implementation, interactive computing and computational strategies for nonlinear problems, advances and trends in numerical analysis, database management systems and CAD/CAM, space structures and vehicle crashworthiness, beams, plates and fibrous composite structures, design-oriented analysis, artificial intelligence and optimization, contact problems, random waves, and lifetime prediction. Earthquake-resistant structures and other advanced structural applications are also discussed, giving attention to cumulative damage in steel structures subjected to earthquake ground motions, and a mixed domain analysis of nuclear containment structures using impulse functions.
NASA Astrophysics Data System (ADS)
Kang, Soon Ju; Moon, Jae Chul; Choi, Doo-Hyun; Choi, Sung Su; Woo, Hee Gon
1998-06-01
The inspection of steam-generator (SG) tubes in a nuclear power plant (NPP) is a time-consuming, laborious, and hazardous task because of several hard constraints such as a highly radiated working environment, a tight task schedule, and the need for many experienced human inspectors. This paper presents a new distributed intelligent system architecture for automating traditional inspection methods. The proposed architecture adopts three basic technical strategies in order to reduce the complexity of system implementation. The first is the distributed task allocation into four stages: inspection planning (IF), signal acquisition (SA), signal evaluation (SE), and inspection data management (IDM). Consequently, dedicated subsystems for automation of each stage can be designed and implemented separately. The second strategy is the inclusion of several useful artificial intelligence techniques for implementing the subsystems of each stage, such as an expert system for IP and SE and machine vision and remote robot control techniques for SA. The third strategy is the integration of the subsystems using client/server-based distributed computing architecture and a centralized database management concept. Through the use of the proposed architecture, human errors, which can occur during inspection, can be minimized because the element of human intervention has been almost eliminated; however, the productivity of the human inspector can be increased equally. A prototype of the proposed system has been developed and successfully tested over the last six years in domestic NPP's.
2005-09-01
ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE ..................100 27. SHARPLE, SARAH (WITH COX, GEMMA & STEDMON...104 30. TANGO, FABIO: CONCEPT OF AUTONOMIC COMPUTING APPLIED TO TRANSPORTATION ISSUES: THE SENSITIVE CAR .....105 31. TAYLOR, ROBERT: POSITION...SYSTEMS ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE Today’s automation systems are typically introduced
NASA Astrophysics Data System (ADS)
Jonker, C. M.; Snoep, J. L.; Treur, J.; Westerhoff, H. V.; Wijngaards, W. C. A.
Within the areas of Computational Organisation Theory and Artificial Intelligence, techniques have been developed to simulate and analyse dynamics within organisations in society. Usually these modelling techniques are applied to factories and to the internal organisation of their process flows, thus obtaining models of complex organisations at various levels of aggregation. The dynamics in living cells are often interpreted in terms of well-organised processes, a bacterium being considered a (micro)factory. This suggests that organisation modelling techniques may also benefit their analysis. Using the example of Escherichia coli it is shown how indeed agent-based organisational modelling techniques can be used to simulate and analyse E.coli's intracellular dynamics. Exploiting the abstraction levels entailed by this perspective, a concise model is obtained that is readily simulated and analysed at the various levels of aggregation, yet shows the cell's essential dynamic patterns.
