Uskalova, D V; Igolkina, Yu V; Sarapultseva, E I
2016-08-01
Morphofunctional disorders in unicellular aquatic protozoa - Spirostomum ambiguum infusorians after 30-, 60-, and 360-min exposure in electromagnetic field at a radiation frequency of 1 GHz and energy flow density of 50 μW/cm(2) were analyzed by intravital computer morphometry. Significant disorders in morphometric values correlated with low mobility of the protozoa. The results suggested the use of intravital computer morphometry on the protozoa for early diagnosis of radiation-induced effects of the mobile communication electromagnetic field, for example, low mobility of spermatozoa.
Quantitative computed tomography and aerosol morphometry in COPD and alpha1-antitrypsin deficiency.
Shaker, S B; Maltbaek, N; Brand, P; Haeussermann, S; Dirksen, A
2005-01-01
Relative area of emphysema below -910 Hounsfield units (RA-910) and 15th percentile density (PD15) are quantitative computed tomography (CT) parameters used in the diagnosis of emphysema. New concepts for noninvasive diagnosis of emphysema are aerosol-derived airway morphometry, which measures effective airspace dimensions (EAD) and aerosol bolus dispersion (ABD). Quantitative CT, ABD and EAD were compared in 20 smokers with chronic obstructive pulmonary disease (COPD) and 22 patients with alpha1-antitrypsin deficiency (AAD) with a similar degree of airway obstruction and reduced diffusion capacity. In both groups, there was a significant correlation between RA-910 and PD15 and pulmonary function tests (PFTs). A significant correlation was also found between EAD, RA-910 and PD15 in the study population as a whole. Upon separation into two groups, the significance disappeared for the smokers with COPD and strengthened for those with AAD, where EAD correlated significantly with RA-910 and PD15. ABD was similar in the two groups and did not correlate with PFT and quantitative CT in either group. In conclusion, based on quantitative computed tomography and aerosol-derived airway morphometry, emphysema was significantly more severe in patients with alpha1-antitrypsin deficiency compared with patients with usual emphysema, despite similar measures of pulmonary function tests.
Modern morphometry: new perspectives in physical anthropology.
Mantini, Simone; Ripani, Maurizio
2009-06-01
In the past one hundred years physical anthropology has recourse to more and more efficient methods, which provide several new information regarding, human evolution and biology. Apart from the molecular approach, the introduction of new computed assisted techniques gave rise to a new concept of morphometry. Computed tomography and 3D-imaging, allowed providing anatomical description of the external and inner structures exceeding the problems encountered with the traditional morphometric methods. Furthermore, the support of geometric morphometrics, allowed creating geometric models to investigate morphological variation in terms of evolution, ontogeny and variability. The integration of these new tools gave rise to the virtual anthropology and to a new image of the anthropologist in which anatomical, biological, mathematical statistical and data processing information are fused in a multidisciplinary approach.
Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W
2016-02-15
Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.
lakemorpho: Calculating lake morphometry metrics in R.
Hollister, Jeffrey; Stachelek, Joseph
2017-01-01
Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.
GENETIC INFLUENCE OF APOE4 GENOTYPE ON HIPPOCAMPAL MORPHOMETRY - AN N=725 SURFACE-BASED ADNI STUDY
Shi, Jie; Leporé, Natasha; Gutman, Boris A.; Thompson, Paul M.; Baxter, Leslie C.; Caselli, Richard L.; Wang, Yalin
2014-01-01
The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer’s disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 non-carriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database – the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD. PMID:24453132
Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph
2014-04-01
Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.
The Evolution of Neuroimaging Research and Developmental Language Disorders.
ERIC Educational Resources Information Center
Lane, Angela B.; Foundas, Anne L.; Leonard, Christiana M.
2001-01-01
This article reviews current neuroimaging literature, including computer tomography, positron emission tomography, single photon emission spectroscopy, and magnetic resonance imaging, on individuals with developmental language disorders. The review suggests a complicated relationship between cortical morphometry and language development that is…
Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F.; Becker, James T.; Aizenstein, Howard J.; Lopez, Oscar L.; Tamburo, Robert J.; Toga, Arthur W.; Thompson, Paul M.
2010-01-01
Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics - these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. PMID:19900560
Cytological Evaluation of Thyroid Lesions by Nuclear Morphology and Nuclear Morphometry.
Yashaswini, R; Suresh, T N; Sagayaraj, A
2017-01-01
Fine needle aspiration (FNA) of the thyroid gland is an effective diagnostic method. The Bethesda system for reporting thyroid cytopathology classifies them into six categories and gives implied risk for malignancy and management protocol in each category. Though the system gives specific criteria, diagnostic dilemma still exists. Using nuclear morphometry, we can quantify the number of parameters, such as those related to nuclear size and shape. The evaluation of nuclear morphometry is not well established in thyroid cytology. To classify thyroid lesions on fine needle aspiration cytology (FNAC) using Bethesda system and to evaluate the significance of nuclear parameters in improving the prediction of thyroid malignancy. In the present study, 120 FNAC cases of thyroid lesions with histological diagnosis were included. Computerized nuclear morphometry was done on 81 cases which had confirmed cytohistological correlation, using Aperio computer software. One hundred nuclei from each case were outlined and eight nuclear parameters were analyzed. In the present study, thyroid lesions were common in female with M: F ratio of 1:5 and most commonly in 40-60 yrs. Under Bethesda system, 73 (60.83%) were category II; 14 (11.6%) were category III, 3 (2.5%) were category IV, 8 (6.6%) were category V, and 22 (18.3%) were category VI, which were malignant on histopathological correlation. Sensitivity, specificity, and diagnostic accuracy of Bethesda reporting system are 62.5, 84.38, and 74.16%, respectively. Minimal nuclear diameter, maximal nuclear diameter, nuclear perimeter, and nuclear area were higher in malignant group compared to nonneoplastic and benign group. The Bethesda system is a useful standardized system of reporting thyroid cytopathology. It gives implied risk of malignancy. Nuclear morphometry by computerized image analysis can be utilized as an additional diagnostic tool.
Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.
2010-01-01
Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645
Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory.
Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H; Gu, Xianfeng
2015-01-01
Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing the distal part of the upper limb.
Mindboggling morphometry of human brains
Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias
2017-01-01
Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282
Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L
2016-01-01
This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.
Mietchen, Daniel; Gaser, Christian
2009-01-01
The brain, like any living tissue, is constantly changing in response to genetic and environmental cues and their interaction, leading to changes in brain function and structure, many of which are now in reach of neuroimaging techniques. Computational morphometry on the basis of Magnetic Resonance (MR) images has become the method of choice for studying macroscopic changes of brain structure across time scales. Thanks to computational advances and sophisticated study designs, both the minimal extent of change necessary for detection and, consequently, the minimal periods over which such changes can be detected have been reduced considerably during the last few years. On the other hand, the growing availability of MR images of more and more diverse brain populations also allows more detailed inferences about brain changes that occur over larger time scales, way beyond the duration of an average research project. On this basis, a whole range of issues concerning the structures and functions of the brain are now becoming addressable, thereby providing ample challenges and opportunities for further contributions from neuroinformatics to our understanding of the brain and how it changes over a lifetime and in the course of evolution. PMID:19707517
Lepore, Natasha; Brun, Caroline A; Chiang, Ming-Chang; Chou, Yi-Yu; Dutton, Rebecca A; Hayashi, Kiralee M; Lopez, Oscar L; Aizenstein, Howard J; Toga, Arthur W; Becker, James T; Thompson, Paul M
2006-01-01
Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure. Thus, much of the information contained within those matrices gets thrown out in the process. Only the magnitude of the expansions or contractions is examined, while the anisotropy and directional components of the changes are ignored. Here we remedy this problem by computing multivariate shape change statistics using the strain matrices. As the latter do not form a vector space, means and covariances are computed on the manifold of positive-definite matrices to which they belong. We study the brain morphology of 26 HIV/AIDS patients and 14 matched healthy control subjects using our method. The images are registered using a high-dimensional 3D fluid registration algorithm, which optimizes the Jensen-Rényi divergence, an information-theoretic measure of image correspondence. The anisotropy of the deformation is then computed. We apply a manifold version of Hotelling's T2 test to the strain matrices. Our results complement those found from the determinants of the Jacobians alone and provide greater power in detecting group differences in brain structure.
DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa.
Vernocchi, Valentina; Morselli, Maria Giorgia; Lange Consiglio, Anna; Faustini, Massimo; Luvoni, Gaia Cecilia
2014-10-15
Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle differences in sperm head morphometry might be related to DNA status. Several techniques are available to analyze sperm DNA fragmentation, but they are labor-intensive and require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm chromatin dispersion test and developed for spermatozoa of different species, but not for cat spermatozoa, became commercially available. The first aim of the present study was to verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose, DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) were compared. The second aim was to investigate whether a correlation between DNA status, sperm head morphology, and morphometry assessed by computer-assisted semen analysis exists in cat epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be independent from all the measured variables of sperm head morphology and morphometry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to the completion of the standard analysis of fresh or frozen semen used in assisted reproductive technologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Computed tomography, anatomy and morphometry of the lower extremity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogewoud, H.M.; Rager, G.; Burch, H.
1989-01-01
This book presents up-to-date information on CT imaging of the lower extremity. It includes an atlas correlating new, high-resolution CT scans with identical thin anatomical slices covering the lower extremity from the crista iliaca to the planta pedis. Additional figures, including CT arthrograms of the hip, knee and ankle, depict the anatomy in detail The technique and clinical relevance of CT measurements especially in orthopedic surgery are also clearly explained. Of special interest is the new method developed by the authors for assessing the coverage of the femoral head. The special morphometry software and a 3D program allowing representation inmore » space make it possible to precisely and accurately measure the coverage with normal CT scans of the hip.« less
New experimental results in atlas-based brain morphometry
NASA Astrophysics Data System (ADS)
Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.
1999-05-01
In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.
Counsell, Serena J; Boardman, James P
2005-10-01
Preterm birth is associated with a high prevalence of neuropsychiatric impairment in childhood and adolescence, but the neural correlates underlying these disorders are not fully understood. Quantitative magnetic resonance imaging techniques have been used to investigate subtle differences in cerebral growth and development among children and adolescents born preterm or with very low birth weight. Diffusion tensor imaging and computer-assisted morphometric techniques (including voxel-based morphometry and deformation-based morphometry) have identified abnormalities in tissue microstructure and cerebral morphology among survivors of preterm birth at different ages, and some of these alterations have specific functional correlates. This chapter reviews the literature reporting differential brain development following preterm birth, with emphasis on the morphological changes that correlate with neuropsychiatric impairment.
Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal
2013-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102
Structural Changes after Videogame Practice Related to a Brain Network Associated with Intelligence
ERIC Educational Resources Information Center
Colom, Roberto; Quiroga, Ma. Angeles; Solana, Ana Beatriz; Burgaleta, Miguel; Roman, Francisco J.; Privado, Jesus; Escorial, Sergio; Martinez, Kenia; Alvarez-Linera, Juan; Alfayate, Eva; Garcia, Felipe; Lepage, Claude; Hernandez-Tamames, Juan Antonio; Karama, Sherif
2012-01-01
Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young…
Ma, Deqiong; Jones, Graeme
2003-11-01
The effect of physical activity on upper limb fractures was examined in this population-based case control study with 321 age- and gender-matched pairs. Sports participation increased fracture risk in boys and decreased risk in girls. Television viewing had a deleterious dose response association with wrist and forearm fractures while light physical activity was protective. The aim of this population-based case control study was to examine the association between television, computer, and video viewing; types and levels of physical activity; and upper limb fractures in children 9-16 years of age. A total of 321 fracture cases and 321 randomly selected individually matched controls were studied. Television, computer, and video viewing and types and levels of physical activity were determined by interview-administered questionnaire. Bone strength was assessed by DXA and metacarpal morphometry. In general, sports participation increased total upper limb fracture risk in boys and decreased risk in girls. Gender-specific risk estimates were significantly different for total, contact, noncontact, and high-risk sports participation as well as four individual sports (soccer, cricket, surfing, and swimming). In multivariate analysis, time spent television, computer, and video viewing in both sexes was positively associated with wrist and forearm fracture risk (OR 1.6/category, 95% CI: 1.1-2.2), whereas days involved in light physical activity participation decreased fracture risk (OR 0.8/category, 95% CI: 0.7-1.0). Sports participation increased hand (OR 1.5/sport, 95% CI: 1.1-2.0) and upper arm (OR 29.8/sport, 95% CI: 1.7-535) fracture risk in boys only and decreased wrist and forearm fracture risk in girls only (OR 0.5/sport, 95% CI: 0.3-0.9). Adjustment for bone density and metacarpal morphometry did not alter these associations. There is gender discordance with regard to sports participation and fracture risk in children, which may reflect different approaches to sport. Importantly, television, computer, and video viewing has a dose-dependent association with wrist and forearm fractures, whereas light physical activity is protective. The mechanism is unclear but may involve bone-independent factors, or less likely, changes in bone quality not detected by DXA or metacarpal morphometry.
Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F
2007-01-01
A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291
Spilker, Ryan L; Feinstein, Jeffrey A; Parker, David W; Reddy, V Mohan; Taylor, Charles A
2007-04-01
Patient-specific computational models could aid in planning interventions to relieve pulmonary arterial stenoses common in many forms of congenital heart disease. We describe a new approach to simulate blood flow in subject-specific models of the pulmonary arteries that consists of a numerical model of the proximal pulmonary arteries created from three-dimensional medical imaging data with terminal impedance boundary conditions derived from linear wave propagation theory applied to morphometric models of distal vessels. A tuning method, employing numerical solution methods for nonlinear systems of equations, was developed to modify the distal vasculature to match measured pressure and flow distribution data. One-dimensional blood flow equations were solved with a finite element method in image-based pulmonary arterial models using prescribed inlet flow and morphometry-based impedance at the outlets. Application of these methods in a pilot study of the effect of removal of unilateral pulmonary arterial stenosis induced in a pig showed good agreement with experimental measurements for flow redistribution and main pulmonary arterial pressure. Next, these methods were applied to a patient with repaired tetralogy of Fallot and predicted insignificant hemodynamic improvement with relief of the stenosis. This method of coupling image-based and morphometry-based models could enable increased fidelity in pulmonary hemodynamic simulation.
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2018-01-01
Fine needle aspiration cytology (FNAC) is a simple, rapid, inexpensive, and reliable method of diagnosis of breast mass. Cytoprognostic grading in breast cancers is important to identify high-grade tumors. Computer-assisted image morphometric analysis has been developed to quantitate as well as standardize various grading systems. To apply nuclear morphometry on cytological aspirates of breast cancer and evaluate its correlation with cytomorphological grading with derivation of suitable cutoff values between various grades. Descriptive cross-sectional hospital-based study. This study included 64 breast cancer cases (29 of grade 1, 22 of grade 2, and 13 of grade 3). Image analysis was performed on Papanicolaou stained FNAC slides by NIS -Elements Advanced Research software (Ver 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear size parameters showed an increase in values with increasing cytological grades of carcinoma. Nuclear shape parameters were not found to be significantly different between the three grades. Among nuclear texture parameters, sum intensity, and sum brightness were found to be different between the three grades. Nuclear morphometry can be applied to augment the cytology grading of breast cancer and thus help in classifying patients into low and high-risk groups.
Is there any relation between distal parameters of the femur and its height and width?
Yazar, Fatih; Imre, Nurcan; Battal, Bilal; Bilgic, Serkan; Tayfun, Cem
2012-03-01
The purpose of this study was to reveal the association whether the distal morphometry of femur had a relation with femur height or width. Sixty-six adult (35 right and 31 left) dry femurs from Caucasians were used in this study. Computed tomography (CT) imaging was applied to obtain measurement values of the femur. Femur height (413.29 ± 28.40 mm) and width (29.86 ± 2.72 mm) were all checked one by one to determine the correlation with the parameters obtained. Both values exposed high rates of correlation with height (26 ± 2.34 mm) and width (20.85 ± 2.76 mm) of femur notch; also, measures of epicondylar, bicondylar and condylar diameters of femur were obtained. Measures were checked if there was a correlation with femur height and width. Differences displayed in distal morphometry of femur according to race and sex are due to other morphometric measures of femur rather than race and sex. We believe that displaying the high rates of correlation of distal morphometry of femur with femur height and width will be the factor which determines the selection and production of prosthesis among the long or short individuals of folks.
CT morphometry of adult thoracic intervertebral discs.
Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J
2015-10-01
Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.
Comparative minicolumnar morphometry of three distinguished scientists.
Casanova, Manuel F; Switala, Andrew E; Trippe, Juan; Fitzgerald, Michael
2007-11-01
It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished scientists and six normative controls. Overall, there were significant differences (p < 0.001) between the comparison groups in both minicolumnar width (CW) and mean cell spacing (MCS). Although our scientists did not exhibit deficits in communication or interpersonal skills, the resultant minicolumnar phenotype bears similarity to that described for both autism and Asperger's syndrome. Computer modeling has shown that smaller columns account for discrimination among signals during information processing. A minicolumnar phenotype that provides for discrimination and/or focused attention may help explain the savant abilities observed in some autistic people and the intellectually gifted.
Quantitative analysis in spontaneous canine anal sac gland adenomas and carcinomas.
Simeonov, Radostin; Simeonova, Galina
2008-12-01
Stained cytological specimens from 7 canine anal sac gland adenomas and 11 canine anal sac gland carcinomas were analyzed by computer-assisted nuclear morphometry. In each case, the nuclei of at least 100 neoplastic cells were measured, and the mean nuclear area (MNA), mean nuclear perimeter (MNP), mean nuclear diameter (MND) and nuclear roundness (NR) were calculated. The study aimed to evaluate (1) the possibility of using nuclear cytomorphometry as an auxiliary diagnostic method to differentiate between canine anal sac gland adenomas and adenocarcinomas, and (2) the prognostic value of nuclear morphometry in canine anal sac gland adenocarcinomas. The results indicated that (1) MNA, MNP, MND and NR could be used as effective auxiliary tools for differential diagnosis between canine anal sac gland adenomas and adenocarcinomas, and (2) MNA, MNP and MND are reliable prognostic indicators for canine anal sac gland adenocarcinomas.
Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry
NASA Astrophysics Data System (ADS)
Xie, Tianwu; Kuster, Niels; Zaidi, Habib
2017-04-01
Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.
Pronounced within-individual plasticity in sperm morphometry across social environments.
Immler, Simone; Pryke, Sarah R; Birkhead, Tim R; Griffith, Simon C
2010-06-01
Sperm morphometry (i.e., size and shape) and function are important determinants of male reproductive success and are thought to be under stabilizing selection. However, recent studies suggest that sperm morphometry can be a phenotypically plastic trait, which can be adjusted to varying conditions. We tested whether different behavioral strategies in aggression between aggressive red and nonaggressive black males of the color polymorphic Gouldian finch (Erythrura gouldiae) can influence sperm morphometry. We show pronounced within-individual phenotypic plasticity in sperm morphometry of male Gouldian finches in three different social environments. Both red and black males placed in intermediate to high competitive environments (high frequency of red males) increased the relative length of their sperm midpiece. By contrast, red males placed in low to intermediate competitive environments (higher frequency of black males) increased the length of the sperm flagellum. Significant changes in stress and sex steroid hormone levels (in response to the competitive environment) appear to influence sperm traits in red but not in black males, suggesting that changes in hormonal levels are not solely responsible for the observed changes in sperm morphometry. These findings imply that males can adjust sperm morphometry across social environments.
Zhang, Lei; Li, Wenfu; Wei, Dongtao; Yang, Wenjing; Yang, Ning; Qiao, Lei; Qiu, Jiang; Zuo, Xi-Nian; Zhang, Qinglin
2016-06-01
Mind pops or involuntary semantic memories refer to words, phrases, images, or melodies that suddenly pop into one's mind without any deliberate attempt to recall them. Despite their prevalence in everyday life, research on mind pops has started only recently. Notably, mind pops are very similar to clinical involuntary phenomena such as hallucinations in schizophrenia, suggesting their potential role in pathology. The present study aimed to investigate the relationship between mind pops and the brain morphometry measured in 302 healthy young adults; after exclusions, 256 participants were included in our analyses. Specifically, the Mind Popping Questionnaire (MPQ) was employed to measure the degree of individual mind pops, whereas the Voxel-Based Morphometry (VBM) was used to compute the volumes of both gray and white matter tissues. Multiple regression analyses on MPQ and VBM metrics indicated that high-frequency mind pops were significantly associated with smaller gray matter volume in the left middle temporal gyrus as well as with larger gray and white matter volume in the right medial prefrontal cortex. This increase in mind pops is also linked to higher creativity and the personality trait of 'openness'. These data not only suggest a key role of the two regions in generating self-related thoughts, but also open a possible link between brain and creativity or personality.
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2018-01-01
Background: Fine needle aspiration cytology (FNAC) is a simple, rapid, inexpensive, and reliable method of diagnosis of breast mass. Cytoprognostic grading in breast cancers is important to identify high-grade tumors. Computer-assisted image morphometric analysis has been developed to quantitate as well as standardize various grading systems. Aims: To apply nuclear morphometry on cytological aspirates of breast cancer and evaluate its correlation with cytomorphological grading with derivation of suitable cutoff values between various grades. Settings and Designs: Descriptive cross-sectional hospital-based study. Materials and Methods: This study included 64 breast cancer cases (29 of grade 1, 22 of grade 2, and 13 of grade 3). Image analysis was performed on Papanicolaou stained FNAC slides by NIS –Elements Advanced Research software (Ver 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear size parameters showed an increase in values with increasing cytological grades of carcinoma. Nuclear shape parameters were not found to be significantly different between the three grades. Among nuclear texture parameters, sum intensity, and sum brightness were found to be different between the three grades. Conclusion: Nuclear morphometry can be applied to augment the cytology grading of breast cancer and thus help in classifying patients into low and high-risk groups. PMID:29403169
EFFECTS OF LINDANE AND LINURON ON CALCIUM METABOLISM, MORPHOMETRY, AND THE KIDNEY
The effects of lindane and linuron on calcium metabolism, bone morphometry and the kidney. xperiments were performed to investigate the effects of lindane and linuron on calcium metabolism, femur morphometry and nephrotoxicity. ong-Evans hooded rats were dosed daily for 10 weeks ...
Santiago-Moreno, Julian; Esteso, Milagros Cristina; Villaverde-Morcillo, Silvia; Toledano-Díaz, Adolfo; Castaño, Cristina; Velázquez, Rosario; López-Sebastián, Antonio; Goya, Agustín López; Martínez, Javier Gimeno
2016-01-01
Postcopulatory sexual selection through sperm competition may be an important evolutionary force affecting many reproductive traits, including sperm morphometrics. Environmental factors such as pollutants, pesticides, and climate change may affect different sperm traits, and thus reproduction, in sensitive bird species. Many sperm-handling processes used in assisted reproductive techniques may also affect the size of sperm cells. The accurately measured dimensions of sperm cell structures (especially the head) can thus be used as indicators of environmental influences, in improving our understanding of reproductive and evolutionary strategies, and for optimizing assisted reproductive techniques (e.g., sperm cryopreservation) for use with birds. Computer-assisted sperm morphometry analysis (CASA-Morph) provides an accurate and reliable method for assessing sperm morphometry, reducing the problem of subjectivity associated with human visual assessment. Computerized systems have been standardized for use with semen from different mammalian species. Avian spermatozoa, however, are filiform, limiting their analysis with such systems, which were developed to examine the approximately spherical heads of mammalian sperm cells. To help overcome this, the standardization of staining techniques to be used in computer-assessed light microscopical methods is a priority. The present review discusses these points and describes the sperm morphometric characteristics of several wild and domestic bird species. PMID:27678467
Cheung, Anthony T.W.; Miller, Joshua W.; Craig, Sarah M.; To, Patricia L.; Lin, Xin; Samarron, Sandra L.; Chen, Peter C.Y.; Zwerdling, Theodore; Wun, Ted; Li, Chin-Shang; Green, Ralph
2010-01-01
The conjunctival microcirculation in 14 pediatric and 8 adult sickle cell anemia (SCA) patients was studied using computer-assisted intravital microscopy. The bulbar conjunctiva in SCA patients in both age groups exhibited a blanched/avascular appearance characterized by decreased vascularity. SCA patients from both age groups had many of the same abnormal morphometric {vessel diameter, vessel distribution, morphometry (shape), tortuosity, arteriole:venule (A:V) ratio, and hemosiderin deposits} and dynamic {vessel sludging/sludged flow, boxcar blood (trickled) flow and abnormal flow velocity} abnormalities. A severity index (SI) was computed to quantify the degree of vasculopathy for comparison between groups. The severity of vasculopathy differed significantly between the pediatric and adult patients (SI: 4.2 ± 1.8 vs 6.6 ± 2.4; p=0.028), indicative of a lesser degree of overall severity in the pediatric patients. Specific abnormalities that were less prominent in the pediatric patients included abnormal vessel morphometry and tortuosity. Sludged flow, abnormal vessel distribution, abnormal A:V ratio, and boxcar flow, appeared in high prevalence in both age groups. The results indicate that SCA microvascular abnormalities develop in childhood and the severity of vasculopathy likely progresses with age. Intervention and effective treatment/management modalities should target pediatric patients to ameliorate, slow down or prevent progressive microvascular deterioration. PMID:20872552
Schmitter, Daniel; Roche, Alexis; Maréchal, Bénédicte; Ribes, Delphine; Abdulkadir, Ahmed; Bach-Cuadra, Meritxell; Daducci, Alessandro; Granziera, Cristina; Klöppel, Stefan; Maeder, Philippe; Meuli, Reto; Krueger, Gunnar
2014-01-01
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. PMID:25429357
Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E
2015-12-01
Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.
The relationship between facial 3-D morphometry and the perception of attractiveness in children.
Ferrario, V F; Sforza, C; Poggio, C E; Colombo, A; Tartaglia, G
1997-01-01
The aim of this investigation was to determine whether attractive children differ in their three-dimensional facial characteristics from nonattractive children of the same age, race, and sex. The facial characteristics of 36 boys and 44 girls aged 8 to 9 years were investigated. Frontal and profile photographs were analyzed independently by 21 judges, and, for each view, four groups were obtained: attractive boys, nonattractive boys, attractive girls, and nonattractive girls. For each child, the three-dimensional coordinates of 16 standardized soft tissue facial landmarks were automatically collected using an infrared system and used to calculate several three-dimensional angles, linear distances, and linear distance ratios. Mean values were computed in the eight groups, and attractive and nonattractive children were compared within sex and view. Most children received a different esthetic evaluation in the separate frontal and profile assessments; concordance in both attractive and nonattractive groups was only 50%. Moreover, three-dimensional facial morphometry was not able to separate attractive and nonattractive children.
Stereological Cell Morphometry In Right Atrium Myocardium Of Primates
NASA Astrophysics Data System (ADS)
Mandarim-De-Lacerda, Carlos A...; Hureau, Jacques
1986-07-01
The mechanism by which the cardiac impulse is propagated in normal hearts from its origin in the sinus node to the atrio-ventricular node has not been agreed on fully. We studied the "internodal posterior tract" through the crista terminalis by light microscopy and stereological morphometry. The hearts of 12 Papio cynocephalus were perfused , after sacrifice,with phosphate-buffered formol saline. The regions of the crista terminalis (CT), interatrial septum (IAS), atrioventricular bundle (AVB) and interventricular septum (IVS) were cut off and embedded in paraplast and sectioned (10 4m). The multipurpose test system M 42 was superimposed over the photomicrographs (1,890 points test, ESR = 2%) to the stereological computing. The quantitative results show that the cells from CT were more closely relationed with IAS cells than others cells (IVS and AVB cells). This results are not a morphological evidence to establish the specificity of the "internodal posterior tract". The cellular arrangement and anatomical variation in CT myocardium is very important.
NASA Astrophysics Data System (ADS)
Geyer, Amy M.; O'Reilly, Shannon; Lee, Choonsik; Long, Daniel J.; Bolch, Wesley E.
2014-09-01
Substantial increases in pediatric and adult obesity in the US have prompted a major revision to the current UF/NCI (University of Florida/National Cancer Institute) family of hybrid computational phantoms to more accurately reflect current trends in larger body morphometry. A decision was made to construct the new library in a gridded fashion by height/weight without further reference to age-dependent weight/height percentiles as these become quickly outdated. At each height/weight combination, circumferential parameters were defined and used for phantom construction. All morphometric data for the new library were taken from the CDC NHANES survey data over the time period 1999-2006, the most recent reported survey period. A subset of the phantom library was then used in a CT organ dose sensitivity study to examine the degree to which body morphometry influences the magnitude of organ doses for patients that are underweight to morbidly obese in body size. Using primary and secondary morphometric parameters, grids containing 100 adult male height/weight bins, 93 adult female height/weight bins, 85 pediatric male height/weight bins and 73 pediatric female height/weight bins were constructed. These grids served as the blueprints for construction of a comprehensive library of patient-dependent phantoms containing 351 computational phantoms. At a given phantom standing height, normalized CT organ doses were shown to linearly decrease with increasing phantom BMI for pediatric males, while curvilinear decreases in organ dose were shown with increasing phantom BMI for adult females. These results suggest that one very useful application of the phantom library would be the construction of a pre-computed dose library for CT imaging as needed for patient dose-tracking.
Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars.
Kurthukoti, Ameet J; Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto
2015-01-01
Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. To evaluate by computed tomography-the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207.
Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars
Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto
2015-01-01
ABSTRACT Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. Aims: To evaluate by computed tomography—the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. Materials and methods: A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. Results: All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. Conclusion: The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207. PMID:26628855
Influence of APOE Genotype on Hippocampal Atrophy over Time - An N=1925 Surface-Based ADNI Study
Li, Bolun; Shi, Jie; Gutman, Boris A.; Baxter, Leslie C.; Thompson, Paul M.; Caselli, Richard J.; Wang, Yalin
2016-01-01
The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers. PMID:27065111
Computer-based analysis of microvascular alterations in a mouse model for Alzheimer's disease
NASA Astrophysics Data System (ADS)
Heinzer, Stefan; Müller, Ralph; Stampanoni, Marco; Abela, Rafael; Meyer, Eric P.; Ulmann-Schuler, Alexandra; Krucker, Thomas
2007-03-01
Vascular factors associated with Alzheimer's disease (AD) have recently gained increased attention. To investigate changes in vascular, particularly microvascular architecture, we developed a hierarchical imaging framework to obtain large-volume, high-resolution 3D images from brains of transgenic mice modeling AD. In this paper, we present imaging and data analysis methods which allow compiling unique characteristics from several hundred gigabytes of image data. Image acquisition is based on desktop micro-computed tomography (µCT) and local synchrotron-radiation µCT (SRµCT) scanning with a nominal voxel size of 16 µm and 1.4 µm, respectively. Two visualization approaches were implemented: stacks of Z-buffer projections for fast data browsing, and progressive-mesh based surface rendering for detailed 3D visualization of the large datasets. In a first step, image data was assessed visually via a Java client connected to a central database. Identified characteristics of interest were subsequently quantified using global morphometry software. To obtain even deeper insight into microvascular alterations, tree analysis software was developed providing local morphometric parameters such as number of vessel segments or vessel tortuosity. In the context of ever increasing image resolution and large datasets, computer-aided analysis has proven both powerful and indispensable. The hierarchical approach maintains the context of local phenomena, while proper visualization and morphometry provide the basis for detailed analysis of the pathology related to structure. Beyond analysis of microvascular changes in AD this framework will have significant impact considering that vascular changes are involved in other neurodegenerative diseases as well as in cancer, cardiovascular disease, asthma, and arthritis.
Wang, QuanQiu; Li, Li; Xu, Rong
2018-04-18
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. It is estimated that about half the cases of CRC occurring today are preventable. Recent studies showed that human gut microbiota and their collective metabolic outputs play important roles in CRC. However, the mechanisms by which human gut microbial metabolites interact with host genetics in contributing CRC remain largely unknown. We hypothesize that computational approaches that integrate and analyze vast amounts of publicly available biomedical data have great potential in better understanding how human gut microbial metabolites are mechanistically involved in CRC. Leveraging vast amount of publicly available data, we developed a computational algorithm to predict human gut microbial metabolites for CRC. We validated the prediction algorithm by showing that previously known CRC-associated gut microbial metabolites ranked highly (mean ranking: top 10.52%; median ranking: 6.29%; p-value: 3.85E-16). Moreover, we identified new gut microbial metabolites likely associated with CRC. Through computational analysis, we propose potential roles for tartaric acid, the top one ranked metabolite, in CRC etiology. In summary, our data-driven computation-based study generated a large amount of associations that could serve as a starting point for further experiments to refute or validate these microbial metabolite associations in CRC cancer.
Weldon, Steve M.; Matera, Damian; Lee, ChungWein; Yang, Haichun; Fryer, Ryan M.; Fogo, Agnes B.; Reinhart, Glenn A.
2016-01-01
Renal interstitial fibrosis (IF) is an important pathologic manifestation of disease progression in a variety of chronic kidney diseases (CKD). However, the quantitative and reproducible analysis of IF remains a challenge, especially in experimental animal models of progressive IF. In this study, we compare traditional polarized Sirius Red morphometry (SRM) to novel Second Harmonic Generation (SHG)-based morphometry of unstained tissues for quantitative analysis of IF in the rat 5 day unilateral ureteral obstruction (UUO) model. To validate the specificity of SHG for detecting fibrillar collagen components in IF, co-localization studies for collagens type I, III, and IV were performed using IHC. In addition, we examined the correlation, dynamic range, sensitivity, and ability of polarized SRM and SHG-based morphometry to detect an anti-fibrotic effect of three different treatment regimens. Comparisons were made across three separate studies in which animals were treated with three mechanistically distinct pharmacologic agents: enalapril (ENA, 15, 30, 60 mg/kg), mycophenolate mofetil (MMF, 2, 20 mg/kg) or the connective tissue growth factor (CTGF) neutralizing antibody, EX75606 (1, 3, 10 mg/kg). Our results demonstrate a strong co-localization of the SHG signal with fibrillar collagens I and III but not non-fibrillar collagen IV. Quantitative IF, calculated as percent cortical area of fibrosis, demonstrated similar response profile for both polarized SRM and SHG-based morphometry. The two methodologies exhibited a strong correlation across all three pharmacology studies (r2 = 0.89–0.96). However, compared with polarized SRM, SHG-based morphometry delivered a greater dynamic range and absolute magnitude of reduction of IF after treatment. In summary, we demonstrate that SHG-based morphometry in unstained kidney tissues is comparable to polarized SRM for quantitation of fibrillar collagens, but with an enhanced sensitivity to detect treatment-induced reductions in IF. Thus, performing SHG-based morphometry on unstained kidney tissue is a reliable alternative to traditional polarized SRM for quantitative analysis of IF. PMID:27257917
Feature-Based Morphometry: Discovering Group-related Anatomical Patterns
Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal
2015-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047
NASA Astrophysics Data System (ADS)
Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek
2011-03-01
Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.
Experimental evidence of age-related adaptive changes in human acinar airways
Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario
2015-01-01
The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518
Morphometric classification of Spanish thoroughbred stallion sperm heads.
Hidalgo, Manuel; Rodríguez, Inmaculada; Dorado, Jesús; Soler, Carles
2008-01-30
This work used semen samples collected from 12 stallions and assessed for sperm morphometry by the Sperm Class Analyzer (SCA) computer-assisted system. A discriminant analysis was performed on the morphometric data from that sperm to obtain a classification matrix for sperm head shape. Thereafter, we defined six types of sperm head shape. Classification of sperm head by this method obtained a globally correct assignment of 90.1%. Moreover, significant differences (p<0.05) were found between animals for all the sperm head morphometric parameters assessed.
3He Lung Morphometry Technique: Accuracy Analysis and Pulse Sequence Optimization
Sukstanskii, A.L.; Conradi, M.S.; Yablonskiy, D.A.
2010-01-01
The 3He lung morphometry technique (Yablonskiy et al, JAP, 2009), based on MRI measurements of hyperpolarized gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. 3D tomographic images of standard morphological parameters (mean airspace chord length, lung parenchyma surface-to-volume ratio, and the number of alveoli per unit lung volume) can be created from a rather short (several seconds) MRI scan. These parameters are most commonly used to characterize lung morphometry but were not previously available from in vivo studies. A background of the 3He lung morphometry technique is based on a previously proposed model of lung acinar airways, treated as cylindrical passages of external radius R covered by alveolar sleeves of depth h, and on a theory of gas diffusion in these airways. The initial works approximated the acinar airways as very long cylinders, all with the same R and h. The present work aims at analyzing effects of realistic acinar airway structures, incorporating airway branching, physiological airway lengths, a physiological ratio of airway ducts and sacs, and distributions of R and h. By means of Monte Carlo computer simulations, we demonstrate that our technique allows rather accurate measurements of geometrical and morphological parameters of acinar airways. In particular, the accuracy of determining one of the most important physiological parameter of acinar airways – surface-to-volume ratio – does not exceed several percent. Second, we analyze the effect of the susceptibility induced inhomogeneous magnetic field on the parameter estimate and demonstrate that this effect is rather negligible at B0 ≤ 3T and becomes substantial only at higher B0 Third, we theoretically derive an optimal choice of MR pulse sequence parameters, which should be used to acquire a series of diffusion attenuated MR signals, allowing a substantial decrease in the acquisition time and improvement in accuracy of the results. It is demonstrated that the optimal choice represents three not equidistant b-values: b1 = 0, b2 ~ 2 s/cm2, b3 ~ 8 s/cm2. PMID:20937564
Su, Xiaoquan; Wang, Xuetao; Jing, Gongchao; Ning, Kang
2014-04-01
The number of microbial community samples is increasing with exponential speed. Data-mining among microbial community samples could facilitate the discovery of valuable biological information that is still hidden in the massive data. However, current methods for the comparison among microbial communities are limited by their ability to process large amount of samples each with complex community structure. We have developed an optimized GPU-based software, GPU-Meta-Storms, to efficiently measure the quantitative phylogenetic similarity among massive amount of microbial community samples. Our results have shown that GPU-Meta-Storms would be able to compute the pair-wise similarity scores for 10 240 samples within 20 min, which gained a speed-up of >17 000 times compared with single-core CPU, and >2600 times compared with 16-core CPU. Therefore, the high-performance of GPU-Meta-Storms could facilitate in-depth data mining among massive microbial community samples, and make the real-time analysis and monitoring of temporal or conditional changes for microbial communities possible. GPU-Meta-Storms is implemented by CUDA (Compute Unified Device Architecture) and C++. Source code is available at http://www.computationalbioenergy.org/meta-storms.html.
The information science of microbial ecology.
Hahn, Aria S; Konwar, Kishori M; Louca, Stilianos; Hanson, Niels W; Hallam, Steven J
2016-06-01
A revolution is unfolding in microbial ecology where petabytes of 'multi-omics' data are produced using next generation sequencing and mass spectrometry platforms. This cornucopia of biological information has enormous potential to reveal the hidden metabolic powers of microbial communities in natural and engineered ecosystems. However, to realize this potential, the development of new technologies and interpretative frameworks grounded in ecological design principles are needed to overcome computational and analytical bottlenecks. Here we explore the relationship between microbial ecology and information science in the era of cloud-based computation. We consider microorganisms as individual information processing units implementing a distributed metabolic algorithm and describe developments in ecoinformatics and ubiquitous computing with the potential to eliminate bottlenecks and empower knowledge creation and translation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Computed Tomography Measurement of Rib Cage Morphometry in Emphysema
Sverzellati, Nicola; Colombi, Davide; Randi, Giorgia; Pavarani, Antonio; Silva, Mario; Walsh, Simon L.; Pistolesi, Massimo; Alfieri, Veronica; Chetta, Alfredo; Vaccarezza, Mauro; Vitale, Marco; Pastorino, Ugo
2013-01-01
Background Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers. Methods Rib cage diameters and areas (calculated from the inner surface of the rib cage) in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT). CTs were analyzed with software, which allows quantification of total emphysema (emphysema%). The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models. Results A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1)%, and forced vital capacity (FVC)% fit best with the rib cage measurements (R2 = 64% for the rib cage area variation at the lower anatomical level). Gender had the biggest impact on rib cage diameter and area (105.3 cm2; 95% CI: 111.7 to 98.8 for male lower area). Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%). Lower rib cage areas decreased as FVC% decreased (5.1 cm2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation). Conclusions This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema. PMID:23935872
Yin, Xiaoping; Huang, Xu; Li, Qiao; Li, Li; Niu, Pei; Cao, Minglu; Guo, Fei; Li, Xuechao; Tan, Wenchang; Huo, Yunlong
2018-01-01
Background: The formation of hepatic hemangiomas (HH) is associated with VEGF and IL-7 that alter conduit arteries and small arterioles. To our knowledge, there are no studies to investigate the effects of HH on the hemodynamics in conduit arteries. The aim of the study is to perform morphometric and hemodynamic analysis in abdominal conduit arteries and bifurcations of HH patients and controls. Methods: Based on morphometry reconstructed from CT images, geometrical models were meshed with prismatic elements for the near wall region and tetrahedral and hexahedral elements for the core region. Simulations were performed for computation of the non-Newtonian blood flow using the Carreau-Yasuda model, based on which multiple hemodynamic parameters were determined. Results: There was an increase of the lumen size, diameter ratio, and curvature in the abdominal arterial tree of HH patients as compared with controls. This significantly increased the surface area ratio of low time-averaged wall shear stress (i.e., SAR-TAWSS [Formula: see text] 100%) (24.1 ± 7.9 vs. 5 ± 6%, 11.6 ± 12.8 vs. < 0.1%, and 44.5 ± 9.2 vs. 21 ± 24% at hepatic bifurcations, common hepatic arteries, and abdominal aortas, respectively, between HH and control patients). Conclusions: Morphometric changes caused by HH significantly deteriorated the hemodynamic environment in abdominal conduit arteries and bifurcations, which could be an important risk factor for the incidence and progression of vascular diseases.
Morphometric and kinematic sperm subpopulations in split ejaculates of normozoospermic men
Santolaria, Pilar; Soler, Carles; Recreo, Pilar; Carretero, Teresa; Bono, Araceli; Berné, José M; Yániz, Jesús L
2016-01-01
This study was designed to analyze the sperm kinematic and morphometric subpopulations in the different fractions of the ejaculate in normozoospermic men. Ejaculates from eight normozoospermic men were collected by masturbation in three fractions after 3–5 days of sexual abstinence. Analyses of sperm motility by computer-assisted sperm analysis (CASA-Mot), and of sperm morphometry by computer-assisted sperm morphometry analysis (CASA-Morph) using fluorescence were performed. Clustering and discriminant procedures were performed to identify sperm subpopulations in the kinematic and morphometric data obtained. Clustering procedures resulted in the classification of spermatozoa into three kinematic subpopulations (slow with low ALH [35.6% of all motile spermatozoa], with circular trajectories [32.0%], and rapid with high ALH [32.4%]), and three morphometric subpopulations (large-round [33.9% of all spermatozoa], elongated [32.0%], and small [34.10%]). The distribution of kinematic sperm subpopulations was different among ejaculate fractions (P < 0.001), with higher percentages of spermatozoa exhibiting slow movements with low ALH in the second and third portions, and with a more homogeneous distribution of kinematic sperm subpopulations in the first portion. The distribution of morphometric sperm subpopulations was also different among ejaculate fractions (P < 0.001), with more elongated spermatozoa in the first, and of small spermatozoa in the third, portion. It is concluded that important variations in the distribution of kinematic and morphometric sperm subpopulations exist between ejaculate fractions, with possible functional implications. PMID:27624985
Scalable Biomarker Discovery for Diverse High-Dimensional Phenotypes
2015-11-23
bytes: Computational analysis methods for microbial communities," University of Oregon BioBE center seminar. Eugene, OR, 2013 35- "From microbial...analysis methods for microbial communities," University of Oregon BioBE center seminar. Eugene, OR, 2013 • "From microbial surveys to mechanisms of
Allaire, Brett T; DePaolis Kaluza, M Clara; Bruno, Alexander G; Samelson, Elizabeth J; Kiel, Douglas P; Anderson, Dennis E; Bouxsein, Mary L
2017-01-01
Current standard methods to quantify disc height, namely distortion compensated Roentgen analysis (DCRA), have been mostly utilized in the lumbar and cervical spine and have strict exclusion criteria. Specifically, discs adjacent to a vertebral fracture are excluded from measurement, thus limiting the use of DCRA in studies that include older populations with a high prevalence of vertebral fractures. Thus, we developed and tested a modified DCRA algorithm that does not depend on vertebral shape. Participants included 1186 men and women from the Framingham Heart Study Offspring and Third Generation Multidetector CT Study. Lateral CT scout images were used to place 6 morphometry points around each vertebra at 13 vertebral levels in each participant. Disc heights were calculated utilizing these morphometry points using DCRA methodology and our modified version of DCRA, which requires information from fewer morphometry points than the standard DCRA. Modified DCRA and standard DCRA measures of disc height are highly correlated, with concordance correlation coefficients above 0.999. Both measures demonstrate good inter- and intra-operator reproducibility. 13.9 % of available disc heights were not evaluable or excluded using the standard DCRA algorithm, while only 3.3 % of disc heights were not evaluable using our modified DCRA algorithm. Using our modified DCRA algorithm, it is not necessary to exclude vertebrae with fracture or other deformity from disc height measurements as in the standard DCRA. Modified DCRA also yields identical measurements to the standard DCRA. Thus, the use of modified DCRA for quantitative assessment of disc height will lead to less missing data without any loss of accuracy, making it a preferred alternative to the current standard methodology.
Carlson, Joshua M; Beacher, Felix; Reinke, Karen S; Habib, Reza; Harmon-Jones, Eddie; Mujica-Parodi, Lilianne R; Hajcak, Greg
2012-01-16
An important aspect of the fear response is the allocation of spatial attention toward threatening stimuli. This response is so powerful that modulations in spatial attention can occur automatically without conscious awareness. Functional neuroimaging research suggests that the amygdala and anterior cingulate cortex (ACC) form a network involved in the rapid orienting of attention to threat. A hyper-responsive attention bias to threat is a common component of anxiety disorders. Yet, little is known of how individual differences in underlying brain morphometry relate to variability in attention bias to threat. Here, we performed two experiments using dot-probe tasks that measured individuals' attention bias to backward masked fearful faces. We collected whole-brain structural magnetic resonance images and used voxel-based morphometry to measure brain morphometry. We tested the hypothesis that reduced gray matter within the amygdala and ACC would be associated with reduced attention bias to threat. In Experiment 1, we found that backward masked fearful faces captured spatial attention and that elevated attention bias to masked threat was associated with greater ACC gray matter volumes. In Experiment 2, this association was replicated in a separate sample. Thus, we provide initial and replicating evidence that ACC gray matter volume is correlated with biased attention to threat. Importantly, we demonstrate that variability in affective attention bias within the healthy population is associated with ACC morphometry. This result opens the door for future research into the underlying brain morphometry associated with attention bias in clinically anxious populations. Copyright © 2011 Elsevier Inc. All rights reserved.
A SARA Timeseries Utility supports analysis and management of time-varying environmental data including listing, graphing, computing statistics, computing meteorological data and saving in a WDM or text file. File formats supported include WDM, HSPF Binary (.hbn), USGS RDB, and T...
Zhu, Feifei; Zhang, Qinglin; Qiu, Jiang
2013-01-01
Creativity can be defined the capacity of an individual to produce something original and useful. An important measurable component of creativity is divergent thinking. Despite existing studies on creativity-related cerebral structural basis, no study has used a large sample to investigate the relationship between individual verbal creativity and regional gray matter volumes (GMVs) and white matter volumes (WMVs). In the present work, optimal voxel-based morphometry (VBM) was employed to identify the structure that correlates verbal creativity (measured by the verbal form of Torrance Tests of Creative Thinking) across the brain in young healthy subjects. Verbal creativity was found to be significantly positively correlated with regional GMV in the left inferior frontal gyrus (IFG), which is believed to be responsible for language production and comprehension, new semantic representation, and memory retrieval, and in the right IFG, which may involve inhibitory control and attention switching. A relationship between verbal creativity and regional WMV in the left and right IFG was also observed. Overall, a highly verbal creative individual with superior verbal skills may demonstrate a greater computational efficiency in the brain areas involved in high-level cognitive processes including language production, semantic representation and cognitive control. PMID:24223921
Zhu, Feifei; Zhang, Qinglin; Qiu, Jiang
2013-01-01
Creativity can be defined the capacity of an individual to produce something original and useful. An important measurable component of creativity is divergent thinking. Despite existing studies on creativity-related cerebral structural basis, no study has used a large sample to investigate the relationship between individual verbal creativity and regional gray matter volumes (GMVs) and white matter volumes (WMVs). In the present work, optimal voxel-based morphometry (VBM) was employed to identify the structure that correlates verbal creativity (measured by the verbal form of Torrance Tests of Creative Thinking) across the brain in young healthy subjects. Verbal creativity was found to be significantly positively correlated with regional GMV in the left inferior frontal gyrus (IFG), which is believed to be responsible for language production and comprehension, new semantic representation, and memory retrieval, and in the right IFG, which may involve inhibitory control and attention switching. A relationship between verbal creativity and regional WMV in the left and right IFG was also observed. Overall, a highly verbal creative individual with superior verbal skills may demonstrate a greater computational efficiency in the brain areas involved in high-level cognitive processes including language production, semantic representation and cognitive control.
Angiuoli, Samuel V; White, James R; Matalka, Malcolm; White, Owen; Fricke, W Florian
2011-01-01
The widespread popularity of genomic applications is threatened by the "bioinformatics bottleneck" resulting from uncertainty about the cost and infrastructure needed to meet increasing demands for next-generation sequence analysis. Cloud computing services have been discussed as potential new bioinformatics support systems but have not been evaluated thoroughly. We present benchmark costs and runtimes for common microbial genomics applications, including 16S rRNA analysis, microbial whole-genome shotgun (WGS) sequence assembly and annotation, WGS metagenomics and large-scale BLAST. Sequence dataset types and sizes were selected to correspond to outputs typically generated by small- to midsize facilities equipped with 454 and Illumina platforms, except for WGS metagenomics where sampling of Illumina data was used. Automated analysis pipelines, as implemented in the CloVR virtual machine, were used in order to guarantee transparency, reproducibility and portability across different operating systems, including the commercial Amazon Elastic Compute Cloud (EC2), which was used to attach real dollar costs to each analysis type. We found considerable differences in computational requirements, runtimes and costs associated with different microbial genomics applications. While all 16S analyses completed on a single-CPU desktop in under three hours, microbial genome and metagenome analyses utilized multi-CPU support of up to 120 CPUs on Amazon EC2, where each analysis completed in under 24 hours for less than $60. Representative datasets were used to estimate maximum data throughput on different cluster sizes and to compare costs between EC2 and comparable local grid servers. Although bioinformatics requirements for microbial genomics depend on dataset characteristics and the analysis protocols applied, our results suggests that smaller sequencing facilities (up to three Roche/454 or one Illumina GAIIx sequencer) invested in 16S rRNA amplicon sequencing, microbial single-genome and metagenomics WGS projects can achieve cost-efficient bioinformatics support using CloVR in combination with Amazon EC2 as an alternative to local computing centers.
Angiuoli, Samuel V.; White, James R.; Matalka, Malcolm; White, Owen; Fricke, W. Florian
2011-01-01
Background The widespread popularity of genomic applications is threatened by the “bioinformatics bottleneck” resulting from uncertainty about the cost and infrastructure needed to meet increasing demands for next-generation sequence analysis. Cloud computing services have been discussed as potential new bioinformatics support systems but have not been evaluated thoroughly. Results We present benchmark costs and runtimes for common microbial genomics applications, including 16S rRNA analysis, microbial whole-genome shotgun (WGS) sequence assembly and annotation, WGS metagenomics and large-scale BLAST. Sequence dataset types and sizes were selected to correspond to outputs typically generated by small- to midsize facilities equipped with 454 and Illumina platforms, except for WGS metagenomics where sampling of Illumina data was used. Automated analysis pipelines, as implemented in the CloVR virtual machine, were used in order to guarantee transparency, reproducibility and portability across different operating systems, including the commercial Amazon Elastic Compute Cloud (EC2), which was used to attach real dollar costs to each analysis type. We found considerable differences in computational requirements, runtimes and costs associated with different microbial genomics applications. While all 16S analyses completed on a single-CPU desktop in under three hours, microbial genome and metagenome analyses utilized multi-CPU support of up to 120 CPUs on Amazon EC2, where each analysis completed in under 24 hours for less than $60. Representative datasets were used to estimate maximum data throughput on different cluster sizes and to compare costs between EC2 and comparable local grid servers. Conclusions Although bioinformatics requirements for microbial genomics depend on dataset characteristics and the analysis protocols applied, our results suggests that smaller sequencing facilities (up to three Roche/454 or one Illumina GAIIx sequencer) invested in 16S rRNA amplicon sequencing, microbial single-genome and metagenomics WGS projects can achieve cost-efficient bioinformatics support using CloVR in combination with Amazon EC2 as an alternative to local computing centers. PMID:22028928
LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS
Einstein, Daniel R.; Dyedov, Vladimir
2010-01-01
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546
Shi, Jie; Stonnington, Cynthia M; Thompson, Paul M; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C; Reiman, Eric M; Caselli, Richard J; Wang, Yalin
2015-01-01
Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Shi, Jie; Stonnington, Cynthia M.; Thompson, Paul M.; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C.; Reiman, Eric M.; Caselli, Richard J.; Wang, Yalin
2014-01-01
Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer’s disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. PMID:25285374
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...
Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis
2010-07-01
cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and diffusion imaging. We are continuing to...th ickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and diffusion imaging. Regressio n and symbolic modeling
Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; Nelson, William C.; Lee, Joon-Yong
Interest in applying microbial communities to biotechnology continues to increase. Successful engineering of microbial communities requires a fundamental shift in focus from enhancing metabolic capabilities in individual organisms to promoting synergistic interspecies interactions. This goal necessitates in silico tools that provide a predictive understanding of how microorganisms interact with each other and their environments. In this regard, we highlight a need for a new concept that we have termed biological computer-aided design of interactions (BioCADi). We ground this discussion within the context of metabolic network modeling.
lakemorpho: Calculating lake morphometry metrics in R
Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data ...
This tutorial provides instructions for accessing, retrieving, and downloading the following software to install on a host computer in support of Quantitative Microbial Risk Assessment (QMRA) modeling:• SDMProjectBuilder (which includes the Microbial Source Module as part...
NASA Technical Reports Server (NTRS)
Craddock, Robert A.; Golombek, Matthew; Howard, Alan D.
2000-01-01
Both the size-frequency distribution and morphometry of rock populations emplaced by a variety of geologic processes in Hawaii indicate that such information may be useful in planning future landing sites on Mars and interpreting the surface geology.
This tutorial provides instructions for accessing, retrieving, and downloading the following software to install on a host computer in support of Quantitative Microbial Risk Assessment (QMRA) modeling: • QMRA Installation • SDMProjectBuilder (which includes the Microbial ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derek Lovley; Maddalena Coppi; Stacy Ciufo
Analysis of the Genetic Potential and Gene Expression of Microbial Communities Involved in the In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Organic Matter The primary goal of this research is to develop conceptual and computational models that can describe the functioning of complex microbial communities involved in microbial processes of interest to the Department of Energy. Microbial Communities to be Investigated: (1) Microbial community associated with the in situ bioremediation of uranium-contaminated groundwater; and (2) Microbial community that is capable of harvesting energy from waste organic matter in the form of electricity.
Ecology and exploration of the rare biosphere.
Lynch, Michael D J; Neufeld, Josh D
2015-04-01
The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.
Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...
Comparative Minicolumnar Morphometry of Three Distinguished Scientists
ERIC Educational Resources Information Center
Casanova, Manuel F.; Switala, Andrew E.; Trippe, Juan; Fitzgerald, Michael
2007-01-01
It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished…
Echtermeyer, Sandra; Metelmann, Philine H; Hemprich, Alexander; Dannhauer, Karl-Heinz; Krey, Karl-Friedrich
2017-01-01
This study aims to describe morphological peculiarities of maxillary and mandibular first molars in Europeans, Asians and Europeans with cleft lip and palate. Reflex microscopy was used to obtain three-dimensional morphometric landmarks from 40 models (11 Europeans and 13 Asians without cleft lip and palate, 16 Europeans with unilateral cleft lip and palate). The cases were examined using traditional morphometry and geometric morphometry, and visualized using thin-plate splines. Classic morphometry showed no right/left differences in the study groups and no significant differences with regard to the cleft side in patients with cleft lip and palate. In Asians, a significantly greater mesiodistal width was found. Geometric morphometry showed an enlarged centroid size in Asians (maxilla and mandible). In cleft patients, the cleft site did not appear to impact the morphology of first molars. Unilateral clefting did not affect the size and shape of molars; however, characteristic ethnicity-based differences were in fact identified. The results are relevant for orthodontic treatment with preadjusted appliances, and prosthetic CAD/CAM restorations.
Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.
2016-01-01
Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628
Metabolic interactions and dynamics in microbial communities
NASA Astrophysics Data System (ADS)
Segre', Daniel
Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.
Morphology and Three-Dimensional Inhalation Flow in Human Airways in Healthy and Diseased Subjects
NASA Astrophysics Data System (ADS)
Van de Moortele, Tristan
We investigate experimentally the relation between anatomical structure and respiratory function in healthy and diseased airways. Computed Tomography (CT) scans of human lungs are analyzed from the data base of a large multi-institution clinical study on Chronic Obstructive Pulmonary Disease (COPD). Through segmentation, the 3D volumes of the airways are determined at total lung capacity. A geometric analysis provides data on the morphometry of the airways, including the length and diameter of branches, the child-to-parent diameter ratio, and branching angles. While several geometric parameters are confirmed to match past studies for healthy subjects, previously unreported trends are reported on the length of branches. Specifically, in most dichotomous airway bifurcation, the branch of smaller diameter tends to be significantly longer than the one of larger diameter. Additionally, the branch diameter tends to be smaller in diseased airways than in healthy airways up to the 7th generation of bronchial branching. 3D fractal analysis is also performed on the airway volume. Fractal dimensions of 1.89 and 1.83 are found for healthy non-smokers and declining COPD subjects, respectively, furthering the belief that COPD (and lung disease in general) significantly affects the morphometry of the airways already in early stages of the disease. To investigate the inspiratory flow, 3D flow models of the airways are generated using Computer Aided Design (CAD) software and 3D printed. Using Magnetic Resonance Velocimetry (MRV), 3-component 3D flow fields are acquired for steady inhalation at Reynolds number Re 2000 defined at the trachea. Analysis of the flow data reveals that diseased subjects may experience greater secondary flow strength in their conducting airways, especially in deeper generations.
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.
Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M
2006-06-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.
Bahadori, Amir A; Van Baalen, Mary; Shavers, Mark R; Dodge, Charles; Semones, Edward J; Bolch, Wesley E
2011-03-21
The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.
Longitudinal stability of MRI for mapping brain change using tensor-based morphometry
Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.
2007-01-01
Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900
Micro-imaging of the Mouse Lung via MRI
NASA Astrophysics Data System (ADS)
Wang, Wei
Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.
Larsen, Peter; Hamada, Yuki; Gilbert, Jack
2012-07-31
Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Parks, Lauren K.; Hill, Dina E.; Thoma, Robert J.; Euler, Matthew J.; Lewine, Jeffrey D.; Yeo, Ronald A.
2009-01-01
Although many studies have compared the brains of normal controls and individuals with autism, especially older, higher-functioning individuals with autism, little is known of the neural correlates of the vast clinical heterogeneity characteristic of the disorder. In this study, we used voxel-based morphometry (VBM) to examine gray matter…
Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr
2010-03-24
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less
Microbial burden prediction model for unmanned planetary spacecraft
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Winterburn, D. A.
1972-01-01
The technical development of a computer program for predicting microbial burden on unmanned planetary spacecraft is outlined. The discussion includes the derivation of the basic analytical equations, the selection of a method for handling several random variables, the macrologic of the computer programs and the validation and verification of the model. The prediction model was developed to (1) supplement the biological assays of a spacecraft by simulating the microbial accretion during periods when assays are not taken; (2) minimize the necessity for a large number of microbiological assays; and (3) predict the microbial loading on a lander immediately prior to sterilization and other non-lander equipment prior to launch. It is shown that these purposes not only were achieved but also that the prediction results compare favorably to the estimates derived from the direct assays. The computer program can be applied not only as a prediction instrument but also as a management and control tool. The basic logic of the model is shown to have possible applicability to other sequential flow processes, such as food processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Steven D.
The role of specific micro-organisms in the carbon cycle, and their responses to environmental change, are unknown in most ecosystems. This knowledge gap limits scientists’ ability to predict how important ecosystem processes, like soil carbon storage and loss, will change with climate and other environmental factors. The investigators addressed this knowledge gap by transplanting microbial communities from different environments into new environments and measuring the response of community composition and carbon cycling over time. Using state-of-the-art sequencing techniques, computational tools, and nanotechnology, the investigators showed that microbial communities on decomposing plant material shift dramatically with natural and experimentally-imposed drought. Microbialmore » communities also shifted in response to added nitrogen, but the effects were smaller. These changes had implications for carbon cycling, with lower rates of carbon loss under drought conditions, and changes in the efficiency of decomposition with nitrogen addition. Even when transplanted into the same conditions, microbial communities from different environments remained distinct in composition and functioning for up to one year. Changes in functioning were related to differences in enzyme gene content across different microbial groups. Computational approaches developed for this project allowed the conclusions to be tested more broadly in other ecosystems, and new computer models will facilitate the prediction of microbial traits and functioning across environments. The data and models resulting from this project benefit the public by improving the ability to predict how microbial communities and carbon cycling functions respond to climate change, nutrient enrichment, and other large-scale environmental changes.« less
ERIC Educational Resources Information Center
Haubold, Alexander; Peterson, Bradley S.; Bansal, Ravi
2012-01-01
Brain morphometry in recent decades has increased our understanding of the neural bases of psychiatric disorders by localizing anatomical disturbances to specific nuclei and subnuclei of the brain. At least some of these disturbances precede the overt expression of clinical symptoms and possibly are endophenotypes that could be used to diagnose an…
ERIC Educational Resources Information Center
Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.
2013-01-01
Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…
ERIC Educational Resources Information Center
Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.
2015-01-01
In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…
Teaching Microbial Growth by Simulation.
ERIC Educational Resources Information Center
Ruiz, A. Fernandez; And Others
1989-01-01
Presented is a simulation program for Apple II computer which assays the effects of a series of variables on bacterial growth and interactions between microbial populations. Results of evaluation of the program with students are summarized. (CW)
An open source platform for multi-scale spatially distributed simulations of microbial ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segre, Daniel
2014-08-14
The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.
Wakasaki, Rumie; Eiwaz, Mahaba; McClellan, Nicholas; Matsushita, Katsuyuki; Golgotiu, Kirsti; Hutchens, Michael P
2018-06-14
A technical challenge in translational models of kidney injury is determination of the extent of cell death. Histologic sections are commonly analyzed by area morphometry or unbiased stereology, but stereology requires specialized equipment. Therefore, a challenge to rigorous quantification would be addressed by an unbiased stereology tool with reduced equipment dependence. We hypothesized that it would be feasible to build a novel software component which would facilitate unbiased stereologic quantification on scanned slides, and that unbiased stereology would demonstrate greater precision and decreased bias compared with 2D morphometry. We developed a macro for the widely used image analysis program, Image J, and performed cardiac arrest with cardiopulmonary resuscitation (CA/CPR, a model of acute cardiorenal syndrome) in mice. Fluorojade-B stained kidney sections were analyzed using three methods to quantify cell death: gold standard stereology using a controlled stage and commercially-available software, unbiased stereology using the novel ImageJ macro, and quantitative 2D morphometry also using the novel macro. There was strong agreement between both methods of unbiased stereology (bias -0.004±0.006 with 95% limits of agreement -0.015 to 0.007). 2D morphometry demonstrated poor agreement and significant bias compared to either method of unbiased stereology. Unbiased stereology is facilitated by a novel macro for ImageJ and results agree with those obtained using gold-standard methods. Automated 2D morphometry overestimated tubular epithelial cell death and correlated modestly with values obtained from unbiased stereology. These results support widespread use of unbiased stereology for analysis of histologic outcomes of injury models.
Wade, Benjamin S C; Joshi, Shantanu H; Reuter, Martin; Blumenthal, Jonathan D; Toga, Arthur W; Thompson, Paul M; Giedd, Jay N
2014-01-01
Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual's karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups.
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2017-01-01
Background: Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a “gray zone” of 6.9–20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. Aims: To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. Settings and Designs: The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. Materials and Methods: The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)–Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm2, 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Conclusion: Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma. PMID:28182052
Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj
2017-01-01
Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a "gray zone" of 6.9-20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm 2 , 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma.
The study of Lake Urmia desiccation: morphometry impress
NASA Astrophysics Data System (ADS)
Moradi, Ayoub; Rasouli, Ali Akbar; Roostaei, Shahram
2017-04-01
Located in northwestern Iran, the hypersaline Lake Urmia has started a serious uninterrupted desiccation since 1995. The lake has lost about eight meters of water level and about 75% of water surface area during past 20 years. In particular, the lake water volume decrement has been accelerated in recent years. The importance of the Lake Urmia for human life in northwestern Iran, and its destructive effects on a vast region if totally dry up, demands comprehensive studies of the lake level fluctuations mechanism. According to literature review, the water volume of the lake behaves sometimes differently from the water storage of the whole basin. Our time series analysis using Land Data Assimilation Systems also confirms those differences within last decades. In other hand, many studies addressed the lake desiccation to climatic changes and/or anthropogenic influences such as excessive dam constructions in the watershed during last decades. As water leaves the lake only through evaporation, the fluctuation of evaporation has a distinctive role in the lake level variations. Dramatic decreament in the lake extent indicates of a special morphometry. The lake's morphometry has made it vulnerable to temperature and salinity changes. It strongly controls the lake's water heat capacity and water density. And, it therefore controls the rate of evaporation from water surface. We study the role of lake's morphometry on the lake desiccation. Although, the global climatic change is known as the primary reason for current droughts in the Middle East generally, our preliminary results show that the lake's morphometry is the main cause for the accelerating of water volume lost in Lake Urmia. In particular, after 2007, lake's water temperature and density show significant variations. Water heat capacity and evaporation rate are consistent with information of lake's hypsometry.
Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J; Gunter, Jeffrey L; Carmona, Susanna; Jaeggi, Susanne M; Thompson, Paul M
2016-10-01
Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haczeyni, Fahrettin; Barn, Vanessa; Mridha, Auvro R; Yeh, Matthew M; Estevez, Emma; Febbraio, Mark A; Nolan, Christopher J; Bell-Anderson, Kim S; Teoh, Narci C; Farrell, Geoffrey C
2015-09-01
Adipose inflammation and dysfunction underlie metabolic obesity. Exercise improves glycemic control and metabolic indices, but effects on adipose function and inflammation are less clear. Accordingly, it was hypothesized that exercise improves adipose morphometry to reduce adipose inflammation in hyperphagic obese mice. Alms1 mutant foz/foz mice housed in pairs were fed an atherogenic or chow diet; half the cages were fitted with a computer-monitored wheel for voluntary exercise. Insulin-induced AKT-phosphorylation, adipocyte size distribution, and inflammatory recruitment were studied in visceral versus subcutaneous depots, and severity of fatty liver disease was determined. Exercise prevented obesity and diabetes development in chow-fed foz/foz mice and delayed their onset in atherogenic-fed counterparts. Insulin-stimulated phospho-AKT levels in muscle were improved with exercise, but not in adipose or liver. Exercise suppressed adipose inflammatory recruitment, particularly in visceral adipose, associated with an increased number of small adipocyte subpopulations, and enhanced expression of beige adipocyte factor PRDM16 in subcutaneous fat. In atherogenic-fed foz/foz mice liver, exercise suppressed development of nonalcoholic steatohepatitis and related liver fibrosis. Exercise confers metabo-protective effects in atherogenic-fed hyperphagic mice by preventing early onset of obesity and diabetes in association with enhanced muscle insulin sensitivity, improved adipose morphometry, and suppressed adipose and liver inflammation. © 2015 The Obesity Society.
Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations.
Martins, Suzana Cláudia Silveira; Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni
2016-01-01
There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.
Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations
Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni
2016-01-01
There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation. PMID:26904719
ERIC Educational Resources Information Center
School Science Review, 1985
1985-01-01
Presents biology, chemistry, physics, and health activities, experiments, demonstrations, and computer programs. Includes mechanism of stomatal opening, using aquatic plants to help demonstrate chemical buffering, microbial activity/contamination in milk samples, computer computation of fitness scores, reservoir project, complexes of transition…
Feldmeier, J J; Davolt, D A; Court, W S; Onoda, J M; Alecu, R
1998-01-01
In a previous publication (Feldmeier et al., Radiother Oncol 1995; 35:138-144) we reported our success in preventing delayed radiation enteropathy in a murine model by the application of hyperbaric oxygen (HBO2). In this study we introduce a histologic morphometric technique for assessing fibrosis in the submucosa of these same animal specimens and relate this assay to the previous results. The histologic morphometry, like the previous gross morphometry and compliance assays, demonstrates a significant protective effect for HBO2. The present assay is related to the previous assays in a statistically significant fashion. The predictive value for the histologic morphometric assay demonstrates a sensitivity of 75% and a specificity of 62.5%. The applicability of this assay to other organ systems and its potential superiority to the compliance assay are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segre, Daniel; Marx, Christopher J.; Northen, Trent
The goal of our project was to implement a pipeline for the systematic, computationally-driven study and optimization of microbial interactions and their effect on lignocellulose degradation and biofuel production. We specifically sought to design and construct artificial microbial consortia that could collectively degrade lignocellulose from plant biomass, and produce precursors of energy-rich biofuels. This project fits into the bigger picture goal of helping identify a sustainable strategy for the production of energy-rich biofuels that would satisfy the existing energy constraints and demand of our society. Based on the observation that complex natural microbial communities tend to be metabolically efficient andmore » ecologically robust, we pursued the study of a microbial system in which the desired engineering function is achieved through division of labor across multiple microbial species. Our approach was aimed at bypassing the complexity of natural communities by establishing a rational approach to design small synthetic microbial consortia. Towards this goal, we combined multiple approaches, including computer modeling of ecosystem-level microbial metabolism, mass spectrometry of metabolites, genetic engineering, and experimental evolution. The microbial production of biofuels from lignocellulose is a complex, multi-step process. Microbial consortia are an ideal approach to consolidated bioprocessing: a community of microorganisms performs a wide variety of functions more efficiently and is more resilient to environmental perturbations than a microbial monoculture. Each organism we chose for this project addresses a specific challenge: lignin degradation (Pseudomonas putida); (hemi)cellulose degradation (Cellulomonas fimi); lignin degradation product demethoxylation (Methylobacterium spp); generation of biofuel lipid precursors (Yarrowia lipolytica). These organisms are genetically tractable, aerobic, and have been used in biotechnological applications. Throughout the project, we have used mass spectrometry to characterize and measure the metabolic inputs and outputs of each of these consortium members, providing valuable information for model refinement, and enabling the establishment of metabolism-mediated interactions. In addition to lignocellulose degradation, we have started addressing the challenge of removing metabolites (e.g. formaldehyde) produced by the demethoxylation of lignin monomers, which can otherwise inhibit microbial growth due to their toxicity. On the computational side, we have implemented genome-scale models for all consortium members, based on KBase reconstructions and literature curation, and we studied small consortia and their properties. Overall, our project has identified a complex landscape of interactions types and metabolic processes relevant to community-level functions, illustrating the challenges and opportunities of microbial community engineering for the transformation of biomass into bioproducts.« less
Fishman, Emily F.; Quirk, James D.; Sweet, Stuart C.; Woods, Jason C.; Gierada, David S.; Conradi, Mark S.; Siegel, Marilyn J.; Yablonskiy, Dmitriy A.
2016-01-01
Background Obtaining information on transplanted lung microstructure is an important part of the current care for monitoring transplant recipients. However, until now this information was only available from invasive lung biopsy. The objective of this study was to evaluate the use of an innovative non-invasive technique in vivo lung morphometry with hyperpolarized 3He MRI - to characterize lung microstructure in the pediatric lung transplant population. This technique yields quantitative measurements of acinar airways’ (alveolar ducts and sacs) parameters, such as acinar airways radii and alveolar depth. Methods Six pediatric lung transplant recipients with cystic fibrosis underwent in vivo lung morphometry MRI, pulmonary function testing, and quantitative CT. Results We found a strong correlation between lung lifespan and alveolar depth - patients with more shallow alveoli were likely to have a negative outcome sooner than those with larger alveolar depth. Combining morphometric results with CT we also determined mean alveolar wall thickness and found substantial increases in this parameter in some patients that negatively correlated with DLCO. Conclusion In vivo lung morphometry uniquely provides previously unavailable information on lung microstructure that may be predictive of a negative outcome and has a potential to aid in lung selection for transplantation. PMID:28120553
Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar
2016-02-01
Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.
Source-to-Outcome Microbial Exposure and Risk Modeling Framework
A Quantitative Microbial Risk Assessment (QMRA) is a computer-based data-delivery and modeling approach that integrates interdisciplinary fate/transport, exposure, and impact models and databases to characterize potential health impacts/risks due to pathogens. As such, a QMRA ex...
Sureka, Binit; Mittal, Aliza; Mittal, Mahesh K; Agarwal, Kanhaiya; Sinha, Mukul; Thukral, Brij Bhushan
2018-01-01
Accurate and detailed measurements of spinal canal diameter (SCD) and transverse foraminal morphometry are essential for understanding spinal column-related diseases and for surgical planning, especially for transpedicular screw fixation. This is especially because lateral cervical radiographs do not provide accurate measurements. This study was conducted to measure the dimensions of the transverse foramen sagittal and transverse diameters (SFD, TFD), SCD, and the distance of spinal canal from the transverse foramina (dSC-TF) at C1-C7 level in the Indian population. The study population comprised 84 male and 42 female subjects. The mean age of the study group was 44.63 years (range, 19-81 years). A retrospective study was conducted, and data were collected and analyzed for patients who underwent cervical spine computed tomography (CT) imaging for various reasons. One hundred and twenty-six patients were included in the study. Detailed readings were taken at all levels from C1-C7 for SCD, SFD, TFD, and dSc-TF. Values for male and female subjects were separately calculated and compared. For both the groups, the widest SCD were measured at the C1 level and the narrowest SCD at the C4 level. The narrowest SFD was measured at C7 for both male and female subjects on the right and left sides. The widest SFD was measured at C1 both for male and female subjects on the right and left side. The narrowest TFD on the left side was measured at C7 for male and at C1 for female subjects. The narrowest mean distance of dSC-TF was found to be at C4 for both male and female subjects on both left and right side. The computed tomographic (CT) imaging is better than conventional radiographs for the preoperative evaluation of cervical spine and for better understanding cervical spine morphometry. Care must be taken during transpedicular screw fixation, especially in female subjects, more so at the C2, C4, and C6 levels due to a decrease in the distance of dSC-TF.
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...
IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN AND CATTLE FECAL POLLUTION
Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...
Effect of SOHAM meditation on human brain: a voxel-based morphometry study.
Kumar, Uttam; Guleria, Anupam; Kishan, Sadguru Sri Kunal; Khetrapal, C L
2014-01-01
The anatomical correlates of long-term meditators involved in practice of "SOHAM" meditation have been studied using voxel-based morphometry (VBM). The VBM analysis indicates significantly higher gray matter density in brain stem, ventral pallidum, and supplementary motor area in the meditators as compared with age-matched nonmeditators. The observed changes in brain structure are compared with other forms of meditation. Copyright © 2013 by the American Society of Neuroimaging.
[Voxel-Based Morphometry in Autism Spectrum Disorder].
Yamasue, Hidenori
2017-05-01
Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.
Byappanahalli, Muruleedhara N.; Nevers, Meredith; Whitman, Richard L.; Ge, Zhongfu; Shively, Dawn A.; Spoljaric, Ashley; Przybyla-Kelly, Katarzyna
2015-01-01
Jeorse Park Beach, on southern Lake Michigan, experiences frequent closures due to high Escherichia coli (E. coli) levels since regular monitoring was implemented in 2005. During the summer of 2010, contaminant source tracking techniques, such as the conventional microbial and physical surveys and hydrodynamic models, were used to determine the reasons for poor water quality at Jeorse Park. Fecal indicator bacteria (E. coli, enterococci) were high throughout the season, with densities ranging from 12–2419 (culturable E. coli) and 1–2550 and < 1–5831 (culturable and qPCR enterococci, respectively). Genetic markers for human (Bacteroides HF183) and gull (Catellicoccus marimammalium) fecal contamination were found in 15% and 37% of the samples indicating multiple sources contributing to poor water quality. Nesting colonies of double-crested cormorants (Phalacrocorax auritus) have steadily increased since 2005, coinciding with high E. colilevels. A hydrodynamic model indicated that limited circulation allows bacteria entering the embayed area to be retained in nearshore areas; and bacterial resuspension from sand and stranded beach wrack during storm events compounds the problem. The integration of hydrodynamics, expanded use of chemical and biological markers, as well as more complex statistical multivariate techniques can improve microbial source tracking, informing management actions to improve recreational water quality. Alterations to embayed structures to improve circulation and reduce nuisance algae as well as growing native plants to retain sand to improve beach morphometry are among some of the restoration strategies under consideration in ongoing multi-agency collaborations.
NASA Astrophysics Data System (ADS)
Fuentes-Cabrera, Miguel; Anderson, John D.; Wilmoth, Jared; Ginovart, Marta; Prats, Clara; Portell-Canal, Xavier; Retterer, Scott
Microbial interactions are critical for governing community behavior and structure in natural environments. Examination of microbial interactions in the lab involves growth under ideal conditions in batch culture; conditions that occur in nature are, however, characterized by disequilibrium. Of particular interest is the role that system variables play in shaping cell-to-cell interactions and organization at ultrafine spatial scales. We seek to use experiments and agent-based modeling to help discover mechanisms relevant to microbial dynamics and interactions in the environment. Currently, we are using an agent-based model to simulate microbial growth, dynamics and interactions that occur on a microwell-array device developed in our lab. Bacterial cells growing in the microwells of this platform can be studied with high-throughput and high-content image analyses using brightfield and fluorescence microscopy. The agent-based model is written in the language Netlogo, which in turn is ''plugged into'' a computational framework that allows submitting many calculations in parallel for different initial parameters; visualizing the outcomes in an interactive phase-like diagram; and searching, with a genetic algorithm, for the parameters that lead to the most optimal simulation outcome.
Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B
2010-02-01
Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.
Lu, Hanna; Ma, Suk Ling; Chan, Sandra Sau Man; Lam, Linda Chiu Wa
2016-09-01
Default mode network (DMN) has been reported to be susceptible to APOE ε 4 genotype. However, the APOE ε 4-related brain changes in young carriers are different from the ones in elderly carriers. The current study aimed to evaluate the cortical morphometry of DMN subregions in cognitively normal elderly with APOE ε 4. 11 cognitively normal senior APOE ε 4 carriers and 27 matched healthy controls (HC) participated the neuropsychological tests, genotyping, and magnetic resonance imaging (MRI) scanning. Voxel-based morphometry (VBM) analysis was used to assess the global volumetric changes. Surface-based morphometry (SBM) analysis was performed to measure regional gray matter volume (GMV) and gray matter thickness (GMT). Advancing age was associated with decreased GMV of DMN subregions. Compared to HC, APOE ε 4 carriers presented cortical atrophy in right cingulate gyrus (R_CG) (GMV: APOE carriers: 8475.23 ± 1940.73 mm3, HC: 9727.34 ± 1311.57 mm3, t = 2.314, p = 0.026, corrected) and left insular (GMT: APOE ε 4 carriers: 3.83 ± 0.37 mm, HC: 4.05 ± 0.25 mm, t = 2.197, p = 0.033, corrected). Our results highlight the difference between different cortical measures and suggest that the cortical reduction of CG and insular maybe a potential neuroimaging marker for APOE 4 ε senior carriers, even in the context of relatively intact cognition.
Clark, Alexandra L; Sorg, Scott F; Holiday, Kelsey; Bigler, Erin D; Bangen, Katherine J; Evangelista, Nicole D; Bondi, Mark W; Schiehser, Dawn M; Delano-Wood, Lisa
2018-01-30
Fatigue is a complex, multidimensional phenomenon that commonly occurs following traumatic brain injury (TBI). The thalamus-a structure vulnerable to both primary and secondary injuries in TBI-is thought to play a pivotal role in the manifestation of fatigue. We explored how neuroimaging markers of local and global thalamic morphometry relate to the subjective experience of fatigue post-TBI. Sixty-three Veterans with a history of mild TBI underwent structural magnetic resonance imaging and completed questionnaires related to fatigue and psychiatric symptoms. FMRIB's Software (FSL) was utilized to obtain whole brain and thalamic volume estimates, as well as to perform regional thalamic morphometry analyses. Independent of age, sex, intracranial volume, posttraumatic stress disorder, and depressive symptoms, greater levels of self-reported fatigue were significantly associated with decreased right (P = .026) and left (P = .046) thalamic volumes. Regional morphometry analyses revealed that fatigue was significantly associated with reductions in the anterior and dorsomedial aspects of the right thalamic body (P < .05). Similar trends were observed for the left thalamic body (P < .10). Both global and regional thalamic morphometric changes are associated with the subjective experience of fatigue in Veterans with a history of mild TBI. These findings support a theory in which disruption of thalamocorticostriatal circuitry may result in the manifestation of fatigue in individuals with a history of neurotrauma.
Garrett, C; Liu, D Y; McLachlan, R I; Baker, H W G
2005-11-01
Quantification of changes in semen may give insight into the testosterone (T)-induced disruption of spermatogenesis in man. A model analogous to flushing of sperm from the genital tract after vasectomy was used to quantify the time course of semen changes in subjects participating in male contraceptive trials using 800 mg T-implant (n = 25) or 200 mg weekly intramuscular injection (IM-T; n = 33). A modified exponential decay model allowed for delayed onset and incomplete disruption to spermatogenesis. Semen variables measured weekly during a 91-day period after initial treatment were fitted to the model. Sperm concentration, total count, motility and morphometry exhibited similar average decay rates (5 day half-life). The mean delay to onset of decline in concentration was 15 (IM-T) and 18 (T-implant) days. The significantly longer (P < 0.005) delays deduced for the commencement of fall in normal morphology (41 days), normal morphometry (40 days) and sperm viability (43 and 55 days), and the change of morphometry to smaller more compact sperm heads are consistent with sperm being progressively cleared from the genital tract rather than continued shedding of immature or abnormal sperm by the seminiferous epithelium. A significant negative relationship was found between lag time and baseline sperm concentration, consistent with longer sperm-epididymal transit times associated with lower daily production rates.
Staley, Dennis M.; Wasklewicz, Thad A.; Coe, Jeffrey A.; Kean, Jason W.; McCoy, Scott W.; Tucker, Greg E.
2011-01-01
High resolution topographic data that quantify changes in channel form caused by sequential debris flows in natural channels are rare at the reach scale. Terrestrial laser scanning (TLS) techniques are utilized to capture morphological changes brought about by a high-frequency of debris-flow events at Chalk Cliffs, Colorado. The purpose of this paper is to compare and contrast the topographic response of a natural channel to the documented debris-flow events. TLS survey data allowed for the generation of high-resolution (2-cm) digital terrain models (DTM) of the channel. A robust network of twelve permanent control points permitted repeat scanning sessions that provided multiple DTM to evaluate fine-scale topographic change associated with three debris-flow events. Difference surfaces from the DTM permit the interpretations of spatial variations in channel morphometry and net volume of material deposited and eroded within and between a series of channel reaches. Each channel reach experienced erosion, deposition, and both net volumetric gains and losses were measured. Analysis of potential relationships between erosion and deposition magnitudes yielded no strong correlations with measures of channel-reach morphometry, suggesting that channel reach-specific predictions of potential erosion or deposition locations or rates cannot be adequately derived from statistical analyses of pre-event channel-reach morphometry.
Santolaria, P; Vicente-Fiel, S; Palacín, I; Fantova, E; Blasco, M E; Silvestre, M A; Yániz, J L
2015-12-01
This study was designed to evaluate the relevance of several sperm quality parameters and sperm population structure on the reproductive performance after cervical artificial insemination (AI) in sheep. One hundred and thirty-nine ejaculates from 56 adult rams were collected using an artificial vagina, processed for sperm quality assessment and used to perform 1319 AI. Analyses of sperm motility by computer-assisted sperm analysis (CASA), sperm nuclear morphometry by computer-assisted sperm morphometry analysis (CASMA), membrane integrity by acridine orange-propidium iodide combination and sperm DNA fragmentation using the sperm chromatin dispersion test (SCD) were performed. Clustering procedures using the sperm kinematic and morphometric data resulted in the classification of spermatozoa into three kinematic and three morphometric sperm subpopulations. Logistic regression procedures were used, including fertility at AI as the dependent variable (measured by lambing, 0 or 1) and farm, year, month of AI, female parity, female lambing-treatment interval, ram, AI technician and sperm quality parameters (including sperm subpopulations) as independent factors. Sperm quality variables remaining in the logistic regression model were viability and VCL. Fertility increased for each one-unit increase in viability (by a factor of 1.01) and in VCL (by a factor of 1.02). Multiple linear regression analyses were also performed to analyze the factors possibly influencing ejaculate fertility (N=139). The analysis yielded a significant (P<0.05) relationship between sperm viability and ejaculate fertility. The discriminant ability of the different semen variables to predict field fertility was analyzed using receiver operating characteristic (ROC) curve analysis. Sperm viability and VCL showed significant, albeit limited, predictive capacity on field fertility (0.57 and 0.54 Area Under Curve, respectively). The distribution of spermatozoa in the different subpopulations was not related to fertility. Copyright © 2015 Elsevier B.V. All rights reserved.
Schwab, Kristin; Saggar, Rajeev; Duffy, Erin; Elashoff, David; Tseng, Chi-Hong; Weigt, Sam; Charan, Deepshikha; Abtin, Fereidoun; Johannes, Jimmy; Derhovanessian, Ariss; Conklin, Jeffrey; Ghassemi, Kevin; Khanna, Dinesh; Siddiqui, Osama; Ardehali, Abbas; Hunter, Curtis; Kwon, Murray; Biniwale, Reshma; Lo, Michelle; Volkmann, Elizabeth; Torres Barba, David; Belperio, John A.; Mahrer, Thomas; Furst, Daniel E.; Kafaja, Suzanne; Clements, Philip; Shino, Michael; Gregson, Aric; Kubak, Bernard; Lynch, Joseph P.; Ross, David
2016-01-01
Rationale: Consideration of lung transplantation in patients with systemic sclerosis (SSc) remains guarded, often due to the concern for esophageal dysfunction and the associated potential for allograft injury and suboptimal post–lung transplantation outcomes. Objectives: The purpose of this study was to systematically report our single-center experience regarding lung transplantation in the setting of SSc, with a particular focus on esophageal dysfunction. Methods: We retrospectively reviewed all lung transplants at our center from January 1, 2000 through August 31, 2012 (n = 562), comparing the SSc group (n = 35) to the following lung transplant diagnostic subsets: all non-SSc (n = 527), non-SSc diffuse fibrotic lung disease (n = 264), and a non-SSc matched group (n = 109). We evaluated post–lung transplant outcomes, including survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates. In addition, we defined severe esophageal dysfunction using esophageal manometry and esophageal morphometry criteria on the basis of chest computed tomography images. For patients with SSc referred for lung transplant but subsequently denied (n = 36), we queried the reason(s) for denial with respect to the concern for esophageal dysfunction. Measurements and Main Results: The 1-, 3-, and 5-year post–lung transplant survival for SSc was 94, 77, and 70%, respectively, and similar to the other groups. The remaining post–lung transplant outcomes evaluated were also similar between SSc and the other groups. Approximately 60% of the SSc group had severe esophageal dysfunction. Pre–lung transplant chest computed tomography imaging demonstrated significantly abnormal esophageal morphometry for SSc when compared with the matched group. Importantly, esophageal dysfunction was the sole reason for lung transplant denial in a single case. Conclusions: Relative to other lung transplant indications, our SSc group experienced comparable survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates, despite the high prevalence of severe esophageal dysfunction. Esophageal dysfunction rarely precluded active listing for lung transplantation. PMID:27078625
Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T
2016-07-01
The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Microcomputer package for statistical analysis of microbial populations.