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-06-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-09-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
Side-by-side ANFIS as a useful tool for estimating correlated thermophysical properties
NASA Astrophysics Data System (ADS)
Grieu, Stéphane; Faugeroux, Olivier; Traoré, Adama; Claudet, Bernard; Bodnar, Jean-Luc
2015-12-01
In the present paper, an artificial intelligence-based approach dealing with the estimation of correlated thermophysical properties is designed and evaluated. This new and "intelligent" approach makes use of photothermal responses obtained when homogeneous materials are subjected to a light flux. Commonly, gradient-based algorithms are used as parameter estimation techniques. Unfortunately, such algorithms show instabilities leading to non-convergence in case of correlated properties to be estimated from a rebuilt impulse response. So, the main objective of the present work was to simultaneously estimate both the thermal diffusivity and conductivity of homogeneous materials, from front-face or rear-face photothermal responses to pseudo random binary signals. To this end, we used side-by-side neuro-fuzzy systems (adaptive network-based fuzzy inference systems) trained with a hybrid algorithm. We focused on the impact on generalization of both the examples used during training and the fuzzification process. In addition, computation time was a key point to consider. That is why the developed algorithm is computationally tractable and allows both the thermal diffusivity and conductivity of homogeneous materials to be simultaneously estimated with very good accuracy (the generalization error ranges between 4.6% and 6.2%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou Yu, E-mail: yzou@Princeton.ED; Kavousanakis, Michail E., E-mail: mkavousa@Princeton.ED; Kevrekidis, Ioannis G., E-mail: yannis@Princeton.ED
2010-07-20
The study of particle coagulation and sintering processes is important in a variety of research studies ranging from cell fusion and dust motion to aerosol formation applications. These processes are traditionally simulated using either Monte-Carlo methods or integro-differential equations for particle number density functions. In this paper, we present a computational technique for cases where we believe that accurate closed evolution equations for a finite number of moments of the density function exist in principle, but are not explicitly available. The so-called equation-free computational framework is then employed to numerically obtain the solution of these unavailable closed moment equations bymore » exploiting (through intelligent design of computational experiments) the corresponding fine-scale (here, Monte-Carlo) simulation. We illustrate the use of this method by accelerating the computation of evolving moments of uni- and bivariate particle coagulation and sintering through short simulation bursts of a constant-number Monte-Carlo scheme.« less
Pyramidal neurovision architecture for vision machines
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1993-08-01
The vision system employed by an intelligent robot must be active; active in the sense that it must be capable of selectively acquiring the minimal amount of relevant information for a given task. An efficient active vision system architecture that is based loosely upon the parallel-hierarchical (pyramidal) structure of the biological visual pathway is presented in this paper. Although the computational architecture of the proposed pyramidal neuro-vision system is far less sophisticated than the architecture of the biological visual pathway, it does retain some essential features such as the converging multilayered structure of its biological counterpart. In terms of visual information processing, the neuro-vision system is constructed from a hierarchy of several interactive computational levels, whereupon each level contains one or more nonlinear parallel processors. Computationally efficient vision machines can be developed by utilizing both the parallel and serial information processing techniques within the pyramidal computing architecture. A computer simulation of a pyramidal vision system for active scene surveillance is presented.
A Research Program on Artificial Intelligence in Process Engineering.
ERIC Educational Resources Information Center
Stephanopoulos, George
1986-01-01
Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…
Active optical control system design of the SONG-China Telescope
NASA Astrophysics Data System (ADS)
Ye, Yu; Kou, Songfeng; Niu, Dongsheng; Li, Cheng; Wang, Guomin
2012-09-01
The standard SONG node structure of control system is presented. The active optical control system of the project is a distributed system, and a host computer and a slave intelligent controller are included. The host control computer collects the information from wave front sensor and sends commands to the slave computer to realize a closed loop model. For intelligent controller, a programmable logic controller (PLC) system is used. This system combines with industrial personal computer (IPC) and PLC to make up a control system with powerful and reliable.
Numerical simulation of intelligent compaction technology for construction quality control.
DOT National Transportation Integrated Search
2014-12-01
Intelligent compaction (IC) technique is a fast-developing technology for compaction quality control and acceptance. Proof rolling using the intelligent compaction rollers after completing compaction can eectively identify : the weak spots and sig...
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.
NASA Astrophysics Data System (ADS)
Coughlan, J. C.
2005-12-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.
[Computer assisted application of mandarin speech test materials].