Lacroix, J M; Lavoie, M C
1987-11-01
We have developed a Pascal system to compare microbial populations from different ecological sites using microcomputers. The values calculated are: the coverage value and its standard error, the minimum similarity and the geometric similarity between two biological samples, and the Lambda test consisting of calculating the ratio of the mean similarity between two subsets by the mean similarity within subsets. This system is written for Apple II, IBM or compatible computers, but it can work for any computer which can use CP/M, if the programs are recompiled for such a system.
Models of microbiome evolution incorporating host and microbial selection.
Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen
2017-09-25
Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated selection acts on microbes concomitantly. We present a computational framework that integrates different selective processes acting on the evolution of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial diversities and fitnesses, whereas selection on hosts can have weaker outcomes.
van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K
2018-04-01
Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different regions, with a developmental peak around adolescence. These findings suggest an interplay in the abnormal development of the striatal, frontal, and temporal regions in ASD across the lifespan.
2014-01-01
Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups. PMID:25780557
A reexamination of age-related variation in body weight and morphometry of Maryland nutria
Sherfy, M.H.; Mollett, T.A.; McGowan, K.R.; Daugherty, S.L.
2006-01-01
Age-related variation in morphometry has been documented for many species. Knowledge of growth patterns can be useful for modeling energetics, detecting physiological influences on populations, and predicting age. These benefits have shown value in understanding population dynamics of invasive species, particularly in developing efficient control and eradication programs. However, development and evaluation of descriptive and predictive models is a critical initial step in this process. Accordingly, we used data from necropsies of 1,544 nutria (Myocastor coypus) collected in Maryland, USA, to evaluate the accuracy of previously published models for prediction of nutria age from body weight. Published models underestimated body weights of our animals, especially for ages <3. We used cross-validation procedures to develop and evaluate models for describing nutria growth patterns and for predicting nutria age. We derived models from a randomly selected model-building data set (n = 192-193 M, 217-222 F) and evaluated them with the remaining animals (n = 487-488 M, 642-647 F). We used nonlinear regression to develop Gompertz growth-curve models relating morphometric variables to age. Predicted values of morphometric variables fell within the 95% confidence limits of their true values for most age classes. We also developed predictive models for estimating nutria age from morphometry, using linear regression of log-transformed age on morphometric variables. The evaluation data set corresponded with 95% prediction intervals from the new models. Predictive models for body weight and length provided greater accuracy and less bias than models for foot length and axillary girth. Our growth models accurately described age-related variation in nutria morphometry, and our predictive models provided accurate estimates of ages from morphometry that will be useful for live-captured individuals. Our models offer better accuracy and precision than previously published models, providing a capacity for modeling energetics and growth patterns of Maryland nutria as well as an empirical basis for determining population age structure from live-captured animals.
A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling
NASA Astrophysics Data System (ADS)
Shapiro, B.; Jin, Q.
2015-12-01
Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.
Morphometric changes in boar spermatozoa induced by cryopreservation.
García-Herreros, M; Barón, F J; Aparicio, I M; Santos, A J; García-Marín, L J; Gil, M C
2008-09-01
Computer-assisted sperm morphometry analysis was used to determine the effects of cryopreservation on boar sperm head and midpiece morphometry. Sperm-rich fractions were collected from five mature boars. Three microscope slides were prepared from single extended sperm samples prior freezing and post-thawing. All slides were stained with Hemacolor, and 250 sperm images were obtained from each slide. The sperm head dimensions for length, width, area, perimeter and four shape factors and sperm-midpiece dimensions for area, width, angle and distance were determined in each spermatozoa. The effects of sperm freezing on sperm dimensions within and among boars were determined. A previous discriminant analysis of the results was able to correctly classify a 78.3 and 82% of fresh and frozen-thawed spermatozoa respectively. Sperm heads were significantly smaller in cryopreserved spermatozoa than in the companion extended samples for length, width, area and perimeter. Sperm midpieces were also significantly smaller in cryopreserved spermatozoa for width and area. The highest changes in morphometric dimensions after the freeze-thawing process were found in the midpiece of spermatozoa. The variability of morphometric measurements only was significantly different between fresh and thawed samples for head rugosity and midpiece area. The effects of cryopreservation on morphometric parameters were similar in the boars, which allow us to conclude that cryopreservation process does not have a different effect in each individual boar. In summary, morphometric changes associated with the cryopreservation process on boar spermatozoa do not apparently depends on an effect at individual level.
Voxel-based morphometry of auditory and speech-related cortex in stutterers.
Beal, Deryk S; Gracco, Vincent L; Lafaille, Sophie J; De Nil, Luc F
2007-08-06
Stutterers demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. This study examined the neuroanatomical differences in speech-related cortex between stutterers and nonstutterers using voxel-based morphometry. Results revealed significant differences in localized grey matter and white matter densities of left and right hemisphere regions involved in auditory processing and speech production.
Personalized microbial network inference via co-regularized spectral clustering.
Imangaliyev, Sultan; Keijser, Bart; Crielaard, Wim; Tsivtsivadze, Evgeni
2015-07-15
We use Human Microbiome Project (HMP) cohort (Peterson et al., 2009) to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster we discovered, we compute co-occurrence relationships among the microbial species that determine microbial network per cluster of individuals. The results of our study suggest that there are several differences in microbial interactions on personalized network level in healthy oral samples acquired from various niches. Based on the results of co-regularized spectral clustering we discover two groups of individuals with different topology of their microbial interaction network. The results of microbial network inference suggest that niche-wise interactions are different in these two groups. Our study shows that healthy individuals have different microbial clusters according to their oral microbiota. Such personalized microbial networks open a better understanding of the microbial ecology of healthy oral cavities and new possibilities for future targeted medication. The scripts written in scientific Python and in Matlab, which were used for network visualization, are provided for download on the website http://learning-machines.com/. Copyright © 2015 Elsevier Inc. All rights reserved.
A computational framework to characterize and compare the geometry of coronary networks.
Bulant, C A; Blanco, P J; Lima, T P; Assunção, A N; Liberato, G; Parga, J R; Ávila, L F R; Pereira, A C; Feijóo, R A; Lemos, P A
2017-03-01
This work presents a computational framework to perform a systematic and comprehensive assessment of the morphometry of coronary arteries from in vivo medical images. The methodology embraces image segmentation, arterial vessel representation, characterization and comparison, data storage, and finally analysis. Validation is performed using a sample of 48 patients. Data mining of morphometric information of several coronary arteries is presented. Results agree to medical reports in terms of basic geometric and anatomical variables. Concerning geometric descriptors, inter-artery and intra-artery correlations are studied. Data reported here can be useful for the construction and setup of blood flow models of the coronary circulation. Finally, as an application example, similarity criterion to assess vasculature likelihood based on geometric features is presented and used to test geometric similarity among sibling patients. Results indicate that likelihood, measured through geometric descriptors, is stronger between siblings compared with non-relative patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Current perspectives of CASA applications in diverse mammalian spermatozoa.
van der Horst, Gerhard; Maree, Liana; du Plessis, Stefan S
2018-03-26
Since the advent of computer-aided sperm analysis (CASA) some four decades ago, advances in computer technology and software algorithms have helped establish it as a research and diagnostic instrument for the analysis of spermatozoa. Despite mammalian spermatozoa being the most diverse cell type known, CASA is a great tool that has the capacity to provide rapid, reliable and objective quantitative assessment of sperm quality. This paper provides contemporary research findings illustrating the scientific and commercial applications of CASA and its ability to evaluate diverse mammalian spermatozoa (human, primates, rodents, domestic mammals, wildlife species) at both structural and functional levels. The potential of CASA to quantitatively measure essential aspects related to sperm subpopulations, hyperactivation, morphology and morphometry is also demonstrated. Furthermore, applications of CASA are provided for improved mammalian sperm quality assessment, evaluation of sperm functionality and the effect of different chemical substances or pathologies on sperm fertilising ability. It is clear that CASA has evolved significantly and is currently superior to many manual techniques in the research and clinical setting.
Quantitative diagnosis of tongue cancer from histological images in an animal model
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo G.; Fei, Baowei
2016-03-01
We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected from mice was sent for histological processing. Representative areas of hematoxylin and eosin stained tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology features were extracted from the histological images. The combination of image features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.
Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.
Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel
2016-05-01
Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha
2015-12-01
Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.
Disentangling diatom species complexes: does morphometry suffice?
Borrego-Ramos, María; Olenici, Adriana
2017-01-01
Accurate taxonomic resolution in light microscopy analyses of microalgae is essential to achieve high quality, comparable results in both floristic analyses and biomonitoring studies. A number of closely related diatom taxa have been detected to date co-occurring within benthic diatom assemblages, sharing many morphological, morphometrical and ecological characteristics. In this contribution, we analysed the hypothesis that, where a large sample size (number of individuals) is available, common morphometrical parameters (valve length, width and stria density) are sufficient to achieve a correct identification to the species level. We focused on some common diatom taxa belonging to the genus Gomphonema. More than 400 valves and frustules were photographed in valve view and measured using Fiji software. Several statistical tools (mixture and discriminant analysis, k-means clustering, classification trees, etc.) were explored to test whether mere morphometry, independently of other valve features, leads to correct identifications, when compared to identifications made by experts. In view of the results obtained, morphometry-based determination in diatom taxonomy is discouraged. PMID:29250472
Utility of fluorescence microscopy in embryonic/fetal topographical analysis.
Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M
1995-06-01
For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.
Marinozzi, Franco; Marinozzi, Andrea; Bini, Fabiano; Zuppante, Francesca; Pecci, Raffaella; Bedini, Rossella
2012-01-01
Morphometric and architectural bone parameters change in diseases such as osteoarthritis and osteoporosis. The mechanical strength of bone is primarily influenced by bone quantity and quality. Bone quality is defined by parameters such as trabecular thickness, trabecular separation, trabecular density and degree of anisotropy that describe the micro-architectural structure of bone. Recently, many studies have validated microtomography as a valuable investigative technique to assess bone morphometry, thanks to micro-CT non-destructive, non-invasive and reliability features, in comparison to traditional techniques such as histology. The aim of this study is the analysis by micro-computed tomography of six specimens, extracted from patients affected by osteoarthritis and osteoporosis, in order to observe the tridimensional structure and calculate several morphometric parameters.
Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.
Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul
2016-07-01
Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.
Towards implementation of cellular automata in Microbial Fuel Cells.
Tsompanas, Michail-Antisthenis I; Adamatzky, Andrew; Sirakoulis, Georgios Ch; Greenman, John; Ieropoulos, Ioannis
2017-01-01
The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway's Game of Life as the 'benchmark' CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions-compared to silicon circuitry-between the different states during computation.
Towards implementation of cellular automata in Microbial Fuel Cells
Adamatzky, Andrew; Sirakoulis, Georgios Ch.; Greenman, John; Ieropoulos, Ioannis
2017-01-01
The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway’s Game of Life as the ‘benchmark’ CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions—compared to silicon circuitry—between the different states during computation. PMID:28498871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R
2012-12-28
The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.
Research Paper. Nutrient uptake and mineralization during leaf decay in streams-a model simulation.
J.R. Webster; J.D. Newbold; S.A. Thomas; H.M. Valett; P.J. Mulholland
2009-01-01
We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of...
Morphometry of boar sperm head and flagellum in semen backflow after insemination.
García-Vázquez, Francisco Alberto; Hernández-Caravaca, Iván; Yánez-Quintana, Wellington; Matás, Carmen; Soriano-Úbeda, Cristina; Izquierdo-Rico, María José
2015-09-01
Once deposited in the female reproductive system, sperm begin their competition and undergo a selection to reach the site of fertilization. Little is known about the special characteristics of sperm that reach the oviduct and are able to fertilize, with even less information on the role of sperm dimension and shape in transport and fertilization. Here, we examine whether sperm morphometry could be involved in their journey within the uterus. For this purpose, sperm head dimension (length, width, area, and perimeter) and shape (shape factor, ellipticity, elongation, and regularity), and flagellum length were analyzed in the backflow at different times after insemination (0-15, 16-30, and 31-60 minutes). Sperm morphometry in the backflow was also analyzed taking into account the site of semen deposition (cervical vs. intrauterine). Finally, flagellum length was measured at the uterotubal junction. Sperm analyzed in the backflow were small (head and flagellum) with different head shapes compared with sperm observed in the dose before insemination. The site of deposition influenced head morphometry and tail size both being smaller in the backflow after cervical insemination compared with intrauterine insemination. Mean tail length of sperm collected in the backflow was smaller than that in the insemination dose and at the uterotubal junction. Overall, our results suggest that sperm size may be involved in sperm transport either because of environment or through sperm selection and competence on their way to encounter the female gamete. Copyright © 2015 Elsevier Inc. All rights reserved.
Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike
2016-01-01
Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).
Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F
2016-09-01
Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.
Delvigne, Frank; Takors, Ralf; Mudde, Rob; van Gulik, Walter; Noorman, Henk
2017-09-01
Efficient optimization of microbial processes is a critical issue for achieving a number of sustainable development goals, considering the impact of microbial biotechnology in agrofood, environment, biopharmaceutical and chemical industries. Many of these applications require scale-up after proof of concept. However, the behaviour of microbial systems remains unpredictable (at least partially) when shifting from laboratory-scale to industrial conditions. The need for robust microbial systems is thus highly needed in this context, as well as a better understanding of the interactions between fluid mechanics and cell physiology. For that purpose, a full scale-up/down computational framework is already available. This framework links computational fluid dynamics (CFD), metabolic flux analysis and agent-based modelling (ABM) for a better understanding of the cell lifelines in a heterogeneous environment. Ultimately, this framework can be used for the design of scale-down simulators and/or metabolically engineered cells able to cope with environmental fluctuations typically found in large-scale bioreactors. However, this framework still needs some refinements, such as a better integration of gas-liquid flows in CFD, and taking into account intrinsic biological noise in ABM. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J.; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius
2016-01-01
The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data. PMID:28785418
Connor, Thomas R; Loman, Nicholas J; Thompson, Simon; Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius; Sheppard, Samuel K; Pallen, Mark J
2016-09-01
The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.
A Theoretical Reassessment of Microbial Maintenance and Implications for Microbial Ecology Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gangsheng; Post, Wilfred M
We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a critical reassessment. We provided a rigorous proof that the true growth yield coefficient (YG) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert ( max,H) is higher than those in the other twomore » models ( max,P and max,C), and the difference is the physiological maintenance factor (mq = a); and (3) the overall maintenance coefficient (mT) is more sensitive to mq than to the specific growth rate ( G) and YG. Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models.« less
Signal Processing for Metagenomics: Extracting Information from the Soup
Rosen, Gail L.; Sokhansanj, Bahrad A.; Polikar, Robi; Bruns, Mary Ann; Russell, Jacob; Garbarine, Elaine; Essinger, Steve; Yok, Non
2009-01-01
Traditionally, studies in microbial genomics have focused on single-genomes from cultured species, thereby limiting their focus to the small percentage of species that can be cultured outside their natural environment. Fortunately, recent advances in high-throughput sequencing and computational analyses have ushered in the new field of metagenomics, which aims to decode the genomes of microbes from natural communities without the need for cultivation. Although metagenomic studies have shed a great deal of insight into bacterial diversity and coding capacity, several computational challenges remain due to the massive size and complexity of metagenomic sequence data. Current tools and techniques are reviewed in this paper which address challenges in 1) genomic fragment annotation, 2) phylogenetic reconstruction, 3) functional classification of samples, and 4) interpreting complementary metaproteomics and metametabolomics data. Also surveyed are important applications of metagenomic studies, including microbial forensics and the roles of microbial communities in shaping human health and soil ecology. PMID:20436876
Udayangani, R M C; Dananjaya, S H S; Nikapitiya, Chamilani; Heo, Gang-Joon; Lee, Jehee; De Zoysa, Mahanama
2017-07-01
In this study, we evaluated the effects of chitosan silver nanocomposites (CAgNCs) supplemented diet on gut microbial community, goblet cell density, gut morphometry and mRNA expression of immune related and mucin encoding genes in zebrafish. Zebrafish gut microbiota analysis results clearly showed the reduction of phylum Proteobacteria. However, they remained as the major bacterial group in gut with CAgNCs supplemented diet, while the abundance of phylum Fusobacteria and phylum Bacteroidetes were increased notably compared to the control diet fed fish. Total goblet cell density was significantly increased at 30 and 60 days in CAgNCs supplemented group (1.6-fold and 2.0-fold, respectively) compared to the control group indicating enhanced immune function in the gut. CAgNCs supplementation has also increased villi height significantly in the zebrafish mid gut at the end of 30 (95.5 ± 3.7 μm) and 60 days (144.40 ± 4.8 μm) compared to control diet fed fish at 30 (86.90 ± 3.7 μm) and 60 days (96.2 ± 4.8 μm). Furthermore, mRNA expression of immune related genes such as TNF-α (6.2-fold), IL-10 (5.0-fold), IL-12 (9.2-fold), IRF-1 (5.2-fold), Defbl1 (3-fold), Lyz (5.1-fold) and mucin encoding genes were significantly upregulated (above 2-fold) compared to that of control group. The current study revealed that CAgNCs supplemented diet engenders promising effects on fish gut immunity by enhancing beneficial microbial populations, goblet cell density, villi length, and transcriptional regulation of immune related and mucin encoding genes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.
Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L
1994-01-01
Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422
A global distributed basin morphometric dataset
NASA Astrophysics Data System (ADS)
Shen, Xinyi; Anagnostou, Emmanouil N.; Mei, Yiwen; Hong, Yang
2017-01-01
Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at 30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present formulas for generating twenty-one additional morphometric variables based on combination of the prime variables. The dataset can aid different applications including studies of land-atmosphere interaction, and modelling of floods and droughts for sustainable water management. The validity of the dataset has been consolidated by successfully repeating the Hack's law.
A method for evaluating the murine pulmonary vasculature using micro-computed tomography.
Phillips, Michael R; Moore, Scott M; Shah, Mansi; Lee, Clara; Lee, Yueh Z; Faber, James E; McLean, Sean E
2017-01-01
Significant mortality and morbidity are associated with alterations in the pulmonary vasculature. While techniques have been described for quantitative morphometry of whole-lung arterial trees in larger animals, no methods have been described in mice. We report a method for the quantitative assessment of murine pulmonary arterial vasculature using high-resolution computed tomography scanning. Mice were harvested at 2 weeks, 4 weeks, and 3 months of age. The pulmonary artery vascular tree was pressure perfused to maximal dilation with a radio-opaque casting material with viscosity and pressure set to prevent capillary transit and venous filling. The lungs were fixed and scanned on a specimen computed tomography scanner at 8-μm resolution, and the vessels were segmented. Vessels were grouped into categories based on lumen diameter and branch generation. Robust high-resolution segmentation was achieved, permitting detailed quantitation of pulmonary vascular morphometrics. As expected, postnatal lung development was associated with progressive increase in small-vessel number and arterial branching complexity. These methods for quantitative analysis of the pulmonary vasculature in postnatal and adult mice provide a useful tool for the evaluation of mouse models of disease that affect the pulmonary vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuroanatomical correlates of brain-computer interface performance.
Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi
2015-04-15
Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Lähdeoja, Tuomas; Pajarinen, Jukka; Kouri, Vesa-Petteri; Sillat, Tarvo; Salo, Jari; Konttinen, Yrjö T
2010-02-01
Bacterial remnants and subclinical biofilms residing on prosthesis surfaces have been speculated to play a role in hip implant loosening by opsonizing otherwise relatively inert wear particles. The innate immune system recognizes these microbial pathogen-associated molecular patterns (PAMPs) using Toll-like receptors (TLRs). Our objective was to evaluate the possible presence of TLRs in aseptic synovial membrane-like interface tissue. Bacterial culture-negative, aseptic (n = 4) periprosthetic synovial membrane-like tissue was compared to osteoarthritis synovial membrane (n = 5) for the presence of cells positive for all known human functional TLRs, stained using specific antibodies by immunohistochemistry, and evaluated using morphometry. In comparison to osteoarthtritic synovium, the number of TLR-positive cells was found to be increased in the aseptic setting, reflecting the considerable macrophage infiltration to the tissues investigated. Thus aseptic periprosthetic tissue seems to be very reactive to PAMPs. It has been recently recognized that TLR do not only respond to traditional PAMPs, but also to endogenous alarmings or danger signals released from necrotic and activated cells. Alarming-TLR interaction in the periprosthetic tissue might be a novel mechanism of aseptic loosening of endoprosthesis. (c) 2009 Orthopaedic Research Society.
Structural graph-based morphometry: A multiscale searchlight framework based on sulcal pits.
Takerkart, Sylvain; Auzias, Guillaume; Brun, Lucile; Coulon, Olivier
2017-01-01
Studying the topography of the cortex has proved valuable in order to characterize populations of subjects. In particular, the recent interest towards the deepest parts of the cortical sulci - the so-called sulcal pits - has opened new avenues in that regard. In this paper, we introduce the first fully automatic brain morphometry method based on the study of the spatial organization of sulcal pits - Structural Graph-Based Morphometry (SGBM). Our framework uses attributed graphs to model local patterns of sulcal pits, and further relies on three original contributions. First, a graph kernel is defined to provide a new similarity measure between pit-graphs, with few parameters that can be efficiently estimated from the data. Secondly, we present the first searchlight scheme dedicated to brain morphometry, yielding dense information maps covering the full cortical surface. Finally, a multi-scale inference strategy is designed to jointly analyze the searchlight information maps obtained at different spatial scales. We demonstrate the effectiveness of our framework by studying gender differences and cortical asymmetries: we show that SGBM can both localize informative regions and estimate their spatial scales, while providing results which are consistent with the literature. Thanks to the modular design of our kernel and the vast array of available kernel methods, SGBM can easily be extended to include a more detailed description of the sulcal patterns and solve different statistical problems. Therefore, we suggest that our SGBM framework should be useful for both reaching a better understanding of the normal brain and defining imaging biomarkers in clinical settings. Copyright © 2016 Elsevier B.V. All rights reserved.
Plaze, Marion; Paillère-Martinot, Marie-Laure; Penttilä, Jani; Januel, Dominique; de Beaurepaire, Renaud; Bellivier, Franck; Andoh, Jamila; Galinowski, André; Gallarda, Thierry; Artiges, Eric; Olié, Jean-Pierre; Mangin, Jean-François; Martinot, Jean-Luc; Cachia, Arnaud
2011-01-01
Auditory verbal hallucinations are a cardinal symptom of schizophrenia. Bleuler and Kraepelin distinguished 2 main classes of hallucinations: hallucinations heard outside the head (outer space, or external, hallucinations) and hallucinations heard inside the head (inner space, or internal, hallucinations). This distinction has been confirmed by recent phenomenological studies that identified 3 independent dimensions in auditory hallucinations: language complexity, self-other misattribution, and spatial location. Brain imaging studies in schizophrenia patients with auditory hallucinations have already investigated language complexity and self-other misattribution, but the neural substrate of hallucination spatial location remains unknown. Magnetic resonance images of 45 right-handed patients with schizophrenia and persistent auditory hallucinations and 20 healthy right-handed subjects were acquired. Two homogeneous subgroups of patients were defined based on the hallucination spatial location: patients with only outer space hallucinations (N=12) and patients with only inner space hallucinations (N=15). Between-group differences were then assessed using 2 complementary brain morphometry approaches: voxel-based morphometry and sulcus-based morphometry. Convergent anatomical differences were detected between the patient subgroups in the right temporoparietal junction (rTPJ). In comparison to healthy subjects, opposite deviations in white matter volumes and sulcus displacements were found in patients with inner space hallucination and patients with outer space hallucination. The current results indicate that spatial location of auditory hallucinations is associated with the rTPJ anatomy, a key region of the "where" auditory pathway. The detected tilt in the sulcal junction suggests deviations during early brain maturation, when the superior temporal sulcus and its anterior terminal branch appear and merge.
Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C
2014-04-16
Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.
Morphometry of A1 segment of the anterior cerebral artery and its clinical importance.
Krishnamurthy, A; Nayak, S R; Bagoji, I B; D'Costa, S; Pai, M M; Jiji, P J; Kumar, C G; Rai, R
2010-01-01
Anterior cerebral artery, one of the terminal branches of the internal carotid artery is an important vessel taking part in the formation of circle of Willis. It supplies a large part of the medial surface of the cerebral hemisphere containing the areas of motor and somatosensory cortices of the lower limb. Aim of this study was the morphometry of A1 segment of the anterior cerebral artery. 93 formalin fixed brain specimen of either sex and of Indian origin were studied. The mean length, mean external diameter and the anomalies present in A1 segment of the vessel were studied in detail and photographed. The mean length of A1 segment of the vessel was 14.49+/-0.28 mm and 14.22+/-0.22 mm on right and left side respectively. The mean external diameter of the vessel on right and left side was 2.12+/-0.07 mm and 2.32+/-0.06 mm respectively. Narrowing, aneurysm formation, buttonhole formation and median anterior cerebral artery were the anomalies seen with an occurrence of 15.05%, 5.37%, 3.22% and 12.9%, respectively. The above anomalies did not have any sex or side predilection. Knowledge of morphometry of the vessel will be of use to neurosurgeons while performing the shunt operation, in assessing the feasibility of such operations and in the choice of patients. From this study we infer that the morphometry of anterior cerebral artery varies in different population and that the neurosurgeons operating should have a thorough knowledge of the possible variations.
NASA Astrophysics Data System (ADS)
Graettinger, A. H.
2018-05-01
A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.
Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B
2014-04-01
Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.
Lorenzi, M; Ayache, N; Pennec, X
2015-07-15
In this study we introduce the regional flux analysis, a novel approach to deformation based morphometry based on the Helmholtz decomposition of deformations parameterized by stationary velocity fields. We use the scalar pressure map associated to the irrotational component of the deformation to discover the critical regions of volume change. These regions are used to consistently quantify the associated measure of volume change by the probabilistic integration of the flux of the longitudinal deformations across the boundaries. The presented framework unifies voxel-based and regional approaches, and robustly describes the volume changes at both group-wise and subject-specific level as a spatial process governed by consistently defined regions. Our experiments on the large cohorts of the ADNI dataset show that the regional flux analysis is a powerful and flexible instrument for the study of Alzheimer's disease in a wide range of scenarios: cross-sectional deformation based morphometry, longitudinal discovery and quantification of group-wise volume changes, and statistically powered and robust quantification of hippocampal and ventricular atrophy. Copyright © 2015 Elsevier Inc. All rights reserved.
Mean template for tensor-based morphometry using deformation tensors.
Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M
2007-01-01
Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.
García-Herreros, Manuel
2016-01-01
The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus ) and Guinea fowl (Numida meleagris ) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species.
CT-scout based, semi-automated vertebral morphometry after digital image enhancement.
Glinkowski, Wojciech M; Narloch, Jerzy
2017-09-01
Radiographic diagnosis of osteoporotic vertebral fracture is necessary to reduce its substantial associated morbidity. Computed tomography (CT) scout has recently been demonstrated as a reliable technique for vertebral fracture diagnosis. Software assistance may help to overcome some limitations of that diagnostics. We aimed to evaluate whether digital image enhancement improved the capacity of one of the existing software to detect fractures semi-automatically. CT scanograms of patients suffering from osteoporosis, with or without vertebral fractures were analyzed. The original set of CT scanograms were triplicated and digitally modified to improve edge detection using three different techniques: SHARPENING, UNSHARP MASKING, and CONVOLUTION. The manual morphometric analysis identified 1485 vertebrae, 200 of which were classified as fractured. Unadjusted morphometry (AUTOMATED with no digital enhancement) found 63 fractures, 33 of which were true positive (i.e., it correctly identified 52% of the fractures); SHARPENING detected 57 fractures (30 true positives, 53%); UNSHARP MASKING yielded 30 (13 true positives, 43%); and CONVOLUTION found 24 fractures (9 true positives, 38%). The intra-reader reliability for height ratios did not significantly improve with image enhancement (kappa ranged 0.22-0.41 for adjusted measurements and 0.16-0.38 for unadjusted). Similarly, the inter-reader agreement for prevalent fractures did not significantly improve with image enhancement (kappa 0.29-0.56 and -0.01 to 0.23 for adjusted and unadjusted measurements, respectively). Our results suggest that digital image enhancement does not improve software-assisted vertebral fracture detection by CT scout. Copyright © 2017 Elsevier B.V. All rights reserved.
Measuring (subglacial) bedform orientation, length, and longitudinal asymmetry - Method assessment.
Jorge, Marco G; Brennand, Tracy A
2017-01-01
Geospatial analysis software provides a range of tools that can be used to measure landform morphometry. Often, a metric can be computed with different techniques that may give different results. This study is an assessment of 5 different methods for measuring longitudinal, or streamlined, subglacial bedform morphometry: orientation, length and longitudinal asymmetry, all of which require defining a longitudinal axis. The methods use the standard deviational ellipse (not previously applied in this context), the longest straight line fitting inside the bedform footprint (2 approaches), the minimum-size footprint-bounding rectangle, and Euler's approximation. We assess how well these methods replicate morphometric data derived from a manually mapped (visually interpreted) longitudinal axis, which, though subjective, is the most typically used reference. A dataset of 100 subglacial bedforms covering the size and shape range of those in the Puget Lowland, Washington, USA is used. For bedforms with elongation > 5, deviations from the reference values are negligible for all methods but Euler's approximation (length). For bedforms with elongation < 5, most methods had small mean absolute error (MAE) and median absolute deviation (MAD) for all morphometrics and thus can be confidently used to characterize the central tendencies of their distributions. However, some methods are better than others. The least precise methods are the ones based on the longest straight line and Euler's approximation; using these for statistical dispersion analysis is discouraged. Because the standard deviational ellipse method is relatively shape invariant and closely replicates the reference values, it is the recommended method. Speculatively, this study may also apply to negative-relief, and fluvial and aeolian bedforms.
Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study.
Riello, Roberta; Sabattoli, Francesca; Beltramello, Alberto; Bonetti, Matteo; Bono, Giorgio; Falini, Andrea; Magnani, Giuseppe; Minonzio, Giorgio; Piovan, Enrico; Alaimo, Giuseppina; Ettori, Monica; Galluzzi, Samantha; Locatelli, Enrico; Noiszewska, Malgorzata; Testa, Cristina; Frisoni, Giovanni B
2005-08-01
Gender and age effect on brain morphology have been extensively investigated. However, the great variety in methods applied to morphology partly explain the conflicting results of linear patterns of tissue changes and lateral asymmetry in men and women. The aim of the present study was to assess the effect of age, gender and laterality on the volumes of gray matter (GM) and white matter (WM) in a large group of healthy adults by means of voxel-based morphometry. This technique, based on observer-independent algorithms, automatically segments the 3 types of tissue and computes the amount of tissue in each single voxel. Subjects were 229 healthy subjects of 40 years of age or older, who underwent magnetic resonance (MR) for reasons other than cognitive impairment. MR images were reoriented following the AC-PC line and, after removing the voxels below the cerebellum, were processed by Statistical Parametric Mapping (SPM99). GM and WM volumes were normalized for intracranial volume. Women had more fractional GM and WM volumes than men. Age was negatively correlated with both fractional GM and WM, and a gender x age interaction effect was found for WM, men having greater WM loss with advancing age. Pairwise differences between left and right GM were negative (greater GM in right hemisphere) in men, and positive (greater GM in left hemisphere) in women (-0.56+/-4.2 vs 0.99+/-4.8; p=0.019). These results support side-specific accelerated WM loss in men, and may help our better understanding of changes in regional brain structures associated with pathological aging.
García-Herreros, Manuel
2016-01-01
The main aims of this research were to study possible differences in objective morphometric sperm characteristics, establish normative sperm morphometry standards, and evaluate the presumed different subpopulation distribution of avian spermatozoa from the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris) as model avian species. Seventy-two ejaculates (36 per species studied) were obtained manually, following a training period involving gently combined dorso-abdominal and lumbo-sacral massage of the birds. Ejaculates were processed for volume, sperm concentration, viability, motility, and morphology. Moreover, samples were submitted for sperm morphometric assessment using objective Computer-Assisted Semen Analysis for Morphometry (CASA-Morph) methods, with sperm morphometric descriptors evaluated by Principal Component Analysis (PCA) and multivariate clustering analyses. There were several differences observed between the avian species in values obtained for ejaculate volume and sperm concentration (P < 0.001). Irrespective of species, PCA revealed two Principal Components (PCs) explaining more than 80% of the variance. In addition, the number of subpopulations differed with species (three and five subpopulations for rooster and Guinea fowl, respectively). Moreover, the distribution of the sperm subpopulations was found to be structurally different between species. In conclusion, our findings from using CASA-Morph methods indicate pronounced sperm morphometric variation between these two avian species. Because of the strong differences observed in morphometric parameter values and their subpopulation distribution, these results suggest that application of objective analytical methods such as CASA-Morph could substantially improve the reliability of comparative studies and help establish valid normative sperm morphological values for avian species. PMID:27751988
Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project
Gilbert, Jack A.; Meyer, Folker; Antonopoulos, Dion; Balaji, Pavan; Brown, C. Titus; Brown, Christopher T.; Desai, Narayan; Eisen, Jonathan A; Evers, Dirk; Field, Dawn; Feng, Wu; Huson, Daniel; Jansson, Janet; Knight, Rob; Knight, James; Kolker, Eugene; Konstantindis, Kostas; Kostka, Joel; Kyrpides, Nikos; Mackelprang, Rachel; McHardy, Alice; Quince, Christopher; Raes, Jeroen; Sczyrba, Alexander; Shade, Ashley; Stevens, Rick
2010-01-01
Between July 18th and 24th 2010, 26 leading microbial ecology, computation, bioinformatics and statistics researchers came together in Snowbird, Utah (USA) to discuss the challenge of how to best characterize the microbial world using next-generation sequencing technologies. The meeting was entitled “Terabase Metagenomics” and was sponsored by the Institute for Computing in Science (ICiS) summer 2010 workshop program. The aim of the workshop was to explore the fundamental questions relating to microbial ecology that could be addressed using advances in sequencing potential. Technological advances in next-generation sequencing platforms such as the Illumina HiSeq 2000 can generate in excess of 250 billion base pairs of genetic information in 8 days. Thus, the generation of a trillion base pairs of genetic information is becoming a routine matter. The main outcome from this meeting was the birth of a concept and practical approach to exploring microbial life on earth, the Earth Microbiome Project (EMP). Here we briefly describe the highlights of this meeting and provide an overview of the EMP concept and how it can be applied to exploration of the microbiome of each ecosystem on this planet. PMID:21304727
Efficient Blockwise Permutation Tests Preserving Exchangeability
Zhou, Chunxiao; Zwilling, Chris E.; Calhoun, Vince D.; Wang, Michelle Y.
2014-01-01
In this paper, we present a new blockwise permutation test approach based on the moments of the test statistic. The method is of importance to neuroimaging studies. In order to preserve the exchangeability condition required in permutation tests, we divide the entire set of data into certain exchangeability blocks. In addition, computationally efficient moments-based permutation tests are performed by approximating the permutation distribution of the test statistic with the Pearson distribution series. This involves the calculation of the first four moments of the permutation distribution within each block and then over the entire set of data. The accuracy and efficiency of the proposed method are demonstrated through simulated experiment on the magnetic resonance imaging (MRI) brain data, specifically the multi-site voxel-based morphometry analysis from structural MRI (sMRI). PMID:25289113
Brain Morphometry using MRI in Schizophrenia Patients
NASA Astrophysics Data System (ADS)
Abanshina, I.; Pirogov, Yu.; Kupriyanov, D.; Orlova, V.
2010-01-01
Schizophrenia has been the focus of intense neuroimaging research. Although its fundamental pathobiology remains elusive, neuroimaging studies provide evidence of abnormalities of cerebral structure and function in patients with schizophrenia. We used morphometry as a quantitative method for estimation of volume of brain structures. Seventy eight right-handed subjects aged 18-45 years were exposed to MRI-examination. Patients were divided into 3 groups: patients with schizophrenia, their relatives and healthy controls. The volumes of interested structures (caudate nucleus, putamen, ventricles, frontal and temporal lobe) were measured using T2-weighted MR-images. Correlations between structural differences and functional deficit were evaluated.
Palaniyappan, Lena; Maayan, Nicola; Bergman, Hanna; Davenport, Clare; Adams, Clive E; Soares-Weiser, Karla
2016-03-01
Subtle but widespread deficit in the cortical and subcortical grey matter is a consistent neuroimaging observation in schizophrenia. Several studies have used voxel based morphometry (VBM) to investigate the nature of this structural deficit. We conducted a diagnostic test review to explore the diagnostic potential of VBM in differentiating schizophrenia from other types of first-episode psychoses. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation
NASA Astrophysics Data System (ADS)
Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads
2016-03-01
Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.
A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.
Wang, Gangsheng; Post, Wilfred M
2012-09-01
We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.
Synthetic Ecology of Microbes: Mathematical Models and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zomorrodi, Ali R.; Segre, Daniel
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
A Spatially Continuous Model of Carbohydrate Digestion and Transport Processes in the Colon
Moorthy, Arun S.; Brooks, Stephen P. J.; Kalmokoff, Martin; Eberl, Hermann J.
2015-01-01
A spatially continuous mathematical model of transport processes, anaerobic digestion and microbial complexity as would be expected in the human colon is presented. The model is a system of first-order partial differential equations with context determined number of dependent variables, and stiff, non-linear source terms. Numerical simulation of the model is used to elucidate information about the colon-microbiota complex. It is found that the composition of materials on outflow of the model does not well-describe the composition of material in other model locations, and inferences using outflow data varies according to model reactor representation. Additionally, increased microbial complexity allows the total microbial community to withstand major system perturbations in diet and community structure. However, distribution of strains and functional groups within the microbial community can be modified depending on perturbation length and microbial kinetic parameters. Preliminary model extensions and potential investigative opportunities using the computational model are discussed. PMID:26680208
Synthetic Ecology of Microbes: Mathematical Models and Applications
Zomorrodi, Ali R.; Segre, Daniel
2015-11-11
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
Calibration and analysis of genome-based models for microbial ecology.
Louca, Stilianos; Doebeli, Michael
2015-10-16
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Spotsizer: High-throughput quantitative analysis of microbial growth.
Bischof, Leanne; Převorovský, Martin; Rallis, Charalampos; Jeffares, Daniel C; Arzhaeva, Yulia; Bähler, Jürg
2016-10-01
Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license.
Effects of Fluid Environment on Microbial Uptake Kinetics
1990-09-26
Marine snow parti- is crucial for the performance of all biological wastewater cles, large amorphous aggregates that form in marine sys - treatment...particle trajectories in computer models (Tambo and Wata- nabe 1979). These computer-generated aggregates, de- the %%ater column (Table 2). This analysis
Computer-guided design of optimal microbial consortia for immune system modulation
Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya
2018-01-01
Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. PMID:29664397
Computer-guided design of optimal microbial consortia for immune system modulation.
Stein, Richard R; Tanoue, Takeshi; Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya; Bucci, Vanni
2018-04-17
Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (T reg ) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to T reg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting T reg activation and rank them by the T reg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured T reg . We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. © 2018, Stein et al.
Computer applications making rapid advances in high throughput microbial proteomics (HTMP).
Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen
2014-02-01
The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.
Soisson, Odette; Lube, Juliane; Germano, Andresa; Hammer, Karl-Heinz; Josten, Christoph; Sichting, Freddy; Winkler, Dirk; Milani, Thomas L; Hammer, Niels
2015-01-01
The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest.
Assessment methods for the evaluation of vitiligo.
Alghamdi, K M; Kumar, A; Taïeb, A; Ezzedine, K
2012-12-01
There is no standardized method for assessing vitiligo. In this article, we review the literature from 1981 to 2011 on different vitiligo assessment methods. We aim to classify the techniques available for vitiligo assessment as subjective, semi-objective or objective; microscopic or macroscopic; and as based on morphometry or colorimetry. Macroscopic morphological measurements include visual assessment, photography in natural or ultraviolet light, photography with computerized image analysis and tristimulus colorimetry or spectrophotometry. Non-invasive micromorphological methods include confocal laser microscopy (CLM). Subjective methods include clinical evaluation by a dermatologist and a vitiligo disease activity score. Semi-objective methods include the Vitiligo Area Scoring Index (VASI) and point-counting methods. Objective methods include software-based image analysis, tristimulus colorimetry, spectrophotometry and CLM. Morphometry is the measurement of the vitiliginous surface area, whereas colorimetry quantitatively analyses skin colour changes caused by erythema or pigment. Most methods involve morphometry, except for the chromameter method, which assesses colorimetry. Some image analysis software programs can assess both morphometry and colorimetry. The details of these programs (Corel Draw, Image Pro Plus, AutoCad and Photoshop) are discussed in the review. Reflectance confocal microscopy provides real-time images and has great potential for the non-invasive assessment of pigmentary lesions. In conclusion, there is no single best method for assessing vitiligo. This review revealed that VASI, the rule of nine and Wood's lamp are likely to be the best techniques available for assessing the degree of pigmentary lesions and measuring the extent and progression of vitiligo in the clinic and in clinical trials. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.
Zarski, Jean-Pierre; Sturm, Nathalie; Desmorat, Hervé; Melin, Pascal; Raabe, Jean-Jacques; Bonny, Corinne; Sogni, Philippe; Pinta, Alexandrina; Rouanet, Stéphanie; Babany, Gérard; Cheveau, Alice; Chevallier, Michèle
2010-08-01
The efficacy of a maintenance therapy in non-responder patients with chronic hepatitis C has been essentially evaluated by histological semiquantitative scores. The aim was to evaluate the efficiency of 2 years of treatment with peginterferon alpha-2a vs alpha-tocopherol in these patients by histology, morphometry and blood markers of fibrosis. Hundred and five HCV patients with a Metavir fibrosis score > or = 2 were randomized to receive peginterferon alpha-2a 180 microg/week (PEG) (n=55) or alpha-tocopherol (TOCO) 1000 mg/day (n=50) for 96 weeks. The primary endpoint was improvement or stabilization of the Metavir fibrosis score by biopsy performed at week 96. Secondary endpoints included a quantitative assessment of fibrosis by morphometry and changes in blood markers of fibrosis. There was no difference at baseline between PEG and TOCO according to the metavir (83.3 vs 86.8%, P=0.751) stage. The median fibrosis rate, measured with morphometry was 2.72 and 2.86% at day 0, and 3.66 and 2.82% at week 96, in the PEG and TOCO groups (P=0.90) respectively. However, the percentage of patients with metavir activity grade improvement was significantly higher in the PEG group vs the TOCO group (52.8 vs 23.7%, P=0.016). Non-invasive markers analysis did not show any significant change in both groups. Long-term therapy with peginterferon alpha-2a did not reduce liver fibrosis degree assessed by morphometry and blood tests as compared with alpha-tocopherol. Blood tests could be useful to assess liver fibrosis changes in clinical trials.