Zhang, Hua; Wang, Shuo; Chen, Jing; Deng, Jun-Min; Yang, Xiao-Lin; Guo, Lian-Sheng; Zhao, Xiao-Yan; Shao, Guang-Yu; Han, De-Min
2008-06-01
To design an intelligent speech test system with reliability and convenience using the computer software and to evaluate this system. First, the intelligent system was designed by the Delphi program language. Second, the seven monosyllabic word lists recorded on CD were separated by Cool Edit Pro v2.1 software and put into the system as test materials. Finally, the intelligent system was used to evaluate the equivalence of difficulty between seven lists. Fifty-five college students with normal hearing participated in the study. The seven monosyllabic word lists had equivalent difficulty (F = 1.582, P > 0.05) to the subjects between each other and the system was proved as reliability and convenience. The intelligent system has the feasibility in the clinical practice.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2005-01-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.
ERIC Educational Resources Information Center
Amaral, Luiz A.; Meurers, Detmar
2011-01-01
This paper explores the motivation and prerequisites for successful integration of Intelligent Computer-Assisted Language Learning (ICALL) tools into current foreign language teaching and learning (FLTL) practice. We focus on two aspects, which we argue to be important for effective ICALL system development and use: (i) the relationship between…
ERIC Educational Resources Information Center
Esit, Omer
2011-01-01
This study investigated the effectiveness of an intelligent computer-assisted language learning (ICALL) program on Turkish learners' vocabulary learning. Within the scope of this research, an ICALL application with a morphological analyser (Your Verbal Zone, YVZ) was developed and used in an English language preparatory class to measure its…
Do potential SETI signals need to be decontaminated?
NASA Astrophysics Data System (ADS)
Carrigan, Richard A., Jr.
2006-01-01
Biological contamination from space samples is a remote but accepted possibility. Signals received by searches for extraterrestrial intelligence (SETI) could also contain harmful information in the spirit of a computer virus, the so-called "SETI Hacker" hypothesis. Over the last four decades extraterrestrial intelligence searches have given little consideration to this possibility. Some argue that information in an extraterrestrial signal could not attack a terrestrial computer because the computer logic and code is idiosyncratic and constitutes an impenetrable firewall. Suggestions are given on how to probe these arguments. Measures for decontaminating extraterrestrial intelligence signals (ETI) are discussed. Modifications to the current SETI detection protocol may be appropriate. Beyond that, the potential character of ETI message content requires much broader discussion.
Solution techniques for transient stability-constrained optimal power flow – Part II
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...
2017-06-28
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Storage and retrieval of mass spectral information
NASA Technical Reports Server (NTRS)
Hohn, M. E.; Humberston, M. J.; Eglinton, G.
1977-01-01
Computer handling of mass spectra serves two main purposes: the interpretation of the occasional, problematic mass spectrum, and the identification of the large number of spectra generated in the gas-chromatographic-mass spectrometric (GC-MS) analysis of complex natural and synthetic mixtures. Methods available fall into the three categories of library search, artificial intelligence, and learning machine. Optional procedures for coding, abbreviating and filtering a library of spectra minimize time and storage requirements. Newer techniques make increasing use of probability and information theory in accessing files of mass spectral information.
A Concurrent Distributed System for Aircraft Tactical Decision Generation
NASA Technical Reports Server (NTRS)
McManus, John W.
1990-01-01
A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of a concurrent version of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS) program, a second generation TDG, is presented. Concurrent computing environments and programming approaches are discussed and the design and performance of a prototype concurrent TDG system are presented.
Improved Real-Time Monitoring Using Multiple Expert Systems
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia
1993-01-01
Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.
Solution techniques for transient stability-constrained optimal power flow – Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
Object oriented fault diagnosis system for space shuttle main engine redlines
NASA Technical Reports Server (NTRS)
Rogers, John S.; Mohapatra, Saroj Kumar
1990-01-01
A great deal of attention has recently been given to Artificial Intelligence research in the area of computer aided diagnostics. Due to the dynamic and complex nature of space shuttle red-line parameters, a research effort is under way to develop a real time diagnostic tool that will employ historical and engineering rulebases as well as a sensor validity checking. The capability of AI software development tools (KEE and G2) will be explored by applying object oriented programming techniques in accomplishing the diagnostic evaluation.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1991-01-01
Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.
Serial network simplifies the design of multiple microcomputer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkes, D.
1981-01-01
Recently there has been a lot of interest in developing network communication schemes for carrying digital data between locally distributed computing stations. Many of these schemes have focused on distributed networking techniques for data processing applications. These applications suggest the use of a serial, multipoint bus, where a number of remote intelligent units act as slaves to a central or host computer. Each slave would be serially addressable from the host and would perform required operations upon being addressed by the host. Based on an MK3873 single-chip microcomputer, the SCU 20 is designed to be such a remote slave device.more » The capabilities of the SCU 20 and its use in systems applications are examined.« less
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
Computational Model for Ethnographically Informed Systems Design
NASA Astrophysics Data System (ADS)
Iqbal, Rahat; James, Anne; Shah, Nazaraf; Terken, Jacuqes
This paper presents a computational model for ethnographically informed systems design that can support complex and distributed cooperative activities. This model is based on an ethnographic framework consisting of three important dimensions (e.g., distributed coordination, awareness of work and plans and procedure), and the BDI (Belief, Desire and Intention) model of intelligent agents. The ethnographic framework is used to conduct ethnographic analysis and to organise ethnographically driven information into three dimensions, whereas the BDI model allows such information to be mapped upon the underlying concepts of multi-agent systems. The advantage of this model is that it is built upon an adaptation of existing mature and well-understood techniques. By the use of this model, we also address the cognitive aspects of systems design.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.
1978-01-01
A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.
Deniz, Oscar; Vallez, Noelia; Espinosa-Aranda, Jose L; Rico-Saavedra, Jose M; Parra-Patino, Javier; Bueno, Gloria; Moloney, David; Dehghani, Alireza; Dunne, Aubrey; Pagani, Alain; Krauss, Stephan; Reiser, Ruben; Waeny, Martin; Sorci, Matteo; Llewellynn, Tim; Fedorczak, Christian; Larmoire, Thierry; Herbst, Marco; Seirafi, Andre; Seirafi, Kasra
2017-05-21
Embedded systems control and monitor a great deal of our reality. While some "classic" features are intrinsically necessary, such as low power consumption, rugged operating ranges, fast response and low cost, these systems have evolved in the last few years to emphasize connectivity functions, thus contributing to the Internet of Things paradigm. A myriad of sensing/computing devices are being attached to everyday objects, each able to send and receive data and to act as a unique node in the Internet. Apart from the obvious necessity to process at least some data at the edge (to increase security and reduce power consumption and latency), a major breakthrough will arguably come when such devices are endowed with some level of autonomous "intelligence". Intelligent computing aims to solve problems for which no efficient exact algorithm can exist or for which we cannot conceive an exact algorithm. Central to such intelligence is Computer Vision (CV), i.e., extracting meaning from images and video. While not everything needs CV, visual information is the richest source of information about the real world: people, places and things. The possibilities of embedded CV are endless if we consider new applications and technologies, such as deep learning, drones, home robotics, intelligent surveillance, intelligent toys, wearable cameras, etc. This paper describes the Eyes of Things (EoT) platform, a versatile computer vision platform tackling those challenges and opportunities.
Autonomous Driver Based on an Intelligent System of Decision-Making.
Czubenko, Michał; Kowalczuk, Zdzisław; Ordys, Andrew
The paper presents and discusses a system ( xDriver ) which uses an Intelligent System of Decision-making (ISD) for the task of car driving. The principal subject is the implementation, simulation and testing of the ISD system described earlier in our publications (Kowalczuk and Czubenko in artificial intelligence and soft computing lecture notes in computer science, lecture notes in artificial intelligence, Springer, Berlin, 2010, 2010, In Int J Appl Math Comput Sci 21(4):621-635, 2011, In Pomiary Autom Robot 2(17):60-5, 2013) for the task of autonomous driving. The design of the whole ISD system is a result of a thorough modelling of human psychology based on an extensive literature study. Concepts somehow similar to the ISD system can be found in the literature (Muhlestein in Cognit Comput 5(1):99-105, 2012; Wiggins in Cognit Comput 4(3):306-319, 2012), but there are no reports of a system which would model the human psychology for the purpose of autonomously driving a car. The paper describes assumptions for simulation, the set of needs and reactions (characterizing the ISD system), the road model and the vehicle model, as well as presents some results of simulation. It proves that the xDriver system may behave on the road as a very inexperienced driver.