Soisson, Odette; Lube, Juliane; Germano, Andresa; Hammer, Karl-Heinz; Josten, Christoph; Sichting, Freddy; Winkler, Dirk; Milani, Thomas L.; Hammer, Niels
2015-01-01
Introduction The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. Methods Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. Results Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. Discussion Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest. PMID:25781325
Ejaculate fractioning effect on llama sperm head morphometry as assessed by the ISAS(®) CASA system.
Soler, C; Sancho, M; García, A; Fuentes, Mc; Núñez, J; Cucho, H
2014-02-01
South American camelid sperm characteristics are poorly known compared with those of other domestic animals. The long-term duration of ejaculation makes difficult to gather all the seminal fluid, implying possible ejaculation portion losses. Thus, the aim of this research was to evaluate the characteristics of the morphology and morphometry of the spermatozoa change during ejaculation. The morphometric characterization was tested on nine specimens of the Lanuda breed, using a special artificial vagina. In five of the animals, a fractioning of the ejaculate was performed by taking samples every 5 min. for a total of 20 min. Air-dried seminal smears were stained with Hemacolor and mounted permanently with Eukitt. Morphometric analysis was carried out with the morphometry module of the ISAS(®) CASA system. Almost 350 cells were analysed per sample, with a total number of 3207 spermatozoa. Mean values were given as follows: length: 5.51 μm; width: 3.38 μm; area: 17.75 μm(2) ; perimeter: 14.8 μm; ellipticity: 0.24; elongation: 0.56; rugosity: 0.87; regularity: 1.07; and shape factor: 1.41. Different animals showed differences in their morphometric values. When we compared the values from different fractions, only two samples showed differences in morphometric parameter values and four samples showed differences in shape parameters. Multivariate analysis allowed the size classification of the cells into three classes and five classes of shapes. The distribution of classes among fractions showed no differences. Despite the individual morphometric differences observed in some fractions, the characteristics of the sperm head morphometry can be considered constant along the ejaculatory period in the llama. © 2013 Blackwell Verlag GmbH.
Zellmer, Erik R; MacEwan, Matthew R; Moran, Daniel W
2018-04-01
Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
NASA Astrophysics Data System (ADS)
Zellmer, Erik R.; MacEwan, Matthew R.; Moran, Daniel W.
2018-04-01
Objective. Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). Approach. A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Main results. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Significance. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
Bacteria as computers making computers
Danchin, Antoine
2009-01-01
Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments. PMID:19016882
Bacteria as computers making computers.
Danchin, Antoine
2009-01-01
Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments.
Less Daily Computer Use is Related to Smaller Hippocampal Volumes in Cognitively Intact Elderly.
Silbert, Lisa C; Dodge, Hiroko H; Lahna, David; Promjunyakul, Nutta-On; Austin, Daniel; Mattek, Nora; Erten-Lyons, Deniz; Kaye, Jeffrey A
2016-01-01
Computer use is becoming a common activity in the daily life of older individuals and declines over time in those with mild cognitive impairment (MCI). The relationship between daily computer use (DCU) and imaging markers of neurodegeneration is unknown. The objective of this study was to examine the relationship between average DCU and volumetric markers of neurodegeneration on brain MRI. Cognitively intact volunteers enrolled in the Intelligent Systems for Assessing Aging Change study underwent MRI. Total in-home computer use per day was calculated using mouse movement detection and averaged over a one-month period surrounding the MRI. Spearman's rank order correlation (univariate analysis) and linear regression models (multivariate analysis) examined hippocampal, gray matter (GM), white matter hyperintensity (WMH), and ventricular cerebral spinal fluid (vCSF) volumes in relation to DCU. A voxel-based morphometry analysis identified relationships between regional GM density and DCU. Twenty-seven cognitively intact participants used their computer for 51.3 minutes per day on average. Less DCU was associated with smaller hippocampal volumes (r = 0.48, p = 0.01), but not total GM, WMH, or vCSF volumes. After adjusting for age, education, and gender, less DCU remained associated with smaller hippocampal volume (p = 0.01). Voxel-wise analysis demonstrated that less daily computer use was associated with decreased GM density in the bilateral hippocampi and temporal lobes. Less daily computer use is associated with smaller brain volume in regions that are integral to memory function and known to be involved early with Alzheimer's pathology and conversion to dementia. Continuous monitoring of daily computer use may detect signs of preclinical neurodegeneration in older individuals at risk for dementia.
A Formalized Design Process for Bacterial Consortia That Perform Logic Computing
Sun, Rui; Xi, Jingyi; Wen, Dingqiao; Feng, Jingchen; Chen, Yiwei; Qin, Xiao; Ma, Yanrong; Luo, Wenhan; Deng, Linna; Lin, Hanchi; Yu, Ruofan; Ouyang, Qi
2013-01-01
The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation. PMID:23468999
NASA Astrophysics Data System (ADS)
Frumkin, Amos; Fischhendler, Itay
2005-04-01
Isolated caves are a special cave type common in most karst terrains, formed by prolonged slow water flow where aggressivity is locally boosted. The morphometry and distribution of isolated caves are used here to reconstruct the paleohydrology of a karstic mountain range. Within a homogenous karstic rock sequence, two main types of isolated caves are distinguished, and each is associated with a special hydrogeologic setting: maze caves form by rising water in the confined zone of the aquifer, under the Mt. Scopus Group (Israel) confinement, while chamber caves are formed in phreatic conditions, apparently by lateral flow mixing with a vadose input from above.
[CT morphometry for calcaneal fractures and comparison of the Zwipp and Sanders classifications].
Andermahr, J; Jesch, A B; Helling, H J; Jubel, A; Fischbach, R; Rehm, K E
2002-01-01
The aim of the study is to correlate the CT-morphological changes of fractured calcaneus and the classifications of Zwipp and Sanders with the clinical outcome. In a retrospective clinical study, the preoperative CT scans of 75 calcaneal fractures were analysed. The morphometry of the fractures was determined by measuring height, length diameter and calcaneo-cuboidal angle in comparison to the intact contralateral side. At a mean of 38 months after trauma 44 patients were clinically followed-up. The data of CT image morphometry were correlated with the severity of fracture classified by Zwipp or Sanders as well as with the functional outcome. There was a good correlation between the fracture classifications and the morphometric data. Both fracture classifying systems have a predictive impact for functional outcome. The more exacting and accurate Zwipp classification considers the most important cofactors like involvement of the calcaneo-cuboidal joint, soft tissue damage, additional fractures etc. The Sanders classification is easier to use during clinical routine. The Zwipp classification includes more relevant cofactors (fracture of the calcaneo-cuboidal-joint, soft tissue swelling, etc.) and presents a higher correlation to the choice of therapy. Both classification systems present a prognostic impact concerning the clinical outcome.
Milnerowicz-Nabzdyk, Ewa; Bizoń, Anna
2015-12-01
Proper structure of the umbilical cord is important for the fetal development. We evaluated effects of toxic factors from tobacco smoke on fetal and umbilical cord morphometry. 109 women in weeks 29-40 of pregnancy (31 smokers with intrauterine growth restriction (IUGR); 28 non-smoking women with IUGR; 50 healthy pregnancies) were included. In smokers with IUGR, cotinine, cadmium and lead concentrations were significantly higher than in controls (mean 55.23ng/l; 1.52ng/ml; 14.85ng/ml vs 1.07; 0.34; 9.42) and inverse correlation between lead concentration and uncoiled umbilical cord was significant (r=-0.80). In smokers with IUGR, area of Wharton's jelly was increased compared to nonsmokers and controls. Inverse correlations occurred between cotinine and cadmium concentration and fetal percentile in smokers (r=-0.87; r=-0.87) and non-smokers (r=-0.47; r=-0.78) with IUGR. Exposure to tobacco smoke measured by cotinine, cadmium and lead concentration has an impact on fetal growth and umbilical cord morphometry and correlates with intensity of IUGR. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Coco, Laura; Buccolini, Marcello
2015-04-01
Several factors control the spatial setting and temporal development of the drainage systems: climate, sea level changes, lithology, tectonics, morphometry, land use and land cover. The present work deals with the role of spatial variability of lithology and morphometry on drainage networks arrangement and presents some preliminary evaluations. The test area was the Periadriatic belt of central Italy, composed of Plio-Pleistocene foredeep succession (clay, sands and conglomerate) arranged in a northeastern vergence monocline. We analyzed 37 small basins directly flowing in the Adriatic Sea (18 in Abruzzi and 19 in Marche Region) that have homogenous climatic, eustatic, tectonic, land use and land cover features. For this reason, we could focus our research on lithology and morphometry. We used 10 m cell-size Italian DEM (TINITALY) supplying by INGV (National Institute of Geophysics and Volcanology) [from http://tinitaly.pi.ingv.it/] as source of morphometric data, and extracted watersheds and stream networks through an automatic procedure included in TauDEM toolbox within ArcGIS 9.3 [freely downloaded from http://hydrology.usu.edu/taudem/taudem5/index.html]. For each drainage basin, we reconstructed the topography prior to the inception of fluvial incision through the Topo-to-Raster interpolation tool, considering the heights of the watershed divide as elevation points and obtaining the pre-incision DEM in which the fluvial valleys resulted filled. On this DEM, we calculated the Morphometric Slope Index (MSI), developed by Buccolini et al. (2012), using the formula M SI = Rc -L -Ar/A2D in which Rc is circularity ratio, L is slope length, A2D and Ar are plane and surface area, respectively. In particular, Ar represents the three-dimensional area calculated on the pre-incision DEM. This index is a unique reference index for basin morphometry including both areal and linear features, such as size, shape, inclination, length and width. As drainage network parameter we calculated drainage density (D) computed by the ratio between total drainage length and basin area. We used National and Regional Geological Map as source of lithological characters. The data were analyzed via statistics in terms of average trend and fluctuations. We split the basins into two groups according to the prevalent lithology. The first group included the basins prevalently made up of clays and sandy clays, the second includes the ones mainly constituted by conglomerates on surface. A Regression Analysis revealed that the influence of MSI on D was driven by the lithology. Indeed, we individuated two logarithmic trends of the MSI-D interpolators corresponding to the lithological groups. This finding demonstrated the great influence of lithology not only on D and MSI, but especially on their relation, depending on the different lithotechnical properties of the lithologies under study. Further enhancements will focus on evaluating the influence of spatial variability of lithology and morphology on the evolution of the current drainage network. We intend to investigate the future development of the fluvial dynamic starting from the current DEM (instead of the pre-incision one) and considering other variables that are generally deemed as drivers of the fluvial dynamic (e.g. land use, land cover).
Computational analysis for biodegradation of exogenously depolymerizable polymer
NASA Astrophysics Data System (ADS)
Watanabe, M.; Kawai, F.
2018-03-01
This study shows that microbial growth and decay in a biodegradation process of exogenously depolymerizable polymer are controlled by consumption of monomer units. Experimental outcomes for residual polymer were incorporated in inverse analysis for a degradation rate. The Gauss-Newton method was applied to an inverse problem for two parameter values associated with the microbial population. A biodegradation process of polyethylene glycol was analyzed numerically, and numerical outcomes were obtained.
Tepper, Naama; Shlomi, Tomer
2011-01-21
Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).
Colors of the Yellowstone thermal pools for teaching optics
NASA Astrophysics Data System (ADS)
Shaw, J. A.; Nugent, P. W.; Vollmer, M.
2015-10-01
Nature provides many beautiful optical phenomena that can be used to teach optical principles. Here we describe an interdisciplinary education project based on a simple computer model of the colors observed in the famous thermal pools of Yellowstone National Park in the northwestern United States. The primary wavelength-dependent parameters that determine the widely varying pool colors are the reflectance of the rocks or the microbial mats growing on the rocks beneath the water (the microbial mat color depends on water temperature) and optical absorption and scattering in the water. This paper introduces a teaching module based on a one-dimensional computer model that starts with measured reflectance spectra of the microbial mats and modifies the spectra with depth-dependent absorption and scattering in the water. This module is designed to be incorporated into a graduate course on remote sensing systems, in a section covering the propagation of light through air and water, although it could be adapted to a general university optics course. The module presents the basic 1-D radiative transfer equation relevant to this problem, and allows them to build their own simple model. Students can then simulate the colors that would be observed for different variations of the microbial mat reflectance spectrum, skylight spectrum, and water depth.
Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A
2018-03-01
Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.
Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems
Bernstein, Hans C; Carlson, Ross P
2012-01-01
This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677
Boone, C W; Kelloff, G J
1994-01-01
The tissue changes offering the greatest immediate potential for development as surrogate endpoint biomarkers (SEBs) to be used in Phase II trials of cancer chemopreventive agents are those derived from the microscopic tissue changes pathologists use to make the diagnosis of preinvasive (intraepithelial) neoplasia. These changes comprise four categories: proliferative index, ploidy, nuclear morphometry (size, shape, texture, and pleomorphism), and nucleolar morphometry (number, size, shape, position, and pleomorphism). Computer-assisted image analysis (CIA) permits dozens of additional morphometric parameters to be developed. Other categories of candidate SEBs are: DNA and chromosomal structural changes associated with genomic instability, activation of oncogenes and inactivation of tumor suppressor genes, structural changes in differentiated molecules, and aberrations of growth factor/receptor structure and function. Self-perpetuating DNA breakage with secondary mutator mutations in genomic stability genes is a major mechanism by which the genomic instability characteristic of neoplasia occurs, and from which stem other basic neoplastic properties, including clonal evolution, along multiple pathways of genetic variation that are stochastically determined, continuously increasing proliferation, rate and extent of phenotypic heterogeneity. SEBs resulting from genomic instability include homogeneously staining regions, double minute chromosomes, micronuclei, dicentrics, gene amplification, loss of heterozygosity, and alterations in chromosome number. Newly developed assays for detecting genomic instability include comparative genomic hybridization using fluorescence in situ hybridization on > 20 micron-thick sections monitored by confocal laser scanning microscopy, assays for microsatellite instability, and restriction landmark genomic scanning. These assays offer promise for detecting the earliest molecular changes of neoplasia in normal-appearing epithelium prior to the onset of the dysplastic phase of intraepithelial neoplasia.
Novotny, Susan A.; Mader, Tara L.; Greising, Angela G.; Lin, Angela S.; Guldberg, Robert E.; Warren, Gordon L.; Lowe, Dawn A.
2014-01-01
The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice. PMID:25121503
Blackman, Arne V.; Grabuschnig, Stefan; Legenstein, Robert; Sjöström, P. Jesper
2014-01-01
Accurate 3D reconstruction of neurons is vital for applications linking anatomy and physiology. Reconstructions are typically created using Neurolucida after biocytin histology (BH). An alternative inexpensive and fast method is to use freeware such as Neuromantic to reconstruct from fluorescence imaging (FI) stacks acquired using 2-photon laser-scanning microscopy during physiological recording. We compare these two methods with respect to morphometry, cell classification, and multicompartmental modeling in the NEURON simulation environment. Quantitative morphological analysis of the same cells reconstructed using both methods reveals that whilst biocytin reconstructions facilitate tracing of more distal collaterals, both methods are comparable in representing the overall morphology: automated clustering of reconstructions from both methods successfully separates neocortical basket cells from pyramidal cells but not BH from FI reconstructions. BH reconstructions suffer more from tissue shrinkage and compression artifacts than FI reconstructions do. FI reconstructions, on the other hand, consistently have larger process diameters. Consequently, significant differences in NEURON modeling of excitatory post-synaptic potential (EPSP) forward propagation are seen between the two methods, with FI reconstructions exhibiting smaller depolarizations. Simulated action potential backpropagation (bAP), however, is indistinguishable between reconstructions obtained with the two methods. In our hands, BH reconstructions are necessary for NEURON modeling and detailed morphological tracing, and thus remain state of the art, although they are more labor intensive, more expensive, and suffer from a higher failure rate due to the occasional poor outcome of histological processing. However, for a subset of anatomical applications such as cell type identification, FI reconstructions are superior, because of indistinguishable classification performance with greater ease of use, essentially 100% success rate, and lower cost. PMID:25071470
CMG-biotools, a free workbench for basic comparative microbial genomics.
Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David
2013-01-01
Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training.
Portable Immune-Assessment System
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.
1995-01-01
Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.
Katayama, Hirohito; Higo, Takashi; Tokunaga, Yuji; Katoh, Shigeo; Hiyama, Yukio; Morikawa, Kaoru
2008-01-01
A practical, risk-based monitoring approach using the combined data collected from actual experiments and computer simulations was developed for the qualification of an EU GMP Annex 1 Grade B, ISO Class 7 area. This approach can locate and minimize the representative number of sampling points used for microbial contamination risk assessment. We conducted a case study on an aseptic clean room, newly constructed and specifically designed for the use of a restricted access barrier system (RABS). Hotspots were located using three-dimensional airflow analysis based on a previously published empirical measurement method, the three-dimensional airflow analysis. Local mean age of air (LMAA) values were calculated based on computer simulations. Comparable results were found using actual measurements and simulations, demonstrating the potential usefulness of such tools in estimating contamination risks based on the airflow characteristics of a clean room. Intensive microbial monitoring and particle monitoring at the Grade B environmental qualification stage, as well as three-dimensional airflow analysis, were also conducted to reveal contamination hotspots. We found representative hotspots were located at perforated panels covering the air exhausts where the major piston airflows collect in the Grade B room, as well as at any locations within the room that were identified as having stagnant air. However, we also found that the floor surface air around the exit airway of the RABS EU GMP Annex 1 Grade A, ISO Class 5 area was always remarkably clean, possibly due to the immediate sweep of the piston airflow, which prevents dispersed human microbes from falling in a Stokes-type manner on settling plates placed on the floor around the Grade A exit airway. In addition, this airflow is expected to be clean with a significantly low LMAA. Based on these observed results, we propose a simplified daily monitoring program to monitor microbial contamination in Grade B environments. To locate hotspots we propose using a combination of computer simulation, actual airflow measurements, and intensive environmental monitoring at the qualification stage. Thereafter, instead of particle or microbial air monitoring, we recommend the use of microbial surface monitoring at the main air exhaust. These measures would be sufficient to assure the efficiency of the monitoring program, as well as to minimize the number of surface sampling points used in environments surrounding a RABS.
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339
Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E
2014-01-01
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.
NASA Technical Reports Server (NTRS)
Bebout, Brad M.; Bucaria, Robin
2006-01-01
Microbial mats are living examples of the most ancient biological communities on Earth. As Earth's earliest ecosystems, they are centrally important to understanding the history of life on our planet and are useful models for the search for life elsewhere. As relatively compact (but complete) ecosystems, microbial mats are also extremely useful for educational activities. Mats may be used to demonstrate a wide variety of concepts in general and microbial ecology, including the biogeochemical cycling of elements, photosynthesis and respiration, and the origin of the Earth's present oxygen containing atmosphere. Microbial mats can be found in a number of common environments accessible to teachers, and laboratory microbial mats can be constructed using materials purchased from biological supply houses. With funding from NASA's Exobiology program, we have developed curriculum and web-based activities centered on the use of microbial mats as tools for demonstrating general principles in ecology, and the scientific process. Our web site (http://microbes.arc.nasa.gov) includes reference materials, lesson plans, and a "Web Lab", featuring living mats maintained in a mini-aquarium. The site also provides information as to how research on microbial mats supports NASA's goals, and various NASA missions. A photo gallery contains images of mats, microscopic views of the organisms that form them, and our own research activities. An animated educational video on the web site uses computer graphic and video microscopy to take students on a journey into a microbial mat. These activities are targeted to a middle school audience and are aligned with the National Science Standards.
Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree
NASA Astrophysics Data System (ADS)
Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison
2017-11-01
Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.
Microbial Source Module (MSM): Documenting the Science ...
The Microbial Source Module (MSM) estimates microbial loading rates to land surfaces from non-point sources, and to streams from point sources for each subwatershed within a watershed. A subwatershed, the smallest modeling unit, represents the common basis for information consumed and produced by the MSM which is based on the HSPF (Bicknell et al., 1997) Bacterial Indicator Tool (EPA, 2013b, 2013c). Non-point sources include numbers, locations, and shedding rates of domestic agricultural animals (dairy and beef cows, swine, poultry, etc.) and wildlife (deer, duck, raccoon, etc.). Monthly maximum microbial storage and accumulation rates on the land surface, adjusted for die-off, are computed over an entire season for four land-use types (cropland, pasture, forest, and urbanized/mixed-use) for each subwatershed. Monthly point source microbial loadings to instream locations (i.e., stream segments that drain individual sub-watersheds) are combined and determined for septic systems, direct instream shedding by cattle, and POTWs/WWTPs (Publicly Owned Treatment Works/Wastewater Treatment Plants). The MSM functions within a larger modeling system that characterizes human-health risk resulting from ingestion of water contaminated with pathogens. The loading estimates produced by the MSM are input to the HSPF model that simulates flow and microbial fate/transport within a watershed. Microbial counts within recreational waters are then input to the MRA-IT model (Soller et
Kong, Jun; Wang, Fusheng; Teodoro, George; Cooper, Lee; Moreno, Carlos S; Kurc, Tahsin; Pan, Tony; Saltz, Joel; Brat, Daniel
2013-12-01
In this paper, we present a novel framework for microscopic image analysis of nuclei, data management, and high performance computation to support translational research involving nuclear morphometry features, molecular data, and clinical outcomes. Our image analysis pipeline consists of nuclei segmentation and feature computation facilitated by high performance computing with coordinated execution in multi-core CPUs and Graphical Processor Units (GPUs). All data derived from image analysis are managed in a spatial relational database supporting highly efficient scientific queries. We applied our image analysis workflow to 159 glioblastomas (GBM) from The Cancer Genome Atlas dataset. With integrative studies, we found statistics of four specific nuclear features were significantly associated with patient survival. Additionally, we correlated nuclear features with molecular data and found interesting results that support pathologic domain knowledge. We found that Proneural subtype GBMs had the smallest mean of nuclear Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength. We also found gene expressions of stem cell marker MYC and cell proliferation maker MKI67 were correlated with nuclear features. To complement and inform pathologists of relevant diagnostic features, we queried the most representative nuclear instances from each patient population based on genetic and transcriptional classes. Our results demonstrate that specific nuclear features carry prognostic significance and associations with transcriptional and genetic classes, highlighting the potential of high throughput pathology image analysis as a complementary approach to human-based review and translational research.
The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil
Barroso, Gilberto F.; Gonçalves, Monica A.; Garcia, Fábio da C.
2014-01-01
Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas. PMID:25406062
Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad
2014-12-01
Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.
MetaSort untangles metagenome assembly by reducing microbial community complexity
Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing
2017-01-01
Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173
Preparing near-surface heavy oil for extraction using microbial degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busche, Frederick D.; Rollins, John B.; Noyes, Harold J.
In one embodiment, the invention provides a system including at least one computing device for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment by performing a method comprising sampling and identifying microbial species (bacteria and/or fungi) that reside in the underground, near-surface crude oil extraction environment; collecting rock and fluid property data from the underground, near-surface crude oil extraction environment; collecting nutrient data from the underground, near-surface crude oil extraction environment; identifying a preferred microbial species from the underground, near-surface crude oil extraction environment that can transform the heavy oil into a lighter oil;more » identifying a nutrient from the underground, near-surface crude oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the underground, near-surface crude oil extraction environment.« less
Assessment of the probability of contaminating Mars
NASA Technical Reports Server (NTRS)
Judd, B. R.; North, D. W.; Pezier, J. P.
1974-01-01
New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth.
Goldklang, Monica P.; Tekabe, Yared; Zelonina, Tina; Trischler, Jordis; Xiao, Rui; Stearns, Kyle; Romanov, Alexander; Muzio, Valeria; Shiomi, Takayuki; Johnson, Lynne L.
2016-01-01
Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m–rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke–exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m–rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung. PMID:27483341
Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution
Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan
2016-01-01
Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera. PMID:26966649
Pérez Plasencia, D; Flores Corral, T; Urrutia Avisrror, M; Santa Cruz Ruiz, S; Benito González, J; Mateos Pérez, M M; Gómez González, J L
2002-01-01
Computer nuclear morphometry and stereology are attractive methods because its objectivity and cheapness allowing histologic diagnosis when identifying minimal variations respectively the normality and also detect negligible disparities between anormal cells which could escape to the assessment of the pathologist. We present the data gained from several morphogenic and stereologic parameters resulting of measurements of tumoral cells procured from 40 patients with nasopharyngeal carcinomata. Middle values have been: nuclear area 27.70 microns 2; nuclear perimeter 20.80 microns; nuclear factor of form 0.81 microns; nuclear outline index 4.01; nuclear orientation angle 87.29 degrees; nuclear ellipsiticity 704.14; nuclear regularity 61.83; middle lineal length 4.30, middle linear distance 107.94; and nuclear volume 118.80 microns 3. Our series is the largest studied till now of all found in the literature. Comparison our data with those of previous publications.
Treatment of photoaged skin with topical tretinoin increases epidermal-dermal anchoring fibrils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodley, D.T.; Briggaman, R.A.; Zelickson, A.S.
Topical 0.1% tretinoin or vehicle control was applied daily to the forearm skin of six caucasian adults for 4 months. Two-millimeter punch biopsy specimens were obtained from treatment sites at the beginning and end of the study period for electron microscopy. Anchoring fibrils within the epidermal-dermal junction of skin treatment sites were quantitated by blinded, standardized, computer-assisted morphometry. After 4 months of continual daily treatment, skin sites that received topical tretinoin showed double the anchoring fibril density compared with vehicle control sites. The possible mechanism by which topical tretinoin increases anchoring fibrils in skin include the drug's property of inhibitingmore » collagenase, a dermal enzyme that degrades anchoring fibril collagen. The authors speculate that increased numbers of collagenous anchoring fibrils within the papillary dermis of human skin is one of the connective-tissue correlates of the clinical improvement observed in photoaged skin after treatment with topical tretinoin.« less
Dynamic Bayesian network modeling for longitudinal brain morphometry
Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H
2011-01-01
Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916
The Martian impact cratering record
NASA Technical Reports Server (NTRS)
Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.
1992-01-01
A detailed analysis of the Martian impact cratering record is presented. The major differences in impact crater morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland cratering record shows a marked paucity of craters less than about 30 km in diameter relative to the lunar highlands. This paucity of craters was probably the result of the obliteration of craters by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.
Neuroimaging studies in schizophrenia: an overview of research from Asia.
Narayanaswamy, Janardhanan C; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N
2012-10-01
Neuroimaging studies in schizophrenia help clarify the neural substrates underlying the pathogenesis of this neuropsychiatric disorder. Contemporary brain imaging in schizophrenia is predominated by magnetic resonance imaging (MRI)-based research approaches. This review focuses on the various imaging studies from India and their relevance to the understanding of brain abnormalities in schizophrenia. The existing studies are predominantly comprised of structural MRI reports involving region-of-interest and voxel-based morphometry approaches, magnetic resonance spectroscopy and single-photon emission computed tomography/positron emission tomography (SPECT/PET) studies. Most of these studies are significant in that they have evaluated antipsychotic-naïve schizophrenia patients--a relatively difficult population to obtain in contemporary research. Findings of these studies offer robust support to the existence of significant brain abnormalities at very early stages of the disorder. In addition, theoretically relevant relationships between these brain abnormalities and developmental aberrations suggest possible neurodevelopmental basis for these brain deficits.
NASA Astrophysics Data System (ADS)
Tramo, Mark Jude
2004-05-01
The acquisition and maintenance of fine-motor skills underlying musical instrument performance rely on the development, integration, and plasticity of neural systems localized within specific subregions of the cerebral cortex. Cortical representations of a motor sequence, such as a sequence of finger movements along the keys of a saxophone, take shape before the figure sequence occurs. The temporal pattern and spatial coordinates are computed by networks of neurons before and during the movements. When a finger sequence is practiced over and over, performance gets faster and more accurate, probably because cortical neurons generating the sequence increase in spatial extent, their electrical discharges become more synchronous, or both. By combining experimental methods such as single- and multi-neuron recordings, focal stimulation, microanatomical tracers, gross morphometry, evoked potentials, and functional imaging in humans and nonhuman primates, neuroscientists are gaining insights into the cortical physiology, anatomy, and plasticity of musical instrument performance.
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
NASA Astrophysics Data System (ADS)
Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.
2014-05-01
Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.
Accessible microscopy workstation for students and scientists with mobility impairments.
Duerstock, Bradley S
2006-01-01
An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for undergraduate science courses to graduate-level research. An accessible microscope is necessary for students and scientists with mobility impairments to be able to use a microscope independently to better understand microscopical imaging concepts and cell biology. This knowledge is not always apparent by simply viewing a catalog of histological images. The ability to operate a microscope independently eliminates the need to hire an assistant or rely on a classmate and permits one to take practical laboratory examinations by oneself. Independent microscope handling is also crucial for graduate students and scientists with disabilities to perform scientific research. By making a personal computer as the user interface for controlling AccessScope functions, different upper limb mobility impairments could be accommodated by using various computer input devices and assistive technology software. Participants with a range of upper limb mobility impairments evaluated the prototype microscopy workstation. They were able to control all microscopy functions including loading different slides without assistance.
Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph
2012-03-01
Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.
Juliano, Pablo; Knoerzer, Kai; Fryer, Peter J; Versteeg, Cornelis
2009-01-01
High-pressure, high-temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis-symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C. botulinum; the traditional first-order kinetic model, the Weibull model, an nth-order model, and a combined discrete log-linear nth-order model. The models were solved to compare the resulting microbial inactivation distributions. The initial temperature of the system was set to 90 degrees C and pressure was selected at 600 MPa, holding for 220 s, with a target temperature of 121 degrees C. A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model. Comparison of the models showed that the conventional thermal processing kinetics (not accounting for pressure) required shorter holding times to achieve a 12D reduction of C. botulinum spores than the other models. The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth-order kinetics model than when using log-linear kinetics. The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models. The platform is expected to be useful to evaluate models fitted into new C. botulinum inactivation data at varying conditions of pressure and temperature, as an aid for regulatory filing of the technology as well as in process and equipment design.
Marfil-Santana, Miguel David; O'Connor-Sánchez, Aileen; Ramírez-Prado, Jorge Humberto; De Los Santos-Briones, Cesar; López-Aguiar; Lluvia, Korynthia; Rojas-Herrera, Rafael; Lago-Lestón, Asunción; Prieto-Davó, Alejandra
2016-11-01
The need for new antibiotics has sparked a search for the microbes that might potentially produce them. Current sequencing technologies allow us to explore the biotechnological potential of microbial communities in diverse environments without the need for cultivation, benefitting natural product discovery in diverse ways. A relatively recent method to search for the possible production of novel compounds includes studying the diverse genes belonging to polyketide synthase pathways (PKS), as these complex enzymes are an important source of novel therapeutics. In order to explore the biotechnological potential of the microbial community from the largest underground aquifer in the world located in the Yucatan, we used a polyphasic approach in which a simple, non-computationally intensive method was coupled with direct amplification of environmental DNA to assess the diversity and novelty of PKS type I ketosynthase (KS) domains. Our results suggest that the bioinformatic method proposed can indeed be used to assess the novelty of KS enzymes; nevertheless, this in silico study did not identify some of the KS diversity due to primer bias and stringency criteria outlined by the metagenomics pipeline. Therefore, additionally implementing a method involving the direct cloning of KS domains enhanced our results. Compared to other freshwater environments, the aquifer was characterized by considerably less diversity in relation to known ketosynthase domains; however, the metagenome included a family of KS type I domains phylogenetically related, but not identical, to those found in the curamycin pathway, as well as an outstanding number of thiolases. Over all, this first look into the microbial community found in this large Yucatan aquifer and other fresh water free living microbial communities highlights the potential of these previously overlooked environments as a source of novel natural products.
Morphometric and histological analysis of the lungs of Syrian golden hamsters.
Kennedy, A R; Desrosiers, A; Terzaghi, M; Little, J B
1978-01-01
Hamster lung morphometry and histology have been studied in an attempt to determine differences between hamster and human lungs which may have relevance for lung carcinogenesis studies. Morphometric measurements were made on fresh lungs, lung casts, and histological sections. Cell type and frequency measurements were determined from frozen, paraffin, 1 micron plastic (glycol methacrylate) and electron microscopic sections. A standard terminology for hamster lung histology is established, and differences between hamster and human lung morphometry and histology are discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 PMID:640957
EPA-Health Canada CompTox Collaboration
Research program of EPA’s National Center for Computational Toxicology addresses chemical screening and prioritization needs for pesticidal inerts, anti-microbials, CCLs, HPVs and MPVs, comprehensive use of HTS technologies to generate.
Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete
2007-01-01
We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554
Schloss, Patrick D; Handelsman, Jo
2006-10-01
The recent advent of tools enabling statistical inferences to be drawn from comparisons of microbial communities has enabled the focus of microbial ecology to move from characterizing biodiversity to describing the distribution of that biodiversity. Although statistical tools have been developed to compare community structures across a phylogenetic tree, we lack tools to compare the memberships and structures of two communities at a particular operational taxonomic unit (OTU) definition. Furthermore, current tests of community structure do not indicate the similarity of the communities but only report the probability of a statistical hypothesis. Here we present a computer program, SONS, which implements nonparametric estimators for the fraction and richness of OTUs shared between two communities.
[Development of a predictive program for microbial growth under various temperature conditions].
Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo
2006-12-01
A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.
Toward Engineering Synthetic Microbial Metabolism
McArthur, George H.; Fong, Stephen S.
2010-01-01
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734
NASA Technical Reports Server (NTRS)
Benton, E. V.; Henke, R. P.
1973-01-01
The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.
Marques, Elisa A; Carballido-Gamio, Julio; Gudnason, Vilmundur; Sigurdsson, Gunnar; Sigurdsson, Sigurdur; Aspelund, Thor; Siggeirsdottir, Kristin; Launer, Lenore; Eiriksdottir, Gudny; Lang, Thomas; Harris, Tamara B
2018-05-16
In this case-cohort study, we used data-driven computational anatomy approaches to assess within and between sex spatial differences in proximal femoral bone characteristics in relation to incident hip fracture. One hundred male and 234 female incident hip fracture cases, and 1047 randomly selected noncase subcohort participants (562 female) were chosen from the population-based AGES-Reykjavik study (mean age of 77 years). The baseline -i.e. before hip fracture- hip quantitative computed tomography scans of these subjects were analyzed using voxel-based morphometry, tensor-based morphometry, and surface-based statistical parametric mapping to assess the spatial distribution of volumetric bone mineral density (vBMD), internal structure, and cortical bone properties (thickness, vBMD and trabecular vBMD adjacent to the endosteal surface) of the proximal femur, respectively, in relation to incident hip fracture. Results showed that in both men and women: 1) the superior aspect of the femoral neck and the trochanteric region (except for cortical bone thickness) were consistently identified as being associated with incident hip fracture, and 2) differences in bone properties between noncases and incident hip fracture cases followed similar trends, were located at compatible regions, and manifested heterogeneity in the spatial distribution of their magnitude with focal regions showing larger differences. With respect to sex differences, most of the regions with a significant interaction between fracture group and sex showed: 1) differences of greater magnitude in men between noncases and incident hip fracture cases with different spatial distributions for all bone properties with the exception of cortical bone thickness, and 2) that while most of these regions showed better bone quality in male cases than in female cases, female cases showed higher vBMD in the principal compressive group and higher endotrabecular vBMD at several regions including the anterior, posterior, and lateral aspects of the proximal femur. These findings indicate the value of these image analysis techniques by providing unique information about the specific patterns of bone deterioration associated with incident hip fracture and their sex differences, highlighting the importance of looking to men and women separately in the assessment of hip fracture risk. Copyright © 2017. Published by Elsevier Inc.
Microbial bioinformatics 2020.
Pallen, Mark J
2016-09-01
Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz
2017-12-01
The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.
Succurro, Antonella; Moejes, Fiona Wanjiku; Ebenhöh, Oliver
2017-08-01
The last few years have seen the advancement of high-throughput experimental techniques that have produced an extraordinary amount of data. Bioinformatics and statistical analyses have become instrumental to interpreting the information coming from, e.g., sequencing data and often motivate further targeted experiments. The broad discipline of "computational biology" extends far beyond the well-established field of bioinformatics, but it is our impression that more theoretical methods such as the use of mathematical models are not yet as well integrated into the research studying microbial interactions. The empirical complexity of microbial communities presents challenges that are difficult to address with in vivo / in vitro approaches alone, and with microbiology developing from a qualitative to a quantitative science, we see stronger opportunities arising for interdisciplinary projects integrating theoretical approaches with experiments. Indeed, the addition of in silico experiments, i.e., computational simulations, has a discovery potential that is, unfortunately, still largely underutilized and unrecognized by the scientific community. This minireview provides an overview of mathematical models of natural ecosystems and emphasizes that one critical point in the development of a theoretical description of a microbial community is the choice of problem scale. Since this choice is mostly dictated by the biological question to be addressed, in order to employ theoretical models fully and successfully it is vital to implement an interdisciplinary view at the conceptual stages of the experimental design. Copyright © 2017 Succurro et al.
CMG-Biotools, a Free Workbench for Basic Comparative Microbial Genomics
Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David
2013-01-01
Background Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. Results The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. Conclusion This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training. PMID:23577086
Auer, Lucas; Mariadassou, Mahendra; O'Donohue, Michael; Klopp, Christophe; Hernandez-Raquet, Guillermina
2017-11-01
Next-generation sequencing technologies give access to large sets of data, which are extremely useful in the study of microbial diversity based on 16S rRNA gene. However, the production of such large data sets is not only marred by technical biases and sequencing noise but also increases computation time and disc space use. To improve the accuracy of OTU predictions and overcome both computations, storage and noise issues, recent studies and tools suggested removing all single reads and low abundant OTUs, considering them as noise. Although the effect of applying an OTU abundance threshold on α- and β-diversity has been well documented, the consequences of removing single reads have been poorly studied. Here, we test the effect of singleton read filtering (SRF) on microbial community composition using in silico simulated data sets as well as sequencing data from synthetic and real communities displaying different levels of diversity and abundance profiles. Scalability to large data sets is also assessed using a complete MiSeq run. We show that SRF drastically reduces the chimera content and computational time, enabling the analysis of a complete MiSeq run in just a few minutes. Moreover, SRF accurately determines the actual community diversity: the differences in α- and β-community diversity obtained with SRF and standard procedures are much smaller than the intrinsic variability of technical and biological replicates. © 2017 John Wiley & Sons Ltd.
2014-01-01
Background Recent innovations in sequencing technologies have provided researchers with the ability to rapidly characterize the microbial content of an environmental or clinical sample with unprecedented resolution. These approaches are producing a wealth of information that is providing novel insights into the microbial ecology of the environment and human health. However, these sequencing-based approaches produce large and complex datasets that require efficient and sensitive computational analysis workflows. Many recent tools for analyzing metagenomic-sequencing data have emerged, however, these approaches often suffer from issues of specificity, efficiency, and typically do not include a complete metagenomic analysis framework. Results We present PathoScope 2.0, a complete bioinformatics framework for rapidly and accurately quantifying the proportions of reads from individual microbial strains present in metagenomic sequencing data from environmental or clinical samples. The pipeline performs all necessary computational analysis steps; including reference genome library extraction and indexing, read quality control and alignment, strain identification, and summarization and annotation of results. We rigorously evaluated PathoScope 2.0 using simulated data and data from the 2011 outbreak of Shiga-toxigenic Escherichia coli O104:H4. Conclusions The results show that PathoScope 2.0 is a complete, highly sensitive, and efficient approach for metagenomic analysis that outperforms alternative approaches in scope, speed, and accuracy. The PathoScope 2.0 pipeline software is freely available for download at: http://sourceforge.net/projects/pathoscope/. PMID:25225611
Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)
Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie
2012-01-01
Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000
Morphometric characteristics and chromatin integrity of spermatozoa in three Italian dog breeds.
Lange-Consiglio, A; Antonucci, N; Manes, S; Corradetti, B; Cremonesi, F; Bizzaro, D
2010-12-01
Studies in many species indicate that variation of spermatozoan head morphology is a sensitive biomarker for abnormal chromatin structure and resultant clinical fertility. This preliminary study evaluated spermatozoan head morphometry in different dog breeds and assessed whether morphometric parameters could reflect spermatozoan DNA fragmentation in dogs. Spermatozoan morphometry and DNA quality (measured by TUNEL flow cytometry) were assessed in semen from 11 dogs of three Italian breeds (Cirneco dell'Etna, Piccolo Levriero Italiano and Segugio Maremmano). Morphometric data showed that Segugio dogs had significantly larger (33·67%) spermatozoa and that Piccolo Levrieros had a higher incidence of long (46·75%) and elliptical spermatozoan heads (11·5%) when compared with the samples from other breeds. Moreover, the predominance of elliptical spermatozoa in one dog (23%) was significantly related to the percentage of spermatozoa with fragmented DNA (12·6%), whereas in another dog, where no more than 1% of spermatozoa was elliptical, only 0·36% of spermatozoa had damaged DNA. It is noteworthy that the breeding record of the former dog in the previous 12 months showed poor fertility and fecundity. These data suggest that spermatozoan head morphometry could be breed related and that there is a significant correlation between DNA fragmentation and elliptical spermatozoa in individual animals. This finding, albeit limited in our study to a single case, is possibly related to clinical infertility. © 2010 British Small Animal Veterinary Association.
Canal, Nelson A.; Hernández-Ortiz, Vicente; Salas, Juan O. Tigrero; Selivon, Denise
2015-01-01
Abstract The occurrence of cryptic species among economically important fruit flies strongly affects the development of management tactics for these pests. Tools for studying cryptic species not only facilitate evolutionary and systematic studies, but they also provide support for fruit fly management and quarantine activities. Previous studies have shown that the South American fruit fly, Anastrepha fraterculus, is a complex of cryptic species, but few studies have been performed on the morphology of its immature stages. An analysis of mandible shape and linear morphometric variability was applied to third-instar larvae of five morphotypes of the Anastrepha fraterculus complex: Mexican, Andean, Ecuadorian, Peruvian and Brazilian-1. Outline geometric morphometry was used to study the mouth hook shape and linear morphometry analysis was performed using 24 linear measurements of the body, cephalopharyngeal skeleton, mouth hook and hypopharyngeal sclerite. Different morphotypes were grouped accurately using canonical discriminant analyses of both the geometric and linear morphometry. The shape of the mandible differed among the morphotypes, and the anterior spiracle length, number of tubules of the anterior spiracle, length and height of the mouth hook and length of the cephalopharyngeal skeleton were the most significant variables in the linear morphometric analysis. Third-instar larvae provide useful characters for studies of cryptic species in the Anastrepha fraterculus complex. PMID:26798253
Volumetric abnormalities of the brain in a rat model of recurrent headache.
Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan
2018-01-01
Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.
Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.
Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M
2015-01-01
Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.
Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank
2007-01-01
Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344
Haczeyni, Fahrettin; Poekes, Laurence; Wang, Hans; Mridha, Auvro R.; Barn, Vanessa; Haigh, W. Geoffrey; Ioannou, George N.; Yeh, Matthew M; Leclercq, Isabelle A.; Teoh, Narcissus C.; Farrell, Geoffrey C.