Technicians for Intelligent Buildings. Final Report.
ERIC Educational Resources Information Center
Prescott, Carolyn; Thomson, Ron
"Intelligent building" is a term that has been coined in recent years to describe buildings in which computer technology is intensely applied in two areas of building operations: control systems and shared tenant services. This two-part study provides an overview of the intelligent building industry and reports on issues related to the…
Development of a Real-Time Intelligent Network Environment.
ERIC Educational Resources Information Center
Gordonov, Anatoliy; Kress, Michael; Klibaner, Roberta
This paper presents a model of an intelligent computer network that provides real-time evaluation of students' performance by incorporating intelligence into the application layer protocol. Specially designed drills allow students to independently solve a number of problems based on current lecture material; students are switched to the most…
How to Build Bridges between Intelligent Tutoring System Subfields of Research
ERIC Educational Resources Information Center
Pavlik, Philip, Jr.; Toth, Joe
2010-01-01
The plethora of different subfields in intelligent tutoring systems (ITS) are often difficult to integrate theoretically when analyzing how to design an intelligent tutor. Important principles of design are claimed by many subfields, including but not limited to: design, human-computer interaction, perceptual psychology, cognitive psychology,…
An Intelligent Tutor for Intrusion Detection on Computer Systems.
ERIC Educational Resources Information Center
Rowe, Neil C.; Schiavo, Sandra
1998-01-01
Describes an intelligent tutor incorporating a program using artificial-intelligence planning methods to generate realistic audit files reporting actions of simulated users and intruders of a UNIX system, and a program simulating the system afterwards that asks students to inspect the audit and fix problems. Experiments show that students using…
Applications of Artificial Intelligence in Education--A Personal View.
ERIC Educational Resources Information Center
Richer, Mark H.
1985-01-01
Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…
Partial Bibliography of Work on Expert Systems,
1982-12-01
Bibliography: AAAI American Association for Artificial Intelligence ACM Association for Computing Machinery AFIPS American Federation of Information...Processing Societies ECAI European Conference on Artificial Intelligence IEEE Institute for Electrical and Electronic Engineers IFIPS International...Federation of Information Processing Societies IJCAI International Joint Conferences on Artificial Intelligence SIGPLAN ACM Special Interest Group on
Automation and hypermedia technology applications
NASA Technical Reports Server (NTRS)
Jupin, Joseph H.; Ng, Edward W.; James, Mark L.
1993-01-01
This paper represents a progress report on HyLite (Hypermedia Library technology): a research and development activity to produce a versatile system as part of NASA's technology thrusts in automation, information sciences, and communications. HyLite can be used as a system or tool to facilitate the creation and maintenance of large distributed electronic libraries. The contents of such a library may be software components, hardware parts or designs, scientific data sets or databases, configuration management information, etc. Proliferation of computer use has made the diversity and quantity of information too large for any single user to sort, process, and utilize effectively. In response to this information deluge, we have created HyLite to enable the user to process relevant information into a more efficient organization for presentation, retrieval, and readability. To accomplish this end, we have incorporated various AI techniques into the HyLite hypermedia engine to facilitate parameters and properties of the system. The proposed techniques include intelligent searching tools for the libraries, intelligent retrievals, and navigational assistance based on user histories. HyLite itself is based on an earlier project, the Encyclopedia of Software Components (ESC) which used hypermedia to facilitate and encourage software reuse.