2018-01-01
Objective Non-alcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients, but for unknown reason does not resolve NASH pathology. We therefore investigated OCA effects in Wt mice which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet which develop metabolic obesity and diabetes. Methods OCA (1mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. We studied adipose indices, glucose tolerance and fatty liver pathology. Experiments were repeated with OCA 10mg/kg. Results OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favour of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure (CLS) number in visceral adipose. foz/foz mice showed more CLSs in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10mg/kg. Conclusion OCA improves adipose indices, glucose tolerance and steatosis in milder metabolic phenotype, but fails to improve these factors in morbidly obese diabetic mice. These results help explain OCA’s limited efficacy to reverse human NASH. PMID:27804232
Haczeyni, Fahrettin; Poekes, Laurence; Wang, Hans; Mridha, Auvro R; Barn, Vanessa; Geoffrey Haigh, W; Ioannou, George N; Yeh, Matthew M; Leclercq, Isabelle A; Teoh, Narcissus C; Farrell, Geoffrey C
2017-01-01
Nonalcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients but for unknown reasons does not resolve NASH pathology. This study therefore investigated OCA effects in Wt mice, which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet, which develop metabolic obesity and diabetes. OCA (1 mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. Adipose indices, glucose tolerance, and fatty liver pathology were studied. Experiments were repeated with OCA 10 mg/kg. OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favor of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure number in visceral adipose tissue. foz/foz mice showed more crown-like structures in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10 mg/kg. OCA improved adipose indices, glucose tolerance, and steatosis in a milder metabolic phenotype but failed to improve these factors in morbidly obese diabetic mice. These results help explain OCA's limited efficacy to reverse human NASH. © 2016 The Obesity Society.
Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola
2017-07-01
Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.
Structural covariance in the hallucinating brain: a voxel-based morphometry study
Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André
2009-01-01
Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723
Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N
2017-12-01
Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.
Vandecasteele, Frederik P J; Hess, Thomas F; Crawford, Ronald L
2007-07-01
The functioning of natural microbial ecosystems is determined by biotic interactions, which are in turn influenced by abiotic environmental conditions. Direct experimental manipulation of such conditions can be used to purposefully drive ecosystems toward exhibiting desirable functions. When a set of environmental conditions can be manipulated to be present at a discrete number of levels, finding the right combination of conditions to obtain the optimal desired effect becomes a typical combinatorial optimisation problem. Genetic algorithms are a class of robust and flexible search and optimisation techniques from the field of computer science that may be very suitable for such a task. To verify this idea, datasets containing growth levels of the total microbial community of four different natural microbial ecosystems in response to all possible combinations of a set of five chemical supplements were obtained. Subsequently, the ability of a genetic algorithm to search this parameter space for combinations of supplements driving the microbial communities to high levels of growth was compared to that of a random search, a local search, and a hill-climbing algorithm, three intuitive alternative optimisation approaches. The results indicate that a genetic algorithm is very suitable for driving microbial ecosystems in desirable directions, which opens opportunities for both fundamental ecological research and industrial applications.
Crotta, Matteo; Paterlini, Franco; Rizzi, Rita; Guitian, Javier
2016-02-01
Foodborne disease as a result of raw milk consumption is an increasing concern in Western countries. Quantitative microbial risk assessment models have been used to estimate the risk of illness due to different pathogens in raw milk. In these models, the duration and temperature of storage before consumption have a critical influence in the final outcome of the simulations and are usually described and modeled as independent distributions in the consumer phase module. We hypothesize that this assumption can result in the computation, during simulations, of extreme scenarios that ultimately lead to an overestimation of the risk. In this study, a sensorial analysis was conducted to replicate consumers' behavior. The results of the analysis were used to establish, by means of a logistic model, the relationship between time-temperature combinations and the probability that a serving of raw milk is actually consumed. To assess our hypothesis, 2 recently published quantitative microbial risk assessment models quantifying the risks of listeriosis and salmonellosis related to the consumption of raw milk were implemented. First, the default settings described in the publications were kept; second, the likelihood of consumption as a function of the length and temperature of storage was included. When results were compared, the density of computed extreme scenarios decreased significantly in the modified model; consequently, the probability of illness and the expected number of cases per year also decreased. Reductions of 11.6 and 12.7% in the proportion of computed scenarios in which a contaminated milk serving was consumed were observed for the first and the second study, respectively. Our results confirm that overlooking the time-temperature dependency may yield to an important overestimation of the risk. Furthermore, we provide estimates of this dependency that could easily be implemented in future quantitative microbial risk assessment models of raw milk pathogens. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ciesielski, K T; Lesnik, P G; Benzel, E C; Hart, B L; Sanders, J A
1999-06-01
Neurotoxic intrathecal chemotherapy for childhood acute lymphoblastic leukemia (ALL) affects developing structures and functions of memory and learning subsystems selectively. Results show significant reductions in magnetic resonance imaging morphometry of mamillary bodies, components of the corticolimbic-diencephalic subsystem subserving functionally later developing, single-trial memory, nonsignificant changes in bilateral heads of the caudate nuclei, components of the corticostriatal subsystem subserving functionally earlier developing, multitrial learning, significant reductions in prefrontal cortical volume, visual and verbal single-trial memory deficits, and visuospatial, but not verbal, multitrial learning deficits. Multiple regression models provide evidence for partial dissociation and connectivity between the subsystems, and suggest that greater involvement of caudate may compensate for inefficient corticolimbic-diencephalic components.
Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis
Rivas-Santiago, C E; Rivas-Santiago, B; León, D A; Castañeda-Delgado, J; Hernández Pando, R
2011-01-01
Tuberculosis is a worldwide health problem, and multidrug-resistant (MDR) and extensively multidrug-resistant (XMDR) strains are rapidly emerging and threatening the control of this disease. These problems motivate the search for new treatment strategies. One potential strategy is immunotherapy using cationic anti-microbial peptides. The capacity of l-isoleucine to induce beta-defensin expression and its potential therapeutic efficiency were studied in a mouse model of progressive pulmonary tuberculosis. BALB/c mice were infected with Mycobacterium tuberculosis strain H37Rv or with a MDR clinical isolate by the intratracheal route. After 60 days of infection, when disease was in its progressive phase, mice were treated with 250 µg of intratracheal l-isoleucine every 48 h. Bacillary loads were determined by colony-forming units, protein and cytokine gene expression were determined by immunohistochemistry and reverse transcription–quantitative polymerase chain reaction (RT–qPCR), respectively, and tissue damage was quantified by automated morphometry. Administration of l-isoleucine induced a significant increase of beta-defensins 3 and 4 which was associated with decreased bacillary loads and tissue damage. This was seen in animals infected with the antibiotic-sensitive strain H37Rv and with the MDR clinical isolate. Thus, induction of beta-defensins might be a potential therapy that can aid in the control of this significant infectious disease. PMID:21235540
Constraint-based stoichiometric modelling from single organisms to microbial communities
Olivier, Brett G.; Bruggeman, Frank J.; Teusink, Bas
2016-01-01
Microbial communities are ubiquitously found in Nature and have direct implications for the environment, human health and biotechnology. The species composition and overall function of microbial communities are largely shaped by metabolic interactions such as competition for resources and cross-feeding. Although considerable scientific progress has been made towards mapping and modelling species-level metabolism, elucidating the metabolic exchanges between microorganisms and steering the community dynamics remain an enormous scientific challenge. In view of the complexity, computational models of microbial communities are essential to obtain systems-level understanding of ecosystem functioning. This review discusses the applications and limitations of constraint-based stoichiometric modelling tools, and in particular flux balance analysis (FBA). We explain this approach from first principles and identify the challenges one faces when extending it to communities, and discuss the approaches used in the field in view of these challenges. We distinguish between steady-state and dynamic FBA approaches extended to communities. We conclude that much progress has been made, but many of the challenges are still open. PMID:28334697
Liang, C; Das, K C; McClendon, R W
2003-01-01
To understand the relationships between temperature, moisture content, and microbial activity during the composting of biosolids (municipal wastewater treatment sludge), well-controlled incubation experiments were conducted using a 2-factor factorial design with six temperatures (22, 29, 36, 43, 50, and 57 degrees C) and five moisture contents (30, 40, 50, 60, and 70%). The microbial activity was measured as O2 uptake rate (mg g(-1) h(-1)) using a computer controlled respirometer. In this study, moisture content proved to be a dominant factor impacting aerobic microbial activity of the composting blend. Fifty percent moisture content appeared to be the minimal requirement for obtaining activities greater than 1.0 mg g(-1) h(-1). Temperature was also documented to be an important factor for biosolids composting. However, its effect was less influential than moisture content. Particularly, the enhancement of composting activities induced by temperature increment could be realized by increasing moisture content alone.
More of an art than a science: Using microbial DNA sequences to compose music
Larsen, Peter E.
2016-03-01
Bacteria are everywhere. Microbial ecology is emerging as a critical field for understanding the relationships between these ubiquitous bacterial communities, the environment, and human health. Next generation DNA sequencing technology provides us a powerful tool to indirectly observe the communities by sequencing and analyzing all of the bacterial DNA present in an environment. The results of the DNA sequencing experiments can generate gigabytes to terabytes of information however, making it difficult for the citizen scientist to grasp and the educator to convey this data. Here, we present a method for interpreting massive amounts of microbial ecology data as musical performances,more » easily generated on any computer and using only commonly available or freely available software and the ‘Microbial Bebop’ algorithm. Furthermore, using this approach citizen scientists and biology educators can sonify complex data in a fun and interactive format, making it easier to communicate both the importance and the excitement of exploring the planet earth’s largest ecosystem.« less
More of an art than a science: Using microbial DNA sequences to compose music
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter E.
Bacteria are everywhere. Microbial ecology is emerging as a critical field for understanding the relationships between these ubiquitous bacterial communities, the environment, and human health. Next generation DNA sequencing technology provides us a powerful tool to indirectly observe the communities by sequencing and analyzing all of the bacterial DNA present in an environment. The results of the DNA sequencing experiments can generate gigabytes to terabytes of information however, making it difficult for the citizen scientist to grasp and the educator to convey this data. Here, we present a method for interpreting massive amounts of microbial ecology data as musical performances,more » easily generated on any computer and using only commonly available or freely available software and the ‘Microbial Bebop’ algorithm. Furthermore, using this approach citizen scientists and biology educators can sonify complex data in a fun and interactive format, making it easier to communicate both the importance and the excitement of exploring the planet earth’s largest ecosystem.« less
Lee, On On; Wang, Yong; Tian, Renmao; Zhang, Weipeng; Shek, Chun Shum; Bougouffa, Salim; Al-Suwailem, Abdulaziz; Batang, Zenon B.; Xu, Wei; Wang, Guang Chao; Zhang, Xixiang; Lafi, Feras F.; Bajic, Vladmir B.; Qian, Pei-Yuan
2014-01-01
Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development. PMID:24399144
Millstone: software for multiplex microbial genome analysis and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Millstone: software for multiplex microbial genome analysis and engineering.
Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M
2017-05-25
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Millstone: software for multiplex microbial genome analysis and engineering
Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.; ...
2017-05-25
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Integrated Artificial Intelligence Approaches for Disease Diagnostics.
Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh
2018-06-01
Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.
Aquatic models, genomics and chemical risk management.
Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio
2012-01-01
The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. Copyright © 2011 Elsevier Inc. All rights reserved.
Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus
Biller, Steven J.; Berube, Paul M.; Berta-Thompson, Jessie W.; Kelly, Libusha; Roggensack, Sara E.; Awad, Lana; Roache-Johnson, Kathryn H.; Ding, Huiming; Giovannoni, Stephen J.; Rocap, Gabrielle; Moore, Lisa R.; Chisholm, Sallie W.
2014-01-01
The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography. PMID:25977791
2012-01-01
Microorganisms are ubiquitous on earth and have diverse metabolic transformative capabilities important for environmental biodegradation of chemicals that helps maintain ecosystem and human health. Microbial biodegradative metabolism is the main focus of the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD). UM-BBD data has also been used to develop a computational metabolic pathway prediction system that can be applied to chemicals for which biodegradation data is currently lacking. The UM-Pathway Prediction System (UM-PPS) relies on metabolic rules that are based on organic functional groups and predicts plausible biodegradative metabolism. The predictions are useful to environmental chemists that look for metabolic intermediates, for regulators looking for potential toxic products, for microbiologists seeking to understand microbial biodegradation, and others with a wide-range of interests. PMID:22587916
Hydrodynamics of microbial filter feeding
Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H.; Andersen, Anders
2017-01-01
Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis, and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling. PMID:28808016
Hydrodynamics of microbial filter feeding.
Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H; Kiørboe, Thomas; Andersen, Anders
2017-08-29
Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.
Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J.; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R.; Harris-Love, Michael O.
2015-01-01
Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample. PMID:26578974
Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R; Harris-Love, Michael O
2015-01-01
Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht(2)), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m(2) determined participant assignment into the Normal LBM and Low LBM subgroups. The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht(2) (adj. R (2) = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R (2) = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R (2) = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht(2) in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample.
Muñoz-Ruiz, Miguel Ángel; Hartikainen, Päivi; Koikkalainen, Juha; Wolz, Robin; Julkunen, Valtteri; Niskanen, Eini; Herukka, Sanna-Kaisa; Kivipelto, Miia; Vanninen, Ritva; Rueckert, Daniel; Liu, Yawu; Lötjönen, Jyrki; Soininen, Hilkka
2012-01-01
Background MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods. Objective To compare FTD with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy. Methods Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups. Results We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55). Conclusion Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD. PMID:23285078
ReprDB and panDB: minimalist databases with maximal microbial representation.
Zhou, Wei; Gay, Nicole; Oh, Julia
2018-01-18
Profiling of shotgun metagenomic samples is hindered by a lack of unified microbial reference genome databases that (i) assemble genomic information from all open access microbial genomes, (ii) have relatively small sizes, and (iii) are compatible to various metagenomic read mapping tools. Moreover, computational tools to rapidly compile and update such databases to accommodate the rapid increase in new reference genomes do not exist. As a result, database-guided analyses often fail to profile a substantial fraction of metagenomic shotgun sequencing reads from complex microbiomes. We report pipelines that efficiently traverse all open access microbial genomes and assemble non-redundant genomic information. The pipelines result in two species-resolution microbial reference databases of relatively small sizes: reprDB, which assembles microbial representative or reference genomes, and panDB, for which we developed a novel iterative alignment algorithm to identify and assemble non-redundant genomic regions in multiple sequenced strains. With the databases, we managed to assign taxonomic labels and genome positions to the majority of metagenomic reads from human skin and gut microbiomes, demonstrating a significant improvement over a previous database-guided analysis on the same datasets. reprDB and panDB leverage the rapid increases in the number of open access microbial genomes to more fully profile metagenomic samples. Additionally, the databases exclude redundant sequence information to avoid inflated storage or memory space and indexing or analyzing time. Finally, the novel iterative alignment algorithm significantly increases efficiency in pan-genome identification and can be useful in comparative genomic analyses.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl; von Tengg-Kobligk, Hendrik
2014-04-01
Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl
2014-01-01
Introduction Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Methods and materials Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Results Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm3) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm3) (P<0.001). Conclusions 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA. PMID:24834406
Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players
Gärtner, H.; Minnerop, M.; Pieperhoff, P.; Schleicher, A.; Zilles, K.; Altenmüller, E.; Amunts, K.
2013-01-01
To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life. PMID:24069009
Stannard, Adam; Morrison, Jonathan J; Sharon, Danny J; Eliason, Jonathan L; Rasmussen, Todd E
2013-08-01
Hemorrhage is a leading cause of death in military and civilian trauma. Despite the importance of the aorta as a site of hemorrhage control and resuscitative occlusion, detailed knowledge of its morphometry is lacking. The objective of this study was to characterize aortic morphometry in a trauma population, including quantification of distances as well as and diameters and definition of relevant aortic zones. Center line measures were made (Volume Viewer) from contrast computed tomography (CT) scans of male trauma patients (18-45 years). Aortic zones were defined based on branch arteries. Zone I includes left subclavian to celiac; Zone II includes celiac to caudal renal; Zone III includes caudal renal to aortic bifurcation. Zone lengths were calculated and correlated to a novel external measure of torso extent (symphysis pubis to sternal notch). Eighty-eight males (mean [SD], 28 [4] years) had CT scans for the study. The median (interquartile range) lengths (mm) of Zones I, II, and III were 210 mm (202-223 mm), 33 mm (28-38 mm), and 97 mm (91-103 mm), respectively. Median aortic diameters at the left subclavian, celiac, and lowest renal arteries were 21 mm (20-23 mm), 18 mm (16-19 mm), and 15 mm (14-16 mm), respectively, and the terminal aortic diameter was 14 mm (13-15 mm). The correlation of determination for descending aortic length (all zones) against torso extend was r = 0.454. This study provides a morphometric analysis of the aorta in a male population, demonstrating consistency of length and diameter while defining distinct axial zones. Findings suggest that center line aortic distances correlate with a simple, external measure of torso extent. Morphometric study of the aorta using CT data may facilitate the development and implementation of occlusion techniques to manage noncompressible torso, pelvic, and junctional femoral hemorrhage.
SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes, D; Castillo, R; Castillo, E
2014-06-15
Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiplemore » time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to radiation and may provide insight in developing new therapeutic approaches and monitoring efficacy.« less
Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players.
Gärtner, H; Minnerop, M; Pieperhoff, P; Schleicher, A; Zilles, K; Altenmüller, E; Amunts, K
2013-01-01
To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life.
3D PATTERN OF BRAIN ABNORMALITIES IN FRAGILE X SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY
Lee, Agatha D.; Leow, Alex D.; Lu, Allen; Reiss, Allan L.; Hall, Scott; Chiang, Ming-Chang; Toga, Arthur W.; Thompson, Paul M.
2007-01-01
Fragile X syndrome (FraX), a genetic neurodevelopmental disorder, results in impaired cognition with particular deficits in executive function and visuo-spatial skills. Here we report the first detailed 3D maps of the effects of the Fragile X mutation on brain structure, using tensor-based morphometry. TBM visualizes structural brain deficits automatically, without time-consuming specification of regions-of-interest. We compared 36 subjects with FraX (age: 14.66+/−1.58SD, 18 females/18 males), and 33 age-matched healthy controls (age: 14.67+/−2.2SD, 17 females/16 males), using high-dimensional elastic image registration. All 69 subjects' 3D T1-weighted brain MRIs were spatially deformed to match a high-resolution single-subject average MRI scan in ICBM space, whose geometry was optimized to produce a minimal deformation target. Maps of the local Jacobian determinant (expansion factor) were computed from the deformation fields. Statistical maps showed increased caudate (10% higher; p=0.001) and lateral ventricle volumes (19% higher; p=0.003), and trend-level parietal and temporal white matter excesses (10% higher locally; p=0.04). In affected females, volume abnormalities correlated with reduction in systemically measured levels of the fragile X mental retardation protein (FMRP; Spearman's r<−0.5 locally). Decreased FMRP correlated with ventricular expansion (p=0.042; permutation test), and anterior cingulate tissue reductions (p=0.0026; permutation test) supporting theories that FMRP is required for normal dendritic pruning in fronto-striatal-limbic pathways. No sex differences were found; findings were confirmed using traditional volumetric measures in regions of interest. Deficit patterns were replicated using Lie group statistics optimized for tensor-valued data. Investigation of how these anomalies emerge over time will accelerate our understanding of FraX and its treatment. PMID:17161622
Investigations of Martian Impact Crater Morphologies and Morphometries
NASA Technical Reports Server (NTRS)
Barlow, Nadine G.
2002-01-01
We have made substantial progress towards completion of the original objectives and are continuing to include new data from the Mars Global Surveyor MOC and TES instruments as they become available (the MOLA instrument has ceased operation as of 2002). The project funding has been used to provide salary support to the PI and several undergraduate students, cover publication charges for two papers, reimburse travel expenses to conferences and workshops incurred by the PI and students, and cover a number of other expenses such as software upgrades and production costs of slides and color prints. This study is revising the PI's Catalog of Large Martian Impact Craters with information obtained from MGS and is utilizing data in the revised Catalog to investigate which planetary factors (such as location, elevation, terrain type, etc.) primarily affect the formation of specific ejecta morphologies and morphometries.
Franzen, Angela A; Pigatto, João A T; Abib, Fernando C; Albuquerque, Luciane; Laus, José L
2010-07-01
The purpose of this study was to investigate the effect of age on endothelial morphology and morphometry in cats. The corneal endothelium was studied using a contact specular microscope. A total of 18 cats (Felis catus Linnaeus, 1758) were evaluated in this study. The subjects were divided into three groups of six cats each in function of age: G1 (1 to 3 months old), G2 (5 to 12 months old), and G3 (24 to 40 months old). The examination presented data as endothelial cell density (ECD), average cell area, corneal thickness, polymegathism, and pleomorphism. Results revealed ECD decrease in corneas of normal cats with age, as well as a corresponding increase in endothelial cell area and pleomorphism. The present work suggests that the endothelial parameters evaluated change with advancing age.
Prasad, Prashant Kumar; Salunke, Pravin; Sahni, Daisy; Kalra, Parveen
2017-01-01
Purpose: The existing literature on lateral atlantoaxial joints is predominantly on bony facets and is unable to explain various C1-2 motions observed. Geometric morphometry of facets would help us in understanding the role of cartilages in C1-2 biomechanics/kinematics. Objective: Anthropometric measurements (bone and cartilage) of the atlantoaxial joint and to assess the role of cartilages in joint biomechanics. Materials and Methods: The authors studied 10 cadaveric atlantoaxial lateral joints with the articular cartilage in situ and after removing it, using three-dimensional laser scanner. The data were compared using geometric morphometry with emphasis on surface contours of articulating surfaces. Results: The bony inferior articular facet of atlas is concave in both sagittal and coronal plane. The bony superior articular facet of axis is convex in sagittal plane and is concave (laterally) and convex medially in the coronal plane. The bony articulating surfaces were nonconcordant. The articular cartilages of both C1 and C2 are biconvex in both planes and are thicker than the concavities of bony articulating surfaces. Conclusion: The biconvex structure of cartilage converts the surface morphology of C1-C2 bony facets from concave on concavo-convex to convex on convex. This reduces the contact point making the six degrees of freedom of motion possible and also makes the joint gyroscopic. PMID:29403249
Study of morphometry to debit drainage basin (DAS) arau Padang city
NASA Astrophysics Data System (ADS)
Utama, Lusi; Amrizal, Berd, Isril; Zuherna
2017-11-01
High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.
Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi
2016-01-04
X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Li, Jian; Battaglia, Francine; He, Zhen
2016-11-01
Microbial fuel cells (MFCs) offer an alternative approach to treat wastewater with less energy input and direct electricity generation. To optimize MFC anodic performance, adding granular activated carbon (GAC) has been proved to be an effective way, most likely due to the enlarged electrode surface for biomass attachment and improved mixing of the flow field. The impact of a flow field on the current enhancement within a porous anode medium (e.g., GAC) has not been well understood before, and thus is investigated in this study by using mathematical modeling of the multi-order Butler-Volmer equation with computational fluid dynamics (CFD) techniques. By comparing three different CFD cases (without GAC, with GAC as a nonreactive porous medium, and with GAC as a reactive porous medium), it is demonstrated that adding GAC contributes to a uniform flow field and a total current enhancement of 17%, a factor that cannot be neglected in MFC design. However, in an actual MFC operation, this percentage could be even higher because of the microbial competition and energy loss issues within a porous medium. The results of the present study are expected to help with formulating strategies to optimize MFC with a better flow pattern design.
Methodological flaws introduce strong bias into molecular analysis of microbial populations.
Krakat, N; Anjum, R; Demirel, B; Schröder, P
2017-02-01
In this study, we report how different cell disruption methods, PCR primers and in silico analyses can seriously bias results from microbial population studies, with consequences for the credibility and reproducibility of the findings. Our results emphasize the pitfalls of commonly used experimental methods that can seriously weaken the interpretation of results. Four different cell lysis methods, three commonly used primer pairs and various computer-based analyses were applied to investigate the microbial diversity of a fermentation sample composed of chicken dung. The fault-prone, but still frequently used, amplified rRNA gene restriction analysis was chosen to identify common weaknesses. In contrast to other studies, we focused on the complete analytical process, from cell disruption to in silico analysis, and identified potential error rates. This identified a wide disagreement of results between applied experimental approaches leading to very different community structures depending on the chosen approach. The interpretation of microbial diversity data remains a challenge. In order to accurately investigate the taxonomic diversity and structure of prokaryotic communities, we suggest a multi-level approach combining DNA-based and DNA-independent techniques. The identified weaknesses of commonly used methods to study microbial diversity can be overcome by a multi-level approach, which produces more reliable data about the fate and behaviour of microbial communities of engineered habitats such as biogas plants, so that the best performance can be ensured. © 2016 The Society for Applied Microbiology.
Airway morphometry in the lungs as depicted in chest CT examinations variability of measurements
NASA Astrophysics Data System (ADS)
Leader, J. K.; Zheng, Bin; Scuirba, Frank C.; Coxson, Harvey O.; Weissfeld, Joel L.; Fuhrman, Carl R.; Maitz, Glenn S.; Gur, David
2006-03-01
The purpose of the study was to decrease the variability of computed tomographic airway measurements. We to developed and evaluated a novel computer scheme to automatically segment airways depicted on chest CT examinations at the level of the lobar and segmental bronchi and to decrease. The computer scheme begins with manual selection of a seed point within the airway from which the airway wall and lumen are automatically segmented and airway pixels were assigned full or partial membership to the lumen or wall. Airway pixels not assigned full membership to the lumen (< -900 HU) or wall (> 0 HU) were assigned partial membership to the lumen and wall. In fifteen subjects with no visible signs of emphysema and a range of pulmonary obstruction from none to severe, airway measures were compared to pulmonary function parameters in a rank order analysis to evaluate measuring a single airway versus multiple airways. The quality of the automated airway segmentation was visually acceptable. The Pearson Correlation coefficients for the ranking of FEV I versus wall area percent (percent of total airway size) and FVC versus wall area percent were 0.164 and 0.175 for a single measurement, respectively, and were 0.243 and 0.239 for multiple measurements, respectively. Our preliminary results suggest that averaging the measurements from multiple airways may improve the relation between airway measures and lung function compared to measurement from a single airway, which improve quantification of airway remodeling in COPD patients.
INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.
2013-01-01
Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID:24324765
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B
2013-01-01
The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.
Sidhu, Meneka Kaur; Duncan, John S; Sander, Josemir W
2018-05-17
Epilepsy neuroimaging is important for detecting the seizure onset zone, predicting and preventing deficits from surgery and illuminating mechanisms of epileptogenesis. An aspiration is to integrate imaging and genetic biomarkers to enable personalized epilepsy treatments. The ability to detect lesions, particularly focal cortical dysplasia and hippocampal sclerosis, is increased using ultra high-field imaging and postprocessing techniques such as automated volumetry, T2 relaxometry, voxel-based morphometry and surface-based techniques. Statistical analysis of PET and single photon emission computer tomography (STATISCOM) are superior to qualitative analysis alone in identifying focal abnormalities in MRI-negative patients. These methods have also been used to study mechanisms of epileptogenesis and pharmacoresistance.Recent language fMRI studies aim to localize, and also lateralize language functions. Memory fMRI has been recommended to lateralize mnemonic function and predict outcome after surgery in temporal lobe epilepsy. Combinations of structural, functional and post-processing methods have been used in multimodal and machine learning models to improve the identification of the seizure onset zone and increase understanding of mechanisms underlying structural and functional aberrations in epilepsy.
Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri
2014-05-01
Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.
Image query and indexing for digital x rays
NASA Astrophysics Data System (ADS)
Long, L. Rodney; Thoma, George R.
1998-12-01
The web-based medical information retrieval system (WebMIRS) allows interned access to databases containing 17,000 digitized x-ray spine images and associated text data from National Health and Nutrition Examination Surveys (NHANES). WebMIRS allows SQL query of the text, and viewing of the returned text records and images using a standard browser. We are now working (1) to determine utility of data directly derived from the images in our databases, and (2) to investigate the feasibility of computer-assisted or automated indexing of the images to support image retrieval of images of interest to biomedical researchers in the field of osteoarthritis. To build an initial database based on image data, we are manually segmenting a subset of the vertebrae, using techniques from vertebral morphometry. From this, we will derive and add to the database vertebral features. This image-derived data will enhance the user's data access capability by enabling the creation of combined SQL/image-content queries.
Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities
Mahadevan, Radhakrishnan; Henson, Michael A.
2012-01-01
Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research. PMID:24688668
Universality of human microbial dynamics
NASA Astrophysics Data System (ADS)
Bashan, Amir; Gibson, Travis E.; Friedman, Jonathan; Carey, Vincent J.; Weiss, Scott T.; Hohmann, Elizabeth L.; Liu, Yang-Yu
2016-06-01
Human-associated microbial communities have a crucial role in determining our health and well-being, and this has led to the continuing development of microbiome-based therapies such as faecal microbiota transplantation. These microbial communities are very complex, dynamic and highly personalized ecosystems, exhibiting a high degree of inter-individual variability in both species assemblages and abundance profiles. It is not known whether the underlying ecological dynamics of these communities, which can be parameterized by growth rates, and intra- and inter-species interactions in population dynamics models, are largely host-independent (that is, universal) or host-specific. If the inter-individual variability reflects host-specific dynamics due to differences in host lifestyle, physiology or genetics, then generic microbiome manipulations may have unintended consequences, rendering them ineffective or even detrimental. Alternatively, microbial ecosystems of different subjects may exhibit universal dynamics, with the inter-individual variability mainly originating from differences in the sets of colonizing species. Here we develop a new computational method to characterize human microbial dynamics. By applying this method to cross-sectional data from two large-scale metagenomic studies—the Human Microbiome Project and the Student Microbiome Project—we show that gut and mouth microbiomes display pronounced universal dynamics, whereas communities associated with certain skin sites are probably shaped by differences in the host environment. Notably, the universality of gut microbial dynamics is not observed in subjects with recurrent Clostridium difficile infection but is observed in the same set of subjects after faecal microbiota transplantation. These results fundamentally improve our understanding of the processes that shape human microbial ecosystems, and pave the way to designing general microbiome-based therapies.
Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.
Mahadevan, Radhakrishnan; Henson, Michael A
2012-01-01
Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.
Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems
Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh
2016-01-01
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701
Data-driven integration of genome-scale regulatory and metabolic network models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Integrated Approach to Reconstruction of Microbial Regulatory Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodionov, Dmitry A; Novichkov, Pavel S
2013-11-04
This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated inmore » RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.« less
Marquez, Gian Powell B; Reichardt, Wolfgang T; Azanza, Rhodora V; Klocke, Michael; Montaño, Marco Nemesio E
2013-04-01
Sea wrack (dislodged sea grasses and seaweeds) was used in biogas production. Fresh water scarcity in island communities where sea wrack could accumulate led to seawater utilization as liquid substrate. Three microbial seeds cow manure (CM), marine sediment (MS), and sea wrack-associated microflora (SWA) were explored for biogas production. The average biogas produced were 2172±156 mL (MS), 1223±308 mL (SWA) and 551±126 mL (CM). Though methane potential (396.9 mL(CH4) g(-1) volatile solid) computed from sea wrack proximate values was comparable to other feedstocks, highest methane yield was low (MS=94.33 mL(CH4) g(-1) VS). Among the microbial seeds, MS proved the best microbial source in utilizing sea wrack biomass and seawater. However, salinity (MS=42‰) observed exceeded average seawater salinity (34‰). Hence, methanogenic activity could have been inhibited. This is the first report on sea wrack biomass utilization for thalassic biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visualization of metabolic interaction networks in microbial communities using VisANT 5.0
Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...
2016-04-15
Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less
Data-driven integration of genome-scale regulatory and metabolic network models
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...
2015-05-05
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Ten years of maintaining and expanding a microbial genome and metagenome analysis system.
Markowitz, Victor M; Chen, I-Min A; Chu, Ken; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C
2015-11-01
Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Distilled single-cell genome sequencing and de novo assembly for sparse microbial communities.
Taghavi, Zeinab; Movahedi, Narjes S; Draghici, Sorin; Chitsaz, Hamidreza
2013-10-01
Identification of every single genome present in a microbial sample is an important and challenging task with crucial applications. It is challenging because there are typically millions of cells in a microbial sample, the vast majority of which elude cultivation. The most accurate method to date is exhaustive single-cell sequencing using multiple displacement amplification, which is simply intractable for a large number of cells. However, there is hope for breaking this barrier, as the number of different cell types with distinct genome sequences is usually much smaller than the number of cells. Here, we present a novel divide and conquer method to sequence and de novo assemble all distinct genomes present in a microbial sample with a sequencing cost and computational complexity proportional to the number of genome types, rather than the number of cells. The method is implemented in a tool called Squeezambler. We evaluated Squeezambler on simulated data. The proposed divide and conquer method successfully reduces the cost of sequencing in comparison with the naïve exhaustive approach. Squeezambler and datasets are available at http://compbio.cs.wayne.edu/software/squeezambler/.
Estimation method for serial dilution experiments.
Ben-David, Avishai; Davidson, Charles E
2014-12-01
Titration of microorganisms in infectious or environmental samples is a corner stone of quantitative microbiology. A simple method is presented to estimate the microbial counts obtained with the serial dilution technique for microorganisms that can grow on bacteriological media and develop into a colony. The number (concentration) of viable microbial organisms is estimated from a single dilution plate (assay) without a need for replicate plates. Our method selects the best agar plate with which to estimate the microbial counts, and takes into account the colony size and plate area that both contribute to the likelihood of miscounting the number of colonies on a plate. The estimate of the optimal count given by our method can be used to narrow the search for the best (optimal) dilution plate and saves time. The required inputs are the plate size, the microbial colony size, and the serial dilution factors. The proposed approach shows relative accuracy well within ±0.1log10 from data produced by computer simulations. The method maintains this accuracy even in the presence of dilution errors of up to 10% (for both the aliquot and diluent volumes), microbial counts between 10(4) and 10(12) colony-forming units, dilution ratios from 2 to 100, and plate size to colony size ratios between 6.25 to 200. Published by Elsevier B.V.
IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses
Paez-Espino, David; Chen, I. -Min A.; Palaniappan, Krishna; ...
2016-10-30
Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from > 6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs aremore » grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparingwith external sequences, thus serving as an essential resource in the viral genomics community.« less
IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paez-Espino, David; Chen, I. -Min A.; Palaniappan, Krishna
Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from > 6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs aremore » grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparingwith external sequences, thus serving as an essential resource in the viral genomics community.« less
Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier
2013-01-01
Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.
Regional gray matter volume is associated with trait modesty: Evidence from voxel-based morphometry.
Zheng, Chuhua; Wu, Qiong; Jin, Yan; Wu, Yanhong
2017-11-02
Modesty when defined as a personality trait, is highly beneficial to interpersonal relationship, group performance, and mental health. However, the potential neural underpinnings of trait modesty remain poorly understood. In the current study, we used voxel-based morphometry (VBM) to investigate the structural neural basis of trait modesty in Chinese college students. VBM results showed that higher trait modesty score was associated with lager regional gray matter volume in the dorsomedial prefrontal cortex, right dorsolateral prefrontal cortex, left superior temporal gyrus/left temporal pole, and right posterior insular cortex. These results suggest that individual differences in trait modesty are linked to brain regions associated with self-evaluation, self-regulation, and social cognition. The results remained robust after controlling the confounding factor of global self-esteem, suggesting unique structural correlates of trait modesty. These findings provide evidence for the structural neural basis of individual differences in trait modesty.
Wallace, Gregory L; Happé, Francesca; Giedd, Jay N
2009-05-27
Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and 'weak' central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure.
Wallace, Gregory L.; Happé, Francesca; Giedd, Jay N.
2009-01-01
Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and ‘weak’ central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure. PMID:19528026
Brain morphometry in blind and sighted subjects.
Maller, Jerome J; Thomson, Richard H; Ng, Amanda; Mann, Collette; Eager, Michael; Ackland, Helen; Fitzgerald, Paul B; Egan, Gary; Rosenfeld, Jeffrey V
2016-11-01
Previous neuroimaging studies have demonstrated structural brain alterations in blind subjects, but most have focused on primary open angle glaucoma or retinopathy of prematurity, used low-field scanners, a limited number of receive channels, or have presented uncorrected results. We recruited 10 blind and 10 age and sex-matched controls to undergo high-resolution MRI using a 3T scanner and a 32-channel receive coil. We evaluated whole-brain morphological differences between the groups as well as manual segmentation of regional hippocampal volumes. There were no hippocampal volume differences between the groups. Whole-brain morphometry showed white matter volume differences between blind and sighted groups including localised larger regions in the visual cortex (occipital gyral volume and thickness) among those with blindness early in life compared to those with blindness later in life. Hence, in our patients, blindness resulted in brain volumetric differences that depend upon duration of blindness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Appel, T; Bierhoff, E; Appel, K; von Lindern, J-J; Bergé, S; Niederhagen, B
2003-06-01
We did a morphometric analysis of 130 histological sections of basal cell carcinoma (BCC) of the face to find out whether morphometric variables in the structure of the nuclei of BCC cells could serve as predictors of the biological behaviour. We considered the following variables: maximum and minimum diameters, perimeter, nuclear area and five form factors that characterise and quantify the shape of a structure (axis ratio, shape factor, nuclear contour index, nuclear roundness and circumference ratio). We did a statistical analysis of primary and recurring tumours and four histology-based groups (multifocal superficial BCCs, nodular BCCs, sclerosing BCCs and miscellaneous forms) using a two-sided t test for independent samples. Multifocal superficial BCCs showed significantly smaller values for the directly measured variables (maximum and minimum diameters, perimeter and nuclear area). Morphometry could not distinguish between primary and recurring tumours.
Water regime of Playa Lakes from southern Spain: conditioning factors and hydrological modeling.
Moral, Francisco; Rodriguez-Rodriguez, Miguel; Beltrán, Manuel; Benavente, José; Cifuentes, Victor Juan
2013-07-01
Andalusia's lowland countryside has a network of small geographically isolated playa lakes scattered across an area of 9000 km2 whose watersheds are mostly occupied by clayey rocks. The hydrological model proposed by the authors seeks to find equilibrium among usefulness, simplicity, and applicability to isolated playas in a semiarid context elsewhere. Based in such model, the authors have used monthly climatic data, water stage measurements, and the basin morphometry of a particular case (Los Jarales playa lake) to calibrate the soil water budget in the catchment and the water inputs from the watershed (runoff plus groundwater flow) at different scales, from monthly to daily. After the hydrologic model was calibrated, the authors implemented simulations with the goal of reproducing the past hydrological dynamics and forecasting water regime changes that would be caused by a modification of the wetland morphometry.
Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier
2013-01-01
Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren. PMID:23630510
Hoffmann, Rebecca A; Garcia, Marcelo L; Veskivar, Mehul; Karim, Khursheed; Al-Dahhan, Muthanna H; Angenent, Largus T
2008-05-01
We determined the effect of different mixing intensities on the performance, methanogenic population dynamics, and juxtaposition of syntrophic microbes in anaerobic digesters treating cow manure from a dairy farm. Computer automated radioactive particle tracking in conjunction with computational fluid dynamics was performed to quantify the shear levels locally. Four continuously stirred anaerobic digesters were operated at different mixing intensities of 1,500, 500, 250, and 50 revolutions per min (RPM) over a 260-day period at a temperature of 34 +/- 1 degrees C. Animal manure at a volatile solids (VS) concentration of 50 g/L was fed into the digesters daily at five different organic loading rates between 0.6 and 3.5 g VS/L day. The different mixing intensities had no effect on the biogas production rates and yields at steady-state conditions. A methane yield of 0.241 +/- 0.007 L CH(4)/g VS fed was obtained by pooling the data of all four digesters during steady-state periods. However, digester performance was affected negatively by mixing intensity during startup of the digesters, with lower biogas production rates and higher volatile fatty acids concentrations observed for the 1,500-RPM digester. Despite similar methane production yields and rates, the acetoclastic methanogenic populations were different for the high- and low-intensity mixed digesters with Methanosarcina spp. and Methanosaeta concilii as the predominant methanogens, respectively. For all four digesters, epifluorescence microscopy revealed decreasing microbial floc sizes beginning at week 4 and continuing through week 26 after which no microbial flocs remained. This decrease in size, and subsequent loss of microbial flocs did not, however, produce any long-term upsets in digester performance. Copyright 2007 Wiley Periodicals, Inc.
Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.
Pasolli, Edoardo; Truong, Duy Tin; Malik, Faizan; Waldron, Levi; Segata, Nicola
2016-07-01
Shotgun metagenomic analysis of the human associated microbiome provides a rich set of microbial features for prediction and biomarker discovery in the context of human diseases and health conditions. However, the use of such high-resolution microbial features presents new challenges, and validated computational tools for learning tasks are lacking. Moreover, classification rules have scarcely been validated in independent studies, posing questions about the generality and generalization of disease-predictive models across cohorts. In this paper, we comprehensively assess approaches to metagenomics-based prediction tasks and for quantitative assessment of the strength of potential microbiome-phenotype associations. We develop a computational framework for prediction tasks using quantitative microbiome profiles, including species-level relative abundances and presence of strain-specific markers. A comprehensive meta-analysis, with particular emphasis on generalization across cohorts, was performed in a collection of 2424 publicly available metagenomic samples from eight large-scale studies. Cross-validation revealed good disease-prediction capabilities, which were in general improved by feature selection and use of strain-specific markers instead of species-level taxonomic abundance. In cross-study analysis, models transferred between studies were in some cases less accurate than models tested by within-study cross-validation. Interestingly, the addition of healthy (control) samples from other studies to training sets improved disease prediction capabilities. Some microbial species (most notably Streptococcus anginosus) seem to characterize general dysbiotic states of the microbiome rather than connections with a specific disease. Our results in modelling features of the "healthy" microbiome can be considered a first step toward defining general microbial dysbiosis. The software framework, microbiome profiles, and metadata for thousands of samples are publicly available at http://segatalab.cibio.unitn.it/tools/metaml.
Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A
2016-07-01
Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Ashley; Hunt, Kristopher; Bernstein, Hans C.
Interest in microbial communities for bioprocessing has surged in recent years based on the potential to optimize multiple tasks simultaneously and to enhance process productivity and stability. The presence and magnitude of these desirable system properties often result from interactions between functionally distinct community members. The importance of interactions, while appreciated by some disciplines for decades, has gained interest recently due to the development of ‘omics techniques, polymicrobial culturing approaches, and computational methods which has made the systems-level analysis of interacting components more tractable. This review defines and categorizes natural and engineered system components, interactions, and emergent properties, as wellmore » as presents three ecological theories relevant to microbial communities. Case studies are interpreted to illustrate components, interactions, emergent properties and agreement with theoretical concepts. A general foundation is laid to facilitate interpretation of current systems and to aid in future design of microbial systems for the next generation of bioprocesses.« less
Kang, Dongwan D.; Froula, Jeff; Egan, Rob; ...
2015-01-01
Grouping large genomic fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Because of the complex nature of these communities, existing metagenome binning methods often miss a large number of microbial species. In addition, most of the tools are not scalable to large datasets. Here we introduce automated software called MetaBAT that integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency for accurate metagenome binning. MetaBAT outperforms alternative methods in accuracy and computational efficiency on both synthetic and real metagenome datasets. Lastly, it automatically formsmore » hundreds of high quality genome bins on a very large assembly consisting millions of contigs in a matter of hours on a single node. MetaBAT is open source software and available at https://bitbucket.org/berkeleylab/metabat.« less
Dzierżanowski, J; Szarmach, A; Słoniewski, P; Czapiewski, P; Piskunowicz, M; Bandurski, T; Szmuda, T
2014-08-01
The aim of this study was to investigate the morphometry of the posterior communicating artery (PCoA), on the basis of angio-computed tomography (CT), and to give proof of the mathematical definition of the term "hypopal sia of the PCoA". One hundred 3-dimensional (3D) angio-CT images, performed in adult patients with bilateral reconstruction of the PCoA (200 results) were used tocalculate the morphometry of the vessel. The average length of the vessel on the right side was 14.48 ± 3.47 mm, andon the left side 14.98 ± 4.77 mm (in women 14.75 mm, in men 14.70 mm). The mean of the diameter at the "proximal" point (the junction with P1) on the right side was 1.49 ± 0.51 mm, and on the left 1.46 ± 0.47 mm (in women 1.44 mm and in men 1.51 mm). The mean of the diameter in the "distal" part (the connection with ICA) on the right side was 1.4 ± 0.49 mm, and on the left 1.37 ± 0.41 mm (in women 1.38 mm, and in men 1.39 mm). No statistical correlation between the length and the diameter of the PCoA in relation to the sex and side was shown. On the basis of our measurements, we defined the hypoplasia of the artery as the estimated value less than the average diameter minus the standard deviation. The percentage distribution was as follows: the left artery 15.5%, the right artery 24%, women 11.5%, and the men 9%. Similarly to the above parameters, we have not found any statistical differences. The presence of the foetal origin was noted in 25% of the radiological examinations. The infundibular widening was visualised in 11.5% of cases of 3D reconstructions. The agenesis of PCoA was found in 9% (never bilaterally), and in 1 case the unilateral duplication of the artery was observed. No statistical differences between those parameters in relation to sex and the examined side were revealed. Morphological calculation of the PCoA on the basis of angio-CT from adult patients did not show any statistical differences depending on sex or the investigated side. The presented method of the calculations proved to be useful for the mathematical definition of the term "hypoplasia of the PCoA".