Three main paradigms of simultaneous localization and mapping (SLAM) problem
NASA Astrophysics Data System (ADS)
Imani, Vandad; Haataja, Keijo; Toivanen, Pekka
2018-04-01
Simultaneous Localization and Mapping (SLAM) is one of the most challenging research areas within computer and machine vision for automated scene commentary and explanation. The SLAM technique has been a developing research area in the robotics context during recent years. By utilizing the SLAM method robot can estimate the different positions of the robot at the distinct points of time which can indicate the trajectory of robot as well as generate a map of the environment. SLAM has unique traits which are estimating the location of robot and building a map in the various types of environment. SLAM is effective in different types of environment such as indoor, outdoor district, Air, Underwater, Underground and Space. Several approaches have been investigated to use SLAM technique in distinct environments. The purpose of this paper is to provide an accurate perceptive review of case history of SLAM relied on laser/ultrasonic sensors and camera as perception input data. In addition, we mainly focus on three paradigms of SLAM problem with all its pros and cons. In the future, use intelligent methods and some new idea will be used on visual SLAM to estimate the motion intelligent underwater robot and building a feature map of marine environment.
A study on the applications of AI in finishing of additive manufacturing parts
NASA Astrophysics Data System (ADS)
Fathima Patham, K.
2017-06-01
Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.
The BioIntelligence Framework: a new computational platform for biomedical knowledge computing.
Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles; Mousses, Spyro
2013-01-01
Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information.
A Survey on Ambient Intelligence in Health Care
Acampora, Giovanni; Cook, Diane J.; Rashidi, Parisa; Vasilakos, Athanasios V.
2013-01-01
Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people’s capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users’ goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths. PMID:24431472
A Survey on Ambient Intelligence in Health Care.
Acampora, Giovanni; Cook, Diane J; Rashidi, Parisa; Vasilakos, Athanasios V
2013-12-01
Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people's capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users' goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths.
Opponent Classification in Poker
NASA Astrophysics Data System (ADS)
Ahmad, Muhammad Aurangzeb; Elidrisi, Mohamed
Modeling games has a long history in the Artificial Intelligence community. Most of the games that have been considered solved in AI are perfect information games. Imperfect information games like Poker and Bridge represent a domain where there is a great deal of uncertainty involved and additional challenges with respect to modeling the behavior of the opponent etc. Techniques developed for playing imperfect games also have many real world applications like repeated online auctions, human computer interaction, opponent modeling for military applications etc. In this paper we explore different techniques for playing poker, the core of these techniques is opponent modeling via classifying the behavior of opponent according to classes provided by domain experts. We utilize windows of full observation in the game to classify the opponent. In Poker, the behavior of an opponent is classified into four standard poker-playing styles based on a subjective function.
Guidelines for Effective Selective Listening.
ERIC Educational Resources Information Center
Schendel, Joel D.; Shields, Joyce L.
Defining selective listening as an intelligence gathering technique that depends on an individual's ability to access, monitor, and report oral messages accurately and to give processing priority to messages of possible intelligence value, this report describes one important application of the technique: overhearing the conversations of others…
Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.
2003-01-01
This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.
García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Pérez, Ricardo; Alayón, Francisco
2015-01-01
The development of public transit systems that are accessible and safe for everyone, including people with special needs, is an objective that is justified from the civic and economic points of view. Unfortunately, public transit services are conceived for people who do not have reduced physical or cognitive abilities. In this paper, we present an intelligent public transit system by highway with the goal of facilitating access and improving the safety of public transit for persons with special needs. The system is deployed using components that are commonly available in transport infrastructure, e.g., sensors, mobile communications systems, and positioning systems. In addition, the system can operate in non-urban transport contexts, e.g., isolated rural areas, where the availability of basic infrastructure, such as electricity and communications infrastructures, is not always guaranteed. To construct the system, the principles and techniques of Ubiquitous Computing and Ambient Intelligence have been employed. To illustrate the utility of the system, two cases of services rendered by the system are described: the first case involves a surveillance system to guarantee accessibility at bus stops; the second case involves a route assistant for blind people. PMID:26295234
Detecting method of subjects' 3D positions and experimental advanced camera control system
NASA Astrophysics Data System (ADS)
Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi
1997-04-01
Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.