NASA Astrophysics Data System (ADS)
Schroth, M. H.; Kleikemper, J.; Pombo, S. A.; Zeyer, J.
2002-12-01
In the past, studies on microbial communities in natural environments have typically focused on either their structure or on their metabolic function. However, linking structure and function is important for understanding microbial community dynamics, in particular in contaminated environments. We will present results of a novel combination of a hydrogeological field method (push-pull tests) with molecular tools and stable isotope analysis, which was employed to quantify anaerobic activities and associated microbial diversity in a petroleum-contaminated aquifer in Studen, Switzerland. Push-pull tests consisted of the injection of test solution containing a conservative tracer and reactants (electron acceptors, 13C-labeled carbon sources) into the aquifer anoxic zone. Following an incubation period, the test solution/groundwater mixture was extracted from the same location. Metabolic activities were computed from solute concentrations measured during extraction. Simultaneously, microbial diversity in sediment and groundwater was characterized by using fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), as well as phospholipids fatty acid (PLFA) analysis in combination with 13C isotopic measurements. Results from DGGE analyses provided information on the general community structure before, during and after the tests, while FISH yielded information on active populations. Moreover, using 13C-labeling of microbial PLFA we were able to directly link carbon source assimilation in an aquifer to indigenous microorganisms while providing quantitative information on respective carbon source consumption.
2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarah Ades
2011-07-23
The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. Amore » wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.« less
Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun
2014-08-15
Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.
Anatomical Variability of the Posterior Communicating Artery.
Gunnal, Sandhya Arvind; Farooqui, Mujibuddin S; Wabale, Rajendra N
2018-01-01
Although posterior communicating artery (PCoA) is a smaller branch of the internal carotid artery, it gives the main contribution in the formation of circle of Willis (CW) by communicating with the internal carotid arterial system and the vertebro-basilar arterial system. The size of PCoA varies frequently. The present work aims to study the PCoA regarding its morphology, morphometry, and symmetry. This study was conducted on 170 human cadaveric brains. Brains were dissected carefully and delicately to expose all components of CW, especially PCoA. Morphological variations of PCoA were noted along with its morphometry and symmetry. Morphological variations of PCoA were aplasia (3.52%), hypoplasia (25.29%), fenestration (0.58%), and persistent fetal pattern (16.47%). In the present study, we found the five different types of terminations of PCoA. Type I termination was the most common type, seen in 92.94% of cases, Type II termination was seen in 1.17%, Type III and Type IV terminations both were seen in 0.58%, and Type V was seen in 1.17%. The mean length of PCoA was 15.9 mm and 15.3 mm on the right and left sides, respectively. The mean diameter of PCoA was 2.1 mm and 1.9 mm on the right and left sides, respectively. Symmetry of PCoA was seen in 65.29% and asymmetric PCoA was seen in 34.70% of cases. The present study provides the complete description of PCoA regarding its morphology, symmetry, and morphometry. Awareness of these anatomical variations is important in neurovascular procedures.
Buck, E L; Mizubuti, I Y; Alfieri, A A; Otonel, R A A; Buck, L Y; Souza, F P; Prado-Calixto, O P; Poveda-Parra, A R; Alexandre Filho, L; Lopera-Barrero, N M
2017-03-16
Propolis can be used as growth enhancer due to its antimicrobial, antioxidant, and immune-stimulant properties, but its effects on morphometry and muscle gene expression are largely unknown. The present study evaluates the influence of propolis on muscle morphometry and myostatin gene expression in Nile tilapia (Oreochromis niloticus) bred in net cages. Reversed males (GIFT strain) with an initial weight of 170 ± 25 g were distributed in a (2 x 4) factorial scheme, with two diets (DPRO, commercial diet with 4% propolis ethanol extract and DCON, commercial diet without propolis, control) and four assessment periods (0, 35, 70, and 105 experimental days). Muscles were evaluated at each assessment period. Histomorphometric analysis classified the fiber diameters into four groups: <20 μm; 20-30 μm; 30-50 μm; and > 50 μm. RT-qPCR was performed to assess myostatin gene expression. Fibers < 20 µm diameter were more frequent in DPRO than in DCON at all times. Fiber percentages >30 µm (30-50 and > 50 µm) at 70 days were 25.39% and 40.07% for DPRO and DCON, respectively. There was greater myostatin gene expression at 105 days, averaging 1.93 and 1.89 for DCON and DPRO, respectively, with no significant difference in any of the analyzed periods. Propolis ethanol extract did not affect the diameter of muscle fibers or the gene expression of myostatin. Future studies should describe the mechanisms of natural products' effects on muscle growth and development since these factors are highly relevant for fish production performance.
Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T
2016-01-01
A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.
Influence of Gestational Overfeeding on Myocardial Pro-inflammatory Mediators in Fetal Sheep Heart
Kandadi, Machender R.; Hua, Yinan; Zhu, Meijun; Turdi, Subat; Nathanielsz, Peter W.; Ford, Stephen P.; Nair, Sreejayan; Ren, Jun
2013-01-01
Maternal overnutrition is associated with predisposition of offspring to cardiovascular disease in later life. Since maternal overnutrition may promote fetal and placental inflammatory responses, we hypothesized that maternal overnutrition/obesity increases expression of fetal cardiac proinflammatory mediators and alter cardiac morphometry. Multiparous ewes were fed either 150% of National Research Council (NRC) nutrient recommendations (overfed) or 100% of NRC requirement (control) from 60 days prior to mating to gestation day 75 (D75), when ewes were euthanized. An additional cohort of overfed and control ewes were necropsied on D135. Cardiac morphometry, histology, mRNA and protein expression of TLR4, iNOS, IL-1a, IL-1b, IL-6, IL-18, CD-14, CD-68, M-CSF and protein levels of phosphorylated I-κB and NF-κB were examined. Immunohistochemistry was performed to assess neutrophil and monocyte infiltration. Crown rump length, left and right ventricular free wall weights as well as left and right ventricular wall thickness were significantly increased in D75 fetuses of overfed mothers. Hematoxylin and eosin staining revealed irregular myofiber orientation and increased interstitial space in fetal ventricular tissues born to overfed mothers. Oil red O staining exhibited marked lipid droplet accumulation in the overfed fetuses. Overfeeding significantly enhanced TLR-4, IL-1a, IL-1b IL-6 expression, promoted phosphorylation of IκB, decreased cytoplasmic NF-κB levels and increased neutrophil and monocyte infiltration. Collectively, these data suggest that maternal overfeeding prior to and throughout gestation leads to inflammation in the fetal heart and alters fetal cardiac morphometry. PMID:24075902
Tang, Yuchun; Zhao, Lu; Lou, Yunxia; Shi, Yonggang; Fang, Rui; Lin, Xiangtao; Liu, Shuwei; Toga, Arthur
2018-05-01
Numerous behavioral observations and brain function studies have demonstrated that neurological differences exist between East Asians and Westerners. However, the extent to which these factors relate to differences in brain structure is still not clear. As the basis of brain functions, the anatomical differences in brain structure play a primary and critical role in the origination of functional and behavior differences. To investigate the underlying differences in brain structure between the two cultural/ethnic groups, we conducted a comparative study on education-matched right-handed young male adults (age = 22-29 years) from two cohorts, Han Chinese (n = 45) and Caucasians (n = 45), using high-dimensional structural magnetic resonance imaging (MRI) data. Using two well-validated imaging analysis techniques, surface-based morphometry (SBM) and voxel-based morphometry (VBM), we performed a comprehensive vertex-wise morphometric analysis of the brain structures between Chinese and Caucasian cohorts. We identified consistent significant between-group differences in cortical thickness, volume, and surface area in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices. The SBM analyses revealed that compared with Caucasians, the Chinese population showed larger cortical structures in the temporal and cingulate regions, and smaller structural measures in the frontal and parietal cortices. The VBM data of the same sample was well-aligned with the SBM findings. Our findings systematically revealed comprehensive brain structural differences between young male Chinese and Caucasians, and provided new neuroanatomical insights to the behavioral and functional distinctions in the two cultural/ethnic populations. © 2018 Wiley Periodicals, Inc.
Dickstein, Daniel P; Milham, Michael P; Nugent, Allison C; Drevets, Wayne C; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen
2005-07-01
While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. Ongoing study of the pathophysiology of pediatric BPD. Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.
Puppa, Giacomo; Risio, Mauro; Sheahan, Kieran; Vieth, Michael; Zlobec, Inti; Lugli, Alessandro; Pecori, Sara; Wang, Lai Mun; Langner, Cord; Mitomi, Hiroyuki; Nakamura, Takatoshi; Watanabe, Masahiko; Ueno, Hideki; Chasle, Jacques; Senore, Carlo; Conley, Stephen A; Herlin, Paulette; Lauwers, Gregory Y
2011-01-01
In histopathology, the quantitative assessment of various morphologic features is based on methods originally conceived on specific areas observed through the microscope used. Failure to reproduce the same reference field of view using a different microscope will change the score assessed. Visualization of a digital slide on a screen through a dedicated viewer allows selection of the magnification. However, the field of view is rectangular, unlike the circular field of optical microscopy. In addition, the size of the selected area is not evident, and must be calculated. A digital slide morphometric system was conceived to reproduce the various methods published for assessing tumor budding in colorectal cancer. Eighteen international experts in colorectal cancer were invited to participate in a web-based study by assessing tumor budding with five different methods in 100 digital slides. The specific areas to be tested by each method were marked by colored circles. The areas were grouped in a target-like pattern and then saved as an .xml file. When a digital slide was opened, the .xml file was imported in order to perform the measurements. Since the morphometric tool is composed of layers that can be freely moved on top of the digital slide, the technique was named digital slide dynamic morphometry. Twelve investigators completed the task, the majority of them performing the multiple evaluations of each of the cases in less than 12 minutes. Digital slide dynamic morphometry has various potential applications and might be a useful tool for the assessment of histologic parameters originally conceived for optical microscopy that need to be quantified.
Castro, Rafaela A.; Kubitschek-Barreira, Paula H.; Teixeira, Pedro A. C.; Sanches, Glenda F.; Teixeira, Marcus M.; Quintella, Leonardo P.; Almeida, Sandro R.; Costa, Rosane O.; Camargo, Zoilo P.; Felipe, Maria S. S.; de Souza, Wanderley; Lopes-Bezerra, Leila M.
2013-01-01
Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes. PMID:24116065
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470
NASA Astrophysics Data System (ADS)
Razak, A.
2018-04-01
This research has been carried out 2015. Bilih fish today need conservation and attention for sustainability. Habitat this fish is treated by human activities in Lake Singkarak, West Sumatera and Lake Toba in North Sumatera. The objectives of the research are describes morphometry of the body and relation with lens of eyes. The methods of the reasearch for measure all parts of surface body fish according www.fishbase.org. For measure and chemical composition of lens of eyes Bilih Fish (M. padangensis) are according Razak (2005). T he result of the research are indicated the size of morphology body Bilih Fish from Lake Toba and from Lake Singkarak is diffrent. Furthermore, diameter of lens is trend linier follow the growth of the body Bilih Fish from Lake Singkarak and Lake Toba. The chemical composition of lens of eyes Bilih Fish from Lake Singkarak contains Sulfur until 73.77% per 100 ppm, another substances like Calcium, Silicone, Magnesium, Phosporus 4.09%-4.83% per 100 ppm. The chemical composition of lens of eyes Bilih Fish from Lake Toba contains Sulfur only 50.08% per 100 ppm, another substances like Kalium, Calcium, Silicone, Magnesium, Phosporus 1.09%-10.43% per 100 ppm. Kalium substance only found in lens of eyes Bilih Fish from Lake Toba. As conclusion, morphometry body Bilih Fish from Lake Toba is bigger better than Bilih Fish from Lake Singkarak and chemical composition lens of eyes Bilih Fish from Lake Toba is influenced by environmental waters factors.
Muscle changes can account for bone loss after botulinum toxin injection.
Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F
2010-12-01
Studies to date have assumed that botulinum toxin type A (BTX) affects bone indirectly, through its action on muscle. We hypothesized that BTX has no discernable effect on bone morphometry, independent of its effect on muscle. Therefore, we investigated whether BTX had an additional effect on bone when combined with tenotomy compared to tenotomy in isolation. Female BALB/c mice (n = 73) underwent one of the following procedures in the left leg: BTX injection and Achilles tenotomy (BTX-TEN), BTX injection and sham surgery (BTX-sham), Achilles tenotomy (TEN), or sham surgery (sham). BTX groups were injected with 20 μL of BTX (1 U/100 g) in the posterior lower hindlimb. At 4 weeks, muscle cross-sectional area (MCSA) and tibial bone morphometry were assessed using micro-CT. Each treatment, other than sham, resulted in significant muscle and bone loss (P < 0.05). BTX-TEN experienced the greatest muscle loss (23-45% lower than other groups) and bone loss (20-30% lower bone volume fraction than other groups). BTX-sham had significantly lower MCSA and bone volume fraction than TEN and sham. After adjusting for differences in MCSA, there were no significant between-group differences in bone properties. We found that BTX injection resulted in more adverse muscle and bone effects than tenotomy and that effects were amplified when the procedures were combined. However, between-group differences in bone could be accounted for by MCSA. We conclude that any independent effect of BTX on bone morphometry is likely small or negligible compared with the effect on muscle.
Vásquez, Fernando; Soler, Carles; Camps, Patricia; Valverde, Anthony; García-Molina, Almudena
2016-01-01
This work evaluates sperm head morphometric characteristics in adolescents from 12 to 18 years of age, and the effect of varicocele. Volunteers between 150 and 224 months of age (mean 191, n = 87), who had reached oigarche by 12 years old, were recruited in the area of Barranquilla, Colombia. Morphometric analysis of sperm heads was performed with principal component (PC) and discriminant analysis. Combining seminal fluid and sperm parameters provided five PCs: two related to sperm morphometry, one to sperm motility, and two to seminal fluid components. Discriminant analysis on the morphometric results of varicocele and nonvaricocele groups did not provide a useful classification matrix. Of the semen-related PCs, the most explanatory (40%) was related to sperm motility. Two PCs, including sperm head elongation and size, were sufficient to evaluate sperm morphometric characteristics. Most of the morphometric variables were correlated with age, with an increase in size and decrease in the elongation of the sperm head. For head size, the entire sperm population could be divided into two morphometric subpopulations, SP1 and SP2, which did not change during adolescence. In general, for varicocele individuals, SP1 had larger and more elongated sperm heads than SP2, which had smaller and more elongated heads than in nonvaricocele men. In summary, sperm head morphometry assessed by CASA-Morph and multivariate cluster analysis provides a better comprehension of the ejaculate structure and possibly sperm function. Morphometric analysis provides much more information than data obtained from conventional semen analysis. PMID:27751986
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.
Lakemorpho provides a number of functions to calculate a standard suite of lake morphometry metrics. Most of the metrics are measurements of the shape of the lake. Metrics that rely on depth have traditionally been calculated with bathymetry data. In the absence of bathymetry dat...
Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa
2011-01-01
Background Brain morphometry is extensively used in cross-sectional studies. However, the difference in the estimated values of the morphometric measures between patients and healthy subjects may be small and hence overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner. Methods We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13 and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and verified whether the estimated values were significantly different across different scanners or different sessions of the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability, the results of brain segmentation were compared to those obtained using FAST within FSL. Results In a considerable number of cases, the main effects of both centre and visit factors were found to be significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias correction. However, the results were still significantly different across different scanners or different visits. Conclusions Our results confirm that for morphometry analysis with the current version of Brainvisa using data from multicentre or longitudinal studies, the scanner-related variability must be taken into account and where possible should be corrected for. We also suggest providing some flexibility to Brainvisa for a step-by-step analysis of the robustness of this package in terms of reproducibility of the results by allowing the bias corrected images to be imported from other packages and bias correction step be skipped, for example. PMID:22189342
GenePRIMP: Improving Microbial Gene Prediction Quality
Pati, Amrita
2018-01-24
Amrita Pati of the DOE Joint Genome Institute's Genome Biology group talks about a computational pipeline that evaluates the accuracy of gene models in genomes and metagenomes at different stages of finishing at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expens...
Gene context analysis in the Integrated Microbial Genomes (IMG) data management system.
Mavromatis, Konstantinos; Chu, Ken; Ivanova, Natalia; Hooper, Sean D; Markowitz, Victor M; Kyrpides, Nikos C
2009-11-24
Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov.
Regression model for estimating inactivation of microbial aerosols by solar radiation.
Ben-David, Avishai; Sagripanti, Jose-Luis
2013-01-01
The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Photochemistry and Photobiology © 2013 The American Society of Photobiology.
Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis.
Rivas-Santiago, C E; Rivas-Santiago, B; León, D A; Castañeda-Delgado, J; Hernández Pando, R
2011-04-01
Tuberculosis is a worldwide health problem, and multidrug-resistant (MDR) and extensively multidrug-resistant (XMDR) strains are rapidly emerging and threatening the control of this disease. These problems motivate the search for new treatment strategies. One potential strategy is immunotherapy using cationic anti-microbial peptides. The capacity of l-isoleucine to induce beta-defensin expression and its potential therapeutic efficiency were studied in a mouse model of progressive pulmonary tuberculosis. BALB/c mice were infected with Mycobacterium tuberculosis strain H37Rv or with a MDR clinical isolate by the intratracheal route. After 60 days of infection, when disease was in its progressive phase, mice were treated with 250 µg of intratracheal l-isoleucine every 48 h. Bacillary loads were determined by colony-forming units, protein and cytokine gene expression were determined by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively, and tissue damage was quantified by automated morphometry. Administration of l-isoleucine induced a significant increase of beta-defensins 3 and 4 which was associated with decreased bacillary loads and tissue damage. This was seen in animals infected with the antibiotic-sensitive strain H37Rv and with the MDR clinical isolate. Thus, induction of beta-defensins might be a potential therapy that can aid in the control of this significant infectious disease. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhili; Deng, Ye; Nostrand, Joy Van
2010-05-17
Microarray-based genomic technology has been widely used for microbial community analysis, and it is expected that microarray-based genomic technologies will revolutionize the analysis of microbial community structure, function and dynamics. A new generation of functional gene arrays (GeoChip 3.0) has been developed, with 27,812 probes covering 56,990 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, antibiotic resistance, metal resistance, and organic contaminant degradation. Those probes were derived from 2,744, 140, and 262 species for bacteria, archaea, and fungi, respectively. GeoChip 3.0 has several other distinct features, such as a common oligomore » reference standard (CORS) for data normalization and comparison, a software package for data management and future updating, and the gyrB gene for phylogenetic analysis. Our computational evaluation of probe specificity indicated that all designed probes had a high specificity to their corresponding targets. Also, experimental analysis with synthesized oligonucleotides and genomic DNAs showed that only 0.0036percent-0.025percent false positive rates were observed, suggesting that the designed probes are highly specific under the experimental conditions examined. In addition, GeoChip 3.0 was applied to analyze soil microbial communities in a multifactor grassland ecosystem in Minnesota, USA, which demonstrated that the structure, composition, and potential activity of soil microbial communities significantly changed with the plant species diversity. All results indicate that GeoChip 3.0 is a high throughput powerful tool for studying microbial community functional structure, and linking microbial communities to ecosystem processes and functioning. To our knowledge, GeoChip 3.0 is the most comprehensive microarrays currently available for studying microbial communities associated with geobiochemical cycling, global climate change, bioenergy, agricuture, land use, ecosystem management, environmental cleanup and restoration, bioreactor systems, and human health.« less
Feedbacks Between Soil Structure and Microbial Activities in Soil
NASA Astrophysics Data System (ADS)
Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.
2017-12-01
Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate formation could alter how we currently treat our predictions of soil biogeochemistry. Current predictions are largely site- or biome-specific; quantitative mechanisms could underpin "rules" that operate at the pore-scale leading to more robust, mechanistic models.
NASA Astrophysics Data System (ADS)
Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.
2017-11-01
One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation when compared to the UF/NCI Computational Phantom Library.
Microbes and Microstructure: Dust's Role in the Snowpack Evolution
NASA Astrophysics Data System (ADS)
Lieblappen, R.; Courville, Z.; Fegyveresi, J. M.; Barbato, R.; Thurston, A.
2017-12-01
Dust is a primary vehicle for transporting microbial communities to polar and alpine snowpacks both through wind distribution (dry deposition) and snowfall events (wet deposition). The resulting microbial community diversity in the snowpack may then resemble the source material properties rather than its new habitat. Dust also has a strong influence on the microstructural properties of snow, resulting in changes to radiative and mechanical properties. As local reductions in snowpack albedo lead to enhanced melting and a heterogeneous snow surface, the microbial communities are also impacted. Here we study the impact of the changing microstructure in the snowpack, its influence on microbial function, and the fate of dust particles within the snow matrix. We seek to quantify the changes in respiration and water availability with the onset of melt. Polar samples were collected from the McMurdo Ice Shelf, Antarctica in February, 2017, while alpine samples were collected from Silverton, CO from October to May, 2017 as part of the Colorado Dust on Snow (CDOS) network. At each site, coincident meteorological data provides temperature, wind, and radiative measurements. Samples were collected immediately following dust deposition events and after subsequent snowpack evolution. We used x-ray micro-computed tomography to quantify the microstructural evolution of the snow, while also imaging the microstructural distribution of the dust within the snow. The dust was then collected and analyzed for chemical and microbial activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Z.; Deng, Y.; Van Nostrand, J.D.
A new generation of functional gene arrays (FGAs; GeoChip 3.0) has been developed, with {approx}28,000 probes covering approximately 57,000 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, antibiotic resistance, metal resistance and organic contaminant degradation. GeoChip 3.0 also has several other distinct features, such as a common oligo reference standard (CORS) for data normalization and comparison, a software package for data management and future updating and the gyrB gene for phylogenetic analysis. Computational evaluation of probe specificity indicated that all designed probes would have a high specificity to their corresponding targets.more » Experimental analysis with synthesized oligonucleotides and genomic DNAs showed that only 0.0036-0.025% false-positive rates were observed, suggesting that the designed probes are highly specific under the experimental conditions examined. In addition, GeoChip 3.0 was applied to analyze soil microbial communities in a multifactor grassland ecosystem in Minnesota, USA, which showed that the structure, composition and potential activity of soil microbial communities significantly changed with the plant species diversity. As expected, GeoChip 3.0 is a high-throughput powerful tool for studying microbial community functional structure, and linking microbial communities to ecosystem processes and functioning.« less
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0
Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-01-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.
Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-04-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.
The microcomputer in cell and neurobiology research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mize, R.R.
1985-01-01
This book contains 21 chapters. They are divided into the following sections: The Microcomputer as a Research Tool, Microcomputer Uses in Light and Electron Microscopy, Microcomputer Uses in Morphometry, Serial Section Reconstruction, Microcomputer Uses in Imaging and Densitometry, and Microcomputer Uses in Electrophysiology.
MOLA Topography and Morphometry of Rampart and Pedestal Craters, Mars
NASA Technical Reports Server (NTRS)
Mitchell, D. E.; Sakimoto, S. E. H.; Garvin, J. B.
2002-01-01
Martian rampart and pedestal craters have characteristic geometric parameter ranges that are significantly different than fresh craters. Combined MOLA geometric measurements and MOC analyses can be used to constrain their modification. Additional information is contained in the original extended abstract.
A Pediatric Twin Study of Brain Morphometry
ERIC Educational Resources Information Center
Wallace, Gregory L.; Schmitt, J. Eric; Lenroot, Rhoshel; Viding, Essi; Ordaz, Sarah; Rosenthal, Michael A.; Molloy, Elizabeth A.; Clasen, Liv S.; Kendler, Kenneth S.; Neale, Michael C.; Giedd, Jay N.
2006-01-01
Background: Longitudinal pediatric neuroimaging studies have demonstrated increasing volumes of white matter and regionally-specific inverted U shaped developmental trajectories of gray matter volumes during childhood and adolescence. Studies of monozygotic and dyzygotic twins during this developmental period allow exploration of genetic and…
Operative control of human microflora in confined habitat
NASA Astrophysics Data System (ADS)
Viacheslav, Ilyin; Solovieva, Zoya; Panina, Jana
The problem of operative control and transmission of information on microbial state of humans in artificial environment is much actual especially in conditions of long-term space missions and in perspective mission to Mars. There was revealed that in long-term missions there is a periodical accumulation of pathogenicity potential in the system "human-microbes" which lead to possible development of opportunistic infections of crew members in spaceflight. To investigate covering tissues microflora of volunteers participated in 14 and 105 days isolation in confined habitat the new non-culture method was elaborated, based on computer treatment of native swab, equally distributed on total surface of microscopy glass and Gram stained. It allows to obtain information on 3 basic indices -morphology, tinctorial and quantitative, thus it could detect increasing of total microbial amount, growth of staphylococci which is important for early diagnostics of microbial disbalance on covering tissues of volunteers. The analysis is performed with the aid of authomatized system of digital microscopy dedicated to recognition of microbial images on the preparate and for further transmission of these digital images via telecommunication network, thus making possibility of remote consultancies. The data of 14-day experiment reveals increasing of potential pathogens on 7th day of isolation with further decrease on 14th day, changes of microflora in 105-day isolation has the tendency of periodical accumulation. In general, the results were compatible with ones obtained by classical bacteriological studies. The results are significant under the microbial quantity of 104 CFU/swab and higher, which is important for analyzing of microbial groups if they grow in quantities, increasing normal values.
The computer program AQUASIM was used to model biological treatment of perchlorate-contaminated water using zero-valent iron corrosion as the hydrogen gas source. The laboratory-scale column was seeded with an autohydrogenotrophic microbial consortium previously shown to degrade ...
NASA Technical Reports Server (NTRS)
Holen, J. T.; Royer, E. R.
1976-01-01
A card configuration which combines the functions of identification, enumeration and antibiotic sensitivity into one card was developed. An instrument package was designed around the card to integrate the card filling, incubation reading, computation and decision making process into one compact unit. Support equipment was also designed to prepare the expandable material used in the MLM.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Frei, Sina; Geyer, Hans; Hoey, Seamus; Fuerst, Anton E; Bischofberger, Andrea S
2017-03-20
To determine scapular cortex thickness, distal scapular bone density and describe the exact suprascapular nerve course to evaluate the best plate position for the fixation of supraglenoid tubercle fractures in horses. Twelve equine cadaveric shoulders were examined with computed tomography. Computed tomography morphometry and density measurements (Hounsfield units [HU]) of the scapula were recorded. Statistical comparisons were made between the cranial and caudal aspects of the scapula. Dissection of each shoulder was performed and the suprascapular nerve course was described morphometrically and morphologically. The suprascapular nerve was found on the periosteum and embedded in connective tissue at the cranial aspect of the scapula. It ramified proximally and distally into the supraspinatus muscle, coursed caudolaterally at a median of 2 cm (1-2 cm) distal to the scapular spine and ramified proximally and distally into the infraspinatus muscle. The scapular cortex measurements (HU) cranially were significantly larger than caudally at most levels of the scapula. The bone density of the distal scapula cranially (651.3 ± 104.2) was significantly lower than caudally (745.7 ± 179.1). For surgical access to the supraglenoid tubercle, knowledge of the anatomy is important. It is easiest to avoid the suprascapular nerve at the most cranial aspect of the scapula, where it has not yet ramified. For a stable fixation, knowledge of the characteristics of the equine scapula, such as scapular cortex thickness, is important.
Krajewska, Maryla; Smith, Layton H.; Rong, Juan; Huang, Xianshu; Hyer, Marc L.; Zeps, Nikolajs; Iacopetta, Barry; Linke, Steven P.; Olson, Allen H.; Reed, John C.; Krajewski, Stan
2009-01-01
Cell death is of broad physiological and pathological importance, making quantification of biochemical events associated with cell demise a high priority for experimental pathology. Fibrosis is a common consequence of tissue injury involving necrotic cell death. Using tissue specimens from experimental mouse models of traumatic brain injury, cardiac fibrosis, and cancer, as well as human tumor specimens assembled in tissue microarray (TMA) format, we undertook computer-assisted quantification of specific immunohistochemical and histological parameters that characterize processes associated with cell death. In this study, we demonstrated the utility of image analysis algorithms for color deconvolution, colocalization, and nuclear morphometry to characterize cell death events in tissue specimens: (a) subjected to immunostaining for detecting cleaved caspase-3, cleaved poly(ADP-ribose)-polymerase, cleaved lamin-A, phosphorylated histone H2AX, and Bcl-2; (b) analyzed by terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling assay to detect DNA fragmentation; and (c) evaluated with Masson's trichrome staining. We developed novel algorithm-based scoring methods and validated them using TMAs as a high-throughput format. The proposed computer-assisted scoring methods for digital images by brightfield microscopy permit linear quantification of immunohistochemical and histochemical stainings. Examples are provided of digital image analysis performed in automated or semiautomated fashion for successful quantification of molecular events associated with cell death in tissue sections. (J Histochem Cytochem 57:649–663, 2009) PMID:19289554
Dissociable roles of internal feelings and face recognition ability in facial expression decoding.
Zhang, Lin; Song, Yiying; Liu, Ling; Liu, Jia
2016-05-15
The problem of emotion recognition has been tackled by researchers in both affective computing and cognitive neuroscience. While affective computing relies on analyzing visual features from facial expressions, it has been proposed that humans recognize emotions by internally simulating the emotional states conveyed by others' expressions, in addition to perceptual analysis of facial features. Here we investigated whether and how our internal feelings contributed to the ability to decode facial expressions. In two independent large samples of participants, we observed that individuals who generally experienced richer internal feelings exhibited a higher ability to decode facial expressions, and the contribution of internal feelings was independent of face recognition ability. Further, using voxel-based morphometry, we found that the gray matter volume (GMV) of bilateral superior temporal sulcus (STS) and the right inferior parietal lobule was associated with facial expression decoding through the mediating effect of internal feelings, while the GMV of bilateral STS, precuneus, and the right central opercular cortex contributed to facial expression decoding through the mediating effect of face recognition ability. In addition, the clusters in bilateral STS involved in the two components were neighboring yet separate. Our results may provide clues about the mechanism by which internal feelings, in addition to face recognition ability, serve as an important instrument for humans in facial expression decoding. Copyright © 2016 Elsevier Inc. All rights reserved.
IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses.
Paez-Espino, David; Chen, I-Min A; Palaniappan, Krishna; Ratner, Anna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Huang, Jinghua; Markowitz, Victor M; Nielsen, Torben; Huntemann, Marcel; K Reddy, T B; Pavlopoulos, Georgios A; Sullivan, Matthew B; Campbell, Barbara J; Chen, Feng; McMahon, Katherine; Hallam, Steve J; Denef, Vincent; Cavicchioli, Ricardo; Caffrey, Sean M; Streit, Wolfgang R; Webster, John; Handley, Kim M; Salekdeh, Ghasem H; Tsesmetzis, Nicolas; Setubal, Joao C; Pope, Phillip B; Liu, Wen-Tso; Rivers, Adam R; Ivanova, Natalia N; Kyrpides, Nikos C
2017-01-04
Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from >6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs are grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparing with external sequences, thus serving as an essential resource in the viral genomics community. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wong, Arnold Y L; Parent, Eric C; Funabashi, Martha; Stanton, Tasha R; Kawchuk, Gregory N
2013-12-01
Although individual reports suggest that baseline morphometry or activity of transversus abdominis or lumbar multifidus predict clinical outcome of low back pain (LBP), a related systematic review is unavailable. Therefore, this review summarized evidence regarding the predictive value of these muscular characteristics. Candidate publications were identified from 6 electronic medical databases. After review, 5 cohort studies were included. Although this review intended to encompass studies using different muscle assessment methods, all included studies coincidentally used ultrasound imaging. No research investigated the relation between static morphometry and clinical outcomes. Evidence synthesis showed limited evidence supporting poor baseline transversus abdominis contraction thickness ratio as a treatment effect modifier favoring motor control exercise. Limited evidence supported that high baseline transversus abdominis lateral slide was associated with higher pain intensity after various exercise interventions at 1-year follow-up. However, there was limited evidence for the absence of relation between the contraction thickness ratio of transversus abdominis or anticipatory onset of lateral abdominal muscles at baseline and the short- or long-term LBP intensity after exercise interventions. There was conflicting evidence for a relation between baseline percent thickness change of lumbar multifidus during contraction and the clinical outcomes of patients after various conservative treatments. Given study heterogeneity, the small number of included studies and the inability of conventional greyscale B-mode ultrasound imaging to measure muscle activity, our findings should be interpreted with caution. Further large-scale prospective studies that use appropriate technology (ie, electromyography to assess muscle activity) should be conducted to investigate the predictive value of morphometry or activity of these muscles with respect to LBP-related outcomes measures. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Sanclemente, G; Garcia, J J; Zuleta, J J; Diehl, C; Correa, C; Falabella, R
2008-11-01
Among all the topical immunomodulators, vitiligo's mainstay therapy includes topical corticosteroids. Many other non-immune theories have also been suggested for vitiligo's pathogenesis, but the role of oxidative stress has gained more importance in recent years. To compare the effect of topical 0.05% betamethasone vs. catalase/dismutase superoxide (C/DSO). Randomized, matched-paired, double-blind trial. Dermatology Section, University of Antioquia, Medellín, Colombia. Patients (aged > 18 years or between 12 and 18 years) with parent's informed consent, with stable or active bilateral vitiligo. Topical 0.05% betamethasone or C/DSO. Two lesions similar to each other in size were chosen. All assessments were made by two blinded investigators, and photographs were subjected to morphometry analysis. Skin repigmentation by digital morphometry. Twenty-five patients were enrolled in the study (21 women and 4 men). Mean age of participants was 40 years (range: 12-74 years). One patient on C/DSO experienced a mild local erythematous papular rash that self-resolved. At 4 months of therapy, there was no statistical difference on the percentage of repigmentation between betamethasone and C/DSO (5.63% +/- 27.9 vs. 3.22% +/- 25.8, respectively, P = 0.758). After 10 months of therapy, the percentage of skin repigmentation increased to 18.5 +/- 93.14% with betamethasone and to 12.4 +/- 59% with C/DSO, but again, we found no statistical differences (P = 0.79). Few studies have described objective methods to evaluate repigmentation among vitiligo patients. Digital morphometry provides an objective assessment of repigmentation in vitiligo. Objective vitiligo repigmentation with topical C/DSO at 10 months is similar to topical 0.05% betamethasone. Although a mild adverse effect was related to the use of C/DSO, such finding was not severe enough to discontinue treatment.
Anatomical Variability of the Posterior Communicating Artery
Gunnal, Sandhya Arvind; Farooqui, Mujibuddin S.; Wabale, Rajendra N.
2018-01-01
Objective: Although posterior communicating artery (PCoA) is a smaller branch of the internal carotid artery, it gives the main contribution in the formation of circle of Willis (CW) by communicating with the internal carotid arterial system and the vertebro-basilar arterial system. The size of PCoA varies frequently. The present work aims to study the PCoA regarding its morphology, morphometry, and symmetry. Materials and Methods: This study was conducted on 170 human cadaveric brains. Brains were dissected carefully and delicately to expose all components of CW, especially PCoA. Morphological variations of PCoA were noted along with its morphometry and symmetry. Results: Morphological variations of PCoA were aplasia (3.52%), hypoplasia (25.29%), fenestration (0.58%), and persistent fetal pattern (16.47%). In the present study, we found the five different types of terminations of PCoA. Type I termination was the most common type, seen in 92.94% of cases, Type II termination was seen in 1.17%, Type III and Type IV terminations both were seen in 0.58%, and Type V was seen in 1.17%. The mean length of PCoA was 15.9 mm and 15.3 mm on the right and left sides, respectively. The mean diameter of PCoA was 2.1 mm and 1.9 mm on the right and left sides, respectively. Symmetry of PCoA was seen in 65.29% and asymmetric PCoA was seen in 34.70% of cases. Conclusion: The present study provides the complete description of PCoA regarding its morphology, symmetry, and morphometry. Awareness of these anatomical variations is important in neurovascular procedures. PMID:29682035
Aging-related changes in respiratory system mechanics and morphometry in mice.
Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C
2016-07-01
Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice. Copyright © 2016 the American Physiological Society.
Dumoulin, Chantale; Tang, An; Pontbriand-Drolet, Stéphanie; Madill, Stephanie J; Morin, Mélanie
2017-08-01
The aim of this study was to determine if pelvic floor muscle (PFM) morphometry at baseline, as measured by MRI, can predict response to PFM training in women with stress or mixed urinary incontinence (UI). This study was a prospective quasi-experimental pre-test, post-test cohort study of women with UI, aged 60 years and older. All participants completed a baseline assessment of UI severity and impact, using the 72-h bladder diary and the Incontinence Impact Questionnaire. They underwent a pelvic MRI examination to assess the PFM anatomy. Women then participated in a 12-week PFM training program. Finally, they attended a post intervention assessment of UI severity and impact. The association between morphometry and PFM training response was assessed by univariate analysis, multivariate analysis, and receiver operating characteristic (ROC) curve analysis. The urethro-vesical junction height at rest, as measured by MRI before treatment, was associated with response to PFM training both on univariate (p ≤ 0.005) and multivariate analyses (p = 0.007). The area under the ROC curve was 0.82 (95% confidence interval [CI]: 0.67-0.96). Using a cut-off point of 11.4 mm, participants' response to PFM training was predicted with a sensitivity of 77% and a specificity of 83%. Incontinent women with a urethro-vesical junction height above this threshold were 35% more likely to respond to PFM training (OR 1.35; 95% CI: 1.08-1.67). In older women with UI, a urethro-vesical junction height at rest of at least 11.4 mm appears to be predictive of PFM training response.
Wolf, Louis; Scheffer-de Gooyert, Jolanda M.; Monedero, Ignacio; Torroja, Laura; Coromina, Lluis; van der Laak, Jeroen A. W. M.; Schenck, Annette
2016-01-01
The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm ‘Drosophila_NMJ_Morphometrics’, available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ. PMID:26998933
Fan, Xiujuan; Turdi, Subat; Ford, Stephen P.; Hua, Yinan; Nijland, Mark J.; Zhu, Meijun; Nathanielsz, Peter W.; Ren, Jun
2010-01-01
Intrauterine overnutrition is associated with development of cardiovascular disease in adulthood although the underlying mechanism has not been precisely elucidated. This study evaluated the effects of maternal overnutrition on fetal cardiac morphometry and hypertrophy-related mRNA/protein expression. Multiparous ewes were fed either 150% of NRC nutrient requirements (overfed group) or 100% of NRC requirements (control group) from 60 days before mating to day 75 (D75) of gestation, when ewes were euthanized. Cardiac morphometry, histology and expression of Akt, forkhead-3a (Foxo3a), glycogen synthase kinase-3β (GSK3β), mammalian target of rapamycin (mTOR), NFATc3 and GATA4, atrial natriuretic factor (ANF), calcineurin A and caspase-8 were examined. Crown rump length, left and right ventricular free wall weights and left ventricular wall thickness were increased in D75 overnourished fetuses. H&E staining revealed irregular myofiber orientation and increased interstitial space in heart tissues from overfed group. Masson’s trichrome staining displayed myofiber hypertrophy and fascicular disarray in heart tissues from overfed group. Overfeeding significantly enhanced Foxo3a phosphorylation in both ventricles while protein expression of Akt, Foxo3a, GSK3β and caspase-8 as well as phosphorylated Akt and GSK3β in either ventricle was unaffected. Overfeeding increased left ventricular mTOR, NFATc3 (both total and phosphorylated) and calcineurin A. GATA4, pGATA4 and ANF expression were unchanged in both ventricles. Collectively, our data suggested that overfeeding during early to mid gestation (D75) leads to morphometric changes without overt pathology which may be related to elevated expression of mTOR, NFATc3, calcineurin A and phosphorylation of Foxo3a, mTOR and NFATc3. PMID:20188535
Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos
2014-01-01
Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160
Calès, P; Zarski, J P; Chapplain, J Marc; Bertrais, S; Sturm, N; Michelet, C; Babany, G; Chaigneau, J; Eddine Charaf, M
2012-02-01
We evaluated whether quantitative measurements of liver fibrosis with recently developed diagnostics outperform histological staging in detecting natural or interferon-induced changes. We compared Metavir staging, morphometry (area and fractal dimension) and six blood tests in 157 patients with chronic hepatitis C from two trials testing maintenance interferon for 96 weeks. Paired liver biopsies and blood tests were available for 101 patients, and there was a significant improvement in Metavir activity and a significant increase in blood tests reflecting fibrosis quantity in patients treated with interferon when compared with controls - all per cent changes in histological fibrosis measures were significantly increased in F1 vs F2-4 stages only in the interferon group. For the whole population studied between weeks 0 and 96, there was significant progression only in the area of fibrosis (AOF) (P = 0.026), FibroMeter (P = 0.020) and CirrhoMeter (P = 0.003). With regards to dynamic reproducibility, agreement was good (r(ic) ≥ 0.72) only for Metavir fibrosis score, FibroMeter and CirrhoMeter. The per cent change in AOF was significantly higher than that of fractal dimension (P = 0.003) or Metavir fibrosis score (P = 0.015). CirrhoMeter was the only blood test with a change significantly higher than that of AOF (P = 0.039). AOF and two blood tests, reflecting fibrosis quantity, have high sensitivity and/or reproducibility permitting the detection of a small progression in liver fibrosis over two years. A blood test reflecting fibrosis quantity is more sensitive and reproducible than morphometry. The study also shows that maintenance interferon does not improve fibrosis, whatever its stage. © 2011 Blackwell Publishing Ltd.
Eckstein, Felix; Wirth, Wolfgang; Hudelmaier, Martin I; Maschek, Susanne; Hitzl, Wolfgang; Wyman, Bradley T; Nevitt, Michael; Hellio Le Graverand, Marie-Pierre; Hunter, David
2009-01-01
Introduction The aim was to investigate the relationship of cartilage loss (change in medial femorotibial cartilage thickness measured with magnetic resonance imaging (MRI)) with compartment-specific baseline radiographic findings and MRI cartilage morphometry features, and to identify which baseline features can be used for stratification of fast progressors. Methods An age and gender stratified subsample of the osteoarthritis (OA) initiative progression subcohort (79 women; 77 men; age 60.9 ± 9.9 years; body mass index (BMI) 30.3 ± 4.7) with symptomatic, radiographic OA in at least one knee was studied. Baseline fixed flexion radiographs were read centrally and adjudicated, and cartilage morphometry was performed at baseline and at one year follow-up from coronal FLASH 3 Tesla MR images of the right knee. Results Osteophyte status at baseline was not associated with medial cartilage loss. Knees with medial joint space narrowing tended to show higher rates of change than those without, but the relationship was not statistically significant. Knees with medial femoral subchondral bone sclerosis (radiography), medial denuded subchondral bone areas (MRI), and low cartilage thickness (MRI) at baseline displayed significantly higher cartilage loss than those without, both with and without adjusting for age, sex, and BMI. Participants with denuded subchondral bone showed a standardized response mean of up to -0.64 versus -0.33 for the entire subcohort. Conclusions The results indicate that radiographic and MRI cartilage morphometry features suggestive of advanced disease appear to be associated with greater cartilage loss. These features may be suited for selecting patients with a higher likelihood of fast progression in studies that attempt to demonstrate the cartilage-preserving effect of disease-modifying osteoarthritis drugs. PMID:19534783
Jeevaratnam, Kamalan; Nadarajah, Vishna Devi; Judson, John Paul; Nalliah, Sivalingam; Abdullah, Mohd Farouk
2010-09-28
Hypertensive disorders in pregnancy contributes to about 12% of maternal deaths in Malaysia and similarly worldwide. Early detection and adequate management are preventable strategies. Biochemical markers of abnormal angiogenesis would be more specific in early detection than routine blood pressure and proteinuria measurements. The aim of this study was to estimate maternal plasma PlGF and sFlt-1 levels in pregnant women with gestational hypertension at three intervals of pregnancy and correlate these biomarker levels with placental morphometry. Venous blood samples (antepartum, intrapartum and post partum periods) were drawn to estimate for sFlt-1 and PlGF levels while placental tissue samples were examined for placental morphometry. PlGF levels were lower in gestational hypertension (GH) compared to normotensive during antepartum and intrapartum period, whereas sFlt-1 levels were elevated in GH at antepartum, intrapartum and postpartum intervals during pregnancy. An inverse relationship between these two biomarkers was observed through correlation analysis. PlGF levels were inversely correlated with total villous surface area of the placental periphery (TCsa-C) and villous capillarization (VC-C) of the placental periphery. We established periodic values of for sFlt-1 and PlGF levels for the first time in an ethnically diverse Malaysian setting. We suggest the development of GH in women is related to defective capillarization. In demonstrating periodic changes, this study suggest the possibility of developing GH and other long term health complications as a result of prolonged exposure to sFlt-1. The correlation between PlGF levels and morphometric findings also support possible capillarization defect.
Liu, Qi; Chen, Lizhou; Li, Fei; Chen, Ying; Guo, Lanting; Gong, Qiyong; Huang, Xiaoqi
2016-06-01
Attention-deficit/hyperactivity disorder(ADHD)is one of the most common neuro-developmental disorders occurring in childhood,characterized by symptoms of age-inappropriate inattention,hyperactivity/impulsivity,and the prevalence is higher in boys.Although gray matter volume deficits have been frequently reported for ADHD children via structural magnetic resonance imaging,few of them had specifically focused on male patients.The present study aimed to explore the alterations of gray matter volumes in medicated-naive boys with ADHD via a relatively new voxel-based morphometry technique.According to the criteria of DSM-IV-TR,43medicated-naive ADHD boys and 44age-matched healthy boys were recruited.The magnetic resonance image(MRI)scan was performed via a 3T MRI system with three-dimensional(3D)spoiled gradient recalled echo(SPGR)sequence.Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated lie algebra in SPM8 was used to preprocess the3DT1-weighted images.To identify gray matter volume differences between the ADHD and the controls,voxelbased analysis of whole brain gray matter volumes between two groups were done via two sample t-test in SPM8 with age as covariate,threshold at P<0.001.Finally,compared to the controls,significantly reduced gray matter volumes were identified in the right orbitofrontal cortex(peak coordinates[-2,52,-25],t=4.01),and bilateral hippocampus(Left:peak coordinates[14,0,-18],t=3.61;Right:peak coordinates[-14,15,-28],t=3.64)of ADHD boys.Our results demonstrated obvious reduction of whole brain gray matter volumes in right orbitofrontal cortex and bilateral hippocampus in boys with ADHD.This suggests that the abnormalities of prefrontal-hippocampus circuit may be the underlying cause of the cognitive dysfunction and abnormal behavioral inhibition in medicatednaive boys with ADHD.
Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren
2016-01-01
Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective reviewing. PMID:26812647
An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats
Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta
2011-01-01
Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894
Crater studies: Part A: lunar crater morphometry
Pike, Richard J.
1973-01-01
Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Methe, Barbara; Lipton, Mary; Mahadevan, Krishna
Microbes exist in communities in the environment where they are fundamental drivers of global carbon, nutrient and metal cycles. In subsurface environments, they possess significant metabolic potential to affect these global cycles including the transformation of radionuclides. This study examined the influence of microbial communities in sediment zones undergoing biogeochemical cycling of carbon, nutrients and metals including natural attenuation of uranium. This study examined the relationship of both the microbiota (taxonomy) and their metabolic capacity (function) in driving carbon, nutrient and metal cycles including uranium reduction at the Department of Energy (DOE) Rifle Integrated Field Research Challenge (RIFRC). Objectives ofmore » this project were: 1) to apply systems-level biology through application of ‘metaomics’ approaches (collective analyses of whole microbial community DNA, RNA and protein) to the study of microbial environmental processes and their relationship to C, N and metals including the influence of microbial communities on uranium contaminant mobility in subsurface settings undergoing natural attenuation, 2) improve methodologies for data generation using metaomics (collectively metagenomics, metatranscriptomics and proteomics) technologies and analysis and interpretation of that data and 3) use the data generated from these studies towards microbial community-scale metabolic modeling. The strategy for examining these subsurface microbial communities was to generate sequence reads from microbial community DNA (metagenomics or whole genome shotgun sequencing (WGS)) and RNA (metatranscriptomcs or RNAseq) and protein information using proteomics. Results were analyzed independently and through computational modeling. Overall, the community model generated information on the microbial community structure that was observed using metaomic approaches at RIFRC sites and thus provides an important framework for continued community modeling development. The model as created is capable of predicting the response of the community structure in changing environments such as anoxic/oxic conditions or limitations by carbon or nutrients. The ability to more accurately model these responses is critical to understanding carbon and energy flows in an ecosystem is critical towards improving our ability to make predictions that can be used to design more efficient remediation and management strategies, and better understand the implications of environmental perturbations on these ecosystems.« less
2013-01-01
Background Perturbations in intestinal microbiota composition have been associated with a variety of gastrointestinal tract-related diseases. The alleviation of symptoms has been achieved using treatments that alter the gastrointestinal tract microbiota toward that of healthy individuals. Identifying differences in microbiota composition through the use of 16S rRNA gene hypervariable tag sequencing has profound health implications. Current computational methods for comparing microbial communities are usually based on multiple alignments and phylogenetic inference, making them time consuming and requiring exceptional expertise and computational resources. As sequencing data rapidly grows in size, simpler analysis methods are needed to meet the growing computational burdens of microbiota comparisons. Thus, we have developed a simple, rapid, and accurate method, independent of multiple alignments and phylogenetic inference, to support microbiota comparisons. Results We create a metric, called compression-based distance (CBD) for quantifying the degree of similarity between microbial communities. CBD uses the repetitive nature of hypervariable tag datasets and well-established compression algorithms to approximate the total information shared between two datasets. Three published microbiota datasets were used as test cases for CBD as an applicable tool. Our study revealed that CBD recaptured 100% of the statistically significant conclusions reported in the previous studies, while achieving a decrease in computational time required when compared to similar tools without expert user intervention. Conclusion CBD provides a simple, rapid, and accurate method for assessing distances between gastrointestinal tract microbiota 16S hypervariable tag datasets. PMID:23617892
Yang, Fang; Chia, Nicholas; White, Bryan A; Schook, Lawrence B
2013-04-23
Perturbations in intestinal microbiota composition have been associated with a variety of gastrointestinal tract-related diseases. The alleviation of symptoms has been achieved using treatments that alter the gastrointestinal tract microbiota toward that of healthy individuals. Identifying differences in microbiota composition through the use of 16S rRNA gene hypervariable tag sequencing has profound health implications. Current computational methods for comparing microbial communities are usually based on multiple alignments and phylogenetic inference, making them time consuming and requiring exceptional expertise and computational resources. As sequencing data rapidly grows in size, simpler analysis methods are needed to meet the growing computational burdens of microbiota comparisons. Thus, we have developed a simple, rapid, and accurate method, independent of multiple alignments and phylogenetic inference, to support microbiota comparisons. We create a metric, called compression-based distance (CBD) for quantifying the degree of similarity between microbial communities. CBD uses the repetitive nature of hypervariable tag datasets and well-established compression algorithms to approximate the total information shared between two datasets. Three published microbiota datasets were used as test cases for CBD as an applicable tool. Our study revealed that CBD recaptured 100% of the statistically significant conclusions reported in the previous studies, while achieving a decrease in computational time required when compared to similar tools without expert user intervention. CBD provides a simple, rapid, and accurate method for assessing distances between gastrointestinal tract microbiota 16S hypervariable tag datasets.
Yushkevich, Paul A.; Avants, Brian B.; Das, Sandhitsu R.; Pluta, John; Altinay, Murat; Craige, Caryne
2009-01-01
Measurement of brain change due to neurodegenerative disease and treatment is one of the fundamental tasks of neuroimaging. Deformation-based morphometry (DBM) has been long recognized as an effective and sensitive tool for estimating the change in the volume of brain regions over time. This paper demonstrates that a straightforward application of DBM to estimate the change in the volume of the hippocampus can result in substantial bias, i.e., an overestimation of the rate of change in hippocampal volume. In ADNI data, this bias is manifested as a non-zero intercept of the regression line fitted to the 6 and 12 month rates of hippocampal atrophy. The bias is further confirmed by applying DBM to repeat scans of subjects acquired on the same day. This bias appears to be the result of asymmetry in the interpolation of baseline and followup images during longitudinal image registration. Correcting this asymmetry leads to bias-free atrophy estimation. PMID:20005963
Systematics and distribution of Cristaria plicata (Bivalvia, Unionidae) from the Russian Far East
Klishko, Olga K.; Lopes-Lima, Manuel; Froufe, Elsa; Bogan, Arthur E.; Abakumova, Vera Y.
2016-01-01
Abstract The number of anodontine bivalve species placed in the genus Cristaria (Bivalvia, Unionidae) from the Russian Far East is still not stable among authors. Some recognize only one valid species Cristaria plicata (Leach, 1815) while others accept two additional species, Cristaria tuberculata Schumacher, 1817 and Cristaria herculea (Middendorff, 1847). In the present study, these taxonomic doubts are addressed using analyses of mitochondrial DNA sequences and shell morphometry. No significant differences have been revealed by the COI DNA sequences or the main statistical morphometric indices from the three Cristaria forms. In the specimens analysed, changes in shell morphometry with age suggest that original descriptions of the different forms may be attributed solely to differences in age and sex. We consider that Cristaria plicata, Cristaria tuberculata and Cristaria herculea from the Russian Far East should be considered as a single species, namely Cristaria plicata (Leach, 1815), with Cristaria tuberculata and Cristaria herculea as junior synonyms. The geographic range of Cristaria plicata and its conservation status are also presented here. PMID:27110206
Williams, Phillip A; Djordjevic, Bojana; Ayroud, Yasmine; Islam, Shahidul; Gravel, Denis; Robertson, Susan J; Parra-Herran, Carlos
2014-12-01
To identify morphometric features unique to flat epithelial atypia associated with cancer using digital image analysis. Cases with diagnosis of flat epithelial atypia were retrieved and divided into 2 groups: flat epithelial atypia associated with invasive or in situ carcinoma (n = 31) and those without malignancy (n = 27). Slides were digitally scanned. Nuclear features were analyzed on representative images at 20x magnification using digital morphometric software. Parameters related to nuclear shape and size (diameter, perimeter) were similar in both groups. However, cases with malignancy had significantly higher densitometric green (p = 0.02), red (p = 0.03), and grey (p = 0.02) scale levels as compared to cases without cancer. A mean grey densitometric level > 119.45 had 71% sensitivity and 70.4% specificity in detecting cases with concomitant carcinoma. Morphometry of features related to nuclear staining appears to be useful in predicting risk of concurrent malignancy in patients with flat epithelial atypia, when added to a comprehensive histopathologic evaluation.
Deniz Can, Dilara; Richards, Todd; Kuhl, Patricia K
2013-01-01
Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Morphometric evaluation of AgNORs in odontogenic cysts.
Sreeshyla, Huchanahalli S; Shashidara, Raju; Sudheendra, Udyavara Sridhara
2013-10-01
To evaluate the morphometry of AgNORs in odontogenic cysts and to compare their biologic behavior to determine whether AgNOR morphometry is helpful in predicting the behavior. Ten cases each of odontogenic keratocyst (OKC), dentigerous cyst (DC) and radicular cyst (RC) were stained with silver nitrate. Morphometric analysis of 100 selected epithelial and connective tissue cells was done to record their nuclear volume, nuclear perimeter, contour index of the nucleus, AgNOR count, AgNOR proportion and single AgNOR volume. The results were statistically analyzed using ANOVA. AgNOR count, nuclear volume and nuclear perimeter were greatest in the OKC followed by DC and RC, suggesting that these parameters differentiate between the aggressive and less aggressive odontogenic cysts. Single AgNOR volume and AgNOR proportion were greatest in the RC followed by OKC and DC, respectively. Results of our study taken in isolation point to AgNOR count as the most reliable factor in differentiating between aggressive and nonaggressive odontogenic cysts.
Yokoyama, Ryoichi; Nozawa, Takayuki; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Hanihara, Mayu; Sassa, Yuko; Kawashima, Ryuta
2015-01-01
When faced with a problem or choice, humans can use two different strategies: “cognitive reflectivity,” which involves slow responses and fewer mistakes, or “cognitive impulsivity,” which comprises of quick responses and more mistakes. Different individuals use these two strategies differently. To our knowledge, no study has directly investigated the brain regions involved in reflectivity–impulsivity; therefore, this study focused on associations between these cognitive strategies and the gray matter structure of several brain regions. In order to accomplish this, we enrolled 776 healthy, right-handed individuals (432 men and 344 women; 20.7 ± 1.8 years) and used voxel-based morphometry with administration of a cognitive reflectivity–impulsivity questionnaire. We found that high cognitive reflectivity was associated with greater regional gray matter density in the ventral medial prefrontal cortex. Our finding suggests that this area plays an important role in defining an individual’s trait associated with reflectivity and impulsivity. PMID:25803809
Tomaiuolo, F; MacDonald, J D; Caramanos, Z; Posner, G; Chiavaras, M; Evans, A C; Petrides, M
1999-09-01
The pars opercularis occupies the posterior part of the inferior frontal gyrus. Electrical stimulation or damage of this region interferes with language production. The present study investigated the morphology and morphometry of the pars opercularis in 108 normal adult human cerebral hemispheres by means of magnetic resonance imaging. The brain images were transformed into a standardized proportional steoreotaxic space (i.e. that of Talairach and Tournoux) in order to minimize interindividual brain size variability. There was considerable variability in the shape and location of the pars opercularis across brains and between cerebral hemispheres. There was no significant difference or correlation between left and right hemisphere grey matter volumes. There was also no significant difference between sex and side of asymmetry of the pars opercularis. A probability map of the pars opercularis was constructed by averaging its location and extent in each individual normalized brain into Talairach space to aid in localization of activity changes in functional neuroimaging studies.
Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study.
Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-09-01
Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.
Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-01-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS‐R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS‐R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS‐R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant. PMID:17635981
Thivard, Lionel; Pradat, Pierre-François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent
2007-08-01
The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS-R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS-R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant.
Early visual cortical structural changes in diabetic patients without diabetic retinopathy.
Ferreira, Fábio S; Pereira, João M S; Reis, Aldina; Sanches, Mafalda; Duarte, João V; Gomes, Leonor; Moreno, Carolina; Castelo-Branco, Miguel
2017-11-01
It is known that diabetic patients have changes in cortical morphometry as compared to controls, but it remains to be clarified whether the visual cortex is a disease target, even when diabetes complications such as retinopathy are absent. Therefore, we compared type 2 diabetes patients without diabetic retinopathy with control subjects using magnetic resonance imaging to assess visual cortical changes when retinal damage is not yet present. We performed T1-weighted imaging in 24 type 2 diabetes patients without diabetic retinopathy and 27 age- and gender-matched controls to compare gray matter changes in the occipital cortex between groups using voxel based morphometry. Patients without diabetic retinopathy showed reduced gray matter volume in the occipital lobe when compared with controls. Reduced gray matter volume in the occipital cortex was found in diabetic patients without retinal damage. We conclude that cortical early visual processing regions may be affected in diabetic patients even before retinal damage occurs.
Volumetric and Voxel-Based Morphometry Findings in Autism Subjects With and Without Macrocephaly
Bigler, Erin D.; Abildskov, Tracy J.; Petrie, Jo Ann; Johnson, Michael; Lange, Nicholas; Chipman, Jonathan; Lu, Jeffrey; McMahon, William; Lainhart, Janet E.
2015-01-01
This study sought to replicate Herbert et al. (2003a), which found increased overall white matter (WM) volume in subjects with autism, even after controlling for head size differences. To avoid the possibility that greater WM volume in autism is merely an epiphenomena of macrocephaly over-representation associated with the disorder, the current study included control subjects with benign macrocephaly. The control group also included subjects with a reading disability to insure cognitive heterogeneity. WM volume in autism was significantly larger, even when controlling for brain volume, rate of macrocephaly, and other demographic variables. Autism and controls differed little on whole-brain WM voxel-based morphometry (VBM) analyses suggesting that the overall increase in WM volume was non-localized. Autism subjects exhibited a differential pattern of IQ relationships with brain volumetry findings from controls. Current theories of brain overgrowth and their importance in the development of autism are discussed in the context of these findings. PMID:20446133
Voxel based morphometry in optical coherence tomography: validation and core findings
NASA Astrophysics Data System (ADS)
Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.
2016-03-01
Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype.
Santiago-Moreno, J; Esteso, M C; Pradiee, J; Castaño, C; Toledano-Díaz, A; O'Brien, E; Lopez-Sebastián, A; Martínez-Nevado, E; Delclaux, M; Fernández-Morán, J; Zhihe, Z
2016-05-01
This work examines the effects of subsequent cycles of freezing-thawing on giant panda (Ailuropoda melanoleuca) sperm morphometry and function, and assesses whether density-gradient centrifugation (DGC) can increase the number of freezing-thawing cycles this sperm can withstand. A sperm sample was collected by electroejaculation from a mature giant panda and subjected to five freezing-thawing cycles. Although repeated freezing-thawing negatively affected (P < 0.05) sperm motility and membrane integrity, in both nonselected and DCG-selected sperm samples, >60% of the sperm cells in both treatments showed acrosome integrity even after the fifth freezing cycle. In fresh semen, the sperm head length was 4.7 μm, the head width 3.6 μm, area 14.3 μm(2) and perimeter length 14.1 μm. The present results suggest that giant panda sperm trends to be resistant to repeated freezing-thawing, even without DGC selection. © 2015 Blackwell Verlag GmbH.
Spalletta, Gianfranco; Cravello, Luca; Gianni, Walter; Piras, Federica; Iorio, Mariangela; Cacciari, Claudia; Casini, Anna Rosa; Chiapponi, Chiara; Sancesario, Giuseppe; Fratangeli, Claudia; Orfei, Maria Donata; Caltagirone, Carlo; Piras, Fabrizio
2016-01-01
Homotaurine supplementation may have a positive effect on early Alzheimer's disease. Here, we investigated its potential neuroprotective effect on the hippocampus structure and episodic memory performances in amnestic mild cognitive impairment (aMCI). Neuropsychological, clinical, and neuroimaging assessment in 11 treated and 22 untreated patients were performed at baseline and after 1 year. Magnetic resonance data were analyzed using voxel-based morphometry to explore significant differences (Family Wise Error corrected) between the two groups over time. Patients treated with homotaurine showed decreased volume loss in the left and right hippocampal tail, left and right fusiform gyrus, and right inferior temporal cortex which was associated with improved short-term episodic memory performance as measured by the recency effect of the Rey 15-word list learning test immediate recall. Thus, homotaurine supplementation in individuals with aMCI has a positive effect on hippocampus atrophy and episodic memory loss. Future studies should further clarify the mechanisms of its effects on brain morphometry.
Gelernter, Joel; Gruen, Jeffrey R.; Calhoun, Vince D.; Meng, Haiying; Cope, Natalie A.; Pearlson, Godfrey D.
2008-01-01
Objective The purpose of this investigation was to determine whether there is an association between the putative reading disability (RD) susceptibility gene Doublecortin Domain Containing 2 (DCDC2), and gray matter (GM) distribution in the brain, in a sample of healthy control individuals. Method Fifty-six control subjects were genotyped for an RD-associated deletion in intron 2 of DCDC2. Voxel based morphometry (VBM) was used to examine structural magnetic resonance imaging (MRI) scans to assess GM differences between the two groups. Results Individuals heterozygous for the deletion exhibited significantly higher GM volumes in reading/language and symbol-decoding related brain regions including superior, medial and inferior temporal, fusiform, hippocampal/para-hippocampal, inferior occipito-parietal, inferior and middle frontal gyri, especially in the left hemisphere. GM values correlated with published data on regional DCDC2 expression in a lateralized manner. Conclusions These data suggest a role for DCDC2 in GM distribution in language-related brain regions in healthy individuals. PMID:19096528
Puma (Puma concolor) epididymal sperm morphometry
Cucho, Hernán; Alarcón, Virgilio; Ordóñez, César; Ampuero, Enrique; Meza, Aydee; Soler, Carles
2016-01-01
The Andean puma (Puma concolor) has not been widely studied, particularly in reference to its semen characteristics. The aim of the present study was to define the morphometry of puma sperm heads and classify their subpopulations by cluster analysis. Samples were recovered postmortem from two epididymides from one animal and prepared for morphological observation after staining with the Hemacolor kit. Morphometric data were obtained from 581 spermatozoa using a CASA-Morph system, rendering 13 morphometric parameters. The principal component (PC) analysis was performed followed by cluster analysis for the establishment of subpopulations. Two PC components were obtained, the first related to size and the second to shape. Three subpopulations were observed, corresponding to elongated and intermediate-size sperm heads and acrosomes, to large heads with large acrosomes, and to small heads with short acrosomes. In conclusion, puma spermatozoa showed no uniform sperm morphology but three clear subpopulations. These results should be used for future work in the establishment of an adequate germplasm bank of this species. PMID:27678466
Puma (Puma concolor) epididymal sperm morphometry.
Cucho, Hernán; Alarcón, Virgilio; Ordóñez, César; Ampuero, Enrique; Meza, Aydee; Soler, Carles
2016-01-01
The Andean puma (Puma concolor) has not been widely studied, particularly in reference to its semen characteristics. The aim of the present study was to define the morphometry of puma sperm heads and classify their subpopulations by cluster analysis. Samples were recovered postmortem from two epididymides from one animal and prepared for morphological observation after staining with the Hemacolor kit. Morphometric data were obtained from 581 spermatozoa using a CASA-Morph system, rendering 13 morphometric parameters. The principal component (PC) analysis was performed followed by cluster analysis for the establishment of subpopulations. Two PC components were obtained, the first related to size and the second to shape. Three subpopulations were observed, corresponding to elongated and intermediate-size sperm heads and acrosomes, to large heads with large acrosomes, and to small heads with short acrosomes. In conclusion, puma spermatozoa showed no uniform sperm morphology but three clear subpopulations. These results should be used for future work in the establishment of an adequate germplasm bank of this species.
Caso, Francesca; Agosta, Federica; Magnani, Giuseppe; Galantucci, Sebastiano; Spinelli, Edoardo G; Galimberti, Daniela; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo
2014-07-15
Little is known about the longitudinal changes of brain damage in patients with sporadic nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA) and in progranulin (GRN) mutation carriers. This study reports the clinical and MRI longitudinal data of a patient with nfvPPA carrying GRN Cys157LysfsX97 mutation (GRN+). Voxel-based morphometry, tensor-based morphometry and diffusion tensor MRI were applied to evaluate gray matter (GM) and white matter (WM) changes over three years. The prominent clinical feature was motor speech impairment associated with only mild agrammatism. MRI demonstrated a progressive and severe GM atrophy of inferior fronto-insular-temporo-parietal regions with focal damage to frontotemporal and frontoparietal WM connections. This is the first report of longitudinal MRI data in a nfvPPA- GRN+ patient and this report offers new insights into the pathophysiology of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Schaer, Marie; Cuadra, Meritxell Bach; Schmansky, Nick; Fischl, Bruce; Thiran, Jean-Philippe; Eliez, Stephan
2012-01-02
Cortical folding (gyrification) is determined during the first months of life, so that adverse events occurring during this period leave traces that will be identifiable at any age. As recently reviewed by Mangin and colleagues(2), several methods exist to quantify different characteristics of gyrification. For instance, sulcal morphometry can be used to measure shape descriptors such as the depth, length or indices of inter-hemispheric asymmetry(3). These geometrical properties have the advantage of being easy to interpret. However, sulcal morphometry tightly relies on the accurate identification of a given set of sulci and hence provides a fragmented description of gyrification. A more fine-grained quantification of gyrification can be achieved with curvature-based measurements, where smoothed absolute mean curvature is typically computed at thousands of points over the cortical surface(4). The curvature is however not straightforward to comprehend, as it remains unclear if there is any direct relationship between the curvedness and a biologically meaningful correlate such as cortical volume or surface. To address the diverse issues raised by the measurement of cortical folding, we previously developed an algorithm to quantify local gyrification with an exquisite spatial resolution and of simple interpretation. Our method is inspired of the Gyrification Index(5), a method originally used in comparative neuroanatomy to evaluate the cortical folding differences across species. In our implementation, which we name local Gyrification Index (lGI(1)), we measure the amount of cortex buried within the sulcal folds as compared with the amount of visible cortex in circular regions of interest. Given that the cortex grows primarily through radial expansion(6), our method was specifically designed to identify early defects of cortical development. In this article, we detail the computation of local Gyrification Index, which is now freely distributed as a part of the FreeSurfer Software (http://surfer.nmr.mgh.harvard.edu/, Martinos Center for Biomedical Imaging, Massachusetts General Hospital). FreeSurfer provides a set of automated reconstruction tools of the brain's cortical surface from structural MRI data. The cortical surface extracted in the native space of the images with sub-millimeter accuracy is then further used for the creation of an outer surface, which will serve as a basis for the lGI calculation. A circular region of interest is then delineated on the outer surface, and its corresponding region of interest on the cortical surface is identified using a matching algorithm as described in our validation study(1). This process is repeatedly iterated with largely overlapping regions of interest, resulting in cortical maps of gyrification for subsequent statistical comparisons (Fig. 1). Of note, another measurement of local gyrification with a similar inspiration was proposed by Toro and colleagues(7), where the folding index at each point is computed as the ratio of the cortical area contained in a sphere divided by the area of a disc with the same radius. The two implementations differ in that the one by Toro et al. is based on Euclidian distances and thus considers discontinuous patches of cortical area, whereas ours uses a strict geodesic algorithm and include only the continuous patch of cortical area opening at the brain surface in a circular region of interest.
Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases
van den Elsen, Lieke WJ; Poyntz, Hazel C; Weyrich, Laura S; Young, Wayne; Forbes-Blom, Elizabeth E
2017-01-01
The gut microbiota provides essential signals for the development and appropriate function of the immune system. Through this critical contribution to immune fitness, the gut microbiota has a key role in health and disease. Recent advances in the technological applications to study microbial communities and their functions have contributed to a rapid increase in host–microbiota research. Although it still remains difficult to define a so-called ‘normal' or ‘healthy' microbial composition, alterations in the gut microbiota have been shown to influence the susceptibility of the host to different diseases. Current translational research combined with recent technological and computational advances have enabled in-depth study of the link between microbial composition and immune function, addressing the interplay between the gut microbiota and immune responses. As such, beneficial modulation of the gut microbiota is a promising clinical target for many prevalent diseases including inflammatory bowel disease, metabolic abnormalities such as obesity, reduced insulin sensitivity and low-grade inflammation, allergy and protective immunity against infections. PMID:28197336
Update on RefSeq microbial genomes resources.
Tatusova, Tatiana; Ciufo, Stacy; Federhen, Scott; Fedorov, Boris; McVeigh, Richard; O'Neill, Kathleen; Tolstoy, Igor; Zaslavsky, Leonid
2015-01-01
NCBI RefSeq genome collection http://www.ncbi.nlm.nih.gov/genome represents all three major domains of life: Eukarya, Bacteria and Archaea as well as Viruses. Prokaryotic genome sequences are the most rapidly growing part of the collection. During the year of 2014 more than 10,000 microbial genome assemblies have been publicly released bringing the total number of prokaryotic genomes close to 30,000. We continue to improve the quality and usability of the microbial genome resources by providing easy access to the data and the results of the pre-computed analysis, and improving analysis and visualization tools. A number of improvements have been incorporated into the Prokaryotic Genome Annotation Pipeline. Several new features have been added to RefSeq prokaryotic genomes data processing pipeline including the calculation of genome groups (clades) and the optimization of protein clusters generation using pan-genome approach. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.
Morphological classification and spatial distribution of Philippine volcanoes
NASA Astrophysics Data System (ADS)
Paguican, E. M. R.; Kervyn, M.; Grosse, P.
2016-12-01
The Philippines is an island arc composed of two major blocks: the aseismic Palawan microcontinental block and the Philippine mobile belt. It is bounded by opposing subduction zones, with the left-lateral Philippine Fault running north-south. This setting is ideal for volcano formation and growth, making it one of the best places to study the controls on island arc volcano morphometry and evolution. In this study, we created a database of volcanic edifices and structures identified on the SRTM 30 m digital elevation models (DEM). We computed the morphometry of each edifice using MORVOLC, an IDL code for generating quantitative parameters based on a defined volcano base and DEM. Morphometric results illustrate the large range of sizes and volumes of Philippine volcanoes. Heirarchical classification by principal component analysis distinguishes between large massifs, large cones/sub-cones, small shields/sub-cones, and small cones, based mainly on size (volume, basal width) and steepness (height/basal width ratio, average slopes). Poisson Nearest Neighbor analysis was used to examine the spatial distribution of volcano centroids. Spatial distribution of the different types of volcanoes suggests that large volcanic massifs formed on thickened crust. Although all the volcanic fields and arcs are a response to tectonic activity such as subduction or rifting, only West Luzon, North and South Mindanao, and Eastern Philippines volcanic arcs and Basilan, Macolod, and Maramag volcanic fields present a statistical clustering of volcanic centers. Spatial distribution and preferential alignment of edifices in all volcanic fields confirm that regional structures had some control on their formation. Volcanoes start either as steep cones or as less steep sub-cones and shields. They then grow into large cones, sub-cones and eventually into massifs as eruption focus shifts within the volcano and new eruptive material is deposited on the slopes. Examination of the directions of volcano collapse scars and erosional amphitheater valleys suggests that, during their development, volcano growth is affected by movement of underlying tectonic structures, weight and stability of the growing edifice, structure and composition of the substrata, and intense erosion associated with tropical rainfall.
Nast, Cynthia C.; Lemley, Kevin V.; Hodgin, Jeffrey B.; Bagnasco, Serena; Avila-Casado, Carmen; Hewitt, Stephen M; Barisoni, Laura
2015-01-01
Conventional light microscopy (CLM) has been used to characterize and classify renal diseases, evaluate histopathology in studies and trials, and educate renal pathologists and nephrologists. The advent of digital pathology, in which a glass slide can be scanned to create whole slide images (WSI) for viewing and manipulating on a computer monitor, provides real and potential advantages over CLM. Software tools such as annotation, morphometry and image analysis can be applied to WSIs for studies or educational purposes, and the digital images are globally available to clinicians, pathologists and investigators. New ways of assessing renal pathology with observational data collection may allow better morphologic correlations and integration with molecular and genetic signatures, refinements of classification schema, and understanding of disease pathogenesis. In multicenter studies, WSI, which require additional quality assurance steps, provide efficiencies by reducing slide shipping and consensus conference costs, and allowing anytime anywhere slide viewing. While validation studies for the routine diagnostic use of digital pathology still are needed, this is a powerful tool currently available for translational research, clinical trials and education in renal pathology. PMID:26215864
Probing Lung Microstructure with Hyperpolarized 3He Gradient Echo MRI
Sukstanskii, Alexander L; Quirk, James D; Yablonskiy, Dmitriy A
2014-01-01
In this paper we demonstrate that Gradient Echo MRI with hyperpolarized 3He gas can be used for simultaneously extracting in vivo information about lung ventilation properties, alveolar geometrical parameters, and blood vessel network structure. This new approach is based on multi-gradient-echo experimental measurements of hyperpolarized 3He gas MRI signal from human lungs and a proposed theoretical model of this signal. Based on computer simulations of 3He atoms diffusing in the acinar airway tree in the presence of an inhomogeneous magnetic field induced by the susceptibility differences between lung tissue (alveolar septa, blood vessels) and lung airspaces we derive analytical expressions relating the time-dependent MR signal to the geometrical parameters of acinar airways and blood vessel network. Data obtained on 8 healthy volunteers are in good agreement with literature values. This information is complementary to the information that is obtained by means of in vivo lung morphometry technique with hyperpolarized 3He diffusion MRI previously developed by our group and opens new opportunities to study lung microstructure in health and disease. PMID:24920182
Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study
Román, Francisco J.; Lewis, Lindsay B.; Chen, Chi-Hua; Karama, Sherif; Burgaleta, Miguel; Martínez, Kenia; Lepage, Claude; Jaeggi, Susanne M.; Evans, Alan C.; Kremen, William S.
2016-01-01
Here we analyze gray matter indices before and after completing a challenging adaptive cognitive training program based on the n-back task. The considered gray matter indices were cortical thickness (CT) and cortical surface area (CSA). Twenty-eight young women (age range 17–22 years) completed 24 training sessions over the course of 3 months (12 weeks, 24 sessions), showing expected performance improvements. CT and CSA values for the training group were compared with those of a matched control group. Statistical analyses were computed using a ROI framework defined by brain areas distinguished by their genetic underpinning. The interaction between group and time was analyzed. Middle temporal, ventral frontal, inferior parietal cortices, and pars opercularis were the regions where the training group showed conservation of gray matter with respect to the control group. These regions support working memory, resistance to interference, and inhibition. Furthermore, an interaction with baseline intelligence differences showed that the expected decreasing trend at the biological level for individuals showing relatively low intelligence levels at baseline was attenuated by the completed training. PMID:26701168
Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan
2016-04-05
Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.
Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest
NASA Technical Reports Server (NTRS)
Riley, D. A.; Bain, J. L.; Thompson, J. L.; Fitts, R. H.; Widrick, J. J.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.
1998-01-01
Previously we reported that, after 17-day bed rest unloading of 8 humans, soleus slow fibers atrophied and exhibited increased velocity of shortening without fast myosin expression. The present ultrastructural study examined fibers from the same muscle biopsies to determine whether decreased myofilament packing density accounted for the observed speeding. Quantitation was by computer-assisted morphometry of electron micrographs. Filament densities were normalized for sarcomere length, because density depends directly on length. Thick filament density was unchanged by bed rest. Thin filaments/microm2 decreased 16-23%. Glycogen filled the I band sites vacated by filaments. The percentage decrease in thin filaments (Y) correlated significantly (P < 0.05) with the percentage increase in velocity (X), (Y = 0.1X + 20%, R2 = 0.62). An interpretation is that fewer filaments increases thick to thin filament spacing and causes earlier cross-bridge detachment and faster cycling. Increased velocity helps maintain power (force x velocity) as atrophy lowers force. Atrophic muscles may be prone to sarcomere reloading damage because force/microm2 was near normal, and force per thin filament increased an estimated 30%.
DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM DHILDHOOD TO ADULT
Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...
Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis
2011-07-01
focal and diffuse effects in brain (including cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and...to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry , and
ERIC Educational Resources Information Center
Soddell, J. A.; Seviour, R. J.
1985-01-01
Describes an exercise which uses a computer program (written for Commodore 64 microcomputers) that accepts data obtained from identifying bacteria, calculates similarity coefficients, and performs single linkage cluster analysis. Includes a program for simulating bacterial cultures for students who should not handle pathogenic microorganisms. (JN)
Beattie, Karen A; Duryea, Jeffrey; Pui, Margaret; O'Neill, John; Boulos, Pauline; Webber, Colin E; Eckstein, Felix; Adachi, Jonathan D
2008-01-01
Background The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging. Design For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne™, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring ≤1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH). Results Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m2. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) μL/mm2 and 1.45 (0.19) mm, respectively, and 1.77 (0.24) μL/mm2 and 1.71 (0.24) mm, respectively, in males. Conclusion These data suggest that medial mJSW values do not decrease with aging in healthy individuals but remain fairly constant throughout the lifespan with "healthy" values of 4.8 mm for females and 5.7 mm for males. Similar trends were seen for cartilage morphology. Results suggest there may be no need to differentiate a t-score and a z-score in OA diagnosis because cartilage thickness and JSW remain constant throughout life in the absence of OA. PMID:18778479
Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology.
Fondi, Marco; Liò, Pietro
2015-02-01
Integrated -omics approaches are quickly spreading across microbiology research labs, leading to (i) the possibility of detecting previously hidden features of microbial cells like multi-scale spatial organization and (ii) tracing molecular components across multiple cellular functional states. This promises to reduce the knowledge gap between genotype and phenotype and poses new challenges for computational microbiologists. We underline how the capability to unravel the complexity of microbial life will strongly depend on the integration of the huge and diverse amount of information that can be derived today from -omics experiments. In this work, we present opportunities and challenges of multi -omics data integration in current systems biology pipelines. We here discuss which layers of biological information are important for biotechnological and clinical purposes, with a special focus on bacterial metabolism and modelling procedures. A general review of the most recent computational tools for performing large-scale datasets integration is also presented, together with a possible framework to guide the design of systems biology experiments by microbiologists. Copyright © 2015. Published by Elsevier GmbH.
PanFP: Pangenome-based functional profiles for microbial communities
Jun, Se -Ran; Hauser, Loren John; Schadt, Christopher Warren; ...
2015-09-26
For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost effective way to screen samples of interestmore » for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. As a result, we present a computational method called pangenome based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU s taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome s functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8 0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed reference OTU picking strategies against specific reference sequence databases. In conclusion, we developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub.« less
PanFP: pangenome-based functional profiles for microbial communities.
Jun, Se-Ran; Robeson, Michael S; Hauser, Loren J; Schadt, Christopher W; Gorin, Andrey A
2015-09-26
For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. We present a computational method called pangenome-based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU's taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome's functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8-0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed-reference OTU picking strategies against specific reference sequence databases. We developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub ( https://github.com/srjun/PanFP ).
2013-01-01
Background Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. Results We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes. Conclusions Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes. PMID:23414703
Deconvolving molecular signatures of interactions between microbial colonies
Harn, Y.-C.; Powers, M. J.; Shank, E. A.; Jojic, V.
2015-01-01
Motivation: The interactions between microbial colonies through chemical signaling are not well understood. A microbial colony can use different molecules to inhibit or accelerate the growth of other colonies. A better understanding of the molecules involved in these interactions could lead to advancements in health and medicine. Imaging mass spectrometry (IMS) applied to co-cultured microbial communities aims to capture the spatial characteristics of the colonies’ molecular fingerprints. These data are high-dimensional and require computational analysis methods to interpret. Results: Here, we present a dictionary learning method that deconvolves spectra of different molecules from IMS data. We call this method MOLecular Dictionary Learning (MOLDL). Unlike standard dictionary learning methods which assume Gaussian-distributed data, our method uses the Poisson distribution to capture the count nature of the mass spectrometry data. Also, our method incorporates universally applicable information on common ion types of molecules in MALDI mass spectrometry. This greatly reduces model parameterization and increases deconvolution accuracy by eliminating spurious solutions. Moreover, our method leverages the spatial nature of IMS data by assuming that nearby locations share similar abundances, thus avoiding overfitting to noise. Tests on simulated datasets show that this method has good performance in recovering molecule dictionaries. We also tested our method on real data measured on a microbial community composed of two species. We confirmed through follow-up validation experiments that our method recovered true and complete signatures of molecules. These results indicate that our method can discover molecules in IMS data reliably, and hence can help advance the study of interaction of microbial colonies. Availability and implementation: The code used in this paper is available at: https://github.com/frizfealer/IMS_project. Contact: vjojic@cs.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072476
A Dirichlet-Multinomial Bayes Classifier for Disease Diagnosis with Microbial Compositions.
Gao, Xiang; Lin, Huaiying; Dong, Qunfeng
2017-01-01
Dysbiosis of microbial communities is associated with various human diseases, raising the possibility of using microbial compositions as biomarkers for disease diagnosis. We have developed a Bayes classifier by modeling microbial compositions with Dirichlet-multinomial distributions, which are widely used to model multicategorical count data with extra variation. The parameters of the Dirichlet-multinomial distributions are estimated from training microbiome data sets based on maximum likelihood. The posterior probability of a microbiome sample belonging to a disease or healthy category is calculated based on Bayes' theorem, using the likelihood values computed from the estimated Dirichlet-multinomial distribution, as well as a prior probability estimated from the training microbiome data set or previously published information on disease prevalence. When tested on real-world microbiome data sets, our method, called DMBC (for Dirichlet-multinomial Bayes classifier), shows better classification accuracy than the only existing Bayesian microbiome classifier based on a Dirichlet-multinomial mixture model and the popular random forest method. The advantage of DMBC is its built-in automatic feature selection, capable of identifying a subset of microbial taxa with the best classification accuracy between different classes of samples based on cross-validation. This unique ability enables DMBC to maintain and even improve its accuracy at modeling species-level taxa. The R package for DMBC is freely available at https://github.com/qunfengdong/DMBC. IMPORTANCE By incorporating prior information on disease prevalence, Bayes classifiers have the potential to estimate disease probability better than other common machine-learning methods. Thus, it is important to develop Bayes classifiers specifically tailored for microbiome data. Our method shows higher classification accuracy than the only existing Bayesian classifier and the popular random forest method, and thus provides an alternative option for using microbial compositions for disease diagnosis.
The Earth Microbiome Project and modeling the planets microbial potential (Invited)
NASA Astrophysics Data System (ADS)
Gilbert, J. A.
2013-12-01
The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires recognition and accommodation of sources of uncertainty.
Computational methods in metabolic engineering for strain design.
Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L
2015-08-01
Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Demajo, Jean Karl; Cassar, Valter; Farrugia, Cher; Millan-Sango, David; Sammut, Charles; Valdramidis, Vasilis; Camilleri, Josette
2016-01-01
The aim of this study was to assess the antimicrobial activity of chemical disinfectants on alginate and silicone impression materials. The effect of chemical disinfectants on the dimensional stability of the impression materials was also assessed. For the microbiologic assessment, impressions of the maxillary arch were taken from 14 participants, 7 using alginate and 7 using an addition silicone. The impressions were divided into three sections. Each section was subjected to spraying with MD 520 or Minuten or no disinfection (control), respectively. Antimicrobial action of the chemical disinfectants was assessed by measuring microbial counts in trypticase soy agar (TSA) media and expressing the results in colony-forming units/cm2. The surface area of the dental impressions was calculated by scanning a stone cast using computer-aided design/computer-assisted manufacture and analyzing the data using a custom computer program. The dimensional stability of the impression materials after immersion in disinfectants was assessed by measuring the linear displacement of horizontally restrained materials using a traveling microscope. The percent change in length over 3 hours was thus determined. Alginate exhibited a higher microbial count than silicone. MD 520 eliminated all microbes as opposed to Minuten. The bacterial growth after Minuten disinfection was almost twice as much for alginate than for addition silicone impressions. The chemical disinfectants affected the alginate dimensional stability. Minuten reduced the shrinkage sustained by alginate during the first hour of storage. Alginate harbors three times more microorganisms than silicone impression material. Chemical disinfection by glutaraldehyde-based disinfectant was effective in eliminating all microbial forms for both alginate and silicone without modifying the dimensional stability. Alcohol-based disinfectants, however, reduced the alginate shrinkage during the first 90 minutes of setting. The current studies also propose another method to report the surface area based on accurate estimation by 3D image analysis.
Labus, Jennifer S; Hollister, Emily B; Jacobs, Jonathan; Kirbach, Kyleigh; Oezguen, Numan; Gupta, Arpana; Acosta, Jonathan; Luna, Ruth Ann; Aagaard, Kjersti; Versalovic, James; Savidge, Tor; Hsiao, Elaine; Tillisch, Kirsten; Mayer, Emeran A
2017-05-01
Preclinical and clinical evidence supports the concept of bidirectional brain-gut microbiome interactions. We aimed to determine if subgroups of irritable bowel syndrome (IBS) subjects can be identified based on differences in gut microbial composition, and if there are correlations between gut microbial measures and structural brain signatures in IBS. Behavioral measures, stool samples, and structural brain images were collected from 29 adult IBS and 23 healthy control subjects (HCs). 16S ribosomal RNA (rRNA) gene sequencing was used to profile stool microbial communities, and various multivariate analysis approaches were used to quantitate microbial composition, abundance, and diversity. The metagenomic content of samples was inferred from 16S rRNA gene sequence data using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). T1-weighted brain images were acquired on a Siemens Allegra 3T scanner, and morphological measures were computed for 165 brain regions. Using unweighted Unifrac distances with hierarchical clustering on microbial data, samples were clustered into two IBS subgroups within the IBS population (IBS1 (n = 13) and HC-like IBS (n = 16)) and HCs (n = 23) (AUROC = 0.96, sensitivity 0.95, specificity 0.67). A Random Forest classifier provided further support for the differentiation of IBS1 and HC groups. Microbes belonging to the genera Faecalibacterium, Blautia, and Bacteroides contributed to this subclassification. Clinical features distinguishing the groups included a history of early life trauma and duration of symptoms (greater in IBS1), but not self-reported bowel habits, anxiety, depression, or medication use. Gut microbial composition correlated with structural measures of brain regions including sensory- and salience-related regions, and with a history of early life trauma. The results confirm previous reports of gut microbiome-based IBS subgroups and identify for the first time brain structural alterations associated with these subgroups. They provide preliminary evidence for the involvement of specific microbes and their predicted metabolites in these correlations.
Hexachlorobenzene (HCB) exposure has been shown to induce hyperparathyroidism and osteosclerosis in rats. xperiments were undertaken to investigate the effects of HCB on femur morphometry as well as breaking strength. ischer 344 rats were dosed 5 days/wk for 15 wks with 0, 0.1, 1...
Regulating effect of epithalone on gastric endocrine cells in pinealectomized rats.
Khavinson, V K; Popuchiev, V V; Kvetnoii, I M; Yuzhakov, V V; Kotlova, L N
2000-12-01
Endocrine cells in the stomach of pinealectomized rats after injection of epithalone (pineal gland peptide) were studied by immunohistochemical tests, morphometry, and image analysis microscopic images. A functional relationship was found between the pineal gland and stomach, which is regulated by peptides produced by the pineal gland.
Multispectral Brain Morphometry in Tourette Syndrome Persisting into Adulthood
ERIC Educational Resources Information Center
Draganski, Bogdan; Martino, Davide; Cavanna, Andrea E.; Hutton, Chloe; Orth, Michael; Robertson, Mary M.; Critchley, Hugo D.; Frackowiak, Richard S.
2010-01-01
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into…
Brief Report: CANTAB Performance and Brain Structure in Pediatric Patients with Asperger Syndrome
ERIC Educational Resources Information Center
Kaufmann, Liane; Zotter, Sibylle; Pixner, Silvia; Starke, Marc; Haberlandt, Edda; Steinmayr-Gensluckner, Maria; Egger, Karl; Schocke, Michael; Weiss, Elisabeth M.; Marksteiner, Josef
2013-01-01
By merging neuropsychological (CANTAB/Cambridge Neuropsychological Test Automated Battery) and structural brain imaging data (voxel-based-morphometry) the present study sought to identify the neurocognitive correlates of executive functions in individuals with Asperger syndrome (AS) compared to healthy controls. Results disclosed subtle group…
Accessible Microscopy Workstation for Students and Scientists with Mobility Impairments
ERIC Educational Resources Information Center
Duerstock, Bradley S.
2006-01-01
An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for…
Distribution, morphometry and land use of Delmarva bays
USDA-ARS?s Scientific Manuscript database
Delmarva Bays are depressional wetlands that are elliptical in shape with sandy rims, and occur mainly in the central portion of the Delmarva Peninsula within the Mid-Atlantic United States. It is postulated that they began as wind blowouts during the Pleistocene that filled with water and became e...
Sex Differences in the Adolescent Brain
ERIC Educational Resources Information Center
Lenroot, Rhoshel K.; Giedd, Jay N.
2010-01-01
Adolescence is a time of increased divergence between males and females in physical characteristics, behavior, and risk for psychopathology. Here we will review data regarding sex differences in brain structure and function during this period of the lifespan. The most consistent sex difference in brain morphometry is the 9-12% larger brain size…
Lesnik, Keaton Larson; Liu, Hong
2017-09-19
The complex interactions that occur in mixed-species bioelectrochemical reactors, like microbial fuel cells (MFCs), make accurate predictions of performance outcomes under untested conditions difficult. While direct correlations between any individual waste stream characteristic or microbial community structure and reactor performance have not been able to be directly established, the increase in sequencing data and readily available computational power enables the development of alternate approaches. In the current study, 33 MFCs were evaluated under a range of conditions including eight separate substrates and three different wastewaters. Artificial Neural Networks (ANNs) were used to establish mathematical relationships between wastewater/solution characteristics, biofilm communities, and reactor performance. ANN models that incorporated biotic interactions predicted reactor performance outcomes more accurately than those that did not. The average percent error of power density predictions was 16.01 ± 4.35%, while the average percent error of Coulombic efficiency and COD removal rate predictions were 1.77 ± 0.57% and 4.07 ± 1.06%, respectively. Predictions of power density improved to within 5.76 ± 3.16% percent error through classifying taxonomic data at the family versus class level. Results suggest that the microbial communities and performance of bioelectrochemical systems can be accurately predicted using data-mining, machine-learning techniques.
Mining of Microbial Genomes for the Novel Sources of Nitrilases.
Sharma, Nikhil; Thakur, Neerja; Raj, Tilak; Savitri; Bhalla, Tek Chand
2017-01-01
Next-generation DNA sequencing (NGS) has made it feasible to sequence large number of microbial genomes and advancements in computational biology have opened enormous opportunities to mine genome sequence data for novel genes and enzymes or their sources. In the present communication in silico mining of microbial genomes has been carried out to find novel sources of nitrilases. The sequences selected were analyzed for homology and considered for designing motifs. The manually designed motifs based on amino acid sequences of nitrilases were used to screen 2000 microbial genomes (translated to proteomes). This resulted in identification of one hundred thirty-eight putative/hypothetical sequences which could potentially code for nitrilase activity. In vitro validation of nine predicted sources of nitrilases was done for nitrile/cyanide hydrolyzing activity. Out of nine predicted nitrilases, Gluconacetobacter diazotrophicus , Sphingopyxis alaskensis , Saccharomonospora viridis , and Shimwellia blattae were specific for aliphatic nitriles, whereas nitrilases from Geodermatophilus obscurus , Nocardiopsis dassonvillei , Runella slithyformis , and Streptomyces albus possessed activity for aromatic nitriles. Flavobacterium indicum was specific towards potassium cyanide (KCN) which revealed the presence of nitrilase homolog, that is, cyanide dihydratase with no activity for either aliphatic, aromatic, or aryl nitriles. The present study reports the novel sources of nitrilases and cyanide dihydratase which were not reported hitherto by in silico or in vitro studies.
A Review of Gene Knockout Strategies for Microbial Cells.
Tang, Phooi Wah; Chua, Pooi San; Chong, Shiue Kee; Mohamad, Mohd Saberi; Choon, Yee Wen; Deris, Safaai; Omatu, Sigeru; Corchado, Juan Manuel; Chan, Weng Howe; Rahim, Raha Abdul
2015-01-01
Predicting the effects of genetic modification is difficult due to the complexity of metabolic net- works. Various gene knockout strategies have been utilised to deactivate specific genes in order to determine the effects of these genes on the function of microbes. Deactivation of genes can lead to deletion of certain proteins and functions. Through these strategies, the associated function of a deleted gene can be identified from the metabolic networks. The main aim of this paper is to review the available techniques in gene knockout strategies for microbial cells. The review is done in terms of their methodology, recent applications in microbial cells. In addition, the advantages and disadvantages of the techniques are compared and discuss and the related patents are also listed as well. Traditionally, gene knockout is done through wet lab (in vivo) techniques, which were conducted through laboratory experiments. However, these techniques are costly and time consuming. Hence, various dry lab (in silico) techniques, where are conducted using computational approaches, have been developed to surmount these problem. The development of numerous techniques for gene knockout in microbial cells has brought many advancements in the study of gene functions. Based on the literatures, we found that the gene knockout strategies currently used are sensibly implemented with regard to their benefits.
Microbial genomic island discovery, visualization and analysis.
Bertelli, Claire; Tilley, Keith E; Brinkman, Fiona S L
2018-06-03
Horizontal gene transfer (also called lateral gene transfer) is a major mechanism for microbial genome evolution, enabling rapid adaptation and survival in specific niches. Genomic islands (GIs), commonly defined as clusters of bacterial or archaeal genes of probable horizontal origin, are of particular medical, environmental and/or industrial interest, as they disproportionately encode virulence factors and some antimicrobial resistance genes and may harbor entire metabolic pathways that confer a specific adaptation (solvent resistance, symbiosis properties, etc). As large-scale analyses of microbial genomes increases, such as for genomic epidemiology investigations of infectious disease outbreaks in public health, there is increased appreciation of the need to accurately predict and track GIs. Over the past decade, numerous computational tools have been developed to tackle the challenges inherent in accurate GI prediction. We review here the main types of GI prediction methods and discuss their advantages and limitations for a routine analysis of microbial genomes in this era of rapid whole-genome sequencing. An assessment is provided of 20 GI prediction software methods that use sequence-composition bias to identify the GIs, using a reference GI data set from 104 genomes obtained using an independent comparative genomics approach. Finally, we present guidelines to assist researchers in effectively identifying these key genomic regions.
GPU based framework for geospatial analyses
NASA Astrophysics Data System (ADS)
Cosmin Sandric, Ionut; Ionita, Cristian; Dardala, Marian; Furtuna, Titus
2017-04-01
Parallel processing on multiple CPU cores is already used at large scale in geocomputing, but parallel processing on graphics cards is just at the beginning. Being able to use an simple laptop with a dedicated graphics card for advanced and very fast geocomputation is an advantage that each scientist wants to have. The necessity to have high speed computation in geosciences has increased in the last 10 years, mostly due to the increase in the available datasets. These datasets are becoming more and more detailed and hence they require more space to store and more time to process. Distributed computation on multicore CPU's and GPU's plays an important role by processing one by one small parts from these big datasets. These way of computations allows to speed up the process, because instead of using just one process for each dataset, the user can use all the cores from a CPU or up to hundreds of cores from GPU The framework provide to the end user a standalone tools for morphometry analyses at multiscale level. An important part of the framework is dedicated to uncertainty propagation in geospatial analyses. The uncertainty may come from the data collection or may be induced by the model or may have an infinite sources. These uncertainties plays important roles when a spatial delineation of the phenomena is modelled. Uncertainty propagation is implemented inside the GPU framework using Monte Carlo simulations. The GPU framework with the standalone tools proved to be a reliable tool for modelling complex natural phenomena The framework is based on NVidia Cuda technology and is written in C++ programming language. The code source will be available on github at https://github.com/sandricionut/GeoRsGPU Acknowledgement: GPU framework for geospatial analysis, Young Researchers Grant (ICUB-University of Bucharest) 2016, director Ionut Sandric
NASA Astrophysics Data System (ADS)
Wayson, Michael B.; Bolch, Wesley E.
2018-04-01
Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.
Wayson, Michael B; Bolch, Wesley E
2018-04-13
Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.
Microbial Degradation of Propylene Glycol - Modelling Approach of a Batch Experiment
NASA Astrophysics Data System (ADS)
Dathe, Annette; Fernandez, Perrine; Bakken, Lars; Bloem, Esther; French, Helen
2016-04-01
De-icing chemicals are applied in large amounts at airports during winter conditions to keep the runways and aircrafts ice-free. At Gardermoen airport, Norway, most of the applied chemicals can be captured, but about 10 to 20 % infiltrate into the soil along the runways and during take-off. While the commonly used propylene glycol (PG) is easily degradable by local microbial communities, its biological oxygen demand is high, anoxic zones can develop and soluble Fe+2 and Mn+2 ions eventually can reach the groundwater. The objectives of the presented study are to quantify the mechanisms, which control the order of reduction processes in an unsaturated sandy soil, and to test whether measured redox potentials can help to determine underlying biogeochemical reactions. To investigate the mechanisms of microbial degradation, the water phase of soil samples from Gardermoen Airport was replaced by deionized water with 10 mMol PG or 10 mMol glutamate and the samples were incubated at 10°C for about two weeks. The gas phase was sampled and analyzed automatically every three hours. Microbial degradation of the substrate (PG or glutamate) was modelled following a Monod kinetics using the FME (Flexible Modelling Environment) package of R (Project for Statistical Computing). The model was calibrated against measurements of O2 depletion and CO2 production. The initial concentrations of O2, CO2 and PG or glutamate are known and microbial yields and stoichiometric constants can be calculated from the measurements. Parameter values for the initial microbial population size, maximum microbial growth rate, the half saturation constant, and microbial degradation and respiration rates were fitted using the FME package. The model accounts for carbon from the substrate (PG or glutamate) incorporated into the biomass. Results are promising, but because of the large number of parameters needed to fit a Monod kinetics it is challenging to accurately model a whole redox sequence. The ultimate goal of implementing PG degrading processes into a soil water transport model is still a challenge, and simpler approaches like a first- and second order kinetic are investigated and compared to the behavior of the Monod kinetic.
Pike, Richard J.
2002-01-01
Terrain modeling, the practice of ground-surface quantification, is an amalgam of Earth science, mathematics, engineering, and computer science. The discipline is known variously as geomorphometry (or simply morphometry), terrain analysis, and quantitative geomorphology. It continues to grow through myriad applications to hydrology, geohazards mapping, tectonics, sea-floor and planetary exploration, and other fields. Dating nominally to the co-founders of academic geography, Alexander von Humboldt (1808, 1817) and Carl Ritter (1826, 1828), the field was revolutionized late in the 20th Century by the computer manipulation of spatial arrays of terrain heights, or digital elevation models (DEMs), which can quantify and portray ground-surface form over large areas (Maune, 2001). Morphometric procedures are implemented routinely by commercial geographic information systems (GIS) as well as specialized software (Harvey and Eash, 1996; Köthe and others, 1996; ESRI, 1997; Drzewiecki et al., 1999; Dikau and Saurer, 1999; Djokic and Maidment, 2000; Wilson and Gallant, 2000; Breuer, 2001; Guth, 2001; Eastman, 2002). The new Earth Surface edition of the Journal of Geophysical Research, specializing in surficial processes, is the latest of many publication venues for terrain modeling. This is the fourth update of a bibliography and introduction to terrain modeling (Pike, 1993, 1995, 1996, 1999) designed to collect the diverse, scattered literature on surface measurement as a resource for the research community. The use of DEMs in science and technology continues to accelerate and diversify (Pike, 2000a). New work appears so frequently that a sampling must suffice to represent the vast literature. This report adds 1636 entries to the 4374 in the four earlier publications1. Forty-eight additional entries correct dead Internet links and other errors found in the prior listings. Chronicling the history of terrain modeling, many entries in this report predate the 1999 supplement. Coverage is representative from about 1800 through early–mid 2002. Papers increasingly are published exclusively or in duplicate on the Internet's World Wide Web; the dates given here for Web addresses (URLs) that lack a print publication indicate a Web site's last update or my last access of it. The bibliography is arranged alphabetically and thus is not readily summarized. This introduction cites about 500 entries, a third of them grouped under 24 morphometric topics, as a guide to the listing's contents. Continuing the practice of previous bibliographies in the series to provide more information on a few applications (see summary of past topics in Pike, 2000a), this report elaborates further on topographic data, putative new parameters, tectonic geomorphology/neo-orometry, biogeography, ice-cap morphometry, results from the Mars Global DEM, landslide-hazard mapping, terrain modeling as physics, Hack's law, and broad-scale computer visualization. The literature of some of these subjects is large, and none of the summaries is intended to more than introduce the topic and comment on some of the current contributions of terrain modeling. Closing the essay is a discussion of pre-1900 papers that trace the evolution of ridge-line and watercourse quantification by descriptive geometry, as well as comments on some new books and an on-line bulletin board.
Twelve example local data support files are automatically downloaded when the SDMProjectBuilder is installed on a computer. They allow the user to modify values to parameters that impact the release, migration, fate, and transport of microbes within a watershed, and control delin...
Twelve example local data support files are automatically downloaded when the SDMProjectBuilder is installed on a computer. They allow the user to modify values to parameters that impact the release, migration, fate, and transport of microbes within a watershed, and control delin...
Synthetic biology advances for pharmaceutical production
Breitling, Rainer; Takano, Eriko
2015-01-01
Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872
Multiscale Simulation of Microbe Structure and Dynamics
Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.
2012-01-01
A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438
Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A
2016-09-15
Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Kang-Hoon; Shin, Kyung-Seop; Lim, Debora; Kim, Woo-Chan; Chung, Byung Chang; Han, Gyu-Bum; Roh, Jeongkyu; Cho, Dong-Ho; Cho, Kiho
2015-07-01
The genomes of living organisms are populated with pleomorphic repetitive elements (REs) of varying densities. Our hypothesis that genomic RE landscapes are species/strain/individual-specific was implemented into the Genome Signature Imaging system to visualize and compute the RE-based signatures of any genome. Following the occurrence profiling of 5-nucleotide REs/words, the information from top-50 frequency words was transformed into a genome-specific signature and visualized as Genome Signature Images (GSIs), using a CMYK scheme. An algorithm for computing distances among GSIs was formulated using the GSIs' variables (word identity, frequency, and frequency order). The utility of the GSI-distance computation system was demonstrated with control genomes. GSI-based computation of genome-relatedness among 1766 microbes (117 archaea and 1649 bacteria) identified their clustering patterns; although the majority paralleled the established classification, some did not. The Genome Signature Imaging system, with its visualization and distance computation functions, enables genome-scale evolutionary studies involving numerous genomes with varying sizes. Copyright © 2015 Elsevier Inc. All rights reserved.
[Effect of pineal peptides on neuroendocrine system after pinealectomy].
Khavinson, V Kh; Kvetnoĭ, I M; Popuchiev, V V; Iuzhakov, V V; Kotlova, L N
2001-01-01
Removal of the pineal gland leads to structural and functional rearrangement of gastric endocrine cells and thyroid C-cells in albino rats, as was shown by immunohistological methods and morphometry. Injection of pineal peptides epithalone and epithalamine eliminated these changes. Biological activity of epithalone is believed to be higher than that of epithalamine.
Impaired Pitch Perception and Memory in Congenital Amusia: The Deficit Starts in the Auditory Cortex
ERIC Educational Resources Information Center
Albouy, Philippe; Mattout, Jeremie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaetan; Aguera, Pierre-Emmanuel; Daligault, Sebastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara
2013-01-01
Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a…
Characterization of Human Torso Vascular Morphometry in Normotensive and Hypotensive Trauma Patients
2015-07-01
Aorta Wall Measures Merged for Analysis Landmarks & User-aided Segmentation 5cm Volume...with Centerline Measures AORTA PROCESSING VENA CAVA PROCESSING Basic Morphomics Scan Identification Aorta Centerline Segmented Aorta and Vena...Analysis 49 Data Presentation Aorta Radius Popula/on Normotensive Hypotensive
Brain Morphometry Using Anatomical Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.
2008-01-01
The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…
Influences of watershed geomorphology on extent and composition of riparian vegetation
Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers
2011-01-01
Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...
Are Autistic Traits in the General Population Related to Global and Regional Brain Differences?
ERIC Educational Resources Information Center
Koolschijn, P. Cédric M. P.; Geurts, Hilde M.; van der Leij, Andries R.; Scholte, H. Steven
2015-01-01
There is accumulating evidence that autistic-related traits in the general population lie on a continuum, with autism spectrum disorders representing the extreme end of this distribution. Here, we tested the hypothesis of a possible relationship between autistic traits and brain morphometry in the general population. Participants completed the…
Influence of ovarian reserves in beef heifers on uterine morphometry and function
USDA-ARS?s Scientific Manuscript database
The size of the reproductive tract and the number of follicles in the ovaries are positively associated with fertility and early conception in beef heifers. Heifers with greater numbers of ovarian follicles have larger uteri that secrete a greater amount of protein on day 16 after estrus. Therefor...
Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment
ERIC Educational Resources Information Center
Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.
2012-01-01
We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…
Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J
2014-09-05
Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Escovar, Jesús; Ferro, Cristina; Cárdenas, Estrella; Bello, Felio
2002-12-01
Cytogenetic characteristics were established for five native species of phlebotomine sand flies (Lutzomyia, series townsendi, verrucarum group): Lutzomyia longiflocosa, Lutzomyia townsendi, Lutzomyia spinicrassa, Lutzomyia torvida and Lutzomyia youngi. Karyotypes and chromosomal morphometry were compared. Using the squash technique, brain tissues from late 4th instar larvae provided the necessary mitotic chromosomes. Chromosomal measurements were made on the following chromosomal characteristics: short arm, long arm, arm ratio, total length, relative length, centromeric index and relative length average of chromosomes. Chromosomes were classified according to their morphometry and position of the centromere. The taxonomic distance was calculated, and the relationships among the species displayed in a phenogram. All five species possessed four pairs of chromosomes as diploid number (2N = 8). None of the karyotypes indicated presence of heteromorphic chromosomes. Statistical analysis of the morphometric data showed highly significant differences among the chromosomes pairs of the five species. However, the total length of the genome was very similar, with the exception of L. youngi. In conclusion, these closely related species were distinguishable at cytological level.
Josino, Jeanne Batista; Serra, Daniel Silveira; Gomes, Maria Diana Moreira; Araújo, Rinaldo Santos; de Oliveira, Mona Lisa Moura; Cavalcante, Francisco Sales Ávila
2017-12-01
Air pollution is a topic discussed all over the world and the search for alternatives to reduce it is of great interest to many researchers. The use of alternative energy sources and biofuels seems to be the environmentally safer solution. In this work, the deleterious effects on the respiratory system of mice exposed to PM 4.0 or TSP, present in exhaust gases from the combustion of CNS were investigated, through data from respiratory system mechanics, oxidative stress, histopathology and morphometry of the parenchyma pulmonary. The results show changes in all variables of respiratory system mechanics, in oxidative stress, the histopathological analysis and lung morphometry. The results provide experimental support for epidemiological observations of association between effects on the respiratory system and exposure to PM 4.0 or TSP from CNS combustion exhaust gases, even at acute exposure. It can serve as a basis for regulation or adjustment of environmental laws that control the emissions of these gases. Copyright © 2017 Elsevier B.V. All rights reserved.
Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder
NASA Astrophysics Data System (ADS)
Magana, Omar; Laird, Robert
2012-03-01
A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.
Mis-segmentation in voxel-based morphometry due to a signal intensity change in the putamen.
Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Aoki, Shigeki; Gomi, Tsutomu; Takeda, Tohoru
2017-12-01
The aims of this study were to demonstrate an association between changes in the signal intensity of the putamen on three-dimensional T1-weighted magnetic resonance images (3D-T1WI) and mis-segmentation, using the voxel-based morphometry (VBM) 8 toolbox. The sagittal 3D-T1WIs of 22 healthy volunteers were obtained for VBM analysis using the 1.5-T MR scanner. We prepared five levels of 3D-T1WI signal intensity (baseline, same level, background level, low level, and high level) in regions of interest containing the putamen. Groups of smoothed, spatially normalized tissue images were compared to the baseline group using a paired t test. The baseline was compared to the other four levels. In all comparisons, significant volume changes were observed around and outside the area that included the signal intensity change. The present study demonstrated an association between a change in the signal intensity of the putamen on 3D-T1WI and changed volume in segmented tissue images.
Anterior Temporal Lobe Morphometry Predicts Categorization Ability.
Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle
2018-01-01
Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.
Education, occupation, leisure activities, and brain reserve: a population-based study.
Foubert-Samier, Alexandra; Catheline, Gwenaelle; Amieva, Hélène; Dilharreguy, Bixente; Helmer, Catherine; Allard, Michèle; Dartigues, Jean-François
2012-02-01
The influence of education, occupation, and leisure activities on the passive and active components of reserve capacity remains unclear. We used the voxel-based morphometry (VBM) technique in a population-based sample of 331 nondemented people in order to investigate the relationship between these factors and the cerebral volume (a marker of brain reserve). The results showed a positive and significant association between education, occupation, and leisure activities and the cognitive performances on Isaac's set test. Among these factors, only education was significantly associated with a cerebral volume including gray and white matter (p = 0.01). In voxel-based morphometry analyses, the difference in gray matter volume was located in the temporoparietal lobes and in the orbitofrontal lobes bilaterally (a p-value corrected <0.05 by false discovery rate [FDR]). Although smaller, the education-related difference in white matter volume appeared in areas connected to the education-related difference in gray matter volume. Education, occupation attainment, and leisure activities were found to contribute differently to reserve capacity. Education could play a role in the constitution of cerebral reserve capacity. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Scott, Richard; Khan, Faisal M.; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo
2015-03-01
Immunofluorescent (IF) image analysis of tissue pathology has proven to be extremely valuable and robust in developing prognostic assessments of disease, particularly in prostate cancer. There have been significant advances in the literature in quantitative biomarker expression as well as characterization of glandular architectures in discrete gland rings. However, while biomarker and glandular morphometric features have been combined as separate predictors in multivariate models, there is a lack of integrative features for biomarkers co-localized within specific morphological sub-types; for example the evaluation of androgen receptor (AR) expression within Gleason 3 glands only. In this work we propose a novel framework employing multiple techniques to generate integrated metrics of morphology and biomarker expression. We demonstrate the utility of the approaches in predicting clinical disease progression in images from 326 prostate biopsies and 373 prostatectomies. Our proposed integrative approaches yield significant improvements over existing IF image feature metrics. This work presents some of the first algorithms for generating innovative characteristics in tissue diagnostics that integrate co-localized morphometry and protein biomarker expression.
Tuokkola, Terhi; Koikkalainen, Juha; Parkkola, Riitta; Karrasch, Mira; Lötjönen, Jyrki; Rinne, Juha O
2016-03-01
Atrophy of the medial temporal lobe (MTL) is the main structural magnetic resonance imaging (MRI) finding in the brain of patients with Alzheimer's disease (AD). However, evaluating the degree of atrophy is still demanding. The visual rating method (VRM) was compared with multi-template tensor-based morphometry (TBM), in terms of its efficacy in diagnosing of mild cognitive impairment (MCI) and AD. Forty-seven patients with MCI, 80 patients with AD and 84 controls were studied. TBM seems to be more sensitive than VRM at the early stage of dementia in the areas of MTL and ventricles. The methods were equally good in distinguishing controls and the MCI group from the AD group. At the frontal areas TBM was better than VRM in all comparisons. A user-friendly VRM is still useful for the clinical evaluation of MCI patients, but multi-template TBM is more sensitive for diagnosing the early stages of dementia. However, TBM is currently too demanding to use for daily clinical work. © The Foundation Acta Radiologica 2015.
Does MRI scan acceleration affect power to track brain change?
Ching, Christopher R K; Hua, Xue; Hibar, Derrek P; Ward, Chadwick P; Gunter, Jeffrey L; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M
2015-01-01
The Alzheimer's Disease Neuroimaging Initiative recently implemented accelerated T1-weighted structural imaging to reduce scan times. Faster scans may reduce study costs and patient attrition by accommodating people who cannot tolerate long scan sessions. However, little is known about how scan acceleration affects the power to detect longitudinal brain change. Using tensor-based morphometry, no significant difference was detected in numerical summaries of atrophy rates from accelerated and nonaccelerated scans in subgroups of patients with Alzheimer's disease, early or late mild cognitive impairment, or healthy controls over a 6- and 12-month scan interval. Whole-brain voxelwise mapping analyses revealed some apparent regional differences in 6-month atrophy rates when comparing all subjects irrespective of diagnosis (n = 345). No such whole-brain difference was detected for the 12-month scan interval (n = 156). Effect sizes for structural brain changes were not detectably different in accelerated versus nonaccelerated data. Scan acceleration may influence brain measures but has minimal effects on tensor-based morphometry-derived atrophy measures, at least over the 6- and 12-month intervals examined here. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease
Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka
2012-01-01
In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228
Voxel-based morphometry in autopsy proven PSP and CBD.
Josephs, Keith A; Whitwell, Jennifer L; Dickson, Dennis W; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Parisi, Joseph E; Jack, Clifford R
2008-02-01
The aim of this study was to compare the patterns of grey and white matter atrophy on MRI in autopsy confirmed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and to determine whether the patterns vary depending on the clinical syndrome. Voxel-based morphometry was used to compare patterns of atrophy in 13 PSP and 11 CBD subjects and 24 controls. PSP and CBD subjects were also subdivided into those with a dominant dementia or extrapyramidal syndrome. PSP subjects showed brainstem atrophy with involvement of the cortex and underlying white matter. Frontoparietal grey and subcortical grey matter atrophy occurred in CBD. When subdivided, PSP subjects with an extrapyramidal syndrome had more brainstem atrophy and less cortical atrophy than CBD subjects with an extrapyramidal syndrome. PSP subjects with a dementia syndrome had more subcortical white matter atrophy than CBD subjects with a dementia syndrome. These results show regional differences between PSP and CBD that are useful in predicting the underlying pathology, and help to shed light on the in vivo distribution of regional atrophy in PSP and CBD.
Sato, Kanako; Kirino, Eiji; Tanaka, Shoji
2015-01-01
The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions.
Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang
2017-02-21
Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals' creative performance in the fields of science and art.
The neural substrates of procrastination: A voxel-based morphometry study.
Hu, Yue; Liu, Peiwei; Guo, Yiqun; Feng, Tingyong
2018-03-01
Procrastination is a pervasive phenomenon across different cultures and brings about lots of serious consequences, including performance, subjective well-being, and even public policy. However, little is known about the neural substrates of procrastination. In order to shed light upon this question, we investigated the neuroanatomical substrates of procrastination across two independent samples using voxel-based morphometry (VBM) method. The whole-brain analysis showed procrastination was positively correlated with the graymatter (GM) volume of clusters in the parahippocampal gyrus (PHG) and the orbital frontal cortex (OFC), while negatively correlated with the GM volume of clusters in the inferior frontal gyrus (IFG) and the middle frontal gyrus (MFG) in sample one (151 participants). We further conducted a verification procedure on another sample (108 participants) using region-of-interest analysis to examine the reliability of these results. Results showed procrastination can be predicted by the GM volume of the OFC and the MFG. The present findings suggest that the MFG and OFC, which are the key regions of self-control and emotion regulation, may play an important role in procrastination. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha
2015-01-01
Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.
Gray matter alteration in isolated congenital anosmia patient: a voxel-based morphometry study.
Yao, Linyin; Yi, Xiaoli; Wei, Yongxiang
2013-09-01
Decreased volume of gray matter (GM) was observed in olfactory loss in patients with neurodegenerative disorder. However, GM volume has not yet been investigated in isolated congenital anosmia (ICA) people. We herewith investigated the volume change of gray matter of an ICA boy by morphometric analysis of magnetic resonance images (voxel-based morphometry), and compared with that of 20 age-matched healthy controls. ICA boy presented a significant decrease in GM volume in the orbitofrontal cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, insular cortex, cerebellum, precuneus, gyrus rectus, subcallosal gyrus, middle temporal gyrus, fusiform gyrus and piriform cortex. No significant GM volume increase was detected in other brain areas. The pattern of GM atrophy was similar as previous literature reported. Our results identified similar GM volume alterations regardless of the causes of olfactory impairment. Decreased GM volume was not only shown in olfactory bulbs, olfactory tracts and olfactory sulcus, also in primary olfactory cortex and the secondary cerebral olfactory areas in ICA people. This is the first study to evaluate GM volume alterations in ICA people.
Brain correlates of pro-social personality traits: a voxel-based morphometry study.
Coutinho, Joana F; Sampaio, Adriana; Ferreira, Miguel; Soares, José M; Gonçalves, Oscar F
2013-09-01
Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.
Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang
2017-01-01
Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals’ creative performance in the fields of science and art. PMID:28220826
Sex differences in the association between gray matter volume and verbal creativity.
Shi, Baoguo; Xu, Li; Chen, Qunlin; Qiu, Jiang
2017-08-02
The explanation for why significant sex differences are found in creativity has become an increasingly important topic. The current study applied a cognitive neuroscience perspective and voxel-based morphometry to investigate the sex differences for the association between verbal creativity and gray matter volume (GMV) in a large sample of healthy adults from the Chinese Mainland (163 men and 193 women). Furthermore, we sought to determine which brain regions are responsible for these differences. Our behavioral results showed a significant sex difference. Specifically, women scored higher than men on originality. The voxel-based morphometry results indicated that the relationship between originality and GMV differed between men and women in the left temporo-occipital junction. Higher originality scores in women were associated with more GMV. In contrast, higher originality scores in men were related to less GMV. These findings suggest the left temporo-occipital junction GMV plays a unique role in the sex differences in verbal creativity because women usually surpass men in semantic processing, which is the major function of the left temporal region.
Forsman, Lea J; de Manzano, Orjan; Karabanov, Anke; Madison, Guy; Ullén, Fredrik
2012-01-01
Extraverted individuals are sociable, behaviorally active, and happy. We report data from a voxel based morphometry study investigating, for the first time, if regional volume in gray and white matter brain regions is related to extraversion. For both gray and white matter, all correlations between extraversion and regional brain volume were negative, i.e. the regions were larger in introverts. Gray matter correlations were found in regions that included the right prefrontal cortex and the cortex around the right temporo-parietal junction--regions that are known to be involved in behavioral inhibition, introspection, and social-emotional processing, e.g. evaluation of social stimuli and reasoning about the mental states of others. White matter correlations extended from the brainstem to widespread cortical regions, and were largely due to global effects, i.e. a larger total white matter volume in introverts. We speculate that these white matter findings may reflect differences in ascending modulatory projections affecting cortical regions involved in behavioral regulation. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-01
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. PMID:27899624
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granger, Brian R.; Chang, Yi -Chien; Wang, Yan
Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less
Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy
NASA Astrophysics Data System (ADS)
Bucht, Curry; Söderberg, Per; Manneberg, Göran
2010-02-01
The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.
Joo, Eun Yeon; Kim, Hosung; Suh, Sooyeon; Hong, Seung Bong
2014-07-01
Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. University hospital. Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). N/A. We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic sleep disturbance vulnerable to cognitive impairment. Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry.
NASA Astrophysics Data System (ADS)
Jones, Benjamin M.; Grosse, Guido; Hinkel, Kenneth M.; Arp, Christopher D.; Walker, Shane; Beck, Richard A.; Galloway, John P.
2012-02-01
Pingos are circular to elongate ice-cored mounds that form by injection and freezing of pressurized water in near-surface permafrost. Here we use a digital surface model (DSM) derived from an airborne Interferometric Synthetic Aperture Radar (IfSAR) system to assess the distribution and morphometry of pingos within a 40,000 km 2 area on the western Arctic Coastal Plain of northern Alaska. We have identified 1247 pingo forms in the study region, ranging in height from 2 to 21 m, with a mean height of 4.6 m. Pingos in this region are of hydrostatic origin, with 98% located within 995 drained lake basins, most of which are underlain by thick eolian sand deposits. The highest pingo density (0.18 km - 2 ) occurs where streams have reworked these deposits. Morphometric analyses indicate that most pingos are small to medium in size (< 200 m diameter), gently to moderately sloping (< 30°), circular to slightly elongate (mean circularity index of 0.88), and of relatively low height (2 to 5 m). However, 57 pingos stand higher than 10 m, 26 have a maximum slope greater than 30°, and 42 are larger than 200 m in diameter. Comparison with a legacy pingo dataset based on 1950s stereo-pair photography indicates that 66 may have partially or completely collapsed over the last half-century. However, we mapped over 400 pingos not identified in the legacy dataset, and identified only three higher than 2 m to have formed between ca. 1955 and ca. 2005, indicating that caution should be taken when comparing contemporary and legacy datasets derived by different techniques. This comprehensive database of pingo location and morphometry based on an IfSAR DSM may prove useful for land and resource managers as well as aid in the identification of pingo-like features on Mars.
Jones, Benjamin M.; Grosse, G.; Hinkel, Kenneth M.; Arp, C.D.; Walker, S.; Beck, R.A.; Galloway, J.P.
2012-01-01
Pingos are circular to elongate ice-cored mounds that form by injection and freezing of pressurized water in near-surface permafrost. Here we use a digital surface model (DSM) derived from an airborne Interferometric Synthetic Aperture Radar (IfSAR) system to assess the distribution and morphometry of pingos within a 40,000km2 area on the western Arctic Coastal Plain of northern Alaska. We have identified 1247 pingo forms in the study region, ranging in height from 2 to 21m, with a mean height of 4.6m. Pingos in this region are of hydrostatic origin, with 98% located within 995 drained lake basins, most of which are underlain by thick eolian sand deposits. The highest pingo density (0.18km-2) occurs where streams have reworked these deposits. Morphometric analyses indicate that most pingos are small to medium in size (<200m diameter), gently to moderately sloping (<30??), circular to slightly elongate (mean circularity index of 0.88), and of relatively low height (2 to 5m). However, 57 pingos stand higher than 10m, 26 have a maximum slope greater than 30??, and 42 are larger than 200m in diameter. Comparison with a legacy pingo dataset based on 1950s stereo-pair photography indicates that 66 may have partially or completely collapsed over the last half-century. However, we mapped over 400 pingos not identified in the legacy dataset, and identified only three higher than 2m to have formed between ca. 1955 and ca. 2005, indicating that caution should be taken when comparing contemporary and legacy datasets derived by different techniques. This comprehensive database of pingo location and morphometry based on an IfSAR DSM may prove useful for land and resource managers as well as aid in the identification of pingo-like features on Mars. ?? 2011.
Chan, Chris Yin Wei; Kwan, Mun Keong; Saw, Lim Beng
2010-01-01
The objective of this cadaveric study is to determine the safety and outcome of thoracic pedicle screw placement in Asians using the funnel technique. Pedicle screws have superior biomechanical as well as clinical data when compared to other methods of instrumentation. However, misplacement in the thoracic spine can result in major neurological implications. There is great variability of the thoracic pedicle morphometry between the Western and the Asian population. The feasibility of thoracic pedicle screw insertion in Asians has not been fully elucidated yet. A pre-insertion radiograph was performed and surgeons were blinded to the morphometry of the thoracic pedicles. 240 pedicle screws were inserted in ten Asian cadavers from T1 to T12 using the funnel technique. 5.0 mm screws were used from T1 to T6 while 6.0 mm screws were used from T7 to T12. Perforations were detected by direct visualization via a wide laminectomy. The narrowest pedicles are found between T3 and T6. T5 pedicle width is smallest measuring 4.1 +/- 1.3 mm. There were 24 (10.0%) Grade 1 perforations and only 1 (0.4%) Grade 2 perforation. Grade 2 or worse perforation is considered significant perforation which would threaten the neural structures. There were twice as many lateral and inferior perforations compared to medial perforations. 48.0% of the perforations occurred at T1, T2 and T3 pedicles. Pedicle fracture occurred in 10.4% of pedicles. Intra-operatively, the absence of funnel was found in 24.5% of pedicles. In conclusion, thoracic pedicle screws using 5.0 mm at T1-T6 and 6.0 mm at T7-T12 can be inserted safely in Asian cadavers using the funnel technique despite having smaller thoracic pedicle morphometry.
Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing.
Chan, Ho-Fung; Stewart, Neil J; Parra-Robles, Juan; Collier, Guilhem J; Wild, Jim M
2017-05-01
To demonstrate three-dimensional (3D) multiple b-value diffusion-weighted (DW) MRI of hyperpolarized 3 He gas for whole lung morphometry with compressed sensing (CS). A fully-sampled, two b-value, 3D hyperpolarized 3 He DW-MRI dataset was acquired from the lungs of a healthy volunteer and retrospectively undersampled in the k y and k z phase-encoding directions for CS simulations. Optimal k-space undersampling patterns were determined by minimizing the mean absolute error between reconstructed and fully-sampled 3 He apparent diffusion coefficient (ADC) maps. Prospective three-fold, undersampled, 3D multiple b-value 3 He DW-MRI datasets were acquired from five healthy volunteers and one chronic obstructive pulmonary disease (COPD) patient, and the mean values of maps of ADC and mean alveolar dimension (Lm D ) were validated against two-dimensional (2D) and 3D fully-sampled 3 He DW-MRI experiments. Reconstructed undersampled datasets showed no visual artifacts and good preservation of the main image features and quantitative information. A good agreement between fully-sampled and prospective undersampled datasets was found, with a mean difference of +3.4% and +5.1% observed in mean global ADC and Lm D values, respectively. These differences were within the standard deviation range and consistent with values reported from healthy and COPD lungs. Accelerated CS acquisition has facilitated 3D multiple b-value 3 He DW-MRI scans in a single breath-hold, enabling whole lung morphometry mapping. Magn Reson Med 77:1916-1925, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Panetta, Daniele; Pelosi, Gualtiero; Viglione, Federica; Kusmic, Claudia; Terreni, Marianna; Belcari, Nicola; Guerra, Alberto Del; Athanasiou, Lambros; Exarchos, Themistoklis; Fotiadis, Dimitrios I; Filipovic, Nenad; Trivella, Maria Giovanna; Salvadori, Piero A; Parodi, Oberdan
2015-01-01
Micro-CT is an established imaging technique for high-resolution non-destructive assessment of vascular samples, which is gaining growing interest for investigations of atherosclerotic arteries both in humans and in animal models. However, there is still a lack in the definition of micro-CT image metrics suitable for comprehensive evaluation and quantification of features of interest in the field of experimental atherosclerosis (ATS). A novel approach to micro-CT image processing for profiling of coronary ATS is described, providing comprehensive visualization and quantification of contrast agent-free 3D high-resolution reconstruction of full-length artery walls. Accelerated coronary ATS has been induced by high fat cholesterol-enriched diet in swine and left coronary artery (LCA) harvested en bloc for micro-CT scanning and histologic processing. A cylindrical coordinate system has been defined on the image space after curved multiplanar reformation of the coronary vessel for the comprehensive visualization of the main vessel features such as wall thickening and calcium content. A novel semi-automatic segmentation procedure based on 2D histograms has been implemented and the quantitative results validated by histology. The potentiality of attenuation-based micro-CT at low kV to reliably separate arterial wall layers from adjacent tissue as well as identify wall and plaque contours and major tissue components has been validated by histology. Morphometric indexes from histological data corresponding to several micro-CT slices have been derived (double observer evaluation at different coronary ATS stages) and highly significant correlations (R2 > 0.90) evidenced. Semi-automatic morphometry has been validated by double observer manual morphometry of micro-CT slices and highly significant correlations were found (R2 > 0.92). The micro-CT methodology described represents a handy and reliable tool for quantitative high resolution and contrast agent free full length coronary wall profiling, able to assist atherosclerotic vessels morphometry in a preclinical experimental model of coronary ATS and providing a link between in vivo imaging and histology.
Glaucoma anterior chamber morphometry based on optical Scheimpflug images.
Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis
2010-01-01
To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.